ANALYSIS OF FTR PHASE B
CRITICAL EXPERIMENTS
PART-1
ZPR-III ASSEMBLY 51

January 1970

AEC RESEARCH &
DEVELOPMENT REPORT
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, “person acting on behalf of the Commission” includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

PACIFIC NORTHWEST LABORATORY
RICHLAND, WASHINGTON
operated by
BATTLE MemoriAL Institute
for the
UNITED STATES ATOMIC ENERGY COMMISSION UNDER CONTRACT AT(45-1)-1830
ANALYSIS OF FTR PHASE B CRITICAL EXPERIMENTS
PART-1
ZPR-III ASSEMBLY 51

W. R. Young
R. A. Bennett

Reactor and Plant Technology Department
FFTF Division

January 1970
Printed in the United States of America
Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U.S. Department of Commerce
Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65
ANALYSIS OF FTR PHASE B CRITICAL EXPERIMENTS
PART I
ZPR-III ASSEMBLY 51
W. R. Young and R. A. Bennett

ABSTRACT

Critical experiments in support of the design of the Fast Flux Test Reactor have been carried out in ZPR-III Assemblies 48, 48A, 51, and 52a, b, c, d, e, and f, by personnel of Argonne National Laboratory. This report presents the results and analysis of the experiments performed in Assembly 51.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>DESCRIPTION OF ZERO POWER REACTOR III (ZPR-III)</td>
<td>6</td>
</tr>
<tr>
<td>DESCRIPTION OF ZPR-III ASSEMBLY 51</td>
<td>8</td>
</tr>
<tr>
<td>Material Densities</td>
<td>8</td>
</tr>
<tr>
<td>Core</td>
<td>8</td>
</tr>
<tr>
<td>Radial Reflector</td>
<td>11</td>
</tr>
<tr>
<td>Axial Reflectors</td>
<td>13</td>
</tr>
<tr>
<td>EXPERIMENTAL RESULTS AND ANALYSES</td>
<td>14</td>
</tr>
<tr>
<td>Critical Mass</td>
<td>14</td>
</tr>
<tr>
<td>Cylindricizing Assembly 51</td>
<td>15</td>
</tr>
<tr>
<td>Cross Sections</td>
<td>18</td>
</tr>
<tr>
<td>Results</td>
<td>23</td>
</tr>
<tr>
<td>Reaction Rate Traverses</td>
<td>23</td>
</tr>
<tr>
<td>239Pu Fission</td>
<td>34</td>
</tr>
<tr>
<td>238U Fission</td>
<td>35</td>
</tr>
<tr>
<td>10B (n, α)</td>
<td>36</td>
</tr>
<tr>
<td>Effects of Plate Rotation</td>
<td>36</td>
</tr>
<tr>
<td>Comparisons of Reaction Rate Distributions</td>
<td>37</td>
</tr>
<tr>
<td>Material Worth Traverses</td>
<td>38</td>
</tr>
<tr>
<td>Distributed Sodium Worth</td>
<td>49,</td>
</tr>
<tr>
<td>Large Sample Material Worths</td>
<td>53</td>
</tr>
<tr>
<td>Sodium Substituted for Central Driver Drawer</td>
<td>53</td>
</tr>
<tr>
<td>Worth of Uranium and Plutonium in Central Fuel Drawer</td>
<td>54</td>
</tr>
<tr>
<td>Control Poisons in Central Column</td>
<td>54</td>
</tr>
<tr>
<td>Axial Material Worths in P16</td>
<td>58</td>
</tr>
<tr>
<td>Axial Worth of Core Material</td>
<td>58</td>
</tr>
<tr>
<td>Fuel Compaction</td>
<td>59</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>ZPR-III Loaded with Assembly 51</td>
</tr>
<tr>
<td>2</td>
<td>ZPR-III Assembly 51</td>
</tr>
<tr>
<td>3</td>
<td>Core Drawer Loading for ZPR-III, Assembly 51</td>
</tr>
<tr>
<td>4</td>
<td>Volume Equivalent Critical Right</td>
</tr>
<tr>
<td>5</td>
<td>Measured Core Edge Drawer Worths</td>
</tr>
<tr>
<td>6</td>
<td>Unit Cell for Heterogeneity</td>
</tr>
<tr>
<td>7</td>
<td>Radial 239Pu Fission Rate Distribution</td>
</tr>
<tr>
<td>8</td>
<td>Axial 239Pu Fission Rate Distribution</td>
</tr>
<tr>
<td>9</td>
<td>Radial 238U Fission Rate Distribution</td>
</tr>
<tr>
<td>10</td>
<td>Axial 238U Fission Rate Distribution</td>
</tr>
<tr>
<td>11</td>
<td>Radial 10B (n,α) Rate Distribution</td>
</tr>
<tr>
<td>12</td>
<td>Axial 10B (n,α) Rate Distribution</td>
</tr>
<tr>
<td>13</td>
<td>Drawer Loadings for Radial Traverses</td>
</tr>
<tr>
<td>14</td>
<td>Drawer Loadings for Axial Traverses</td>
</tr>
<tr>
<td>15</td>
<td>Radial 239Pu Worth Distributions</td>
</tr>
<tr>
<td>16</td>
<td>Axial 239Pu Worth Distributions</td>
</tr>
<tr>
<td>17</td>
<td>Radial 238U Worth Distributions</td>
</tr>
<tr>
<td>18</td>
<td>Axial 238U Worth Distributions</td>
</tr>
<tr>
<td>19</td>
<td>Radial 10B Worth Distributions</td>
</tr>
<tr>
<td>20</td>
<td>Axial 10B Worth Distributions</td>
</tr>
<tr>
<td>21</td>
<td>Measured 239Pu Central Worths for Various Plutonium Assemblies</td>
</tr>
<tr>
<td>22</td>
<td>Measured 238U Central Worths for Various Plutonium Assemblies</td>
</tr>
<tr>
<td>23</td>
<td>Sodium Voiding Experiments</td>
</tr>
<tr>
<td>24</td>
<td>Drawer Loading for B_4C and Ta Poison Studies</td>
</tr>
<tr>
<td>25</td>
<td>P16 Drawer for Fuel Compaction Experiment</td>
</tr>
<tr>
<td>26</td>
<td>Neutron Spectrum, Center of Assembly 51</td>
</tr>
<tr>
<td>27</td>
<td>Neutron Spectrum, Midway from Core Center to Core Edge, Assembly 51</td>
</tr>
<tr>
<td>28</td>
<td>Neutron Spectrum, Core-Reflector Interface to Core Edge, Assembly 51</td>
</tr>
<tr>
<td>29</td>
<td>Neutron Spectrum, Middle of Radial Reflect to Core Edge, Assembly 51</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1 Core Loading ZPR-III Assembly 51 11
2 Assembly 51 Average Compositions 12
3 Heterogeneity Corrections for Core Material for Assembly 51 19
4 Isotopic Concentrations in Model Unit Cell 22
5 Critical Calculations, Assembly 51 23
6 Sodium Worths 50
7 Composition of P16 Matrix Position, Sodium Substituted 54
8 Uranium and Plutonium Worth Experiment 55
9 Natural B$_4$C and Ta Worth in P16 Matrix Position 57
10 Axial Worth of Core Material, P16 Matrix Position 59
11 Material Redistribution in Fuel Compaction Experiment 61
12 ZPR-III Assembly 51-Central Fission Ratios 62
The purposes of the Fast Flux Test Facility (FFTF) Critical Experiments Programs\(^1,2\) are to provide experimental data for evaluation of calculational methods being used in the design of the Fast Test Reactor (FTR), and to provide experimental verification of the design of the FTR. The program has been divided into phases A, B, and C. Phases A and B are providing verification of calculational models and some basic design data. Phase C will be an engineering mockup study. Phase A consisted of a study of control rod configurations in a plutonium fueled nickel-sodium reflected system.\(^3,4,5\)

This report presents the results of an analysis of the first series of Phase B experiments. The experiments were performed by Argonne National Laboratory and Battelle-Northwest personnel in ZPR III, Assembly 51.

The goal of this report is to provide experiment-theory correlations indicative of uncertainties in the calculational models used in the FTR design. Where possible, interpretation of disagreements are presented and the impact on FTR design and future understanding of operation are noted.

Several sets of experiments were performed, including critical mass and edge-drawer reactivity worths, spatial distributions of reaction rates, and small sample reactivity worths, distributed sodium voiding reactivity worth, large sample core reactivity worths, fuel compaction and fuel movement reactivity worths, fission rate ratios, spectrum measurements, and small sample Doppler reactivity effects. In view of the diversified nature of this series of experiments, each item
will be discussed successively in this report except for the Doppler experiments. The latter will be discussed in a separate report to follow.

SUMMARY

The conclusions reached in the analysis of each experiment are summarized here for convenience in their application to the assessment of uncertainties in FTR design parameters.

These results are, of course, based upon experiments performed in a system approximately one-third the size of the reference FTR. They must, therefore, be used with appropriate reservation until experimental results from larger systems are available. Such experiments are planned for early FY-70.

MULTIPLICATION AND CRITICAL MASS

ZPR III, Assembly 51, was a completely reflected, slightly irregular, cylindrical reactor with a core volume of 307 liters and a critical mass of 212 kg ± 1.1 kg of fissile material. The fuel was uranium-plutonium with a ^{238}U to ^{239}Pu atom ratio of 4.08:1. Diluents were primarily sodium, steel, and oxygen. The calculated multiplication constant of the as-built system, obtained from a transport-corrected, diffusion-theory, two-dimensional (X-Y) 8-energy group analysis, was 0.987. The convergence of the calculation was 10^{-5} in k. This -1.3% $\Delta k/k$ under-estimate of the effective multiplication constant of Assembly 51, if extrapolated, would indicate present FTR design calculations to overestimate critical mass by 16 kg by overestimating reactor size of fixed enrichments, or to overestimate critical mass by 6 kg by overestimating enrichments for fixed size. The latter is, of course, the expected realistic condition since reactor geometry will be fixed. Such discrepancies, even though uncorrected, are not expected to be particularly disconcerting for the reasons that (1) the FTR is enrichment-zoned and the zone interface may be adjusted, as
necessary, and (2) core lifetime is relatively short and enrichment can be adjusted for subsequent loading. The error in k is consistent with our recent experience in similar experiment-theory correlations on blanketed systems where differences in experimental and calculated values ranged from -2.4 to 0.6% $\Delta k/k$. Finally, no attempt has been made here to establish the source of this discrepancy with regard to, say, adjustment of cross sections. Such efforts are to be deferred to a time when statistical consistency is established for a number of reflected plutonium reactors.

REACTION RATE DISTRIBUTION

In general, the shapes of the spatial distribution of 239Pu and 238U fissions and the (n,α) reaction in 10B are calculated well within the reactor core. The agreement between experiment and theory begins to deteriorate near the core-reflector boundaries and, in the reflectors, the agreement is inconsistent amongst the three different sensors. Differences as large as 100% were found. The problem results primarily from the rapid softening of the spectrum in the reflector and near the core-reflector interface.

The peak to volume averaged 239Pu fission rate was measured as 1.40 and the calculated value is 1.43. One can, therefore, expect power distributions to be calculable within the core except near the core reflector interface where calculated reaction rates are not reliable. Peripheral control rod burnup may therefore be difficult to compute accurately.

MATERIAL WORTHS

Experiment-theory correlation on central reactivity worths of small samples of 239Pu and 238U are poor. The c/e values, 1.33 ± 0.015 and 1.53 ± 0.02, respectively, are consistent with the experience reported by others. This discrepancy has been explored and may be due to the data cross section set or
to discrepancies in β. The significance of the discrepancy is important in analysis of the Doppler experiment where one is actually concerned with small local fuel changes. One is often interested in small density changes over extended regions, e.g., varying fissile density in tests, and in large volume fuel voiding such as whole fuel elements, or bulk core fuel slumping. In the latter, where 239Pu and 238U were removed simultaneously, c/e values were found to be 1.15 - 1.18. The reduction in error is due to cancellation in over-calculating the 239Pu worth positively and over-calculating the absolute value of the negative 238U worth. For 10B, the c/e values for central reactivity worth of small samples were unity.

Spatial distributions for worths of small samples of 10B are calculated well. The poorest agreement occurs at the core reflector interface. In general, the shapes for 239Pu and 238U are also very good but, of course, the absolute magnitude remains poor.

DISTRIBUTED WORTH OF SODIUM

Voiding of 10% of the sodium from large regions of the core is calculated to within 5 to 10%. However, calculations appear very poor for reactivity effects of voiding 30% of the sodium from smaller central regions where the coefficient has a strong positive component and is primarily spectrum dependent. Reactivity calculations are more positive in the range of 30 to 240%.

Should this disagreement prevail in the larger, more FTR-like experiments where the zone of positive sodium worth is thought to be larger, serious uncertainties in the safety analysis could result.

CENTRAL CONTROL REACTIVITY WORTHS

Reactivity worths of central control rods of 12C and Ta were found to have c/e values of 0.92 ± 0.02 and 0.94 ± 0.02, respectively.
The c/e values obtained in analyses of central natural B_4C rods worth measurements performed in ZPR-III, Assembly 48A ranged up to 1.05. One estimates, therefore, that a minimum uncertainty in control rod calculation is $\pm 10\%$.

NEUTRON SPECTRA

The general shapes of the neutron spectra at four assembly locations ranging radially from the core center into the reflector were well represented by calculations. The fine detail arising from scattering resonances of assembly materials were not, and cannot be, reproduced with a 26-group cross section set. Subtle reactivity effects dependent upon these fine spectral details may, with the spectrum properly integrated, prove calculable with the coarse structure.
DESCRIPTION OF ZERO POWER REACTOR III (ZPR-III)

The facilities of the ZPR-III at the National Reactor Testing Stations, Idaho Falls, Idaho are owned by the United States government and operated, under contract with the U.S. Atomic Energy Commission, by Argonne Laboratories. Detailed descriptions of the facility have been published. (8,9)

Briefly, the ZPR-III can be described as a split table critical facility. Reactor materials typically 1/8 to 1/4-in. thick are loaded as flat plates. The plates are placed in long drawers that fit into horizontal matrix tubes. One matrix cell is made up of a matrix tube, the drawer, and the drawer contents. A matrix cell is, on the average, 2.182 in. high by 2.178 in. wide.

A small air gap always remains between the planes of stainless steel formed from the mating of the drawer front wall in each assembly when the halves of the assembly are brought together. Drawer walls are 0.032 in. thick and are perforated to reduce the minimum amount of stainless steel in ZPR-III assemblies. The minimum separation of fuel at the axial mid-plane is equivalent to a two-drawer wall thickness or 0.064 inches. An uncertainty of ±0.005 in. in the reference axial drawer position, a ±0.004-in. uncertainty in the angular tolerance of each drawer front, and a ±0.004-in. uncertainty in the angular tolerance of each mating fuel piece must be added to the minimum separation. These uncertainties apply to fuel piece locations in each half of the assembly. The total gap then will be estimated as 0.077 ± 0.013.

Figure 1 is a picture of the ZPR-III. Assembly 51 was loaded when the picture was taken. The three dark matrix cells in the right-half are empty safety and control drawer positions. The drives for the safety and control drawers are apparent on the outside of the left half.
DESCRIPTION OF ZPR-III ASSEMBLY 51\(^{(4)}\)

Assembly 51 was a 307 \(\ell\) irregular right cylinder. Figure 2 shows a cross section transverse to its cylindrical axis. Each matrix cell of the figure represents a ZPR-III matrix tube, a drawer, and its contents.

The core height was 86.51 cm and a volume equivalent core would have a radius of 33.647 cm. The axial and radial reflectors were nominally 30.48 cm thick.

The core composition was approximately 36 vol\% fuel, 36 vol\% sodium, and 25 vol\% stainless steel. The radial reflector was composed of 16 vol\% sodium, 12 vol\% stainless steel, and 61 vol\% nickel. The axial reflector had approximately 41 vol\% sodium, 17 vol\% stainless steel, and 31 vol\% nickel.

MATERIAL DENSITIES

Core

Drawer types designated A and A* make up the bulk of the core drawers. The average isotopic composition of an A and an A* drawer approximated that of the driver zone of a split conical version\(^{(10)}\) of the FTR. Figure 3 shows how the A and A* core portion of the drawers were loaded with platelet materials.

All eight safety drawers were spiked with additional plutonium to make their total worth exceed 1.5\% \(\Delta k/k\). Each safety rod was spiked with fuel removed from the core drawers immediately above and below it. Nonfissile material, removed from safety drawer positions to make room for additional fuel, replaced vacated fuel positions of the donor drawers. This method of spiking minimized perturbations to the critical mass and did not change the material inventory of the region.
FIGURE 2. ZPR-III Assembly 51
FIGURE 3. Core Drawer Loading for ZPR-III Assembly 51
Safety drawer pairs in each half of the assembly were in matrix locations N13, R13, N19, R19. Figure 2 shows the location of the safety drawers, (S), and the fuel depleted drawers immediately above (O) and below, (B) each safety drawer. Table 1 lists the drawer fissile inventory of the critical core and Table 2 itemizes the average isotopic composition of each zone of the assembly.

TABLE 1. Core Loading ZPR-III Assembly 5l(4)

<table>
<thead>
<tr>
<th>Identity in Figure 2</th>
<th>Number of Drawer Pairs</th>
<th>Fissile Material, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Loading Fuel Drawers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Even No. Column</td>
<td>55</td>
</tr>
<tr>
<td>A*</td>
<td>Odd No. Column</td>
<td>48</td>
</tr>
<tr>
<td>Control Rod</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>Safety Rod</td>
<td>S</td>
<td>4</td>
</tr>
<tr>
<td>Above Safety Rod</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Below Safety Rod</td>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>116</td>
</tr>
</tbody>
</table>

k = 1.000566 (Measured)(a)
Core Volume = 307.5 l

(a) When the control rod was 4.585 in. withdrawn, the reactor was 8.2 Ih subcritical. Complete insertion of the control rod resulted in an excess reactivity of 58.5 Ih.

Radial Reflector

The radial reflector had an inner nickel-sodium-stainless steel zone resembling the FTR reflector and an outer zone consisting mostly of iron. The iron region, substituted because of the lack of an adequate nickel inventory, made the combined zones nearly equivalent to a single 30 cm thick nickel-sodium-stainless.
<table>
<thead>
<tr>
<th>TABLE 2. Assembly 51 - Average Compositions (d) and Densities</th>
</tr>
</thead>
<tbody>
<tr>
<td>[atom density (x 10^-2 g/cm^3)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE TYPE</th>
<th>Pu, 239</th>
<th>Pa, 239</th>
<th>U, 238</th>
<th>U, 235</th>
<th>U, 234</th>
<th>Si, 28</th>
<th>Al, 27</th>
<th>C, 12</th>
<th>O, 16</th>
<th>Na, 23</th>
<th>Cr, 52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Rod</td>
<td>0.0112</td>
<td>0.00105</td>
<td>0.000175</td>
<td>0.000015</td>
<td>0.000014</td>
<td>0.000175</td>
<td>0.000149</td>
<td>0.000149</td>
<td>0.000149</td>
<td>0.000149</td>
<td>0.000149</td>
</tr>
<tr>
<td>Safety Rod</td>
<td>0.00057</td>
</tr>
<tr>
<td>Power Assembly</td>
<td>0.00002</td>
</tr>
<tr>
<td>Safety Rod</td>
<td>0.000015</td>
</tr>
<tr>
<td>Power Rod</td>
<td>0.000015</td>
</tr>
<tr>
<td>Radial Assembly</td>
<td>0.0001727</td>
</tr>
<tr>
<td>Radial reflector</td>
<td>0.000015</td>
</tr>
<tr>
<td>Weight reflector</td>
<td>0.000015</td>
</tr>
</tbody>
</table>
steel reflector. The iron region was eventually replaced during the transition to the next series of assemblies at which time adequate nickel was on hand.

The configuration of the radial reflector may be found in Figures 2 and 4. Compositions may be found in Table 2.

Axial Reflectors

The axial reflectors of Assembly 51 had a nominal thickness of 30 cm and a composition simulating that of the expected FTR reflector. The configuration and composition of this region can also be found in Figures 2 and 4 and Table 2.

FIGURE 4. Volume Equivalent Critical Right
EXPERIMENTAL RESULTS AND ANALYSES

Detailed descriptions of experiments and their analyses are presented in this section. In general, each discussion is self-contained except where reference to ANL experiment descriptions are made for convenience.

Both diffusion and transport theory were used in the analyses reported. The specific computer codes used were:

- FCC-IV Reference (13)
- DTF IV Reference (14)
- 2DF Reference (15)
- 2DB Reference (16)
- PERT-IV Reference (17)

For most calculations of effective multiplication constants, a convergence criterion of 10^{-5} yielding an eigenvalue converged to within $\pm 5 \times 10^{-5} \triangle k/k$ was specified. For sodium void worth, a convergence of 10^{-6} yielding eigenvalues converged to approximately $\pm 5 \times 10^{-6} \triangle k/k$ or the order of $\pm 2 I_h^*$ was specified.

Mesh points were 2 to 4 cm apart in interior core regions, and 4 to 5 cm apart in the reflectors. Near zone boundaries, they were separated by less than 1 cm. Typical mesh structures for a two-dimensional calculation contained between 500 and 900 spatial mesh points.

CRITICAL MASS

Critical mass, even with the best techniques, probably cannot be consistently precalculated closer than several $\%$ $\Delta M/M$ to the critical mass because assembly composition, material distribution, and safety rod spiking are generally not known until the assembly is complete. Corrections to predictions must be made after the loading details are known. Assembly 51
was precalculated in September 1967\(^{(18)}\) to have a critical mass of 220 kg of \(^{239}\text{Pu}\) of fissile material. The assembly went critical in December 1967 with 212 kg fissile mass. The prediction was 4\% high in \(\Delta M/M\).

The effects of a stepped core edge, safety drawers, air gap, and exact A-A* drawer configuration were omitted from the precalculation. The needed corrections, except for exact concentration, are listed in the next paragraph. The concentration of \(^{239}\text{Pu}\) was assumed to be 0.001736 atom/b-cm. Compared with the as-built concentration of 0.001727, this concentration corresponds to a precalculated increase of about 0.3\% \(\Delta k/k\) or a 1.3 kg decrease in fissile mass.

Cylindricizing Assembly 51

The slightly supercritical system shown in Figure 2 and described in Table 2 is the reference configuration for all Assembly 51 experiments and is formally designated ZPR-III Assembly 51-28.\(^{(4)}\) As shown, it has irregular core and reflector boundaries, spiked safety rods and depleted adjacent core drawers, a two-drawer unit cell of dissimilar composition, a central air gap between halves, and an outer reflector of iron rather than Ni-Na. Corrections to cylindricize and homogenize this system are tabulated as follows:

<table>
<thead>
<tr>
<th>Correction</th>
<th>(K_{\text{eff}})</th>
<th>Mass, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly condition as in Figures 2 & 4</td>
<td>1.00057</td>
<td>212.75</td>
</tr>
<tr>
<td>Corrections:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth circular boundary, (R_{\text{core}} = 33.861) cm.</td>
<td>1.00439</td>
<td>215.47</td>
</tr>
<tr>
<td>Safety rod & adjacent drawer homogenization</td>
<td>1.00539</td>
<td></td>
</tr>
<tr>
<td>Conversion of Fe reflector to Ni-Na</td>
<td>1.00769</td>
<td></td>
</tr>
<tr>
<td>Air gap</td>
<td>1.00939</td>
<td></td>
</tr>
<tr>
<td>Effect of dissimilar drawers in cell, A-A*</td>
<td>1.01059</td>
<td></td>
</tr>
<tr>
<td>Reduction to unit multiplication</td>
<td>1.0000</td>
<td>202.97</td>
</tr>
</tbody>
</table>

15
Each corner in the irregular core was either truncated or filled-in to cylindricize the perimeter. Examination of the outline of Assembly 51-28 shows that added core material, on the average is closer to the core center than material that has been removed. Hence, the net effect of cylindricization represents an increase in k and, coincidentally, an increase in mass. Core edge worths were taken from the measured values\(^4\) and plotted against radius for A and A* drawers (Figure 5.) The materials added or subtracted were given worths corresponding to the radius coincident with the centroid of their volume.

Material subtracted evenly from the edge was assumed to be worth the average of A and A* drawer material at the core radius.

The 2D RZ cylindrical calculations with the diffusion code 2DB gave a critical mass of 228.36 kg fissile. The 2DF RZ S4 transport calculation for this core gave a calculated eigenvalue of 1.0091. Correcting for core size results in an inferred transport correction to the cylindricized 203 kg core of 1% $\Delta k/k$. The correction is inferred from a recent study showing the transport correction for a 203 kg core to be 0.1% $\Delta k/k$ larger than for a 228 kg core.\(^19\)

The calculated eigenvalues were reduced to correspond to the mass of 203 kg using an edge worth of 83 I_h/kg. This value is the measured average worth of fissile material removed.\(^4\) The RZ calculational model is shown in Appendix A. All concentrations in the RZ models were from the average zone compositions.

The method of safety rod spiking, described in Material Densities, did not change the material content of the region of the rods. The calculation of the reactivity effect of the spiking was done with a 2 DF two-dimensional S_4 transport
analysis. The bunching effect is small, 0.10% Δk/k, and reduces the reactivity of the assembly. The positive effect of lumping in the safety rods is probably offset by the flux peaking in O and B drawers of Figure 2.

The effect of an alternating A, A* distribution, where A drawers are in even numbered column and A* are in the odd numbered ones, was calculated with the code 2DB. The calculations enabled comparison of alternating A-A* columns with a uniform mixture of A and A* in an X-Y geometry. The value of k was increased by 0.12% Δk/k in going from the alternate distribution of 51 to a uniform distribution.

With the gap assumed to be 0.077 in., the gap volume would be approximately 0.695 liter. The worth of the air-stainless steel gap in Δk/k is deduced from the inferred volume average worth of 239Pu at the midplane to be 0.00365 Δk/k/kg, and the mass of fissile material normally in the gap to be 0.47 kg. The result is Δk/k = 0.0017.

Finally, the outer radial reflector of iron was replaced with a Ni-Na reflector of the same nominal composition as the inner radial reflector and Δk/k was measured to be 0.0023.\(^{11}\)

A 2DB X-Y calculation was made of Assembly 51-28. Here the details of the radial structure were included. The X-Y calculational model is shown in Appendix E.

The effective axial buckling was inferred from the R-Z calculation and a 2 DB 1D cylindrical model possessing the exact composition and radial mesh of the 2D model. The buckling was found to be 6.82 m\(^{-2}\).

Cross Sections

All calculations were based upon a 26-group cross section set. Sets having fewer energy groups were collapsed from the
26 group set by averaging over a calculated spectrum. These 26-group cross sections, a Battelle-Northwest set, are a modified version of the Bondarenko set.\(^{(20,21)}\) They are read from the data tape by the computer code, FCC IV,\(^{(12)}\) which also computes the resonance shielding factor, punches out cards and, if desired, collapses them to a few-group set.

Core cross sections have been weighted for heterogeneities by cell calculations, while reflector cross sections are used unaltered from a homogeneous fundamental mode calculation.

The ZPR-III-51 loadings were made up of flat plates or cans, as in the case of sodium, 1/8 to 1/4 in. in thickness. The plates were so loaded into stainless steel drawers that the long dimensions of the plates and drawers were parallel with the core axis. Heterogeneous effects arising because of the finite size of the plates yield a difference calculated to be 0.74\% in k between a homogeneous model and a more realistic model in which the plates are simulated. Table 3 gives data on the sources of the 0.74\% difference in k as calculated with a 2\(DB\) RZ, 8-group, homogeneous model, and a 2\(DB\) RZ, 8-group heterogeneous model. The largest contributors to errors in a homogeneous model appear to result from an excessive capture to fission ratio for fuel materials and excessive leakage, largely because of a harder spectrum in the fuel of the heterogeneous model.

TABLE 3. Heterogeneity Corrections for Core Material for Assembly 51

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Homogeneous to Heterogeneous: Correction in (\Delta k/k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased Pu and U utilization</td>
<td>+0.0006</td>
</tr>
<tr>
<td>Decreased absorptions in SS and sodium</td>
<td>+0.0001</td>
</tr>
<tr>
<td>Decrease in (a_{40}), (a_{40}), (a_{28}) due to spectrum shift in fuel</td>
<td>+0.0054</td>
</tr>
<tr>
<td>Decrease in leakage</td>
<td>+0.0013</td>
</tr>
<tr>
<td>Total</td>
<td>+0.0074</td>
</tr>
</tbody>
</table>
Heterogeneity effects were incorporated into the calculational model through flux-volume weighted cross sections. The flat plates of reactor materials were approximated by infinite planes in an S 12 one-dimensional, 26-group DTF-IV(14) transport calculation. Periodic boundary conditions were used at the cell boundary. The calculational model of the A-A* drawer pair is shown in Figure 6. Concentrations in each region of the cell are listed in Table 4. Sodium, stainless steel, and other diluents were lumped together in five regions which correspond to similar regions in the actual loading. In a like manner, fuel was lumped into four regions. The volume average concentrations of the isotopes in Table 4 correspond to the concentrations of Table 2. The exceptions, Mo and Si, were not included in the cell calculation because of lack of data at that time. They were added to the mix later.

The cross sections were averaged over the cell flux and volume using

$$\bar{\phi} \bar{\sigma} V_{\text{cell}} = \int_{\text{cell}} \phi(X) \sigma(X) \, dv$$

where \(\bar{\phi} \) is the average flux in the cell, \(V_{\text{cell}} \) is the cell volume, and \(\bar{\sigma} \) is the weighted cross section. The average transport cross section, \(\bar{\lambda}_{\text{tr}} \), is inversely weighted to make the leakage from the cell \(B^2 \sqrt[3]{3\bar{\lambda}_{\text{tr}}} \) equal to

$$V_{\text{cell}} B^2 \frac{\phi}{\sqrt[3]{3\bar{\lambda}_{\text{tr}}}} = B^2 \int_{\text{cell}} \frac{\phi(X)}{3\bar{\lambda}_{\text{tr}}(X)} \, dv.$$

When cell 26-group cross sections were collapsed to fewer groups, they were collapsed as a mix. Inverse linear weighting was used for transport cross sections.
FIGURE 6. Unit Cell for Heterogeneity
TABLE 4. Isotopic Concentrations in Model Unit Cell

<table>
<thead>
<tr>
<th>Region</th>
<th>Thickness, cm</th>
<th>Mix</th>
<th>Isotope</th>
<th>Density, (10^{24}) atom/cm(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.723</td>
<td>1</td>
<td>C</td>
<td>0.004545, Coolant, clad and structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fe</td>
<td>0.02278</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cr</td>
<td>0.005339</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ni</td>
<td>0.002368</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mo</td>
<td>0.0004782</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Al</td>
<td>0.0008073</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Na</td>
<td>0.013514</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>0.01867</td>
</tr>
<tr>
<td>2</td>
<td>0.9525</td>
<td>2</td>
<td>Pu-239 + 241</td>
<td>0.0037544, ZPPR + U-238</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pu-240</td>
<td>0.0005562</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U-235</td>
<td>0.00002929</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U-238</td>
<td>0.01537</td>
</tr>
<tr>
<td>3</td>
<td>2.5307</td>
<td>1</td>
<td>Pu-239 + 241</td>
<td>0.012735, Pu + U-238 (metal)</td>
</tr>
<tr>
<td>4</td>
<td>0.6338</td>
<td>3</td>
<td>Pu-239 + 241</td>
<td>0.012735, Pu + U-238 (metal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pu-240</td>
<td>0.0006769</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U-235</td>
<td>0.00004281</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U-238</td>
<td>0.003773</td>
</tr>
<tr>
<td>5</td>
<td>1.447</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.953</td>
<td>4</td>
<td>Pu-239 + 241</td>
<td>0.0042037, SEFOR + U-238</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pu-240</td>
<td>0.0004416</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U-235</td>
<td>0.00009202</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U-238</td>
<td>0.04826</td>
</tr>
<tr>
<td>7</td>
<td>2.16</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.9615</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.7225</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

The calculational and experimental results are shown in Table 5. There is a small difference in the X-Y analysis and the RZ analysis, but they appear consistent. The differences are indicative of the problems in cylindricization of the core, and the X-Y model is more representative of the calculational accuracy of our codes and data set.

TABLE 5. Critical Calculations, Assembly 51

<table>
<thead>
<tr>
<th>Mass, kg</th>
<th>Keff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured Assembly 51-28</td>
<td>212 ± 1.1</td>
</tr>
<tr>
<td>Transport Corrected X-Y 2D Diffusion Calculation</td>
<td>212</td>
</tr>
<tr>
<td>Cylindricized Assembly 51-28, Inferred from measured edgeworths</td>
<td>203 ± 1.1</td>
</tr>
<tr>
<td>Transport Corrected R-Z2D Diffusion Calculation</td>
<td>203</td>
</tr>
</tbody>
</table>

REACTION RATE TRAVERSES

Radial and axial reaction rate distributions of 239Pu (n,f), 238U (n,f), and 10B (n,α) were measured with gas filled proportional counters. Measured and calculated results are shown in Figures 7 through 12. Radial traverses were through the P row 1.25 in. from the midplane in Half 1, and axial traverses were along matrix position P-16. The chambers were secured to a stainless steel sled made of a 23-in. length of thin walled tubing that moved through a traverse tube. The traverse tubing was built into the specially loaded drawers illustrated in Figures 13 and 14. These drawers are shown for illustration only and are not drawn to scale. The lengths of the sensitive volumes of the chambers were: 239Pu fission chambers - 1 in.; 238U fission chamber - 1 in.; and 10B-F_3 chamber - 2 in. Each traverse was performed twice (fuel normal and fuel rotated). Fuel was rotated to study the effect of neighboring fuel orientation on reaction rates.
FIGURE 7. Radial 239Pu Fission Rate Distribution
FIGURE 8. Axial 239Pu Fission Rate Distribution
FIGURE 9. Radial ^{238}U Fission Rate Distribution
FIGURE 10. Axial 238U Fission Rate Distribution
FIGURE 11. Radial $^{10}\text{B} (n,\alpha)$ Rate Distribution
FIGURE 12. Axial 10B (n,α) Reaction Rate Distribution
FIGURE 13. Drawer Loadings for Radial Traverses

A DRAWER

<table>
<thead>
<tr>
<th>0"</th>
<th>2"</th>
<th>17"</th>
<th>21"</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>(\text{Na})</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>(\text{Na})</td>
</tr>
<tr>
<td>(\text{U}_3\text{O}_8)</td>
<td>(\text{Na})</td>
<td>(\text{Ni})</td>
<td>(\text{Ni})</td>
</tr>
<tr>
<td>(\text{ZPPR FUEL})</td>
<td>(\text{Na})</td>
<td>(\text{Ni})</td>
<td>(\text{Ni})</td>
</tr>
<tr>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>(\text{Na})</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>(\text{Na})</td>
</tr>
<tr>
<td>(\text{SS})</td>
<td>(\text{Na})</td>
<td>(\text{SS})</td>
<td>(\text{Na})</td>
</tr>
<tr>
<td>(\text{U-238})</td>
<td>(\text{Na})</td>
<td>(\text{Pu METAL})</td>
<td>(\text{Na})</td>
</tr>
<tr>
<td>(\text{Na})</td>
<td>(\text{Na})</td>
<td>(\text{Ni})</td>
<td>(\text{Ni})</td>
</tr>
</tbody>
</table>

A* DRAWER

<table>
<thead>
<tr>
<th>0"</th>
<th>2"</th>
<th>17"</th>
<th>21"</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>(\text{Na})</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>(\text{Na})</td>
</tr>
<tr>
<td>(\text{U-238})</td>
<td>(\text{Na})</td>
<td>(\text{SEFOR FUEL})</td>
<td>(\text{Na})</td>
</tr>
<tr>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>(\text{Na})</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>(\text{Na})</td>
</tr>
<tr>
<td>(\text{Na})</td>
<td>(\text{Na})</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>(\text{Na})</td>
</tr>
<tr>
<td>(\text{Na})</td>
<td>(\text{Na})</td>
<td>(\text{Ni})</td>
<td>(\text{Ni})</td>
</tr>
<tr>
<td>(\text{Ni})</td>
<td>(\text{Ni})</td>
<td>(\text{Ni})</td>
<td>(\text{Ni})</td>
</tr>
<tr>
<td>(\text{ZPPR FUEL})</td>
<td>(\text{Na})</td>
<td>(\text{Na})</td>
<td>(\text{Na})</td>
</tr>
<tr>
<td>(\text{Na})</td>
<td>(\text{Na})</td>
<td>(\text{Ni})</td>
<td>(\text{Ni})</td>
</tr>
</tbody>
</table>
FIGURE 14. Drawer Loadings for Axial Traverses
Rotation of core drawer plates for radial traverses was done in the Half II, P row. All P row core plates in Half II were rotated 90° about a line parallel to the cylinder axis. These plates were then lying horizontal in the drawer rather than vertical. The rotation of core plates for axial traverses is shown in Figure 15.

Axial reaction rates were calculated in 26 energy groups with DTF-IV using an S4 angular quadrature and slab geometry. Radial leakage was calculated from DB\(^2\), using a radial buckling that made the assembly critical. Input cross sections were the same as those previously mentioned. The slab had a core region of 43.255-cm half-height, and a 30 cm thick axial reflector. Atom densities for these regions are given in Table 2.

Radial reaction rates for \(^{239}\text{Pu}\), \(^{238}\text{U}\), and \(^{10}\text{B}\), were obtained from an 8-energy group, 2D, X-Y, 2DB, diffusion calculation. Axial leakage rates were approximated using an effective buckling of 0.000682 cm\(^{-2}\), the axial buckling for 1D infinite cylinder diffusion calculation, to give the same eigenvalue as the 2D, RZ, calculation. The X-Y model is shown on the data sheet for this calculation in Appendix B-2. Reactor cross sections are the same as used for the 8-group critical mass calculation. The X-Y model is slightly different than Figure 2, the loading for Assembly 51. In particular, the core loading in matrix positions 0-10, Q-10, and P-10 are different. The 0-10 and P-10 drawers have been slipped down one-half matrix cell height (2.8 cm) in order to achieve one-fourth core symmetry for the calculation. The calculated activities are along a line 1.383 cm above the center of the P row. Differences between the calculational model and the experimental geometry were investigated and found to cause a maximum calculational underestimation of the plutonium fission rate in P-10 of about 2.2%.
FUEL NORMAL

FUEL ROTATED

CALCULATED

MEASUREMENTS TO ±3 lh/kg

FIGURE 15. Radial 239Pu Worth Distributions
No calculated correction was made for the finite chamber size, but the count rates were plotted for a location corresponding to the center of the sensitive volume of the chamber.

\(^{239} \text{Pu Fission} \)

The shape of the radial fission rate distribution of \(^{239} \text{Pu} \) is calculated well in the core but begins to fail near the core reflector boundary. The difficulties in reaction rate calculations at the interface arise from the resonance self-shielding factors of the activation cross sections and the spectral discontinuity that results from collapsing cross sections for adjacent regions over greatly different spectra. Figures 7 and 8, the \(^{239} \text{Pu} \) reaction rate distributions, show a reference calculated curve where the resonance self-shielding factors for the \(^{239} \text{Pu} \) fission cross sections were calculated for a core composition. Another curve labeled "reflector cross sections" was calculated with infinite dilution, reflector-averaged cross sections. Standard deviations from statistical fluctuations of measured count rates are between \(\pm 0.3 \) and \(\pm 0.5\% \) for the radial, and less than \(\pm 0.3\% \) for the axial traverses.

Calculated fission rate distributions are low in both the axial and the radial reflectors, even when \(^{239} \text{Pu} \) shielding factors calculated for an infinite dilution are used. A comparison of Figures 7 and 8 shows that the discrepancy, \(\pm 10\% \), is about the same in the axial as in the radial reflector. The axial reflector has about 41 vol\% sodium as compared with 17 vol\% in the radial reflectors.

A 2DB, R-Z, 8-group calculation and a 26-group, 1D slab, DTF-IV calculation were made for comparison with the measured \(^{239} \text{Pu} \) (n,f) axial distributions. These results are plotted in Figure 8.
R-Z calculations of the axial 239Pu (n,f) distributions are in better agreement with measurement than the 1D slab calculation. Slab calculations depend upon DB^2 representation of the radial leakage in which the B^2 is an average buckling that gives the eigenvalue of the R-Z calculation. This selection of B^2 is not a strong function of the volumetric leakage in the reflector because of the relatively low importance of this region. The $2DB$ calculations show that the average geometric buckling of the core-reflector will be smaller than the core buckling and larger than the reflector buckling. A large DB^2 in the reflector will depress the flux there and could cause the low calculated 239Pu (n,f) rate. Even though the 26-group calculation should be better, the radial leakage approximation dominates the calculational results so that the slab calculation does not give good agreement.

238U Fission

The general shape of the measured radial distribution of 238U fission rate, shown in Figure 9, is predicted fairly well by calculation. The depletion of the fissile content of the "B" drawers, centered near a radius of 17 cm above and below the B-row, clearly decreases the very fast flux in that region and, hence, reduces the fast fissions in 238U.

For the axial 238U fission rate distribution, given in Figure 10, the in-core agreement is good except at the mid-plane. The depression in the fission rate at 0 cm is due to the gap between the halves and the stainless steel plane formed from drawer fronts on both sides of the gap. The gap discontinuity was not included in the calculational model.

Standard deviations from statistical fluctuations of measured count rates are between ± 0.3 and $\pm 1.7\%$ for all measured points of Figures 9 and 10.
Calculated and measured $^{10}\text{B} (n,\alpha)$ reaction rate distributions are plotted in Figures 11 and 12. The statistical counting uncertainties are a maximum of $\pm 0.6\%$ for the radial traverse, and $\pm 0.3\%$ for the axial traverse. The size of the plotted points are approximately the size of these uncertainties.

There is only one calculational curve (Figure 12) for the axial reaction rate distribution because this calculation was done in 26 groups. Since ^{10}B is not a resonance absorber, core and reflector averaged cross sections for this case are identical.

Major deviations of calculated and measured ^{10}B reaction rates appear at the core-reflector interface and at the assembly boundaries. Deviations at the assembly boundary may stem from some neutrons reflected back into the reflector by the assembly structure, and from room return neutrons. Neither of these were included in the calculational model. Although ^{10}B is not a resonance absorber, the resonance region may cause difficulty in ^{10}B reaction rate calculations at discontinuities.

Resonance cross section shelf-shielding factors used to calculate the activation flux are calculated from a homogeneous model. This model is not necessarily valid at the core-reflector discontinuity and, hence, the flux is in question at this region.

Effects of Plate Rotation

Activity traverses were taken for platelet geometries, both normal and adjacent to the traversing path rotated 90°. The alternate geometries should give an indication of the effect of finite size plates on local reaction rates. An inspection of Figures 7 through 12 shows the effect of adjacent fuel orientation on the shape of activation distributions could be as large as one percent.
A comparison can be made of the effect of fuel rotation on the peak-to-average 239Pu fission rate distribution. The peak-to-average axial fission rate distributions, as inferred from experiment, are 1.265 ± 0.003 for fuel normal, compared to 1.263 ± 0.003 for fuel rotated. The same comparisons for the radial 239Pu fission distribution give 1.399 ± 0.003 for fuel normal, and 1.395 ± 0.003 for fuel rotated.

Comparisons of Reaction Rate Distributions

Virtually all 238U fissions are with neutrons at energies above 1.0 MeV. Fission rate distributions of 238U are not significantly affected by resonance flux, by room return neutrons, or by thermal neutrons. It is clear that deviations of calculated distributions from measured distributions for this isotope are much smaller than for the 239Pu or 10B reaction rate distributions. Furthermore, it is probable that the absence of these three complicating factors is responsible for the better agreement of the 238U calculated and measured distributions.

The 239Pu (n,f) and 10B (n,α) rates appear to be undercalculated at the core-reflector interface and near the outer reflector boundary. The 239Pu (n,f) rates alone are low inside the reflector at the thermal reaction peak. The problems at the core-reflector and near the assembly boundary were discussed in a preceding section. A disagreement in relative reaction rates of 239Pu (n,f) and 10B (n,α) in the reflector was observed in ZPR-III, Assembly 48 A. Here the 239Pu (n,f) rate was calculated correctly but the 10B (n,α) rate was over-calculated at the reflector thermal peak. There are obvious inconsistencies in the 10B and 239Pu (n,α) and n,f) cross sections and in the relative calculated spectra of ZPR-III, Assemblies 51 and 48 A. The exact nature
of these inconsistencies is not known, but it is highly unlikely that both the ^{239}Pu fission cross sections and the ^{10}B capture cross sections are correct.

A review of the cross section sets, including resonance parameters, is in progress. Definitive experiments to check individual cross sections and resonance parameters are needed. An experiment in which the ^{239}Pu and ^{238}U data sets can be checked independently would be especially useful.

MATERIAL WORTH TRAVERSES

Radial and axial small sample reactivity worth distributions were measured for ^{239}Pu, ^{238}U, and ^{10}B in Assembly 51.\(^{(23)}\) The samples were an annulus of 9.315 g of ^{239}Pu, a cylinder of 85.58 g of ^{238}U with 0.18 g ^{235}U, and an annulus of boron with 0.38 g of ^{10}B and 0.329 g of ^{11}B. Perturbation calculations of the boron worth were in close agreement with the measurements. The calculated reactivities of small ^{239}Pu and ^{238}U samples at the core center were 35% high for ^{239}Pu and 53% high for ^{238}U when compared with the measured values.

The distributions of small ^{239}Pu, ^{238}U, and ^{10}B sample reactivity worths, as measured and calculated for Assembly 51, are plotted in Figures 15 through 20. The axial worth distribution is along drawer P16 and the radial worth distribution is 1-1/4 in. from the reactor midplane for each of the three isotopes.

Calculations of ^{239}Pu and ^{238}U worths were made in 24-energy groups with the PERT IV\(^{(16,17)}\) perturbation code. Fluxes and adjoint fluxes were from 2DB. The calculational model was the same as for the RZ critical mass (see Appendix B-3). Earlier calculations on material worths in Assembly 51 were made in 8 energy groups. Although the
FIGURE 16. Axial 239Pu Worth Distributions
FIGURE 17. Radial ^{238}U Worth Distributions
FIGURE 18. Axial 238U Worth Distributions
FIGURE 19. Radial 10B Worth Distributions
FIGURE 20. Axial ^{10}B Worth Distributions
8-group and 24-group calculations were on slightly different models, they were similar enough to conclude that results of the 8-group and a 24-group perturbation calculation do not differ significantly except for ^{238}U which is quite sensitive to group structure. The 24-group calculation of ^{238}U central worth was 53\% more negative than the measurement, compared with the 8-group calculation of ^{238}U central worth calculated to be 30\% more negative than the measurements.

Other investigators\(^{(7)}\) have explored possible contributions to the discrepancy between measured and calculated fuel worths. They pointed out that much better agreement exists between calculated and measured critical masses, and between calculated and measured fission ratios than in small sample fuel worths and concluded that the comparisons of calculated and measured small sample worths were of limited value at this time.

In all cases, an overcalculation of the absolute worth at the core-reflector interface just inside the reflector is experienced. The overcalculation is in addition to that at the core center for ^{239}Pu and ^{238}U and an exception to the correctly calculated value of the ^{10}B worth at the core center. Both ^{239}Pu (n,f) and ^{10}B (n,α) calculated and measured reaction rates show a maximum immediately outside the core. It is probable that the measured reaction rates of these two isotopes are correct and that the worth measurements are inconsistent, either because of perturbations caused by the injection of the experiment or because the experiment is insensitive to the small maxima.

^{239}Pu worth is overcalculated in most of the ZPR-III and ZEBRA plutonium assemblies measured to date.\(^{(7)}\) Figure 21 is a plot of the measured plutonium worth per fuel atom per kg as a function of critical mass for six of these assemblies.
FIGURE 21. Measured 239Pu Central Worths for Various Plutonium Assemblies
The calculated-to-experiment value, c/e, is also included for each assembly. Assembly 49 had the same compositions as 48 except that the core sodium had been removed. Assembly 50 compositions were the same as 49 except that carbon was placed in the vacated sodium locations. The c/e for 239Pu central worth in Assembly 49 is 6 to 10% lower than for the other assemblies.

Assuming the measurements to be correct, either the plutonium reaction rates, the plutonium fission neutron source distributions, or both, are not consistent in the three calculations. Carbon and sodium cross sections are not suspect because the anomalous behavior of the c/e occurs between Assemblies 48 and 49 when the carbon content does not change, and between Assemblies 49 and 50 when sodium content does not change.

238U worth is overcalculated in absolute worth in all assemblies also. The worth of 238U per atom of fuel per kg as a function of light atom concentration is shown plotted in Figure 22. The c/e for each isotope except 48A, whose worth has been included to illustrate a point to be explained later, is also plotted. The worth function is linear except for the nickel reflected assemblies ZPR-III, 51, and 56E. In connection with the calculated 238U worth, it is notable that the c/e is nearly constant for ZPR-III Assemblies 48, 49, and 50, but diverges drastically for the nickel reflected assemblies ZPR-III 51 and 56E.

The constancy of the fractional calculated error in 238U worth in Assemblies 48, 49, and 50, implies the inconsistency in 239Pu worth to be in the plutonium cross sections or in the fission source distribution. The divergent behavior of the c/e ration of 238U for nickel reflected assemblies implies mis-calculation in the denominator of the perturbation equation.
FIGURE 22. Measured 238U Central Worths for Various Plutonium Assemblies
unless the spectrum at the core center has been affected by the nickel reflector. However, a change in the denominator is not consistent with the plutonium worth that does not show the larger calculated error for these cases. Other limitations of the perturbation approximation will now be considered.

Small sample fissile material worths are considerably more sensitive to the calculated real and adjoint spectrum than a material without significant secondary neutron emission. The first order calculated perturbation worth of a fissioning nuclide contains a term proportional to

\[\int dV \int dE \phi^+(E,V) \chi(E,V) \int dE' \psi(E',V) \delta [\nu_f(E',V)] \]

(17)

where \(\chi(E,V) \) is the spectrum of reactor fission neutrons. The volume integral is over the whole reactor. For a small central sample, the expression reduces to

\[\left[\int dE \phi^+(E) \chi(E) \int dE' \psi(E') \delta [\nu_f(E')] \right] \]

where the parameters are evaluated at the core center. This term is directly proportional to the adjoint weighted fission source. For this term to be the main source of error in fuel worths, it necessarily would be about 16% too large for \(^{239}\text{Pu}\) or 7% too small for \(^{238}\text{U}\). While a 7% error in the adjoint weighted spectrum of \(^{238}\text{U}\) fission neutrons or a 16% overcalculation of the \(^{239}\text{Pu}\) adjoint weighted fission spectrum is possible, the simultaneous existence of these two conditions is improbable.

Consider next the normalization of the perturbation worths. If the adjoint weighted fission source averaged over the entire reactor is small, then the normalization term for the perturbation equation

\[\frac{1}{E} \int dV \int dE \chi(E,V) \phi^+(E,V) \int dE' \psi(E',V) \nu_f(E,V) \]

(17)

may be large and the sum of all terms will be correspondingly greater in absolute magnitude.
The absolute fission ratios for ^{238}U and ^{239}Pu as calculated by ZDB for a central core region indicate (see following discussion of Central Fission Ratios) the integral fission rates to be sufficiently well represented that only a small fraction of the approximately 30% discrepancy between measured and calculated ^{239}Pu worth is likely to arise from these reactions because of the strong dependence of the ^{239}Pu worths on the fission rates.

It has been pointed out\(^{(7)}\) that the inverse kinetics technique of control rod calibration used for the ZPR-III is very sensitive to the value of β, the delayed neutron fraction assumed in analysis. An error in the calibration may account for some of the discrepancy between calculated and measured reactivities. However, the excellent agreement for ^{10}B worths, c/e = 1, and the better agreement when fertile and fissile material are simultaneously removed, c/e of 1.15 ± 0.02 to 1.18 ± 0.02, indicate inconsistencies in spectra used in the perturbation approximation, inconsistencies in the data set, or both.

DISTRIBUTED SODIUM WORTH

Partial sodium voiding experiments were conducted over zones of various sizes and shapes to obtain integral data dependent upon the spatial variation of the sodium worth function ranging from positive at the core center to negative out towards the core boundary.

Although the system contained both elemental sodium and sodium carbonate, only the elemental sodium was removed (see Figure 3) to eliminate the necessity for making corrections for carbon and oxygen removal. This approach does, however, introduce a heterogeneity problem. As shown in earlier
experiments\(^{(24,25,26)}\) and their analyses, the worth of sodium removed is sensitive to the composition of neighboring core components. The care needed in the selection of methods for cross section averaging is discussed in the following, and experimental data and calculations are compared for these experiments in Table 6.

TABLE 6. Sodium Worths

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Axial Location(a) of Perturbation</th>
<th>Number of Drawers Perturbed</th>
<th>Material Removed or Added, g</th>
<th>Reactivity Change, (\text{Ih})</th>
<th>(c/e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0 to 7 in.</td>
<td>6</td>
<td>Sodium</td>
<td>-0.84</td>
<td>+9.1(^{(b)}) +12.0</td>
</tr>
<tr>
<td>II</td>
<td>0 to 7 in.</td>
<td>6</td>
<td>Stainless Steel</td>
<td>+82.24</td>
<td>-18.6(^{(b)}) -4.0</td>
</tr>
<tr>
<td>III</td>
<td>7 to 17 in.</td>
<td>6</td>
<td>Sodium</td>
<td>+83.26</td>
<td>-24.9(^{(b)}) -17.0</td>
</tr>
<tr>
<td>IV</td>
<td>0 to 7 in.</td>
<td>22</td>
<td>Stainless Steel</td>
<td>-1.84</td>
<td>+10.4(^{(b)}) +24.0</td>
</tr>
<tr>
<td>1/4 Core</td>
<td>0 to 17 in.</td>
<td>24</td>
<td>Sodium</td>
<td>+82.32</td>
<td>-51.9(^{(c)}) -48.6</td>
</tr>
<tr>
<td>1/2 Core</td>
<td>0 to 17 in.</td>
<td>42</td>
<td>Stainless Steel</td>
<td>+144.06</td>
<td>-88.8(^{(c)}) -86.0</td>
</tr>
<tr>
<td>Full Core</td>
<td>0 to 17 in.</td>
<td>112</td>
<td>Stainless Steel</td>
<td>+364.16</td>
<td>-201.6(^{(c)}) -207(PERT)</td>
</tr>
</tbody>
</table>

\(c/e\) = 0.952

For measurement of axial dependence, sodium was removed from nine drawers to form a volume centered about the core midplane. The midplane is defined to be perpendicular to the core axis. In Experiment I, the volume extended from 0 to 7 in. on both sides of the midplane. In Experiment II, the volume extended the full core length. In Experiment III, the volume extended from 7 to 17 in. on both sides of the midplane. These volumes are illustrated in Figure 23.
FIGURE 2.1 Sodium Voiding Experiments
Two measurements for investigating the radial dependence of sodium removal were performed. In each, from 0 to 7 in. of sodium was removed on both sides of the core midplane. The removal of sodium in Experiment I from the 9 drawers formed by a central 3×3 array served as a base point. In Experiment IV, sodium was removed from the 21 drawers from a central 5×5 array with the four corner drawers excluded.

Distributed partial sodium void experiments were done in one quadrant, in two adjacent quadrants, and over the whole core. In each experiment, as shown in Figure 3, only the interior column of elemental sodium was removed over the entire core length of each A-A* drawer pair. Experimental and calculated values are included in Table 6. The 2DB and PERT calculations are compared with the whole core partial voiding measurement, but only PERT calculations for the 1/4 and 1/2 core voiding experiments were performed. PERT calculations were made by integrating the small sample sodium worth over the voided volume.

In calculating sodium void reactivity changes, care must be taken to include the location effect of the voided volume in the drawer. This effect is particularly important for small volumes and when the sodium is close to resonance absorbers such as 238U. Cell calculations to yield flux-volume weighted cross sections for sodium void experiments were made on a cell in which the location of the sodium in the drawer was carefully duplicated. Sodium removal was simulated by removing sodium from that portion of the cell and leaving the appropriate amount of stainless steel in the volume. The model for these cell calculations was nearly the same as the actual drawer loading except that the stainless steel of the cans, drawers, and matrix tubes was smeared into each region.
in proportion to its proximity to that region. The model for the partial sodium void over 1/4, 1/2, and the full core was the same as the model for the R-Z critical mass calculation. In the case of the perturbation calculations, fluxes for input to PERT-IV were calculated from the same unperturbed model.

LARGE SAMPLE MATERIAL WORTHS

Since the FTR will always be loaded with substantial in-core heterogeneities, it is of interest to know how well major changes in local core composition can be calculated. To this end, the reactivity change effected by removing and replacing a central core matrix tube with sodium filled drawers has been measured. A separate experiment was done to determine the worth of the fuel of the central column. The worths of poison columns of B\(_4\)C and of tantalum were measured to support the FTR control system design and the evaluation of calculational models.

The calculational models for these analysis are given in Appendix B-8, B-9, and B-10.

Large sample material worths have an uncertainty of 2% of the measured reactivity change. The uncertainty arises from source strength uncertainties and statistical variations in flux monitor count rates.

Sodium Substituted for Central Driver Drawer

Plutonium, uranium, stainless steel plates, and all other materials were removed from the central matrix tube, P16, and replaced with sodium filled cans. The sodium section extending through the axial reflectors was 58 in. long excluding drawer ends and spring gaps. Table 7 summarizes the added sodium and stainless steel loadings.
TABLE 7. Composition of P16 Matrix Position
Sodium Substituted

<table>
<thead>
<tr>
<th></th>
<th>Half One</th>
<th></th>
<th>Half Two</th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reflector</td>
<td>Core</td>
<td>Core</td>
<td>Reflecto</td>
<td>Core</td>
</tr>
<tr>
<td>Na, g</td>
<td>580.2</td>
<td>830.0</td>
<td>829.9</td>
<td>579.9</td>
<td>2820.0</td>
</tr>
<tr>
<td>SS, g</td>
<td>863.2</td>
<td>1255.2</td>
<td>1255.7</td>
<td>856.4</td>
<td>4230.5</td>
</tr>
</tbody>
</table>

The measured reactivity change was -763 ± 16 Ih, whereas the calculated change was -891 Ih, giving a c/e ratio of 1.17 ± 0.02.

Calculations were carried out with the two-dimensional diffusion code 2DB. The central drawer was cylindricized to conserve volume and materials, and the problem was analyzed in R-Z geometry with 8 energy groups.

Worth of Uranium and Plutonium in Central Fuel Drawer

The reactivity worth of the uranium and plutonium in the P16 matrix position was measured also. The ZPPR fuel, Pu metal, U₃O₈, and depleted uranium plates were removed. Empty stainless steel cans and rearrangement of the normally present stainless steel plates took up the vacated fuel positions. The material and associated reactivity changes, both experimental and calculated, are shown in Table 8.

The 1.15 c/e for the reactivity change on bulk fuel removal from P16 in Assembly 51, as shown by the values of Table 8, can be compared with small sample central worths calculated from perturbation theory yielding a c/e of 1.35 and 1.53 for 239Pu and 238U, respectively.

Control Poisons in Central Column

Measurements were made in the central position, P16, of the absolute and relative worths of natural boron carbide and tantalum rods. Samples of each material having 1/2-in. by
TABLE 8. Uranium and Plutonium Worth Experiment

<table>
<thead>
<tr>
<th>Material to be Removed</th>
<th>Reference Case Material</th>
<th>Perturbed Case Material Added</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{239}\text{Pu} + ^{241}\text{Pu}$, g</td>
<td>2076.34</td>
<td>0</td>
</tr>
<tr>
<td>$^{240}\text{Pu} + ^{242}\text{Pu}$, g</td>
<td>179.56</td>
<td>0</td>
</tr>
<tr>
<td>^{235}U, g</td>
<td>12.83</td>
<td>0</td>
</tr>
<tr>
<td>^{238}U, g</td>
<td>5978.0</td>
<td>0</td>
</tr>
<tr>
<td>Mo, g</td>
<td>94.48</td>
<td>0</td>
</tr>
<tr>
<td>O, g</td>
<td>150.86</td>
<td>0</td>
</tr>
<tr>
<td>Stainless Steel$^{(a)}$</td>
<td>627.75</td>
<td>650.24</td>
</tr>
<tr>
<td>Reactivity$^{(b)}$</td>
<td>0</td>
<td>-752</td>
</tr>
<tr>
<td>Measured</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change Calculated</td>
<td>0</td>
<td>-863</td>
</tr>
<tr>
<td>c/e</td>
<td></td>
<td>1.15 ± 0.02</td>
</tr>
</tbody>
</table>

(a) Stainless Steel Analysis: 73.4% Fe, 17% Cr, 8.4% Ni, 0.75% Mn, and 0.45% Si by weight.

(b) ±2%

2-in. areal profiles and 36-in. lengths were centered on the axis of the 34-in. core. The samples were placed in typical 2-in. by 2-in. core drawers whose contents of approximately 33 vol% sodium, 37 vol% stainless steel, and 18 vol% poison which correspond to 9432 g of Ta or 1262.2 g of B_4C when loaded in the ZPR-III. The worths were measured relative to a 1-in. square axial void centered 1/2 in. above the central axis. Figure 24 illustrates the drawer loadings for the poison experiments. The figure shows how the stainless steel on both sides of the poison was redistributed to maintain spacing of the drawer contents.
FIGURE 24. Drawer Loading for B\textsubscript{4}C and Ta Poison Studies
The reactivity worth of the B_4C and Ta was computed with an 8-group, RZ, 2DB calculation and has been compared with the measurements in Table 9.

TABLE 9. Natural B_4C and Ta Worth in P16

<table>
<thead>
<tr>
<th>Test Region</th>
<th>Core</th>
<th>Excess Reactivity, Ih</th>
<th>Reactivity Change Relative to Void, Ih</th>
<th>c/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>-740</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B_4C</td>
<td>-1646</td>
<td>-905</td>
<td>-832</td>
<td>0.917 ± 0.02</td>
</tr>
<tr>
<td>Ta</td>
<td>-1313</td>
<td>-573</td>
<td>-538</td>
<td>0.935 ± 0.02</td>
</tr>
<tr>
<td>$\text{B}_4\text{C}/\text{Ta}$</td>
<td>1.58</td>
<td>1.55</td>
<td>0.980 ± 0.02</td>
<td></td>
</tr>
</tbody>
</table>

(a) $±2\%$

These results may be compared to experiments performed in ZPR-III Assembly 48, FTR Phase A, experiments, where similar natural B_4C rods were found to have worths of approximately 725 Ih.\(^{(3)}\) This finding appears consistent, in view of the different critical masses amounting to about 260 kg for Assembly 48 and 212 kg for Assembly 51. Also in Assembly 48 experiments, a similar B_4C rod enriched to approximately 90% boron-10 was found to have a worth of 1700 Ih.

These experimental results show that central tantalum rods having volumes equal to those of B_4C rods have about $2/3$ the reactivity worth of B_4C rods. This ratio might be expected to increase for peripheral rods, as illustrated in BNWL-428, "FTR Control Rod Calculations."

In previous work, primarily to compare transport and diffusion results, B_4C worths were found to agree, but tantalum worths were considerably overcalculated.\(^{(28)}\) The large overcalculation of tantalum worth, 33%, is presumably from neglecting spatial self-shielding of the tantalum rod.
AXIAL MATERIAL WORTHS IN P16

Axial movement of materials would result in reactivity changes in an operating FTR. Two experiments were executed to help assess the reactivity associated with axial movement of material. A slug of core material moved along the central column and measured for reactivity could correspond to axial movement of an entire assembly. The other experiment, fuel compaction, should give some measure of fuel slumping effects.

Axial Worth of Core Material

Axial worth of core material was measured in the central matrix position (P16). Each half of the core portion of the P16 drawer was loaded with a 7-in. segment of core material and two 5-in. segments of canned sodium. Reactivity measurements were taken with the core material segments in each half occupying the following positions as measured from the core midplane; 0-7 in., 5-12 in., and 10-17 in.

The composition of the core material segments is nominally the same as the composition of an A-type drawer. Each sodium segment consisted of sodium filled stainless steel cans. A stainless steel can with nominal dimensions of 1/4 \times 2 \times 5 in. weighed 45.74 g and was filled with 29.92 g of sodium. The diffusion code 2DB in an R-Z mode and 8 energy groups were used for the analysis of these measurements. The central matrix position (P16) was cylindricized to conserve volume and material. Experimental and calculated reactivity changes due to displacement of core material away from the core midplane are given in Table 10.

The agreement for the 5-12-in. position reflects the ability to calculate the general shape of the fuel worth function within the core. The degeneration of the agreement is
TABLE 10. Axial Worth of Core Material, P16 Matrix Position

<table>
<thead>
<tr>
<th>Position of Core-Material Segments from Core Midplane, in.</th>
<th>Reactivity Change, Ih</th>
<th>Experimental</th>
<th>Calculated</th>
<th>c/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7</td>
<td>0.</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5-12</td>
<td>-92.02</td>
<td>-92</td>
<td>1.00 ± 0.02</td>
<td>1.00 ± 0.02</td>
</tr>
<tr>
<td>10-17</td>
<td>-206.78</td>
<td>-235</td>
<td>1.14 ± 0.02</td>
<td>1.14 ± 0.02</td>
</tr>
</tbody>
</table>

due to the influence of the reflector and accompanying problems of resonance shielding and spectral mismatch in this transition region. Calculational models are shown in Appendices B-11, B-12, and B-13.

Fuel Compaction

The effect of fuel slumping in the FTR was simulated by a fuel compaction experiment. A 5-in. section of plutonium metal, depleted uranium, and ZPPR fuel was moved from the 12 to 17-in. axial position in Drawer 1, P16, to the 0 to 5-in. position. Vacated positions were filled with canned sodium. Figure 25 shows the rearranged A-drawer. The heavily outlined pieces are those moved for the reactivity measurement. The total worth of this redistribution was measured to be 125 Ih and calculated to be 146 ± 3 Ih, giving a c/e of 1.17 ± 0.02. A summary of the material movement is given in Table 11.

The c/e for the fuel compaction experiment is consistent with previous experience in calculating fuel worth in the central column of Assembly 51. The calculational model is shown in Appendix B-14.
FIGURE 25. P16 Drawer for Fuel Compaction Experiment

<table>
<thead>
<tr>
<th>Distance from Midplane, in.</th>
<th>Axial Reflector</th>
</tr>
</thead>
<tbody>
<tr>
<td>-17</td>
<td>Na₂⁻CO₃, U₃⁻O₈, Na, Na, 304 SS, Na₂⁻CO₃, Na₂⁻CO₃, Na, Na</td>
</tr>
<tr>
<td>-12</td>
<td>Na₂⁻CO₃, U₃⁻O₈, ZPPR, Na, 304 SS, Na₂⁻CO₃, Na₂⁻CO₃, U-238, Pu, Na</td>
</tr>
<tr>
<td>-5</td>
<td>Na₂⁻CO₃, U₃⁻O₈, ZPPR, ZPPR, 304 SS, Na₂⁻CO₃, Na₂⁻CO₃, U-238, Pu, U-238</td>
</tr>
<tr>
<td>0</td>
<td>No Scale</td>
</tr>
</tbody>
</table>

The diagram shows the axial reflector configuration with various materials at different distances from the midplane.
TABLE 11. Material Redistribution in Fuel Compaction Experiment

<table>
<thead>
<tr>
<th>Material Moved from</th>
<th>Material Moved from</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-17-in. Axial Position</td>
<td>0-5-in., Position, g</td>
</tr>
<tr>
<td>to 0-5-in., Position, g</td>
<td>12-17-in., Position, g</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Amount Moved, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>239Pu</td>
<td>301.495</td>
</tr>
<tr>
<td>240Pu</td>
<td>26.117</td>
</tr>
<tr>
<td>241Pu</td>
<td>3.0882</td>
</tr>
<tr>
<td>242Pu</td>
<td>0.21685</td>
</tr>
<tr>
<td>238U</td>
<td>751.69</td>
</tr>
<tr>
<td>235U</td>
<td>1.61</td>
</tr>
<tr>
<td>Na</td>
<td>59.84</td>
</tr>
<tr>
<td>SS</td>
<td>93.766</td>
</tr>
<tr>
<td>Al</td>
<td>1.93</td>
</tr>
</tbody>
</table>

CENTRAL FISSION RATIOS

Absolute central fission ratios were measured with spherical, back-to-back gas-flow fission chambers.\(^{(22)}\)

Calculated values are compared with the measurements in Table 12. The calculations were done with the fundamental mode diffusion code, FCC, in 26-energy groups, and with 2DB in 8-energy groups. The 2DB calculation was at the center of a cylindrical model of Assembly 51.

NEUTRON SPECTRA\(^{(25)}\)

Neutron energy distributions were inferred from proton recoil spectra as measured with hydrogen bearing gas proportional chambers.\(^{(29,30)}\) The chamber was filled mainly with elemental hydrogen gas for spectrum measurements below neutron energies of 150 keV. Spectrum measurements above neutron energies of 100 keV to 1.5 MeV were taken with methane filled chambers because of the greater stopping power over the...
elemental hydrogen gas. The spectra were measured at four in-assembly locations; P-16, N-16, L-16, and J-10, at axial positions adjacent to the midplane.

TABLE 12. ZPR-III Assembly 51-Central Fission Ratios

<table>
<thead>
<tr>
<th>Fission Ratio</th>
<th>Experiment</th>
<th>Calculated, FCC-IV c/e</th>
<th>Calculated, 2DB c/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-238/U-235</td>
<td>0.0309</td>
<td>0.033</td>
<td>1.060</td>
</tr>
<tr>
<td>U-234/U-235</td>
<td>0.214</td>
<td>0.214</td>
<td>1.000</td>
</tr>
<tr>
<td>U-233/U-235</td>
<td>1.483</td>
<td>1.449</td>
<td>0.978</td>
</tr>
<tr>
<td>U-236/U-235</td>
<td>0.0685</td>
<td>0.0687</td>
<td>1.003</td>
</tr>
<tr>
<td>Pu-239/U-235</td>
<td>1.003</td>
<td>1.012</td>
<td>1.009</td>
</tr>
<tr>
<td>Pu-240/U-235</td>
<td>0.240</td>
<td>0.240</td>
<td>1.000</td>
</tr>
</tbody>
</table>

The volume of the Assembly 51 core was reduced to about 70% of its reference value of 307 liters. A fissile mass of 150 kg remained in the core after the reduction. The reduced multiplication constant, to $k_{\text{eff}} = 0.9$, and the reduced spontaneous fission source were necessary to lower the neutron count rate below the saturation level of the system. The reduction does diminish the value of the measurements to understanding the physics of Assembly 51. Calculations showed a decrease in the core size from 307 λ to 200 λ to be accompanied by a relative increase of 5 to 10% of the flux above 1 MeV. The difference in spectra between the small core and the full sized Assembly 51 complicates the relation between measured spectra and measured reaction rates made in the 307 λ core.

The experiment-derived spectra were given for 150 energy intervals. These data are plotted on Figures 26 through 29, along with a calculated spectrum. Powell pointed out that
FIGURE 26. Neutron Spectrum, Center of Assembly 51
FIGURE 27. Neutron Spectrum, Midway from Core Center to Core Edge, Assembly 51
FIGURE 28. Neutron Spectrum, Core-Reflector Interface to Core Edge, Assembly 51
FIGURE 29. Neutron Spectrum, Middle of Radial Reflector to Core Edge, Assembly 51
the prominent features are the oxygen, nickel, iron, sodium, and chromium scattering resonances. The oxygen resonance in particular is prominent in the core and the nickel resonance is prominent in the reflector.

Spectrum calculations were made with the basic 26-group FCC-IV prepared cross section sets used for all calculations on the standard composition of Assembly 51. The calculations were for a cylindrical core with the size of the cylindricized small core in one dimension, and the axial leakage computed as 2DB separately for the core and reflector. 2DB and the spectra were computed with the height search option of the SN transport code DTF-V. The angular quadrature was S-4. Each spectrum was taken from a radius corresponding to the distance from the center of P16 to the center of the drawer of the chamber location. No allowance for chamber length or local perturbation was made.

The calculation at the center of the core yields a harder spectrum than the measurement. None of the scattering resonances, except a trace of the sodium resonance, are apparent in the P16 central calculation. The absence of the oxygen resonance at 440 keV, shifted in the DTF-V spectrum measurement, is especially notable.

As in the P16 calculation and in the other two locations, the sodium resonance is the single surviving feature of the fine spectrum in the N16 location halfway between the core center and the core edge. The calculation fits the general shape of the measured spectrum best in this of all locations.

The calculated spectrum at the core edge, L16, gives a good fit of the overall measured shape but the nickel resonance that begins to deepen the flux depletion at 16 keV is, of course, not present. This location is most difficult to handle
analytically because of the ambivalence of the calculational model for determining the self-shielding of resonance cross sections at an interface.

The softer spectrum in the reflector is apparent in Figure 27. The results at J16 are also shown. The huge nickel scattering resonance, appearing as a depletion in the measured spectrum at 16 keV is fully developed.

ANL has calculated the spectrum with a composite of the ELMOE library of angular scattering data and S2 SNARG, the ANL discrete ordinates transport code in 371 equal lethargy groups. The oxygen and nickel, and some of the other resonances, were conspicuous and apparently well represented in the calculations.

The measured results have been smoothed by reducing the results to a 15% Gaussian resolution. Even so, these results may show more amplitude fluctuations than in the physical spectrum because of statistical counting variations, counter limitations, incomplete gamma discrimination, and instabilities in the differential unfolding process. Double scatter in the chamber will accentuate peaks and neighboring valleys. Wall effects produce asymmetric skew that are difficult to assess.

From a consideration of the experimental data and the ANL calculations, the coarse 26-group structure of the cross section set is obviously adequate only for calculation of the general spectrum shape. Using the 26 group set may have a small effect on gross reactivity calculations such as critical mass, but may obscure more subtle reactivity coefficients.

For example, the 440 keV scattering resonance of oxygen has a significant effect on the neutron spectrum at its peak. The reduction at this point may have a significant effect on the calculated sodium void coefficient for small central volumes.
VI REFERENCES

APPENDIX A

CROSS SECTION ENERGY GROUP STRUCTURE
<table>
<thead>
<tr>
<th>Group</th>
<th>Fission Source</th>
<th>Energy Limit</th>
<th>Velocity</th>
<th>Delta U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0000-02</td>
<td>6.5000+00</td>
<td>3.5311+09</td>
<td>4.8000-01</td>
</tr>
<tr>
<td>2</td>
<td>9.8000-02</td>
<td>4.0000+00</td>
<td>2.7700+09</td>
<td>4.8000-01</td>
</tr>
<tr>
<td>3</td>
<td>1.9000-01</td>
<td>2.5000+00</td>
<td>2.1899+09</td>
<td>4.8000-01</td>
</tr>
<tr>
<td>4</td>
<td>2.6800-01</td>
<td>1.4000+00</td>
<td>1.6388+09</td>
<td>5.7000-01</td>
</tr>
<tr>
<td>5</td>
<td>1.9600-01</td>
<td>8.0000-01</td>
<td>1.2388+09</td>
<td>5.7000-01</td>
</tr>
<tr>
<td>6</td>
<td>1.3500-01</td>
<td>4.0000-01</td>
<td>8.7595+08</td>
<td>6.9000-01</td>
</tr>
<tr>
<td>7</td>
<td>5.8000-02</td>
<td>2.0000-01</td>
<td>6.1939+08</td>
<td>6.9000-01</td>
</tr>
<tr>
<td>8</td>
<td>2.2000-02</td>
<td>1.0000-01</td>
<td>4.3798+08</td>
<td>6.9000-01</td>
</tr>
<tr>
<td>9</td>
<td>9.0000-03</td>
<td>4.6500-02</td>
<td>2.9866+08</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>10</td>
<td>3.0000-03</td>
<td>2.1500-02</td>
<td>2.0308+08</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>11</td>
<td>1.0000-03</td>
<td>1.0000-02</td>
<td>1.3850+08</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>12</td>
<td>4.6500-03</td>
<td>9.4444+07</td>
<td>7.7000-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.0000</td>
<td>2.1500-03</td>
<td>6.4220+07</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>14</td>
<td>0.0000</td>
<td>1.0000-03</td>
<td>4.3798+07</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>15</td>
<td>0.0000</td>
<td>4.6500-03</td>
<td>2.9866+07</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>16</td>
<td>2.1500-04</td>
<td>2.0308+07</td>
<td>7.7000-01</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.0000</td>
<td>1.0000-04</td>
<td>1.3850+07</td>
<td>7.7900-01</td>
</tr>
<tr>
<td>18</td>
<td>0.0000</td>
<td>4.6500-03</td>
<td>9.4444+06</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>19</td>
<td>0.0000</td>
<td>2.1500-05</td>
<td>6.4220+06</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>20</td>
<td>0.0000</td>
<td>1.0000-05</td>
<td>4.3798+06</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>21</td>
<td>0.0000</td>
<td>4.6500-03</td>
<td>2.9866+06</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>22</td>
<td>0.0000</td>
<td>2.1500-06</td>
<td>2.0308+06</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>23</td>
<td>0.0000</td>
<td>1.0000-06</td>
<td>1.3850+06</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>24</td>
<td>0.0000</td>
<td>4.6500-03</td>
<td>9.4444+05</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>25</td>
<td>0.0000</td>
<td>2.1500-07</td>
<td>6.4220+05</td>
<td>7.7000-01</td>
</tr>
<tr>
<td>26</td>
<td>0.0000</td>
<td>2.5200-08</td>
<td>2.1986+05</td>
<td>7.7000-01</td>
</tr>
</tbody>
</table>

SUM 1.00000+00
<table>
<thead>
<tr>
<th>New Group</th>
<th>Old Groups Per New Group</th>
<th>Fission Source For New Groups</th>
<th>Lower Energy Limit, MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3.080000-01</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5.990000-01</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>8.900000-02</td>
<td>0.0465</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4.000000-03</td>
<td>0.00465</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.000000</td>
<td>0.001</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>0.000000</td>
<td>0.000215</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0.000000</td>
<td>0.00001</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0.000000</td>
<td>0.000000252</td>
</tr>
</tbody>
</table>
APPENDIX B
CALCULATIONAL MODELS
APPENDIX B
CALCULATIONAL MODELS

EXPLANATION OF CALCULATIONAL MODEL DATA SHEETS

Cross Section Sets

522226 Flux-volume weighted A-A* macroscopic core cross sections collapsed over central core zone fluxes to 8-energy groups

522326 Flux-volume weighted A-A* macroscopic core cross sections collapsed over out core zone fluxes to 8-energy groups

511921 Flux-volume weighted safety rod macroscopic cross sections collapsed over central core zone fluxes to 8-energy groups

FCC 74 8-group macroscopic radial reflector cross sections collapsed from central reflector fluxes

FCC 110 8-group macroscopic axial reflector cross sections collapsed from axial reflector fluxes

FCC 125 8-group macroscopic test zone cross sections collapsed from test zone fluxes

522427 Flux-volume weighted heavy safety rod macroscopic cross sections collapsed over safety rod, slab model, fluxes to 8-energy groups

522730 Flux-volume weighted tantalum rod macroscopic cross sections collapsed over tantalum rod, slab model, fluxes.
MASS CORRECT.
CORRECTED MASS 212.08 kg

EXPERIMENTAL ASSEMBLY # 51-28
EFFECTIVE CORE RADIUS
CORE HEIGHT
REFLECTOR THICKNESS
CRITICAL MASS 212.08 kg

ABBREVIATIONS:
- IN HALF #1, IN HALF #2
- SAFETY DRAWER
- CONTROL DRAWER
- ENRICHED DRAWER OF CELL
OTHER: MEASURED MASS 212.75
\[K_{\text{eff}} = 1.00056 \]

CALCULATIONAL MODEL
CODE 2DB GEOMETRY XY
DIFFUSION, if \(S_N, N = \)
SYMMETRY 1/4
SOURCE OF ATOM DENSITIES ANL

X-SECT.

GROUPS 8
HOMO./HETERO. Refl/Core
CORE HT. 86.511 cm
EFFECTIVE CORE RADIUS 33.647 cm
REFLECTOR THICKNESS
RADIAL 30 cm
AXIAL 30 cm
BUCKLING 6.82 M^-2

CALCULATED \(K_{\text{eff}} = 0.9738 \)
CALCULATED MASS = 210.75

CORE GAP -0.0017
TEMPERATURE 300 °K 307 °K -0.0002

SAFETY ROD POSITION
DIFFUSION + TRANSPORT S4
HOMOG. + HETEROGENEOUS
OTHER:
+0.00131
-0.00092
+0.00189

CORRECTED DIFFUSION \(K_{\text{eff}} = 0.97418 \)
CORRECTED TRANSPORT \(K_{\text{eff}} = 0.98418 \)
CRITICAL MASS, CYLINDRICIZED CORE

CALCULATION # 2DB51

EXPERIMENTAL ASSEMBLY # 51 CYLINDRICIZED CORE

EFFECTIVE CORE RADIUS 32.91 cm
CORE HEIGHT 86.51 cm

REFLECTOR THICKNESS
RADIAl 30 cm
AXIAL 30 cm

CRITICAL MASS 202.87 kg

ABBREVIATIONS:
■ IN HALF #1,
■ IN HALF #2
■ = SAFETY DRAWER
■ = CONTROL DRAWER
■ = ENRICHED DRAWER OF CELL

OTHER:

CALCULATIONAL MODEL
CODE 2DB GEOMETRY RZ

DIFFUSION, if S_N, N =

SYMMETRY 1/2

SOURCE OF ATOM DENSITIES

X-SECT. GROUPS 8
HOMO./HETERO. Refl/Core

CORE HT. 86.51 cm
EFFECTIVE CORE RADIUS 34.9061 cm
REFLECTOR THICKNESS
RADIAl 30 cm
AXIAL 30 cm

BUCKLING 0

CALCULATED K_eff = 1.000
CALCULATED MASS = 228.57
CORE GAP
TEMPERATURE -0.00017
SAFETY ROD POSITION
DIFFUSION + TRANSPORT S 4 0.01000
HOMOG. + HETEROGENEOUS
OTHER: -25.7 kg -0.0205

CORRECTED DIFFUSION K_eff 0.9778
CORRECTED TRANSPORT K_eff 0.9888

ABBREVIATIONS:
■ = SAFETY DRAWER
■ = CONTROL DRAWER

OTHER:

MASS CORRECT.: CORRECTED MASS 202.87 kg
SODIUM VOID CALCULATIONAL MODEL
SODIUM OUT 5 x 5, 0-7 in. CALCULATION # 2DB56

EXPERIMENTAL ASSEMBLY #

EFFECTIVE CORE RADIUS

CORE HEIGHT

REFLECTOR THICKNESS {RADIAL

{AXIAL

CRITICAL MASS

ABBREVIATIONS:

= IN HALF #1, = IN HALF #2

= SAFETY DRAWER

= CONTROL DRAWER

= ENRICHED DRAWER OF CELL

OTHER:

CALCULATIONAL MODEL

CODE 2DB GEOMETRY

DIFFUSION , if \(S_N, N = \)

SYMMETRY 1/2 CORE

SOURCE OF ATOM DENSITIES

X-SECT. \{ GROUPS 8

HOMO./HETERO. REFL/CORE

CORE HT. 86.51 cm

EFFECTIVE CORE RADIUS RADIAL 30 cm

REFLECTOR THICKNESS AXIAL 30 cm

BUCKLING 0

CALCULATED \(K_{\text{eff}} = \)

CALCULATED MASS = 229 kg

OTHER:

ABBR.:

= SAFETY DRAWER

= CONTROL DRAWER

OTHER:

MASS CORRECT : CORRECTED MASS 229 kg
EXPERIMENTAL ASSEMBLY #
EFFECTIVE CORE RADIUS
CORE HEIGHT
REFLECTOR THICKNESS
CRITICAL MASS

ABBREVIATIONS:
8 = SAFETY DRAWER
a = CONTROL DRAWER
ivq-C3RE = OTHER:
SnDIL'i = OUT

MASS
CORRECTED MASS 223 kg

CALCULATIONAL MODEL
CODE 2DB GEOMETRY RZ
DIFFUSION , if S_n, N =
SYMMETRY 1/2 CORE
SOURCE OF ATOM DENSITIES

X-SECT. GROUPS 8
HOMO./HETERO. REF/CORE
CORE HT. 86.61 cm
EFFECTIVE CORE RADIUS 34.9 cm
REFLECTOR THICKNESS
RADIAL 30 cm
AXIAL 30 cm
BUCKLING 0
CALCULATED K_eff = 0.99311
CALCULATED MASS = 229 kg
CORE GAP
TEMPERATURE
SAFETY ROD POSITION
DIFFUSION = TRANSPORT S
HOMOG. = HETEROGENEOUS
OTHER: K BASE CASE; Na IN AK/K
0.99893 +0.00012
CORRECTED DIFFUSION K_eff
CORRECTED TRANSPORT K_eff
CALCULATION # 2DB54

EXPERIMENTAL ASSEMBLY #
EFFECTIVE CORE RADIUS
CORE HEIGHT
REFLECTOR THICKNESS
CRITICAL MASS

ABBREVIATIONS:
® IN HALF #1, ® IN HALF #2
® = SAFETY DRAWER
® = CONTROL DRAWER
® = ENRICHED DRAWER OF CELL
OTHER:

CALCULATIONAL MODEL
CODE 2DB GEOMETRY RZ
DIFFUSION, if SN, N =
SYMMETRY 1/2 CORE
SOURCE OF ATOM DENSITIES

X-SECT.
GROUPS 8
HOMO./HETERO. REFL/CORE
CORE HT. 86.51 cm
EFFECTIVE CORE RADIUS 34.9 cm
REFLECTOR THICKNESS RADIAl 30 cm
AXIAL 30 cm
BUCKLING 0
CALCULATED K_{eff} = 0.99827
CALCULATED MASS = 229 kg
CORE GAP
TEMPERATURE
SAFETY ROD POSITION
DIFFUSION + TRANSPORT S
HOMOG. + HETEROGENEOUS
OTHER: K, BASE CASE; NA IN
\Delta K/K
CORRECTED DIFFUSION K_{eff} = 0.99830
CORRECTED TRANSPORT K_{eff} = -0.00003

ABBREVIATIONS:
® = SAFETY DRAWER
® = CONTROL DRAWER
OTHER:

MASS CORRECT.:
CORRECTED MASS 229 kg
EXPERIMENTAL ASSEMBLY #: 2DB55

EFFECTIVE CORE RADIUS
CORE HEIGHT
REFLECTOR THICKNESS
CRITICAL MASS

ABBREVIATIONS:
\(S \) = SAFETY DRAWER
\(C \) = CONTROL DRAWER
\(E \) = ENRICHED DRAWER OF CELL

OTHER:

CALCULATIONAL MODEL

CODE: 2DB

GEOMETRY: RZ

DIFFUSION, if \(S_N, N = \)
SYMMETRY: 1/2 CORE
SOURCE OF ATOM DENSITIES

X-SECT.:

GROUPS 8
HOMO./HETERO. REFL/CORE

CORE HT.: 86.51 cm
EFFECTIVE CORE RADIUS: 34.9 cm
REFLECTOR THICKNESS

RADIAL: 30 cm
AXIAL: 30 cm

BUCKLING: 0

CALCULATED \(k_{\text{eff}} = 0.99912 \)
CALCULATED MASS: 229 kg

CORE GAP
TEMPERATURE
SAFETY ROD POSITION
DIFFUSION → TRANSPORT S
HOMOG. → HETEROGENEOUS

OTHER: \(K, \) BASE CASE; NA IN \(\Delta K/K = 0.99928 \)

CORRECTED DIFFUSION \(k_{\text{eff}} = \)
CORRECTED TRANSPORT \(k_{\text{eff}} = \)

MASS CORRECT.:
CORRECTED MASS: 229 kg
CALCULATION #2DB22

EXPERIMENTAL ASSEMBLY #

EFFECTIVE CORE RADIUS

CORE HEIGHT

REFLECTOR THICKNESS

CRITICAL MASS

ABBREVIATIONS:

\[\text{IN HALF #1, IN HALF #2} \]

\[\text{SAFETY DRAWER} \]

\[\text{CONTROL DRAWER} \]

\[\text{ENRICHED DRAWER OF CELL} \]

OTHER:

ABBREVIATIONS:

\[\text{SAFETY DRAWER} \]

\[\text{CONTROL DRAWER} \]

\[\text{ENRICHED DRAWER OF CELL} \]

OTHER:

CALCULATIONAL MODEL

CODE 2DB

GEOMETRY RZ

DIFFUSION

SYMMETRY 1/2 CORE

SOURCE OF ATOM DENSITIES

\[\text{GROUPS 8} \]

\[\text{HOMO./HETERO. REFL/CORE} \]

CORE HT. 86.51 cm

EFFECTIVE CORE RADIUS 33.7 cm

REFLECTOR THICKNESS

RADIAL 30 cm

AXIAL 30 cm

BUCKLING 0 B_{4C} Ta

CALCULATED $K_{\text{eff}} = 0.96852$ 0.97128

CALCULATED MASS = 210 kg

CORE GAP

TEMPERATURE

SAFETY ROD POSITION

DIFFUSION + TRANSPORT S

HOMOG. + HETEROGENEOUS

OTHER: Base Case $K_{\text{eff}} 0.97636 0.97636$

$\Delta K/K 0.00803 0.00520$

CORRECTED DIFFUSION K_{eff}

CORRECTED TRANSPORT K_{eff}
EXPERIMENTAL ASSEMBLY
- EFFECTIVE CORE RADIUS
- CORE HEIGHT
- REFLECTOR THICKNESS (RADIAL)
- REFLECTOR THICKNESS (AXIAL)
- CRITICAL MASS

ABBREVIATIONS:
- \(^{\mathbf{\oplus}} \) = IN HALF #1, \(^{\mathbf{\ominus}} \) = IN HALF #2
- \(\mathbf{\oplus} \) = SAFETY DRAWER
- \(\mathbf{\ominus} \) = CONTROL DRAWER
- \(\mathbf{\odot} \) = ENRICHED DRAWER OF CELL

OTHER:
- EXPERIMENTAL ASSEMBLY #
- EFFECTIVE CORE RADIUS
- CORE HEIGHT
- CORE GAP
- TEMPERATURE
- SAFETY ROD POSITION
- DIFFUSION + TRANSPORT S
- HOMOGEN. \(\rightarrow \) HETEROGENEOUS
- OTHER: K, BASE CORE, P16 IN 1.00078

CALCULATIONAL MODEL
- CODE: 2DB
- GEOMETRY: RZ
- DIFFUSION \(K_{\text{eff}} \) = 0.99218
- SYMMETRY: 1/2 Core
- SOURCE OF ATOM DENSITIES
- X-SECT.
 - GROUPS: 8
 - HOMO./HETERO. REFL/CORE
- CORE HT.: 86.51 cm
- EFFECTIVE CORE RADIUS: 34.9 cm
- REFLECTOR THICKNESS (RADIAL): 30 cm
- REFLECTOR THICKNESS (AXIAL): 30 cm
- BUCKLING: 0
- CALLED K_{\text{eff}} = 0.99218
- CALLED MASS = 227 kg
- CORE GAP
- TEMPERATURE
- SAFETY ROD POSITION
- DIFFUSION \(\rightarrow \) TRANSPORT S
- HOMOGEN. \(\rightarrow \) HETEROGENEOUS
- OTHER: K, BASE CORE, P16 IN 1.00078

MASS CORRECT.:
- CORRECTED MASS: 227 kg
- CORRECTED DIFFUSION \(K_{\text{eff}} \)
- CORRECTED TRANSPORT \(K_{\text{eff}} \)
Pu AND U OUT OF COLUMN P16

CALCULATION # 2DB70

EXPERIMENTAL ASSEMBLY #
EFFECTIVE CORE RADIUS ____________________________

CORE HEIGHT ____________________________

REFLECTOR THICKNESS /
RADIAL ____________________________

AXIAL ____________________________

CRITICAL MASS ____________________________

ABBREVIATIONS:
IN HALF #1, IN HALF #2

= SAFETY DRAWER
= CONTROL DRAWER
= ENRICHED DRAWER OF CELL

OTHER: ____________________________

CALCULATIONAL MODEL

CODE 2DB

DIFFUSION, if SN, N = ______________

SYMMETRY 1/2 CORE

SOURCE OF ATOM DENSITIES

X-SECT.

GROUPS 8

HOMO./HETERO. REFL/CORE

CORE HT. 86.51 cm

EFFECTIVE CORE RADIUS

REFLECTOR THICKNESS
RADIAL 30 cm

AXIAL 30 cm

BUCKLING 0

CALCULATED Keff = 0.99245

CALCULATED MASS = ______________

ABBREVIATIONS:
= SAFETY DRAWER
= CONTROL DRAWER

OTHER:

MASS CORRECT.
CORRECTED MASS ________
FUEL MOVEMENT 0-7 in.

EXPERIMENTAL ASSEMBLY #
EFFECTIVE CORE RADIUS
CORE HEIGHT
REFLECTOR THICKNESS
CRITICAL MASS

ABBREVIATIONS:
\(\mathbf{s} \) = SAFETY DRAWER
\(\mathbf{c} \) = CONTROL DRAWER
\(\mathbf{e} \) = ENRICHED DRAWER OF CELL
OTHER:

CALCULATIONAL MODEL
CODE 2DB
GEOMETRY RZ
DIFFUSION , if \(S_N, N = \)
SYMMETRY 1/2 CORE
SOURCE OF ATOM DENSITIES

CALCULATED MODEL

\[K_{\text{eff}} = 1.000 \]

CALCULATED MASS = 238 kg

CORE GAP

TEMPERATURE

SAFETY ROD POSITION

DIFFUSION + TRANSPORT S

HOMOGENEOUS + HETEROGENEOUS

OTHER:

ABBREVIATIONS:

\(\mathbf{s} \) = SAFETY DRAWER
\(\mathbf{c} \) = CONTROL DRAWER

OTHER:

MASS CORRECT.:
CORRECTED MASS 238 kg

CORRECTED DIFFUSION \(K_{\text{eff}} \)

CORRECTED TRANSPORT \(K_{\text{eff}} \)
FUEL MOVEMENT 5-12 in.

EXPERIMENTAL ASSEMBLY #
EFFECTIVE CORE RADIUS
CORE HEIGHT
REFLECTOR THICKNESS
CRITICAL MASS

ABBREVIATIONS:
= IN HALF #1, = IN HALF #2
S = SAFETY DRAWER
C = CONTROL DRAWER
E = ENRICHED DRAWER OF CELL
OTHER:

CALCULATIONAL MODEL
CODE 2DB GEOMETRY RZ
DIFFUSION , if SN, N =
SYMMETRY 1/2 CORE
SOURCE OF ATOM DENSITIES

X-SECT.
GROUPS 8
HOMO./HETERO. REFL/CORE
CORE HT. 86.51 cm
EFFECTIVE CORE RADIUS 35.63 cm
REFLECTOR THICKNESS RADIAL 30 cm
AXIAL 30 cm

BUCKLING 0
CALCULATED \(K_{eff} \) = 0.99911
CALCULATED MASS = 238 kg

MASS CORRECT.:
CORRECTED MASS 238 kg

CORRECTED DIFFUSION \(K_{eff} \)
CORRECTED TRANSPORT \(K_{eff} \)
EXPERIMENTAL ASSEMBLY

<table>
<thead>
<tr>
<th>EFFECTIVE CORE RADIUS</th>
<th>CORE HEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REFLECTOR THICKNESS

<table>
<thead>
<tr>
<th>RADIAL</th>
<th>AXIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CRITICAL MASS

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

ABBREVIATIONS:

- IN HALF #1, IN HALF #2
- \ddot{s} = SAFETY DRAWER
- \ddot{c} = CONTROL DRAWER
- \ddot{e} = ENRICHED DRAWER OF CELL

OTHER:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

CALCULATIONAL MODEL

<table>
<thead>
<tr>
<th>CODE</th>
<th>GEOMETRY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIFFUSION, if $S_N, N =$

SYMMETRY

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SOURCE OF ATOM DENSITIES

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

X-SECT.

<table>
<thead>
<tr>
<th>GROUPS 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

HOMO./HETERO. REFL/CORE

<table>
<thead>
<tr>
<th>CORE HT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>86.51 cm</td>
</tr>
</tbody>
</table>

EFFECTIVE CORE RADIUS

<table>
<thead>
<tr>
<th>RADIAL</th>
<th>AXIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.63 cm</td>
<td>30 cm</td>
</tr>
</tbody>
</table>

REFLECTOR THICKNESS

<table>
<thead>
<tr>
<th>RADIAL</th>
<th>AXIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 cm</td>
<td>30 cm</td>
</tr>
</tbody>
</table>

BUCKLING

| 0 |

CALCULATED K_{eff} =

| 0.99773 |

CALCULATED MASS =

| 238 kg |

CORRECTED DIFFUSION K_{eff}

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

CORRECTED TRANSPORT K_{eff}

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

ABBREVIATIONS:

- \ddot{s} = SAFETY DRAWER
- \ddot{c} = CONTROL DRAWER

OTHER:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

MASS CORRECT.

| CORRECTED MASS |
| 238 kg |

CORRECTED MASS 238 kg
FUEL COMPACTION

EXPERIMENTAL ASSEMBLY #
- EFFECTIVE CORE RADIUS 34.9 cm
- CORE HEIGHT 86.51 cm
- REFLECTOR THICKNESS
 - RADIAL 30 cm
 - AXIAL 30 cm
- CRITICAL MASS 229 kg

ABBREVIATIONS:
- #1 IN HALF #1, #2 IN HALF #2
- #1 = SAFETY DRAWER
- #2 = CONTROL DRAWER
- #3 = ENRICHED DRAWER OF CELL
- OTHER: K = 1.000204

CALCULATIONAL MODEL
- CODE 2DB
- GEOMETRY RZ
- DIFFUSION, if S_N, $N = \quad $
- SYMMETRY FULL CORE
- SOURCE OF ATOM DENSITIES

- X-SECT.
 - GROUPS 8
 - HOMO./HETERO.
 - REFLE/CORE
- EFFECTIVE CORE RADIUS 34.9 cm
- CORE HT. 86.51 cm
- REFLECTOR THICKNESS
 - RADIAL 30 cm
 - AXIAL 30 cm
- BUCKLING 0 1.001622
- CALCULATED $K_{eff} = $
- CALCULATED MASS =
- CORE GAP
- TEMPERATURE
- SAFETY ROD POSITION
- DIFFUSION + TRANSPORT S
- HOMO. + HETEROGENEOUS
- OTHER: $\Delta K/K +0.001418$

ABBREVIATIONS:
- #1 = SAFETY DRAWER
- #2 = CONTROL DRAWER

OTHER:
- FUEL OUT ZONE
- FUEL COMPACTED ZONE

MASS CORRECT.: CORRECTED MASS
- CORRECTED DIFFUSION K_{eff}
- CORRECTED TRANSPORT K_{eff}
DISTRIBUTION

No. of Copies

OFFSITE

1
AEC Chicago Patent Group
G. H. Lee

31
AEC Division of Reactor Development and Technology
M. Shaw, Director, PDT
Asst Dir for Nuclear Safety
Analysis & Evaluation Br, RDT:NS
Environmental & Sanitary Engrg Br, RDT:NS
Research & Development Br, RDT:NS
Asst Dir for Plant Engrg, RDT
Facilities Br, RDT:PE
Components Br, RDT:PE
Instrumentation & Control Br, RDT:PE
Liquid Metal Systems Br, RDT:PE
Asst Dir for Program Analysis, RDT
Asst Dir for Project Mgmt, RDT
Liquid Metals Projects Br, RDT:PM
FFTF Project Manager, RDT:PM (3)
Asst Dir for Reactor Engrg, RDT
Control Mechanisms Br, RDT:RE
Core Design Br, RDT:RE (2)
Fuel Engineering Br, RDT:RE
Fuel Handling Br, RDT:RE
Reactor Vessels Br, RDT:RE
Asst Dir for Reactor Tech, RDT
Coolant Chemistry Br, RDT:RT
Fuel Recycle Br, RDT:RT
Fuels & Materials Br, RDT:RT
Reactor Physics Br, RDT:RE
Special Technology Br, RDT:RT
Asst Dir for Engrg Standards, RDT
BR-III Project Manager, RDT:PM

197
AEC Division of Technical Information Extension

1
AEC Idaho Operations Office
Nuclear Technology Division
C. W. Bills, Director

1
AEC San Francisco Operations Office
Director, Reactor Division

Distr-1
No. of Copies

4 AEC Site Representatives
 Argonne National Laboratory
 Atomics International
 Westinghouse Electric Corporation
 General Electric Co.

3 Argonne National Laboratory
 R. A. Jaross
 LMFBR Program Office
 N. J. Swanson

1 Atomic Power Development Assoc.
 Document Librarian

7 Atomics International
 FFTF Program Office (5)
 Liquid Metal Information Center
 A. E. Miller (2)

2 Babcock & Wilcox Co.
 Atomic Energy Division
 S. H. Esleeck
 G. B. Garton

1 BNW Representative
 R. M. Fleischman (ZPPR)

1 Combustion Engineering
 1000 MWe Follow-On Study
 W. P. Staker, Project Manager

5 General Electric Company
 Advanced Products Operation
 Karl Cohen (4)
 Nuclear Systems Programs
 D. H. Ahmann

2 Gulf General Atomic Inc.
 General Atomic Division
 D. Coburn

1 Combustion Engineering
 Chattanooga, Tennessee 37401
 Nell Holder, Librarian

Distr-2
No. of
Copies

1 Oak Ridge National Laboratory
 W. O. Harms

1 Idaho Nuclear Corporation
 J. A. Buckham

1 Stanford University
 Nuclear Division
 Division of Mechanical Engng
 R. Sher

1 United Nuclear Corporation
 Research and Engineering Center
 R. F. DeAngelis

10 Bechtel Corporation
 J. J. Teachnor, Project Administrator, FFTF

15 Westinghouse Electric Corporation
 Atomic Power Division
 Advanced Reactor Systems
 D. C. Spencer

ONSITE-HANFORD

1 Bechtel Corporation
 M. O. Rothwell (Richland)

1 Westinghouse Electric Corporation
 R. Strzelecki (Richland)

1 AEC Chicago Patent Group
 R. K. Sharp

1 AEC, Asst Director RDT
 Pacific Northwest Programs
 T. A. Nemzek

3 AEC PDT Site Representatives
 P. G. Holsted
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AEC Richland Operations Office</td>
<td>J. M. Shivley</td>
</tr>
<tr>
<td>3</td>
<td>Battelle Memorial Institute</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Battelle-Northwest</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. O. Arneson</td>
<td>D. Marinos</td>
</tr>
<tr>
<td></td>
<td>E. R. Astley</td>
<td>D. R. Marr</td>
</tr>
<tr>
<td></td>
<td>R. L. Baird</td>
<td>W. B. McDonald</td>
</tr>
<tr>
<td></td>
<td>R. A. Bennett (5)</td>
<td>J. S. McMahon</td>
</tr>
<tr>
<td></td>
<td>E. T. Boulette</td>
<td>J. W. Mitchell</td>
</tr>
<tr>
<td></td>
<td>D. C. Boyd</td>
<td>R. A. Moen</td>
</tr>
<tr>
<td></td>
<td>W. L. Bunch</td>
<td>C. A. Munro</td>
</tr>
<tr>
<td></td>
<td>E. D. Clayton</td>
<td>C. R. Nash</td>
</tr>
<tr>
<td></td>
<td>J. C. Cochran</td>
<td>J. V. Nelson</td>
</tr>
<tr>
<td></td>
<td>P. D. Cohn</td>
<td>L. D. O'Dell</td>
</tr>
<tr>
<td></td>
<td>D. L. Condotta</td>
<td>R. P. Omberg</td>
</tr>
<tr>
<td></td>
<td>R. R. Cone</td>
<td>D. P. O'Keefe</td>
</tr>
<tr>
<td></td>
<td>J. M. Davidson</td>
<td>J. A. Perry</td>
</tr>
<tr>
<td></td>
<td>F. G. Dawson</td>
<td>R. E. Peterson</td>
</tr>
<tr>
<td></td>
<td>V. A. De Liso</td>
<td>H. C. Ripfel</td>
</tr>
<tr>
<td></td>
<td>S. L. De Myer</td>
<td>W E. Roake</td>
</tr>
<tr>
<td></td>
<td>J. F. Erben</td>
<td>R. L. Roske</td>
</tr>
<tr>
<td></td>
<td>E. A. Evans</td>
<td>J. M. Seehuus</td>
</tr>
<tr>
<td></td>
<td>L. M. Finch</td>
<td>J. R. Sheff</td>
</tr>
<tr>
<td></td>
<td>R. M. Fleischman</td>
<td>R. J. Squires</td>
</tr>
<tr>
<td></td>
<td>F. C. Gronemeyer</td>
<td>D. D. Stepnewski</td>
</tr>
<tr>
<td></td>
<td>V. W. Gustafson</td>
<td>C. D. Swanson</td>
</tr>
<tr>
<td></td>
<td>J. P. Hale</td>
<td>V. O. Uotinen</td>
</tr>
<tr>
<td></td>
<td>R. W. Hardie</td>
<td>R. C. Walker</td>
</tr>
<tr>
<td></td>
<td>K. M. Harmom</td>
<td>A. E. Wettar</td>
</tr>
<tr>
<td></td>
<td>R. A. Harvey</td>
<td>J. F. Wett</td>
</tr>
<tr>
<td></td>
<td>R. E. Heineman</td>
<td>N. G. Wittenbrock</td>
</tr>
<tr>
<td></td>
<td>J. W. Helm</td>
<td>M. R. Wood</td>
</tr>
<tr>
<td></td>
<td>R. J. Hennig</td>
<td>W. R. Wykoff</td>
</tr>
<tr>
<td></td>
<td>P. L. Hofmann</td>
<td>W. R. Young [25]</td>
</tr>
<tr>
<td></td>
<td>E. M. Johnston</td>
<td>Legal - 703 Bldg.</td>
</tr>
<tr>
<td></td>
<td>R. B. Kidman</td>
<td>Legal - ROB, 221-A</td>
</tr>
<tr>
<td></td>
<td>H. D. Lenkersdorfer</td>
<td>Technical Information (5)</td>
</tr>
<tr>
<td></td>
<td>T. Lillie</td>
<td>Technical Publications (2)</td>
</tr>
<tr>
<td></td>
<td>C. W. Lindenmeier</td>
<td>FFTF File, 703 Bldg. (10)</td>
</tr>
<tr>
<td></td>
<td>W. W. Little, Jr.</td>
<td>FFTF TPO (List "T")</td>
</tr>
<tr>
<td></td>
<td>H. E. Little</td>
<td>B. Wolfe</td>
</tr>
<tr>
<td></td>
<td>C. A. Mansius</td>
<td></td>
</tr>
</tbody>
</table>