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1.   Introduction to the Problem

In a previous paper [1], the present author formulated a

problem which was a generalization of both the Hitchcock "trans-

portation problem" (see Hadley   [2 ] )   and a problem  that is sometimes

referred to as the "location-allocation" problem with unlimited

capacities. (See Cooper [3], [4].) We should like to consider

here both that problem and an even more general formulation in

much greater detail.

We are given n fixed locations, to be called destinations,

whose positions in Euclidean space are known. Their co-ordinates

will be given by (xDj,YDj); j = 1,...,n.  We are also given a set
of known' requirements, r., j = 1,...,n for some commodity or

J

product at each of the n destinations. We wish to locate m sources,

where m is a given number, from which the product is to be shipped.

These sources are supposed to have certain limitations on their

capacity to ship the product. These numbers are known and will be

designated ci, i = 1,...,m. Finally, there may be "weights"

relating to destination requirements, e.g., multiplicity of trips

in a time period, or other possible weights. These will be

designated Bj, j = 1,...,n.  We shall designate by (xi'Yi)

i = 1,...,m, the locations which are to be determined, for the

sources and by w. ., the amounts to be "shipped" f6om .source i to
1J

destination j, which are also to be determined.  Finally we will
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define a set of "cost functions" which depend on the relative

locations of the sources with respect to the destinations. These

will be designated:

.th
9(xDj'yDj;xi,yi) E cost of supplying the J- destination

.thfrom the 1- source

We assume that the 9 functions are continuous. Our object is to

minimize total cost subject to capacity and requirement constraints.

This problem may be formulated as follows:

m n
Min z     N' B.w.. 9 (xDj ' YDjixi'Yi)L   1 11

i=1 j=1
n

W. < C., i = 1,...,m
1 j -  1

j=1                                          (1)
m

W. = r., j = 1,...,n
1 j    J

i=1

xi 1 0, yi 1 0, wij 1 0,  all i,j

The relationship of the problem given in (1) to the trans-

portation problem and the location-allocation problem is readily

 .

seen. If the 9(x ..v x  v)E a.., a set of constant costs,D J  ' 4  D j;          i  '1  i '                   1 1

and if a..B. is designated as y.., then (1) can be written as:1] J                    1]
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4 m n
Min Zi = FFY..w..

ZZ  ZL   il  il
i=1 j=1

n
W. < c.,  i   1,...,m
1 j -  1

j=1

m (2)

F/      w           =    r  ,         j     =    1,...,nL ij
i=1

w.. > 0,  all i,jll -                                                    =

which is the usual form of the transportation problem.  Hence,

for a set of fixed costs, the problem (1) becomes a transportation

problem.

Returning to equations (1), we may also note that  1) if the

requirements are stated in terms of the B. and 2) the capacities
J

associated with each source are unlimited, then the set of m+n

constraints of (1) are no longer explicitly required and (1) now

becomes:

Min z2 =

lia ij J Dj'YDjixi'Yi)B. 9(x (3)

a. = 0,1
1j

This is the location-allocation problem discussed in [3], [4].

The particular form of the functions 9, that we shall be

most interested in, throughout this paper is:

T (x ) = [(x  -x.)2 + Cy  -y )2]4 (4)Dj' Djixi'Yi Dj i Dj  i

which is the. usual Euclidean distance in a two-dimensional  .
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space. However, we .shall   give some considerati6n   to   the   more

general form given in (1).

2.       Characteristics  of the General Transportation-Location Problem

We shall refer to the problem stated in equations (1) as the

"general transportation-location problem". There  are a number  of

important observations that can be made concerning this problem.

We will state these .results   in  the   form of theorems for convenience.

Theorem 1: A necessary and sufficient condition for (1) to
· n                           m

have a feasible   set  of  w. .   is   that      r.   <    N'    c. .1]        L  1 - L  1
j=l i=1

Proof: This is easily shown since if we sum:

m

1 Wij
= r., j = 1,...,n

1=1 J

over j we have:

ni f wij = 1 rj                (5)
]=1 1-1 j=1

and if we sum:
n
F/    w..   <   c. ,      i  =   1, . . . ,m
ZL   1 J -  1
j=1

over i we have:

  1 *I ci      (6)
i=1 j=1 i=1

From (5) and (6) we see that:
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n m
Er.< F c. .  (7)
L   J - L  1
j=l i=1

Therefore if (7) is true then there is a feasible set of w...
1J

In what follows and throughout this paper, we shall assume

that the. functions  T (x ) are such that (1) has aDj' Djixi'Yi

finite minimum.  The next theorem is an important result.
/

Theorem 2: For the problem:

m n
Min .z =       B.w. . 111(xDj'yDj;xi'Yi)1 l]

i=1 j=1
n

W. < C., i = 1,...,m
1 j -  1

j=1 (1)

i ... =
r., j = 1,...,n11    J

i=1

xi 2 0, yi , 0, wij , 0,  all i,j

an optimal solution will occur at an extreme point of the convex

set of feasible solutions to (1).

Proof: Let W = {w..|Aw < b, w ,0, x 2 8, 9 2 0}1J

where
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I  8 0. . .0n

B I o. . .0n
A= m rows

0 0  0. . .In

I    I    I ...I  . n rows
- n   n   n         n _,3

mn columns

  - [Cl,c2'...,cm'rl,r2'...,rnl

W     =       [w l   1,1  1  2,  •   •   •   , w i Ilw2  1   '                 ' w 2 1 1 '                 ' wmnl

We shall prove the theorem by contradiction.  Assume that

-          {x*,y*,w*} is an optimal solution to (1) where x = (xl,X2/...,Xm  '
Y = (Yl'y 2' ..0 'ym) .  Further, we assume that the G* vector has

k > m+n positive values of w...  Hence w* is not an extreme point
1J

of W.

Let us now consider the following problem:

m n
Min z = F  r B.w.. 11'(x  v  ·y* v*)

L       L         J    1 ] Dj' Dj'-i'-* i
i=1 j=1

A w<S (8)

W,0'X,0, y,0

*.The functions 9(xDj'yDj;xi,Yi ) are simply constants. Let us

designate them *:... If we define d*. = B.*:., and
1]                  1]    J 1]

*    *          *
3* = (dll/d12,•I•'d ) then we can write (8) as:mn
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4 Min z = 3*w

A w < S (9)

 ,0'R·,-0,9,0

Consider the optimal solution to (9). Problem (9) is a

transportation problem and hence its optimal solution will be

at an extreme point of W, say, wE' with no more than m+n positive

W...  WE is also a feasible solution to (1) since the set of1J

feasible solutions .W is the same for the problems of (1) and of

(9).

Now consider the solution w* which is also a feasible

solution to (9).  For this solution 3*w* 1 8*WE' since GE was
the minimal solution.  Howevar, z =.8*w* was assumed optimal for

(1).  Yet, we have found another solution {x*,y*,wE} which is

feasible and yields a lower or equal value of z than {x*,9*,w*}.

Hence, we have obtained a contradiction and established the

-       result of the theorem.

3.   The Transportation-Location Problem

Let us now consider the problem of equati6ns (1) for a

particular form of the function, 9:

1(xDj'yDj;xi,yi) = [(xDj-xi)2 + Cy .-v.)212 (4)DJ  -1

1 Hence, what we shall now call the "transportation-location

problem" is the following:
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mn
Min z =     B.W.. 1(x -x..)2 + Cy -v )2141 l J Dj 1 Dj  - i

i=1 ]=1
n
T w. . < c. , i = 1,...,m

-                           1] -  1
jtl

(10)
m
FI   .w..   =   r. ,         j   =   1, . . . ,nL  ij    j
i=1

x. ·> 0, y. > 0, w.. > 0,  all i,j
1- 1- 1] -

We shall now characterize the transportation-location problem.

The constraint set is clearly a convex set.  What of the objective

function?  Theorem 3 has some less than comforting information.

_m Jl
Theorem 3: The function z=2  ) B.w. [(x -xi)2+(YDj-yi)2]35- 61. J .ij  Dj

i=1 j=1

is neither a convex function nor a concave function of the vector

(R,9, ).

Proof: To establish this, we make use of the well known

result, [5], that'if.a function f(ul,uz,•••,u ) is a twiceP

continuously differentiable function on an open set, then it is

convex, concave or neither on this set, depending on whether the

quadratic form:

P P 32f
Q  (t i, h)       =       F'

r.· h h (11)L   >  aukaug  k  Z
k=l t=1

is positive semi-definite, negative semi-definite or indefinite.

The variables in u are the xi, Y. and w...  We now compute the1      1]

necessary second partialderivatives to use in (11). If we
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     let D.. E
[(x )2 + (y  -v )J, then they are as follows:2, 5

1] Dj-Xi Dj  =i

32Z n B.w.. ,27

ax:       I D. . \ Dij / 1
1 1]1- <XDj-Xil  ,  i 6 1,...,m (12)

1 j=l   11  -

-

32Z n  B.w                2

ayi      1     let"    1  -('Dj yi   1
i = 1,...,m       (13)

j=1 1 J -        1J

3ZZ i = 1,...,m
(14)j = 1,...,n3 w2

1J

322    = -  9   Bjwij (xDj-xi  CYDj-Yi       i= 1,....,m    (15)
3xi3Yi

D?.
j 4                                      11

B.(x .-x.)32Z ]  DJ  1   ,       i= 1,0..,m (16)3 x.3w.. D..1  1]        1]             j = 1,...,n

azz Bj(YDj-Yi)  ,       i= 1,.••,m (17)
=-

By.ae.. D.1  1]        1 j             j = 1,,..,n

32Z i 0 k (18)
3x 3x

i   k

azz
i 0 k (19)

3Yi 3Yk

azz
i 0 k (20)

3xi3wkj



-10-

4                3*z i#k                       (21)
ay aw

i  kj                                                            '

12
0 Z

i 0 k (22)
3 w- 3w

ij  kj

32Z =0 , i 0 k (23)

3 xia Yk

In order to associate the arbitrary scalars of the vector R with

the appropriate expression, we shall   call   them  a i    (for   the
-             derivatives with respect to  xi) 'X i (for those with .respect  to

Yi) and y . . (for those with respect to w..).  If we do this, andll                               11
express Q in terms of the non-vanishing second partial derivatives,

we have:

32Z
Q   =      82za:    +     f.     112   4    +    2 V a.X.

,6 axiayi  11i=1 axi  1   i ]. Dyi 1=1

(24)

m  n   '2'  ai,i,.,1 1 ,;::w X.Y..+2 1  4-,    ax. aw.. 1 1]
i=1 j=1 1 1] i=l j=l   1  ij

Substituting from equations (12) - (23) into (24) we have:
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n   /8.w. . -    /             \2                  m      n ,B.w. .
1-("j"92-1 29 - f I 1 i." 1- t.Di-xij aa +  F  F_1  J ij                 XiD. .             1        L Z  D.. D..

1 J -      1 J                     1 J        1Ji=1 j=1 i=1 j=1

-2              Bjwij (xD.j-xi )  ( D j - i   -B.(x  -X )

aixi.- 2          J    Dj .  i.   ai Yi j
D 3.                                l]

D.
i-1 j=l- 1]-        1=1 J=l-         -

-2i i
B.(y  -v )J  Dj  i

x.v.. (25)D.. 1 '1J
1Ji=1  j=1 -

Let us rewrite (25) as:

Q = i  i  1:1  19:[Dij-("Di-xip] +Ai['4.j-(ypi-yif]
i=1 j=l    11

(26)
n   B. y

- 2 aixi(xDj-xi) (YDj-yi  - 2   I   8. -j [ai(xDj-Xi)+Ai(YDj-yi)l
i=1 j=1 1J

2

Since D.. = (x ) 2 + (y  -v ) 2 we can simplify (26) to yield:
1J Dj-xi Dj  =i

m   n  B.w..

Q=       JD11 8)1 (YDj-Yi) 2+X 2(xDj-xi)2-2aixi(xDj-xi) CYDj-yi) 
1=1 3=1    11

n  B.y
-2 I  I   .lj [ai(Dj-xi) + Ai(yDj-yi) |         (27)

i=1 j=1
1J

which yields in turn:
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4 ,=1  1  1 J     la. (y ) - A. (x  .) 2
8.w. .  -                    -X  1i=i j=1  D 3. L   1       Dj -Yi 1   Dj  1
1J

(28)

n   B.y..-2.1   1 1 1]  ai (x     -xi)+Xi (y   ·-v. )1Dj                DJ  -1]i=1  j=1   D.
1j

The first term in (28) is a non-negative real scalar. Let us

designate this term M(xi'Yi,w..,a., X.) > 0.  For some specified1J 11-

value of M, we have also determined, automatically, a value of:

a. (x  -x.) + X. (y  -v.) E N.1  Dj 1 1   Dj -1 1j

Therefore we can write (28) as:

m n
Q=M-2 I   Y..N.. (29)

i=1 j=1   1 J 1 J                                         1

1J
It is clear that with suitably chosen y.., which are completely            1

arbitrary, we can make Q>O o r e<O o r Q=O. Hence z is

neither a concave nor a convex function, which is what we wished

to show.

A consequence of theorem 3 is that the transportation-

location problem, which is given by equations  (10) ,  is  a non-

convex non-linear programming problem in which we are minimizing

a non-convex objective function over a convex set. However,

because of Theorem 2, we can state the equivalent result for the

transportation-location problem.
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Theorem 4: For the problem:

m n
Min z= I 1  B.w..[(x -x.)2 + cy -y )2135

i=l 1=1
J 1] L Dj 1 Dj  i  ]

n
I W. < C., i = 1,..., m

1 j -  11-1

m
= r., i = 1,..., n (10)

i=1 ]

x. > 0, y. > 0, w.. > 0, all i,j1- 1- 1] -

An optimal solution will occur at an extreme point of the convex

set of feasible solutions to (10).

Proof:  The problem above is a special case of the general

formulation proven in theorem 2.

The importance of this result is that it makes it unnecessary

to consider any but basic feasible solutions to the constraints

of (10). This will be important when weconsider computational

approaches in subsequent sections of this report.

Let us consider a result which is somewhat related to the

previous result. Suppose, as is often the case in practice,
m n

.there is more capacity than is required, i.e.,  T  ·c. >  I  r4.
L-4    1

1=1 j=i  J

A consequence of this is that, under certain conditions, no

destination will be served by more than one source. First, let

us rewrite the transportation-location problem with equality
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constraints by adding slack variables. If we do, equations (10)

become:

m n
Min z=    I   1    Bjwij  xDj-xi)2+( Dj- i) 2 35

i-1 j=1

n
2  w.. + w.  = c., i = 1,...,m1J l S    1
j=1

(30)

m

.#r
W.. = r. , j = 1,...,n

1 ]'             J1=1

x. > 0, yi 2 0, w.. > 0, w.  > 0,  all i,j
1 -             1 J - lS -

The result we seek is in the following theorem.

Theorem 5: A sufficient condition for the transportation

location problem to have no more than n positive w.. is that
1J

n                                          .2 Ci
c. >   I  r., i = 1,..., m or equivalently, m < 1=1
1- j=1  J                                      n

9 r.
j l  

Proof: First, we note that if there are m sources (or any number

> 2) and n destinations, and if each destination were to be

supplied by one and only one source, then there would indeed be

only n positive w... We will now show that it is sufficient
1J n

for this to be true that,  ci Z j 1 r ,  i = 1,...,m
ICii=1or m <- n The proof is by contradiction.

i lrj
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<           Let us assume that the optimal solution to (10) or ·

equivalently, to (30), z*, is such that there are n+k positive

w.. where k 0 0.  Let Sl be the set of destinations supplied by
1J

one source and let S  be the set of destinations supplied by
2

more than one source.  If D.. = (x  -xi)2+Cy  -v )2 4, then we1 J          Dj                Dj  -i

note that:

m m
Z* =

52 I  w.. D.. + 1 1   w   D                (31)
i=l  jES 1  11 l] i=1  j ES2 ij  ij

Consider some destination· deES 2 0.   One  of its contributions  to  the

second term in (31) is:

wp£  xD£-xq)2 + (YDZ-Yq)2 4 These can be written as

w  D   and w D . respectively. Since the sources designated by
P£ PE q£ 42.

the subscripts p and q are distinct, the distances D £ and D £

are unequal.  Let us say that D £ <D  . Therefore, we couldq£

reduce. w £ to zero
and supply destination d£ by source p, which we

n

can do since by hypothesis cp Z  j 1 r  and hence, there is

sufficient capacity. If we do this, we reduce the sum z* by an

amount w -w  D - Therefore,qi    qz pl

z' = z* ; (w D - W D  )qg qi -p£ p£

Since (W £D £ -w  D  ) >O,w e have that z' <z* which is api p£

contradiction. Therefore, in the optimal solution, each destination

is supplied by a single source. It should be noted that under

these conditions, it is obvious that the slack variables w. in
1S
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in equations (30) are always positive.

That theorem 5 gives only a sufficient condition and is

not a necessary condition is easily shown by a simple example.

Consider a 2 source-5 destination problem cl = 160, c2 = 100,

rl = 20, r2 = 30, r 3 = 40, r# = 50, rs = 60.  It can be seen
5                                       5                      5

that    r. = 200 and that cl <  I .ri and c2 <   r., thus
j-1 1 , Jj-1 1 3=i

violating the hypothesis of theorem 5. Nevertheless, suppose

the destinations were arranged as follows:

sce<ee
1     1       030

-L
XO     k

D
0                  0 b
9               soo<ce1

We could optimally supply them with the w.. as shown in the
1J

following tableau:

Destinations

1    2    3    4    5    C.
1

Uj

(D

0 1     0    0    40 0 60 160
4
0
0u 2 20 30 0 50 0 100

260
r. 20   30   40   50   60
J                             200

It can be seen that there are only n 5 positive w.. so that the1Jn
condition ci >   I   r  is not necessary.

j=1
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It can be seen from. the previous example that although the
m n

condition of theorem 5 is not met, it is true that 2 c.> 2 r..
i=1  1   j=I  J

However, while this is necessary and sufficient for the existence

of a feasible solution to the transportation-location problem

(Theorem 1), it says nothing about the existence of a solution

with exactly n positive w...  For example, with the following
1J

arrangement of destinations:

*

1
O                        49,              0

0                                                         -*    5 6 0 ka
42 A f<                 f

*-.
fooff 0-

0
1                   \

and with cl = 260, c2 = 40, rl = 25, r2 = 30, r3 = 70, r4 = 80,

rs = 90 we have:

U)

(1)

2120 0 70 80 90 260  -
02 2 5-3 0 0 0 0.4 0

-

25 30 7 0                8 0                9 0      **-.      3 0 0r.
J  ,    . .                                                                                 295X

m

It can be seen that   1  ci >   1  rj, the sufficient condition
i=1 j=1

is not satisfied,  and we require n+1 positive w. . . It does not
1J

seem simple to state a necessary and sufficient condition or

even a necessary condition, that there exist a solution with

exactly n positive w...
1J
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4.   The First. Exact Algorithm  For The_ Transportation-Location Problem

The first algorithm we shall consider is exact and relatively

simple in concept. However, its use will be limited, as will be

evident, to relatively small problems.

We may note, according to theorems 2 and 4, that an optimal

solution to the transportation-location problem will occur at

an extreme point of the convex set of solutions, W={w..|Aw<b,#20}
1]   -

where A, w are as defined in Theorem 2. We know that the extreme

points of W correspond to basic feasible solutions of Awib, w>8.
If the number of basic feasible solutions is designated as NBFS'

/Inn       \
for an m source, n destination problem, N < 1 1 .  This

BFS - (m+n-1 
follows from the basic theory of the transportation problem [2] .

Actually,    Inn         is the number of basic solutions,  most of which
C m+n- 1 1

are infeasible. Hence, it is usually the case that N    << (mn   \
BFS

( m+n- 1      '

For example, in the simple example, we shall present, with m = 2,
/mn               8'n = 4, '  = 56. However, there are only 9
<m+n-1) ={ 8 }= 5131

different non-degenerate basic feasible solutions.

According to results   of D emuth    [6]    and  Doig    [7]    , the minimum

number of basic feasible solutions, for m < n, to a transportation

i problem of order m x n i s mI/(n-m+1): For m = 2, n = 4, we have

4:/31 = 4.  Hence, the number of bases we have had. to examine,

9 is much closer to 4, the minimum number, than the unrealistic

upper bound, 56. This is somewhat encouraging.

In any case, N is a finite number. Suppose we generateBFS

          all basic feasible.solutions. Let us designate any such solution
/\

- = {0..}. (We consider, subsequently, how to do this). For
W     1]

each such solution, we can then solve the problem:
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           Min.z=  1    9  w..  [(x  -xi)2+(yDj-yi)   4             (32)
nA

i-1  j.41  1]  L Dj

by considering this problem as a set of problems of the form:

.n
Min zi =   1 w.    x  -x.)24(y .-v.)214, i=l, ...,m (33)

j=1
ij  L Dj 1

DJ  -1   J

-

We can do this since the {w..} are·simply known non-negative1J

constants or weights. An iterative technique for solving problems

of the form given by equations (33) was given by the author in

[3], [4] and is repeated here for convenience.  The initial

estimates of (xi'Yi) are given by:

n                                                            n

F .t - r.-
L  w. .A

0   j=l 11 Dj 0 - jLlwijyDj
xi - n ;  i - n , i = 1,...,m (34)

A

j l -11                 ijW..             1 W.
J=1

and the general iteration equations are:

A /\

n w..x n w. .v

Ek  Ik1] DJ 1]-D]

D.                        D.
j=1    1 j              j=1    1jk+1 k+1

X. =
; Yi , i=1,...,m (35)1 n n                -

W.

2 -*1
j=1 D.. j=1  D..11                       ll

where the superscript on the xi and Yi is the iteration parameter
.
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and

Pki -  [(xpi-xk)'+Cypi-yk) 1 4                                       (36)

-                          thIf we now designate the minimum value of z, for the £- basic

feasible solution as z , then it is obvious that the optimal»

value of the objective function, z*, for the transportation-

location problem will be:

z* =  Min  z*
li£ ' 32 (37)

If the minimum is taken on at 52 = s, then the optimal values
-

of the variables are (x. ,y. ), i= 1,...,m and w. .' ,i= 1,...,m;l S lS 1JS

j = 1,...,n where the designation (x. ,y. ) indicates (xi'Yi) forl S lS
th                                 -                     Athe S- basic feasible solution and w.. are the set 6f w.. for

1JS                  1J
this solution.

Let us now return to a point we glossed over, earlier, viz.,

generating all the basic feasible solutions to the constraints

of the transportation-location problem, i.e., the constraints:

1 w   < c., i = 1,...,m
. ij -  1j=1

m (38)

9 w.. = r., j = 1,...,n
it-1 11    J

w.. >O,j= 1,...,n1J -
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    As has already been mentioned, these are simply the constraintsi
of the standard transportation problem. We can make use of the

transportation problem tableau [2] to advantage in order to

generate only basic feasible solutions. The alternative would

be to find all basic solutions and discard the infeasible solutions.

This may require orders of magnitude more work. The method described

below is more efficient.

As an example, consider a problem with m = 2, n = 3. There

. will be at most 2+3-1 = 4 non-zero values of w.. in a basic
1J

feasible solution.  Suppose cl = 80, c2 = 120, r  = 70, r  = 90,
1                       2

r 3 = 40.  An initial tableau might be:

1    2    3    c.1

1 70 10 80
1-

2   80 40 120

r. 70 90   40
J

The blank squares have zero values of w.., i.e., w = O, W = O.
1J 13 21

It is a simple matter to find all basic feasible solutions from

this initial tableau @.     We  can  use the standard  " loop" method

for allowing a zero variable to become positive and still remain

feasible.    (See  [2] ) .   This is merely the application of the

simplex method to the special case of the transportation problem.
1

bri
From the tableau  QJ  ,   we can generate   two new tableaux. These
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    would be:

1    2    3    c.                    1    2    3    c.·1                                1
-                                                                        1

1           80         80             1 70 10 80

e.                  0
2 70 10   40  120             2 90 30 120

r. 70 90   40               '  r.   70 90 40
1                                                              j   -

From CD we can generate one new tableau (the other one would

be CD ).  It is as follows:

1    2    3    c.1
-

1          40 40 80

2     70 50 120

r. 70 90   40
J

From   G   we can generate:

1     2     3·    c.1

1     40         40    80- e
2 30 90 120

r. 70 90 40
J
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-    From ®we can generate:

1    2   ·3     c.
1

1      40         40    80

2      30 90 120

r. 70   90   40
J

From G we can generate:

1    2    3    c.
1

1              40 40 80

2        70 50 120          

r. 70 90   40
J                                .  -               -

we have now generated all the basic feasible solutions. The

relationships between them for this example can be represented as

a directed graph:

1. 4
6<  J
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      It can be seen that there are 5 basic feasible solutions. . If all

oasic solutions had been found, we would have had to solve 4

simultaneous equations in 4 variables, <4  = 15 times.  The

above procedure is simpler and very much less work.

We now state the algorithm we have been discussing for

solving the transportation-location problem and then present a

numerical example.

Enumeration Algorithm for Transportation-Location Problem             \

1.  Using the transportation problem tableau, starting with

any basic feasible solution, generate the connected graph

of all basic feasible solutions.  Designate each such

solution, {wij23' E = 1,...,T, where there are T.basic

feasible solutions.

2.  For each such solution, solve the set of location pr6blems:

n
•214Min zii =   1  w..  · (xDj-xii)2+(yDj-yii)   ' 1=1,:..,m

1;1  1JZ

m
-

and zi
=

I   ziEi=1

3.  The optimal solution is found by:

z* = Min Z*
£

2-1,...,T

with W*   and (xtg,Yig) being the corresponding values ofij£

the variables.
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Enumeration Algorithm - Sample problem:

Let (xDi'YD,1) = (0,0); (xD2 'VD2) = (0'1); (xD 3'yD3) = (1,1);

(X . ) = (1,0); m = 2, n = 4; c  = 50, c2 = 100; rl = 20,·r  = 40,D 4 Y D 4                                                         1                                                           2

r  = 60, r = 30. A basic feasible solution is given in the tableau:
3                   4

1             2             3             4             c.1

1     20    30                  50

2   10 60 30 100  

r. 20 40 60 30
·

J

From (   we can generate:

1   2   3   4 c. 1 2 3 4 C.
1 1

1 10 40 50 1 20 30 50

2   10 60 30 100 ®2 40  30  30   100   

r. 20 40 60  30       r. 20 40 60  30
J                                             J

1 2 3 4 C.
1

1  20   0      30    50

2  40 60   100  

r. 20 40 60 30
J

From     we
can generate:

1 2 3   4    2.                1   2 3 4   c.
1 1

1      40  10        50             1      40 10 50

2 20 50 30 100 2 20 60 20 100(21                               0
r.  20  40  60  30                 r.  20  40 60 30
J                                                             J
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From 3  we can generate:0
1   2   3   4 c. 1   2   3   4   c.

1                                              1

1 50 50 1 20 0 30 50

2 20 40 10 30 100    2  40 60  100  

r.   20  40  60  30               r. 20 40 60 30
·                                      J                                                                                                                                               J

From    )  we
can generate:

1   2   3   4   c.                1   2 3 4   c.
1 1

1       20      30 50 1 20 0 30 50

2 20 20 60  100    2   40 60  100  

r.   20 40 60  30 r. 20  40 ·60 30
J                                                         J

From 52 we can generate 6 and   (which are not given again to0                0
conserve space). From   we can generate ® and © .. From e

we generate   and a new tableau:

20 30 50

20 40  40      100     

20 40 60  30

From    we
generate      and    .     From   

we generate     and   .

Hence we are done. The graph of the nine basic feasible solutions

is as follows:

G
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1

3                                   4
2

u 1                                                                           4
/

5                6\                                            8
7

9

1 A more simple representation is as follows:

'.T»\
(5*         -*® c >®< .,(10   T Y..i-
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For each of these nine basic feasible solutions to the constraints

of the transportation-location problem, two location problems were

solved with the following results:

BASIC FEASIBLE
(X.,y.)        ZSOLUTION 1, 1          ig            Zi

(0,1) 20
1                                           60

(1,1)          40

(0,1)          102                                        54.143
(1,1) 44.143

(1,1) 28.2863                                         93.776
(0.641,0.792) 65.490

(1,0) 20
4                                          60

(1,1) 40

5                                        68.284(0,1)          10
(1,1) 58.284

(0,1) 14.1426                                        62.428
(1,1) 48.286

(1,1)           07                                         69.126
(0.287,0.596) 69.126

(1,0) 28.2868                                         76.572
(1,1) 48.286

(1,.0) 209                                         79.579
(0.173,0.924)  59.579

It can be seen that the minimum occurs for solution  2 . Hence

the solution to our problem is: Wll = 10, wiz = 40, W13 = 0,

W14 = 0; W21 = 10,·w22'= 0, W23 ='60, w24 = 30; (xl,yl) = (0,1),

(X2'Y2) = (1,1); z* = 54.143.
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It is not difficult to see that the number of basic feasible

solutions grows combinatorially. In addition, large amounts of

storage are required for larger problems. Hence, this method

is restricted to problems of relatively small size.

5.   The Second Exact Algorithm for the Transportation-Location
Problem

It is possible to formulate the transportation-location

problem, given by equations (10) in the form of a mixed integer-

continuous variable linear programming problem. The importance

of being able to do this is that since algorithms exist for

solving such problems, one can obtain the global minimum to what

was originally a non-convex nonlinear programming problem.

Unfortunately, the size of the problem that results precludes the

use of presently existing mixed integer-continuous variable linear

programming algorithms. We now derive this formulation.

We first seek to formulate equations (10) in spearable form*.

As a first step, we may rewrite our problem as follows:

m n

Min   z   =    9        B.w. .D. .
LJ       Ld      J    1 1    l l
i=l j=l n

Tw  < c., i = l,...,m (39)
La ij - j
j=1m

W. = r.,  j = 1,...,n
1 j    J

i=1 i = 1,...,m
(X   X )2 + (y  -V.)2 = 02..
Dj- i Dj 1 lj. j = 1,...,n

X..y. > 0, i = 1,...,m1 1-

i = 1,...,mW. > 0, D.. > 0
1 j

- 1] -  '   j= 1,...,n

*

By separable, we mean that all functions in the constraints or
N

objective function dan be expressed as f(x) =  I  fr(xr).
r=1
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Equations (39) are still not in separable form since there are

cross-products, w..D.. of variables in the objective function.
1 J 1J

These can be separated as follows:

w..D.. 2  - V 2 (40)
1 J 1J = uij    ij

where

u.  = 1(w..+D..);  v.  = -(w  -D .) (41)
1

1 j   Z 1J il     ij   2  ij  il

Using (40) and (41) we can now rewrite (39) as follows:

m n

Min  z =        B j (u: .-v2.)1J 1J
i=1 j=1

n

F   w. .   S c. , i = 1,...,m
LA         1 1    -       1

j=1

  w44 = r ,  j = 1,0..,n
-3

i=1
I

(X ) 2 + (.1 v )2 = D: i = 1,...,m (42)Dj-xi ' Dj-'' i          ij j = 1,...,n

1
U. = -(w  +D ) i = 1,...,m
ij   2  ij ij j = 1,...,n

1
V. =  - (W -D .) i 6 1,....,mij   2  ij  il            j = 1,...,n

xi,Yi Z O i = 1,...,m

W. > 0, D.. > 0. u > 0 i = 1,...,m
1 j

-
l J

- . ij -

j = 1,...,n

v.. unrestricted
1J

/
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Equations (42) are equivalent to the original transportation-

location problem given by equations (10). They are in separable

form. There are 3mn+m+n constraints and 4mn+2m variables. All

the constraints are linear except for mn of them, viz, (x  -x.)2 +
Dj  1

CyDj+Yi)2 = Di  for all i,j.  In order to use separable programming

(see [2]), we shall make polygonal approximations to the nonlinear

variables in these constraints. Similarly, the variables in the

objective function are non-linear and so they also will be approxi-.

mated in the same way.  The variables which require the polygonal

approximations are: uij, vij, xi, Yi, Dij.'
Let us briefly recapitulate the "6-form" of the approximation

problem [2].  Let the original problem be:

q

Min Z =
  ft (xt)
t=1 (43)       -

q

N'  g   (x )<b,s=l,...,pZL stt-s
t=1

xt , 0, t = 1,...,q

If we have 'or impose upper bounds on the xt so that 0 1 xt < at'
we subdivide each xt into Rt intervals so that we have Rt+1

 15                                                                                                                                                              ·
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points xkt' xot = 0, xit'x2t' ..., xR  t  We then define, for·each
t'                         ·

Xt:

fkt = ft(xkt)'  t = 1,...,q

(44)

g k s t    =    g s t(x k t) '          s     =     1,  .  ...,P
t= 1,...,q

With these conventions we now define:

Af =f -f
kt kt k-l,t

8gkst = gkst - gk-1,st k = 1,...,Rt (45)

AX = Xkt kt - xk-1,t

For x < X  < Xkt  we also define:k-l,t - t-

xt-xk-1,t
6kt =                                    (46)AXkt

Using (44), (45) and (46), we can approximate the original form

of the problem, given by (43) with the following:

M i n       Z       =         1              1-         C b fkt)   6 kt
t=1 k=1

q   Rt

2 2 (Ag   )6   <b  -   s=1 I...,P-kst kt -  s       gost'
t=1 k=1 t=1

(47)

k= 1,...,R0<6 < 1,              tkt - t= 1,...,q

where we also require that if 6 >0 6 = 1, 2 = 1,·...,k-1.kt ,  Et
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6
Using the above theory on the 6-form of the approximation

problem, let us now cast the problem given by equation (42) in

that form. In order to do so, we require the following

definitions:

f    = B.u 2
ijk j ijk

i = 1,...,m
= B.v2gijk    j ilk

j = 1,...,n (48)

k = 1,....R..F  = „2                     . 11ik -ik

2G.  =ik Yik

H    = D 2
ijk ijk

Using the·definitions given.in (45) and (46) we have quantities

corresponding to the definitions given in (48): Af... Ag1J.   ijk'

AF - AG . AH.. -  Using these, we can now phrase our problem
ik' ik' 1 Jk

giVen by equations (42) as:
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R.

4 m n ,lj

Min Z 2  I '2 (Af...-Ag. .)6
1]K ijk  ijk

i=1 j=1 k=1
n

I W. < C., i = 1,...,m
1 j -  1

j=1
m

1 W. = r., j = 1,...,n
1 j    J

i=1

R
ij

  <Fik+Gik-Hijk) 6ijk-2xDjxi-2yD jyi = Hi jo-Fio-Gio-x j-Y j,
k=1

i = 1,...,m (49)
j = 1,...,n

2u..-w..-D.. = 0 i= 1,...,m-

1 J  1 J 1J j = 1,...,n

2v..-w..+D.. =0                i= 1,...,m
1]  ij  il                     j. = 1,0 ..,n

xiyi 1 0 i = 1,...,m

w... > 0, D...> 0, u.. > 0, i = 1,...,m
1J - 1J - 1] - j = 1,...,n

v.. unrestricted
1J

and if 6 > 0, 6 = 1, £ = 1,...,k-1.
ijk ij£

We now have 3mn+m+n constraints((as before) but the number of

variables has become 4mn+mn  I R..+m+n.
i,j

1J

The last step is to convert the separable programming

problem (49) into a mixed integer-continuous variable linear

programming problem so that an approximate global minimum can

be found. Following. Hadley [2], the problem in (49) can be

represented as:

6
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6 m   n   ij
-         FI.Min Z = 2     9 (Af..k-Agijk)6ijk4-  13

i=1 j=1 k=1

  wij <
ci, i = 1,...,m

j=1
m

9 w. = r., j = 1,...,n4 ij
i=1 \

R..
1J

v 2   2   C.F.. .+G. -H.. )6..k-2xDjxi-2YDjyi = Hijo-Fio-Gio--Dj-YDj'6                  i k i k      .1 J k           i j
k=1

i = 1,...,m
j = 1,...,n (50)

2u..-w..-D.. = 0 i   1,...,m
11  11  11              j   1,0..,n

2v..-w..+D = 0        i  1,....,m
1J  1J  ij j   1,...,n

6'  - 41 >0 i   1,...,m
ijk ijk -

·j        1, . . . ,n

k   1,...,R..
1J

6    -0   < 0 i 1 '... 'm
ij,k+1 ijk - j   1,0..,n

k   1,...,R..
1J

0 < 6. < 1              i   1,...,m
-  ijk - j   1,...,n

k   1,...,R..
1J

xiyi 1 0 i   1,...,m

wij 1 0, Dij 1 0, uil -

j   1,...,n
. >0           i   1'...,m

0    > 0. 0 integers i   1,...,mijk - ·ijk
j   1,...,n
k   1,...,R..

1J

v.. unrestricted
1J
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6 As can be seen from equations (50), the original problem

        has grown to be quite
large. The formulation given has

i m   n

3mn  1   1  R..+1  +m+n constraints (including upper bounds) .
i=1 j=1 1J

This is an exceedingly large problem. Nevertheless, if mixed

integer-continuous variable linear programming codes become

available so that large problems can be solved efficiently , the

solution obtained would be an approximate global minimum to the

original problem given by equations (10).

1)



-37-

6.   Heuristic Algorithm No. 1 for the Transportation Lochtion
Problem

The heuristic algorithm descirbed in this section was a

first attempt to devise a rapid suboptimal method for solving

transportation-location problems. It was suggested by a heuristic

method previously developed for the pure location-allocation problem

and described in [4]. This method, called the "alternate location-

allocation method",   is as follows:

1)   Select some subset, m of the n destinations which are

given and consider these as source locations.

2)   Allocate each of the remaining n-m destinations to the

closest of the m sources selected in step 1.

3)   Within each of the m sets of destinations determined in

Step 2, use the iteration method given in [3], [4] (also

used in equations(34) and (35) of this paper) to find

the exact location of the optimal source location.

4)   Determine for each destination whether or not it is

closer to another of the sources located in Step 3

than the one to which it is allocated. This defines a

new grouping of m subsets of destinations.

5)   Repeat Steps 3 and 4 until no further changes are

possible.

It is shown in [.4] that this algorithm is a moderately success-

ful one, but by no means the best of the several heuristics tested

for the pure location-allocation problem. A modification of this

method for the transportation-location problem can be made as

follows.
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Alternate Transportation-Location Heuristic

1)   Arbitrarilv select m of the (x .v ) and let these
Dj'i Dj

be the .n initial source locations. This then yields

a set of distances between each of the destinations

and the assumed sources.

2)   Using these distances as cost coefficients, y.. (as
1J

in equations (2)) we can solve an ordinary transportation

problem to find a set of {w..}.
1J

3)   Using the {w..} from Step 2 we can solve a location
1J

problem using equations (34) and (35) and find a new

set of source locations.

4)   We now iterate Steps 2 and 3 until no further changes

are obtained in two successive cycles.

It can be seen that the general notion behind this approximate

method is to alternately locate sources given a pattern of alloca-

tion given a set of source locations.  The location-allocation

problem methodology and the usual transportation problem method-

ology are alternately applied to perform the calculations. It

can readily be seen that this iteration method yields a convergent

monotone non-increasing sequence of values for z.  However, there

is no guarantee that it will converge to the global maximum we

seek. However, what experience we have with this and similar

algorithms indicates that the result, when not optimal, lies

within -10% and usually within 2-3% of the optimal solution.

Table I indicates the results with this heuristic method for the

first seven problems given in [3].  These are location-allocation
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4
TABLE I

Alternate Transportation-Location Heuristic Results

' PROBLEM ' ALLOCATIONS OPTIMAL        B     OPTIMAL

  NO. OBTAINED ALLOCATIONS OBTAINED      B
1.

i

1 (1,2,3,4,5) (1,2,4,5) 52.118 50.450
(6,7) (3,6,7)

2 (1,3,4,6,7) (1,3,4,6) 81.764 72.000
(2,5) (2,5,7)

3 (1,2,3,4) (1,2,3,4) 38.323 38.323
(5,6,7) (5,6,7)

4 (1,2,3,7) (1,2,3,7) 48.850 48.850
(4,5,6) (4,5,6)

5 (1,2,3,4,5) (1,2,3,5) 38.560 38.033
(6,7) (4,6,7)

6 (1,2,3) (1,2,3,4) 44.564 36.175
(4,5,6,7) (5,6,7)

7 (1,5,6,7) (1,3,4,5,6,7) 61.935 59.716
(2,3,4) (2)

6
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problems with m = 2, n = 7.  They were solved as transportation-

location problems by using a set of capacities and requirements

that satisfied the sufficient condition given in Theorem 5. The

starting points in each of these problems was completely random.

For problems 3 and 4 the optimal solutions were obtained. In the

others, results of varying degrees of closeness to optimality are

obtained.

In order to study how the results obtained by the heuristic

are related to the starting value, 17 different (randomly selected)

starting values were chosen and the heuristic then applied for

Problem 1 of Table I. Table II indicates the results obtained.

It will be noted from Table I, that for problem number 1, the

optimal allocations are (1,2,4,5) (3,6,7) and the optimal value

of z is 50.450.

From the results of Table II we can see that in 3 of the 17

trials we obtained the·optimal solution. In roughly 60% of the

trials we obtained a solution no worse then about 3% of optimal

and usually better than this. The maximum error was about 15%.

However, it can be seen that repeated use of the heuristic method,

With varying starting values, is apt to give a reasonably good

good approximation to the optimal solution, if not the optimal

solution itself.
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                                                                                                  TABLE   I I

Summary of Local Minima Found for Problem I

Allocation          z         No. of Times (out of 17)
Obtained Obtained This Solution Occurs

(1,2,3,4,5)                             352.118
(6,7)

(1,2,4,5) 3  (Optim9150.450
(3,6,7) solution)

(1,2,3,4)                               452.001
(5,6,7)

(1,3,4,5,6,7)                           359.705
(2)

(1,2,3,7)                               260.128
(4,5,6)

(1,2,4,5,6)                             257.672
(3,7)

7.   Heuristic Algorithm No. 2 for the Transportation-Location
Problem

This algorithm is based on earlier work reported in [1]. It

seems to be extremely efficient as will be seen. The heuristic
I

method that has been developed is as follows.
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                 Transportation-Location Heuristic Method

1.   Use of one of the heuristic methods reported in [4] (the

"Alternate Location-Allocation" method referred to in the

previous section is one of these) to find a solution with

unspecified destination requirements and unlimited source

capacities.  Let matrix A = ||a..|  be the allocation matrix1J

for the s61ution obtained, i.e., a.. = 1 if source i supplies
1J

destination j and a.. = 0 otherwise. A is a matrix of zeros
1J

and ones such that each column contains exactly one "1".

There are no restrictions on the rows since one source may

supply more than one destination. The a116cation matrix A

is merely a convenient way of indicating the subdivision of

n destinations into m subsets, i.e., m subsets served by each

of the m sources.

2.   Replace the non-zero elements of A by their respective r.
J

thus forming a new matrix Wl =| w:.   where
1J

.r., a.. =1
1 J   il

W!:- '
il  CO , a.. =0

1J

3.   Using the original matrix A of allocations we now derive two

new matrices, analogous to Wi of Step 2 above as follows.

Find the pair of points being served by the same source

such that distance between them is a maximum. Let the

sources be s.u= 1,...,m and Qu be the subsets of destina-U'

tions.  Then we wish to find a pair of points Ps' Pt as

follows:
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D     =  Max      [fxD]c-xDE )2   +    (yDk-yD) 2  ]  ;5U
k,£EQu

(8)

[(xDs-xDt)2 + (YDs-yDt)2]4 = Max Du

u=1,...,m

Let the. subset in which this occurs be Qh with source sh.  We

then eliminate source sh and'replace it with points ps'pt.  We

now have a set of m+1 sources (su' u=l,...,m; uth), ps'pt

Therefore we have one more source than is desired. Let

R = {(su, 11=l,...,In; 11011), Ps'pt . The source coordinates

are (xu'Yu) for u0h, (xDs'YDs)' (xDt'YDt).  For notational

simplicity we rename the sources as s .  Therefore R = {svlv =V

1,...,m+1}, where the first m-1 sources are su(uth) and sm = ps'

sm+l = Pt.  We now wish to find the pair of sources sa and sb

that are closest together. Let us designate the set of indices
-

v, corresponding to sv E R, as V, i.e., V = {vI.sv E R}.  The pair

of sources s  and sb are now determined by:a

I(xa-xb) 2 + (ya-Yb) 214 = Min  [(xk-xt) 2 + (yk-Y£)2115
k,£EV
kt£

Having found the pair of sources, sa'sb that are closest together,

first we eliminate sa and apply the "alternate" method of

successive location and allocation until convergence as referred

to under step 1 above. This will determine a second solution. Next

"
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4   we restore source sa and eliminate sb' apply the "Alternate"

procedure and obtain a third solution. We calculate two new

matrices W2 and W 3 corresponding to these solutions, as we did

in step 2.

4.   Sum the requirements for each subset of destinations served

by one source, i.e., calculate I  r. for each subset S.. i = 1,...,m.
]                   1'

jEsi

We now calculate the differences, ci -  I  r:, i = 1,...,m.  A
 £si

J

negative·difference implies a capacity deficit  and a positive

difference indicates a capacity surplus.

5.   The iterative calculation begins with this step. Let I be

any set with a capacity deficit and let I  be any set with a

capacity surplus.  Choose a destination point, Pk' in the set I_

such that the difference in the distances from Pk to the Source

of I_ and from Pk to the source of I  is a.minimum.  Symbolically,

if Pk has co-ordinates (x   v  ) and the source location of I_pk'-pk

is (x_,y_) and of I  is (x ,y ), then we choose Pk as the index

j from I such that

1  /2

0 = Min 1 [(x .-x )2 + (YD j-Y-)2] / - [(x  -x )2 + CyDj + Dj-Y+
)211/21

j EI_C   .PJ

6.   We now reallocate part or all (if possible) of the requirement

at Pk from the source in I_ to the source in I .  The amount reall-

ocated depends on the size of the deficit at I_ and the surplus

at I . The four cases are                                    ,«
+                                                                                                                                                                                                   »

L.
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a)   If the (requirement at Pk) 1 (deficit for I_) and the

(surplus for I ) 1 (deficit for I_), then we reallocate

the deficit from I_ by supplying that amount to Pk from

I  instead of I .+               -

b)   If the (requirement at Pk) 1 (deficit for I_) and the

(surplus.for I ) < (deficit for I_), then we reallocate

the amouht of the surplus at I  by supplying that amount

to Pk from I  instead of I_.

c)   If the (requirement at Pk) < (deficit for I_) and the

(surplus at I ) , (requirement at Pk)' then.we reallocate

the entire requirement at Pk from I_.to I .

d)   If the (requirement at Pk) < (deficit for I_) and the

(surplus at I ) < (requirement at Pk)' then we reallocate

the amount of the surplus at I  by supplying that amount

to Pk from I  instead of I_.

7.   With the new allocations, new source locations are computed

for each subset of destinations, Si by the use of equations (34)

and (35), using the allocations as weights.

8.   Each subset of destination points, Si' is now examined for

those points which might be closer to a different source with an

excess capacity. If possible, we reallocate part or all of its

requirement, depending on the amount of the surplus at that source.

9.   We now repeat steps 7 and 8.(exact source location and

subsequent reallocation to satisfy requirements), until no further

change in the allocation matrix occurs.
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10. The entire reallocation process (steps 5-9) is now repeated

until-all capacity deficits are removed.  The value of z for this

allocation matrix, Wi is Computed.

11. The procedure of steps 4-10 is repeated for allocation matrices

W2 and W3.

12. The minimum of the three values of z obtained is chosen as

the solution, together with its source locations and destination

allocations.

This heuristic method was tested on the eight 2 source - 7

destination problems listed in [3]. The requirements were generated

randomly. The sum of the capacities were chosen as five per cent

higher than the sum of the requirements and were all equal. In

order to have exact solutions to compare the heuristic against,

the exact extremal equations (34) and (35) were used to solve for

all possible allocations. For these eight problems, the heuristic

method produced the optimal solution.

In [1] this basic method was also applied to 100 randomly

generated problems with apparently good results, although the

correct solutions. were not known in advance.

8.   Recommendations for Further Work

In section 4 of this paper an exact enumerative algorithm is

presented for solving the transportation=location problem.

However, as was indicated, it will not be computationally attractive

           for any but small
problems. However, the possibility exists that

=       a truncated enumeration method of the "branch and bound" variety

might be constructed to drastically reduce the number of basic
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    feasible solutions examined in order to find the optimal basic./. feasible solution. In this connection references [8], [9] may be

consulted.

\
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