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l.' Introduction to the Problem

In a previoﬁs papef [1], the present author formulated a
problem'which was a geheralization of both the Hitchcock "trans-
- portation problem” (seé Hadley [2]) and a(problem that:is sometimes
-referred to as the "location-allocation" problem with unlimited
capacities. (See Cooper‘[3], [4].)‘ We should like to consider
he;e both that problem and an even more general formulatibn in
much greater detail. |

We are:given n fixed loéations, to be calléd desﬁinatibns,
whose positions in Euclidean space are known. Their co-brdinates

will be given by (xDj )y j=1,...,n. We are also given a set

’yDj
of known requirements, rj, j=1,...,n for some commodity or

product at each of the n destinations. We wish to locate m squrces[
where m is a gi&en number, from which the product is to be‘shipped.
These sources are supposed to have certain limiéations oﬁ their
capacity to ship the product. These numbers are known and will be
designated Cis i=1,...,m. Finally, fhere may be "weights" ‘
relating to destination requirements, e.g., hultiplicity of trips

in a time period, or other possible weights. These will be
désignated Bj; j = 1,..Q,n. 'We shall desigﬁate b& (xi’yi)
i=1,...,m, the 1ocations which ére to be determined, for the
sources. and by Wig the amounts to be:ﬁspipﬂéd"fgkom;source i to’:f:

destination j, which are also to be determined..’ Finally we will |



. and 1if a.
i

~

define a set of "cost functions" which depend on the relative
locations of the sources with respect to the destinations. These

will be designated:

;,yi) = cost of supplying the jEE deStiﬁation

Y (xprypyix;

from the iEE4source

We assume that the ¥ functions are continuous. Our object is to

minimize total cost subject to capacity and requirement conétraints.

This problem may be formulated as follows:

: m n
i=1l j=1-
n
wij < c;r 1= l1,...,m
=t (1)
m
Z wis =Ty 3= 1.
i=1 '

xi > 0, yi >0, wij > 0, all i,j

The relationship of the problem given in (1) to the trans-
portation problem and the location-allocation problem is readily

seen. If the W(xDj,yDj; xi,yi) = aij’ a set of constant costs,

ij is designated as Yij’ then (1) can be written as:



Min zi = % D Vg Vi
i=1 j=1
n
_25 le < c;r 1= l1,...,m
j=1
m | (2)
.:2 wij = rj, j=1,...,n
i=1 '

w.. >0, all i,j

which is the usual form of the transportation probleﬁ. Heﬁce,
for a set of fixed costs, the problem (1) becomes a transportation
problem. |

Returning to equétions (1), we may alsé noté that 1) if thé
requireﬁents are stated in terms of the Bj and 2)'th¢ capacities
associated with each source are unlimited, then the set of m+n
‘éonstraints of (1) are no longer explicitly required and (1) now

becomes:

Min Z2 = z z - Dj’yDJ;xl'yl) (3)
i=1l j=1 v

aij = 0,1

This is the location4allocation problem discussed in [3]( [4].
The particular form of the functions ¥, that we shall be

most interested in, throughout this paper is:

. ' _ _ . ) _ ‘%.- ) .
?(xDj,yDjfxi,yi) = [(xpy x.)% + (Ypy=¥3)*] (4)

whiéh is the.usual Euclidean distance in a two-dimensional -



space. However, we shall give some consideration to the more

general form'given in (1).

2. Characteristics of the General Transportation-Location Préblem

We shall refer to the problem stated in equations (1) as the
"general transportatlon-locatlon problem ' There are a number of
important observatlons that can be made concerning thlS problem.

We w1ll state these,results in the-form of theorems for convenience.

Theorem 1: A necessary and suff1c1ent condltlon for (1) to
have a feasible set of wij is that ZE 3 5_ 25
Proof: This is easily shown since if we sum:

m
:Z wij = rj, j = ;;...,n

i=1l

over j we have:
n m " n | -
L= r. : 5
22 ZS i3 25 J , ()
and if we sum:

n
jg Wij < Cyv i=1,...,m
Jj=1

over i we have:

(6)

"Pvﬂb
| A
TV4S
PQ

=
"
et

From (5) and (6) we see that:



n m A ’ .
2 T3S % | -
=1 i=1 ‘ :

I
Ii

Therefore if (7) is tfue then there is a feasible set‘of’wij.'

In what follows and throughout this paper, we shall assume.

that the functions ¥(x ;xi,yi)zare such that (1) has a

finite minimum. The next theo;em‘iS‘an important result. .

-

'Theorem 2: . For the problem:
_ mn n _
Min z = »25_ ZE Bswis Y(Xpyr¥pyiXsey;)
i=1 531 |
n
25 w1J < cl, i=1,...,m
. j=1 - A : | (1)

m P ' : .

:S wij = rj, j = l,.ii,n

X; 20, y;, 20, w0 2> 0, all i,j

an optimal solution will occur at an extreme point of the convex

set of feasible. solutions to (1).

Proof: Let W<='{wilew.§ b, w> 0, x >0, y > 0}

where




0 ... .0
0 .. .0
. . m rows
o .. .1
n
I .. .1 }, n rows
n n |

" mn columns

03]
I

[Cl,Cz,...,C ,rl,rz,...,rn]

m

...w ’
n” ! mn]

W = [wll’w12'°'°'wanZI""'wz

We shall pro§é thé theoremAby contradiction; Assume that
{x*,y*,w*} is an optimal solution to.(l) where x = (xi,x;,.;.;xm),
y = (Y 0¥ reeeryy)- Further, we assume that fhé w* vector has
k' > m+n positive'values of wij'- Hence w* is not an extreme point‘
of W. o

Let us now consider the following problem:

: m n
. _ R K
Min z = 25 :E ijlj W(XDj'yDj'Xl’yi)
i=1l j=1
, Aw<b | (8)
“>0,%>0,3>0

. oLk % . . o
The functions W(xDj,yDj,xi,yi) are simply constagts. Let us
s * . * _ *
de51gna:¢ tiem wij'; ;f we deflne.dij f_Bj?ij’ and
d* = (d11,d125...,d_ ) then we can write (8) as:




Consider the optimal solution to (9). Problem (9) is a

transportation problem and hence its optimal solution will be

at an extreme point of W, say, GE’ with no more than m+n positive

w Ww. is also a feasible solution to (1) since the set of

E

feasible solutions W is the same for the problems of (1) and of

i3’

(9).
Now consider the solution w* which is also a feasible
solution to (9). For this solution d*w* > E*QE, since QE was

the minimal solution. Howevéer, z = .d*w* was assumed optimal for -

(1). Yet, we have found another solution {ﬁ*,§*,§E} which is

. feasible and yields a lower or equal value of z than {x*,y*,w*}.

Hence, we have obtained a contradiction and established the

result of the theorem.

3. The Transportation-Location Problem

Let us now consider the problem of equatidéns (1) for a

particular form of the function, Y:
¥(x ;X ) = [(x..-X%X.)% + ( - )Z]Li o (4)\.
‘ Dj’'¥Ypji¥irYi Dj *i Ypy7¥3 | -

Hence, what we shall now call the "transportation-location

problem" is the following:



. m n - . X
= 4 - y2 : - 2
Min z = Z Z j H (xDj ,xi.), + (yDj yi) ]
i=1l j=1
n
_ i= wij'i Cyv i=1,...,m
m - (10)
:E .wij = rj; _ j = l,f..,n
i=1 '

We shall now characterize the transportation-location probiem.
The constraint set is clearly a convex set.  What of the objective

function? Theorem 3 has some lessvthan'comforting information.

| 3 &
Theorem 3: The function z = ES ZL (Xp;

-xi)2+(yDjfyi)2]%
is neither a convex function nor a concave function of tﬁe vector |
(X,y,W) .

- Proof: To establish this, we make use of the well known

result, [51, that if a function f(u;,uz,.,.,up) is a twice
continuously‘differentiable function on aﬁ open set, then it is

convex, concave or neither on this set, depending on whether the

quadratic form:

- ¢ P B 3% o |
Q(u,h) = z =5 Ny Ny (11)
& R '

is positive semi-definite, negative semi-definite or indefinite. .
The variables in u are the Xi0 Yy and wij' We now compute the

necessary second partial‘ﬁerivatives to use in (11). If we



=1,...,m C(12)
i =1,...,m (13)
=1 ,m
aZz l F ® 0 0o
=0 ’ (14)
2 j=1,...,n
awij

n W. (X=X ) (Ve ~
2’z _ S B3¥13 Pp37*i) Wpy7¥5) ,. i=1,...,m (15)
9x,dy - D} S ‘
. 1- j=1 ij
2 B.(xX..-X.)
3 zv ___J " DJ 1 , i=1,...,m (16)
9% 9wy i3 j=1,...,n
2 By :=y.:) .
0y . oW, . -+ D.. . e
i~ 7ij ij j=1,...yn
2 .
92 _ o9, i#k (18)
Bxiaxk . ‘ ) '

32z

Byiayk




lo-

2 .

°z -9 , i#gk / S o(21)
Syiawkj ' .

) .

2z -0, = i#xk | L (22)
a "aw . N . . .

ij "kj
— |
Xiayk

In order to associate the arbitrary-scalars of the vector h with
the appropriate expression, we shail call them di (for the
derivatives with respect to xi)} Ay (for those with respect to

1]
express Q in terms of the non-vanishing second partial derivatives,

yi) and Yij (for those with rgspectito'w}.),‘ If we do this, and

we have:

" Substituting from equations (12) - (23) into (24) we have:
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B.w, . ~x, \2 | : _—
0= N\ 23%45 | (Fpi i s, 2 B Bvis ] (Ypi¥ile ).
D, _ D.. i z 2 o A
' i=1 =1 Y 1] i=1 5=l 13 ij

- zi S [BjWij s (yDj-yi)}a- i - 25: i [Bj (xDj_xi)} & Vs o
' D3 i ' h I ‘ D.. .. inj
- oi=1 j=1 , ij i=1 j=1 )

m B (Yp4—Y;)
- ~ 123 "Dy -1
{=1 4=1 I
Let us rewrite (25) as:
m 'n S'Wij 2[ , 4 e | ]
Q= z Z _J___D3 oy [Dy 4= (e 5=%; F] +2 [0y = ypg=y; ¥ 1
i=1 j=1 ij : o ‘
(26)
. m n BjYij ' -
N zai)\i(XDj_xi)(yDj_yi)} -2y N e [y gy (ypsmyy)]
| i=1 j=1 Y ‘
. 2 w2 ; 2 : : ' i .
Since Dij = (xDj xi) +.(yDj‘yi) we can simplify (26) to yleld.
B.w,
i

m n . ’ ’

_ 3753 20 o ) 2ex2 (% mx )2 o ; -
Q= Z > o5 (% (pymyy) Ay Bepymxy) 20, A4 (xp5=%;) (yp3-y,)]
i=1l j=1 ij

m n Y o
17 _ _
-2 z Z _]J).__[a.(Dj ;) + A (yp, yi)] (27)

which yields in turn:



m n iji o )
) iél jzl D3, [O-Li(yDj—yi) "M (XDj-xl)]
ij ' .
. (28)
n BiYi.
T2 2 o ety oy
: ij : .

The first term in (28) is a ncn-negative real scalar. Let us

+A;) > 0. For some specified

designate this term M(xi,yi,wij,ai i

value of M, we have also determined, autdmatically, a .value of:

o0 (Xpy=x3) + Ay (ypy-yy) = Ny

Therefore we can write (28) aszt

m n .
Q=M=-2 3 > ¥

(29)
i=1 9=1 :

15713
it is clear that with suitab}? cﬁosen Yij’ which are completely
arbitrary, we can make Q > 0 or Q <0 or Q=0. Hence z is .
neither a concave nor a convex function, which is what we wished
to show.

A consequence of theorem 3 is that thé transportation-
location problem, thch is given4by equations (10), is a non-
convex ncn-linear programming problem in which we are minimizing
a non-convex objective fﬁnction over a convex set. However,

because of Theorem 2, we can state the equivalent result for the

transportation-location problem.

-12-
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B Theorem 4: For the problem:

m
Min z = Z
i1

n .

Z W.. i C." i = l'.o.' m
= ij i )

i=p - ) J

An optimal solution will occur at an extreme point of the convex -

set of feasible solutions to (10).

|
1
m , :
.z_4w.. =r., i=1,..., n (10) .
Proof: The problem above is a special case of the general
formulation proven in theorem 2. i
The importance of this result is that it makes'itAﬁnnecessafy
to conside;»any but basic féasible solutions to the constraints
of (10). This will be important when we7consiaér computational }
épproaches in subsequent sections of this report;
Let us consider a result which is somewhat related to the

previous result. Suppose, as is often the case in practice,

: : m n . |
.there is more capacity than is required, i.e., ‘Z'-ci > > rye |
: : ' i=1 j=1
A consequence of this is that, under certain conditions, no

destination will be served by more than one source. First, let

us rewrite the transportation-location problem with equality'
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constraints by adding slack variables. If we do, equations (10)
become:

: 2 < 2 7%
Min z = igl jél ijij BxDj—gi) +(yDj‘Yi)]

n .
Z W.. + W. = C.., i=l,...,m
~ 1] 1s 1

(30)

m
Z'w--f=r- 'j=l'...,n

x. > 0, Yy > 0, wij > 0, wis >0, all i,j

The result we seek is in the following theorem.

Theorem 5: A sufficient condition for the transportation

location problem to have no more than n positive wij is that

n
c, > Z r., i=1..., m or equivalently, m < —=——0

Proof: First, we note that if‘there are m sources (or any number
> 2) and n destinations, and if each destination were to be
éupplied by one and only one.soﬁrce, then there‘wogid indeed be
only n positive wige AWe will noz'show that it is sdfficiént

for this to be true that, c; 2 5 Ty i= I,.{.,m

, j=1

C.
i

N

1
or m <

. The proof is by contradiction.

npAs
H
u



]

waDpﬂ

-15-=

Let us assume that the optimal solution to'(10) or -
equivalently, to (30), z*, is such that there are'n+k positive
wij where k # 0. Let S, be the set of destinations supplied by

one source and let S; be the set of destinations supplied by

: : L _ 2 _ 2 % _
more than one source. If Dij = (xDj xi) +(yDj yi) » then we
note that:

m A m

z* = z Z ws. D.. + A w.. D.. (31)
i=1l jes, 1)1 iZl jggz 11 4] '
Consider some destinationudeesz.. Oné of its contributions to the

second term in (31) is: -

_ 2 _ 1% .
wpg BXDQ xq) + (YDQ yq) ] . These can be written as

and w_ D respectively. Since the sources designated by

gl gL’

the subscripts p and g are distinct, the distances Dpz and qu

are unequal. Let us say that Dpl < Dq2: Therefore, we could

reduce_WqQ to zero and supply destination d2

n. .
can do since by hypothesis c_ > > rj and hence, there is
_ 31 :

by source p, which we
sufficient capacity. If we do this, we reduce the sum z* by an
amount w - w_,D_,. Therefore,

gl gl pL’

)

|- E— -
z z (qu qu wpleQ

. . _ , N ) .
Since (quDqg Wplez) > 0, we have that z' < 2z wh;ch is a.

contradiction. Therefore, in the optimél solution, each destination

is supplied by a single source. It should be noted that under

these conditions, it is obvious that the slack variables Wig in



in equationé (30) are always positive.
That theorem 5 gives only a sufficient condition and is

not a necessary condition is easily shown by a simple éxample.

Consider a 2 source-5 destination problem c, = 160, c, = 100,
r, =20, r, = 30, r, = 40, r, = 50, r = 60. It can be seen
5 5 5 . :
that > r., = 200 and that ¢, < > r. and c, < > r., thus
j=1 J j=1 =1

violating the hypothesis of theorem 5. Nevertheless, suppose

the destinations were arranged as follows:

govu< e

_We could optimally supply them with the wij as shown in the

following tableau:

Destinations

- I 2 3 ) 5 T,
$ ¥
o1 -0 0 [ 40 0 60 160
3 -
0
w2 20 30 0 50 0 100
260
rj 20 30 40 | 50 60 200

—16-

It can be seen thét there are only n = 5 posi‘tivebwij so that the

19

condition cy > e is not necessary.

j=1



o

It can be seen from the previous example that althoggh the
condition of theorem 5 is not met, ;t is true that 'Zl cy > 'ZI rj.
However, while this is necessary and sufficient for tge existé;ce
of a feasible sglution to the transportation-location problem
(Theorem 1), it says nothing about the exisfence of a solution
with exactly n positive wij' For example, with the fo;lowing

arrangement of destinations:

’
2
o 7’ \4
) ¢
~ Yo SM\N‘
[ .
T
RV N
goi& o o ‘;
\.

and with ¢, = 260, ¢, = 40, r, = 25, r, = 30, ry; = 70, r, = 80,

r. = 90 we have:

5

0]

Q) -~

o1 20 70 80 90 260

5 300 70

0

r 25 30 70 80 90 |™~_ 300
j 29
m n .

It can be seen that c; > > T the sufficient condition’

i=1 j=1

is not satisfied, and we require n+l positive w, .

ij° It does not

seem simple to state a necessary and sufficient condition or
even a necessary condition, that there exist a solution with

exactly n positive wij'
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4. The First Exact Algorithm For The Transportation-Location Problem.

The first algorithm we shall consider is exact and rélatively'
simple in concept. However, its use will be limited, as will be
evident, to relatively small problems. |

We may note} acéording to theorems 2 and 4, that an optimal
solution to the transportation-location problem will occur at
an extreme point of the convex set of solutions, W={§ij|Aw§5,§35}
where A, w are as defined in Theorem 2. We know that the extreme
"points of W correspond to basic feaéible solutions of Aﬁib{ Qzﬁ.

If the number of basic feasible solutions is designated as N

BFS'

un ) . This

for an m source, n:.destination problem,.NBFS < (m+n—l

follows from the basic theory of the transportation problem [2] .

Actually, <$2n-l> is the number of basic solutions, most of which
. . s . f{mn -
are infeasible. Hence, it is usually the case that NBFS << (m+n-l)

Fof example, in the simple example, we shall preseht) with m = 2,
n = 4, (225-1) = (g) = §%%T = 56. However, there are only 9
different non-degenerate basic feasible solutions. -

According to results of pemuth (6] and Doig [7] , the minimum
number of basic feasible solutions, for m < n, to a transportation
problem of order m x n is m!/(n-m+l)! For m = 2, n = 4, we have
4'/3! = 4. Hence, the number of bases we have had to examine,

9 is much closer to 4, the minimum.number, than the unrealistic
upper bound, 56. This is somewhat encouraging.

In any case, N is a finité number. Suppose we generate

BFS

all basic feasible solutions. Let us designate any such solution

~

w = {Wij}. (We consider, subsequently, how to do this). For

each such solution, we can then solve the problem:
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i BxDj—xi)2+(yDj-yi)1 - - (32

M D
£>

. L
i BxDj~xi)2+(yDj-yi)2]2, i=l,...,m (33)

z.
'—l-
o}
N
1}
L,
£>

We can do this since the {&ij}’are~simply known-non—negativei
constants or weights. - An iterative technique for solVing problems
of the form given by equations (33) was giQen by the author in
[3], [4] and is repeated here for convenience. The initial

estimates of (xi,yi)-are given by:

‘n n
o 2 Wi5%p; -.§ ¥i3¥Dpj : .
%, = 1=1 ; y? = 321 -, i=1 m (34)
i n PYi n ' reese
z le Z wl]
j=1 j=1
l and the general iteration equations are:
nooW X n w,.yp
> i 2 kK
\ N — D- . _ D- .
k+1 _ J=t 1] K+1 =1~ 13 .
X, = HER'S = , i=1,...,m (35)
i i
n ~ n ~
W, . W
> =2 s i
5=1 X j=1 pf
) ij ij

where the superscript on the‘xi and Y3 is the iteration parameter

N\
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and

K, = [(xD'j-x’i‘)'%(yDj—yE)Z] " (36)

If we now designate the minimum value of E,for the ZEE basic
feasible solution as zz, then it is obvious that the optimal
value of the objective function, z*, for the transportation-

location problem will be:

* = i * o .
2 Minozp (37)

If the minimum is taken on at & = s, then the optimal values

‘-of the variables are (xis'yis)’ i =1l,...,m and wijé/ i=1,...,m;
J =1,...,n where the designation (Xis’yis) indicates (Xi'yi) for
the SE-I’-1 basic feasible solution and &ijs are the set of &ij for

this solution.
"Let us now return to a point we glossed over, earlier, viz.,
generating all the basic feasible solutions to the constraints

of the transportation-location problem, i.e., the constraints:

§ .
W.. <cC,, 1=1,¢0.,m
521 ij— "1
- (38)
Sw.. =1r., j=1ls.c0yn
i51 ij )
>0 , j=1,c00/n.




. simplex method to the special case of the tfansportation problem.
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As has already been mentioned, these are simply the constraints

of the standard transportation problem. We can make use of the

-transportation problem tableau [Z] to advantage in order to

generate only basic feasible solutions. The alternative would

A

be to find all basic solutions and discard the infeasible solutioﬂs.
This may require ofders of magnitude more work. The method described
below is more efficient.

As an example, consider a probiem with m =2, n = 3. There

will be at most 2+3-1 = 4 non-zero values of wij in a basic_

feasible solution. Suppose c, = 80, c, = 120,-r; = 70, r, = 90,

2

r, = 40. An initial tableau might be:

1 70 10 80 ;\
2 80 40 120 @
rj 70 90 40
The blank squares have zero values of wij’ i.e., wia = 0, W, = 0.

It is a simple matter to find all basic feasible solutions from
this initial tableau(il We can use the standard "loop" method
for allowing a zero variable to become positive and still remain

feasible. (See [2]). This is merély the application of the

From the‘tableau.@),-we can generate two new tableaux. These



would be:

1 2 3 ¢
1 80 80
2 70 | 10 | 40||120
ry | 70 | 90 | 40

From @ we can generate one

be @ ). It is as follows:.

From @ we can generate:

1l 2 3 cy
' ?o 10 80
90 | 30 |[|120
70

90 40

.70

23 .
1
40 | 40 |80
70 | 50 120
70 | 90 | 40
1 2 3. C.
. 1
40 40 80
30| 90 1120
‘90 | 40

new tableau (the

other one would




From (@ we can generate:

From () we can generate:

We have now generated all the basic

relationships between them for this

)

cirected graph:

-23-

1 -3 C.
1
40 40 80
" 30 90 1120
-70 | 90 | 40
1 2 .3 C.
1
40 | 40 || 80
70 | 50 120 ~ ()_
70| 90 40

feasible solutions. The

example can be represented as



It can be seen that there are 5 basic feasible solutions. . If all

oasic solutions had been found, we would have had to solve 4
simultaneous equations in 4 variables, (2) = 15 times. The
above procedure is simpler and very much less work.

We now stéte the algorithm we have been discussing for
solving the transportation-location problem and then p}esént a

numerical example.

Enumeration Algorithm for‘Tran§portation—Location Problém E \

1. Using the transpdrtation problem_tableéﬁ,‘statﬁing~with
any basic feasible solution, generate the.éonnecfea gréph
of all basicvfeasible'solutions. ’Desigﬁate‘each such
solution, {&ijl}; L = l,...,T,\where the?é ére TIbaéic,
feasible solutions.

2. For each such solution, solve the set of locatioh;prdblemsé

n R ,
~ A~ 1 .
. L ) - 2 - 2 |2 =1 .
Min z;, = jZl Wi [(xDj xiz) +(yDj yil) ] y i=l,000,m
mo
and z} = Zl Z:iy

3. The optimal solution is found by:

z* = Min 'zz

2=1,...,T

with W*,
i

4 *
]Q‘and (xi

R;yiz) being the corresponding values of

the variables.
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Let (XDllyD.l) (010); (XDZ'VDZ) = (011)7 (XD3,YD3) = (l,l);
(x5, :¥p,) (1,0); m=2, n=4; ¢, =50, c, =100; r = 20,4ré = 40,
r, = 60, r = 30. A basic feasible solution is given in the tableau:

1 2 3 4 c.
l.
1 20 30 50
2 10 60 30 100 (:)
r; 20 40 60 30 ‘
From (E) we can generate:
1 2 3 4 c, 1 2 3 -4 c,
1 v 1
1 ! 10| 40 50 1] 20 30 50
2 10 60 | 30||100 (2)2 40| 30| 30 | 100 (:>'
Ty 20| 40| 60| 30 Ty 20| 40 | 60 | 30
1 .2 3 4 c.
. | i
1 20 0 30 50 | -
2 40 | 60 100
TS 20 | 401 60 | 30
From @ We can generate:
1 2 3 4 oy 1 2 3 4 c
1 40 | 10 Il s0 1 40 10 || 50
21 20 50 |30 100 <:> 21 20 60| 20 ({100 <§>
Ty 20| 40] 60| 30 Ty 20| 40| 60| 30




From <:> we can generate:

From (E) we can generate:

1 2 3 4 c.

1

1 50 50

2 |20 1|40 |10 | 301} 100
r 20 | 40 | 60 | 30

1 2 3 4 -c.

. 1

1 20 30 || so

2 |20|20160 100

r. 20 | 40 | 60 | 30
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10

1 2 3 4 C.
‘ ‘ 1
20 0 {301} 50
40 | 60 100

20 | 40 | 60 | 30
1 2 3 4 c.
. ‘ 1
20 0|30}l 50
40 |60 100

20 | 40 |60 | 30

From (5} we can generate (:}land (:) (which'are not given again to

conserve space).

we generate <:> and a new tableau:

20 | 30 |f 50
20 | 40 | 40 100
20 | 40 | 60 | 30

From (E) we generate <:> and <:>.

Hence we are done.

is as follows:

®

From @ we can generate @ and . ‘

From <:>

Frem. we genei;ate @ and .

The graph of the nine basic feasible solutions
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For each of these nine basic feasible soldtibns to the constraints

of the transportation-location problem, two location problems were

solved with the following‘resu1ts:i

BAgggUgggngLE- ($i$yi) - ZiQ Zz
L o | 60
2 -Eg:i; | 44%2;3' 54.143
| i || e
: R 6o
> Eg:i; | 58%284' 68'254
6 Qe
7 (0.§é§}é.596)' 69.%26'   69}126
; T s
; 0. 310 o | 65%00s

It can be seen that the minimum occurs for

-solution 2 .

Hence

the solution to our problem is: wii1 = 10, wiz2 = 40, w13 = 0,

wiy = 0; way = 10, wp2 = 0, wz3 =60, wzy = 30; (x1,y1) = (0,1),

(X2,y2) = (1,1); z* = 54.143.
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It is not difficult to see that the number of basic feasible

solutions grows combinatorially.

storage are required for larger problems.

is restricted to problems'of rel

In addition, large amounts of

Hence, this method

atively small size.

5. The Second Exact Algorithm for the Transportation-Location
Problem
It is possible to formulate the transportation location
»problem, given by‘equations (10) in the form of a mixed integer-

continuous variable linear progr

of being able to do this is that

ammingjproblem. The importance

since algorithms exist for

solving such problems, one can obtain the global minimum to what

was originally a non-convex nonli
Unfortunately, the size of the p
use of presently existing mixed
programming algorithms. We now

We first seek to formulate

As a first step, we may rewrite

Min z = 25 ZE RB.wW
. ] lJ lJ
i=1 g=1
ZW. . <
ij —
m j=1
ZS» wij = rj, j=1,...,n
i=1
- 2 -
(xD X )~ + (yDJ Y
Xj0¥y 2 0
w..">'0, D.. > O,
ij = iy =

*
By separable, we mean that all

objective function can be expres

inear programming problem.

roblem that results precludes the

integer-continuous variable linear
derive this formulation.

equations (10) in spearable form*.

our problem as follows:

cj, i=1,...,m (39)
i=1,...,m
2 2
)* =Disr  35-1,...,n
i=1,...,m
i=1,...,m
j = 1,...,n
functions in the constraints or

sed as f(X)

z £, (x ).
r=1
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. Equations (39) are still not in separable form since there are

cross—-products, wijDij of variables in the objective function.

These can be separated as follows:

where

-
| A
Q
}..J
il

.v.. unrestricted
1) ,

./

d.

-m

A nw

(41)

(42)
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Equations (42) are equivalent to the original ﬁraﬁsportation—
location problem given by eguations (105. They aré in sebarable
form. Thefe aré 3mn+m+n constraints and 4mn+2£ variables. All
the constraints are linear except for mn of them, viz,‘(xDj—xi)2 +
(yDj+yi)2 = Dij for all i,j. In order to u;e sepa;ab1e~programming
(see [2]), we shali make polygonal approximations_to thé nonlinear
variables in these constraints. Similariy, the variables in the
objective function are non-linear and so they also will be approxi-.
mated in the same way. The variables whiéh réquife fhe'pblygonal

2 | 2 2 2 po R .

approximations are: u?., v?., x: : 2 .
PP ij’ ij’ ‘l' Yl_r ij°

Let us briefly recapitulate the "§-form" of the apprOXimétion

problem [2]. Let the original problem be:

q\
Min Z = ji ft(xt)
t=1

(43)

a o
jz' gst(xt) < bs’ s =1,...,p
t=1 | : "

X, >0, t=1,...,9

If we have or impose upper bounds on the X, SO that 0 < X, < ey

we subdivide each xt into Rt intervals so that we have Rt+l



"xRt,t

X =0, x

points x ot

 We then define, for each

kt’ 1t %aer

Xt:

it =‘ft(xkt), t=1,....,9
‘ . (44)
_ : s = 1l,...,p
Ikst = Ist Fxe)r 1.,
: =1,...,9
With these conventions we now define:
Mye = Fxe T Fxo1,t
égkst = gkst - gk—l,'st k = ;f - ’Rt" (45)
Mg = ¥pe 7 *k-1,t
For -1, S X < Xy we also define:
X, -X 1 o - ]
s _ _t "k-1,t | 4 : T (48)
kt Ax : : .
kt

Using (44), (45) and (46), we can approximate the original form

of the problem, givén by (43) with the following:

q Ry
Min 2 = 22 (0 ¢) Skt
t=1 k=1
q R q
Z z (Aqkst)dkt < bS - z gost, s =1,. « /P
t=1 k=1 t=1 |
(47)
k=1,...,R
0 _<_ 6kt _<- ll ! ! t

Where we also require that if thl> 0, Gzt =1, 2 =1,...,k-1.




051ng the above theory on the é-form of the approx1matlon

problem, let us now cast the problem given by equatlon (42) in
that:form. In order to do so, we require the follow;ng

”defipitiphs:

’ o 2
ik = ByYisk
_ _ . i=1,...,m
gy, = B v . ‘ o : -
Tidk j ik j=1,...,n° . . (48)
C 2 k=1,...,R ‘ |
Flk’_ X% . 1]
Gix T Yix
s 2
Hi5x T Pigx

frUsing‘thewdefinitions given .in (45) and (46) we have'Quaﬁtifies
. correspondlng to the deflnltlons given in (48) Af.J Agljk,

.A ik' ik’ A.ijk' U51ng these, we can now phrase our problem

'given by equations (42) as:




o m n ,Rij _
" . mMinZ= z 2 Z (AF; 53 =0g; 530855y
S i=1 j=1 k=1
n'_
z wij_<_ci, i=1,...,m
j=1
| _22 wij.= rj( j=1,...,n
i=1 T :
Y.Rl‘..‘ " -
ij - _
. . R N - . _ - T - w2 2
,Zi (FytCinHy 1) 84567 2%p5%172Yp3¥s = H3407F4,7C1,"*p5™ YDy
i=1,...,m
. 2u, .- -D.. = 0 i=1,...,m
J 1] ) lj J = l,...,n
2v .—w;;+D.. =0 i=1,...,m
J ._l] .lJ = 1,.0.,n
o xiyi Z‘O i ;41{.;;,m.
w,. >0, D,. >0, u.. > 0, i=1,...,m
1] o 1J R 13 j = l1,...,n
. vij_unrestrlcted
| and.if 8y5 > 04 8359 = 1, 2= 1,00 k-1

ik
We now have 3mn+m+n constraints ((as before) but the number of
" 'variables hasibeé¢me 4mn+mn Y Rij+m+n.
The last step is to convert the separable programming
‘problem (49) into a mixed integer-continuous variable linear
programming prbblem so that an approximate global minimum can
" be found. Following Hadley [2], the problem in (49) can be

represented as:
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R, .
1]

- o -H. - XK= Y. = H.. -, —G.
Z (Fy#Gyp =y 5p) 84 572X 3% 72¥p4¥; = Hy507F 3,76

- m n o ij
Min 2 = EE 25 ji(Afijk_Agijk)sijk

' n
: jz wlj < Cyr i= lj;..,m
j=1
m
2 Vi3 = Fyp 37 b

=
o
e
-

’..l
u
'—l
(]
e
(WH
[}

|

)
o
,-"
£
-
.

+

(i
-
..

Il
o
=)

i

L. -

AU .
inan
H

nan
|
-
.
.
.

L

Il
-
.
.

X,y: >0 i

u N
nu
’—l

-

wijk 340, wijk integers

. B
o
-

vij unrestricted

L.,
(2 ¢

14
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As can be seen from equations (50), the original'problem

has grown to be quite large. The formulation given has

3mn( 2 z R. J+1)+m+n constraints (including upper bounds) .
i=1 j=1 - :

This is an exceedingly larée problem. .Nevertheless,'if mixed
integer-continuous variable linear programming codeé become
available so‘fhat large probleﬁs can.be solved efficiently, the
solution obtained wouldibe an approximafe global miﬁimum to the

original prdblem given by equations (10).




6. Heuristic Algorithm No. 1 for the_Transportation Location

" Problem
The heuristic algorithm descirbed in this section was a
first attempt to devise a rapid suboptimal method‘fOr solving'
transportation-location problems. It wae suggested‘by a heuristic
method previously developed for the pure location-allocation problem
and described in [4]. This method, called the'"alternate location-
allocation method", is as follows:
1) Select some subset, m of the n destinations which are
given and considerAthese‘as source locations.
2) Allocate each of the remaining n-m destinations'to the
closest of the m sources selected in Step'i.
3) Wlthln each of the m sets of destlnatlons determlned in
Step 2, use the 1teratlon method glven in [3], [4} (also
used in equatlons (34) and (35) of thlS paper) to find
the exact locatlon of the optimal source locatlon.
4) Determine for each destination whether or not it 1s
closer to another of the sources located in Step 3
than the one .to which it is allocated. ThlS deflnes a
new grouping of m subsets of destinations. |
5) Repeat Steps.3 and 4 until no further changes are

possible.

It is shown in [4] that this‘algorithm is a ﬁoderately success-
. ful one, but by no means the best of the eeveral heuristios tested
for the pure locatlon-allocatlon problem A modifioation of this
method for the transportatlon—locatlon problem can be made as

follows.




-38-

Alternate Transportation-Location Heuristic

1) Arbitrarilv select m of the (xp ,yDj) and let these

3
. be the . initial source locations. This then yields
a set of distances between each of the destinations
and the assumed sources.
2) 7 Using these distances as costvcoeffiCients, Yij (as
in equations (2)) we can solve an ordinary'transpOrtation
problem to find a set of {wij}',‘
3) Using'the,{wij} from Stép:Z we can'scl§é allécation
problem using equations. (34) and (35) and find a new
set of sourcé locations.

4) We now iferate Stepé 2_and 3 until no further changes

are obtained in two successive‘cyclés.

It éan be seen that‘the geﬁeral notioh behind this approximate
method is to alternately 1ocate'sources,given*a pattérn of alloca-
tion given a sét of source locatioﬁs. <Theilocationféllécation
problem méthodology and the usﬁal tranépo:tation probleh_method—
ology are alternately applied to pérform the caléulations. AIt
can feadily be seen that this iteration method yields a convergent
monotone non—increasiﬁg sequencé of'values for z. However, thefe
is no guarantee that it will converge to the global maximum we
seek. However, what experience Qe have with this'and'similar
algorithms indicates that the result,‘wheﬁ not bptimal, lies
within ~10% and usuallyAwithin 2-3% of.theioptimal solution.

Table I indicates the results with this heuristié'mefhod for the

first seven problems given in [3]. These are‘locatibn-allocation



TABLE I

Alternate Transportation-Location Heuristic Results

. PROBLEM ALLOCATIONS OPTIMAL 3 OPTIMAL
NO. OBTAINED ALLOCATIONS OBTAINED ]
1 (1,2,3,4,5) (1,2,4,5) 52.118 50.450
‘ (6,7) (3,6,7)
2 (1,3,4,6,7) (1,3,4,6) 81.764 72.000
(2,5) (2,5,7) :
3 (1,2,3,4) (1,2,3,4) 38.323 | 38.323
(5,6,7) - (5,6,7)
: 4 (1,2,3,7) (1,2,3,7) 48.850 48.850 |
| ' (4.5.6) (4,5,6) i |
¥
s (1,2,3,4,5) (1,2,3,5) 38.560 38:033
3 (6,7) (4,6,7)
6 (1,2,3) (1,2,3,4) 44.564 | 36.175 |
(4,5,6,7) (5,6,7) j
7 | (1,5,6,7) (1,3,4,5,6,7)| 61.935 59.716 |
: : (2,3,4) (2) :
i

-39-
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prdblems with m = 2, n = 7. They were solyed'as transportation-
, location:prqblems by using a set oflcapacities and requirements
that satisfied the suffieient condition given in Theorem 5. The
starting points in each of these problems was completely random.
for problems 3 and 4 the optimal solutions were obtained. In the
. others; results of varying degrees of closeness to optimality are
obtained.

Inlbrder to study how the results obtained by the heuristic
. are related te theistarting value, 17 different (randomly selected)
'starting values were chosen and the heuristic then applied for
Problem»l of Table I. Table II 1nd1cates/the results obtained.
It will be neted from Table I, that for problem number 1, " the
ﬂ optimal allocatibns’are (1,2,4,5) (3,6,7) and the optimal value
Sof 2 is 50. 450. |
| From the results of- Table II we can see that in 3 of the 17
trials we obtained the'thimal-solution. In roughly 60% of the
'trialsfwe obtained a solution7nd worse then about 3%‘of optimal‘
Aand usually better than this. The maximum error was about 15%.
However,,it'can be seen that repeated use of the heuristic method,
glw1th varying starting values, is .apt to give a reasonably good
good approx1mation to the optimal solution, if not the optimal

solution itself.




'. | | .~ TABLE II

Summary of Local Minima Found for Problem I

Allocation - | z - No. of Times (out of 17)
Obtained Obtained This Solution Occurs

(1,%é?§?r51 52.118 3

<1;§;g;§§ 50.450 3 (P ation)
k}ig:g:gg 52.001 4
'k1,3€g;5,6,7)A 59.705 " 3

e oz | 2

_flr%S?éijﬁf 57.672 . 2 |

7. Heuristic Algorithm No. 2 for the,Tranéportation—Location
Pfoblem |

. This algorithm is based on earlier work reported in [1]. It
seems to be extremely efficient as will be seen. The heuristic

" method that has been developed is as follows.

-41-
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Transportation-Location Heuristic Method

Use of one of the heuristic methods reported in [4] (the

"Alternate Location-Allocation" method referred to in the

previous section is one of these) to find a solution with

unspecified destination requirements and unlimited source

capacities. Let matrix A = |]a, be the allocation matrix

o5l

for the solution obtained, i.e., % 4 = 1 if source i supplies
destination j and aij = 0 otherwise. A is a matrix of zeros

and ones such that each column contains exactly one "1".

. There are no restrictions on the rows since one source may
supply more than one destination. The allocation matrix A

"is merely a convenient way of indicating the subdivision of

n destinations into m subsets, i.e., m subsets served by each

‘of the m sources.

Replacé the non-zero elements of A by their respective rj

thus forming a new matrix W; =||Wij|| where
r., a.. =1
SR B R
W, .=~
ij~ |o , aj5 =0

Using the original matrix A of allocations we now derive two
new matrices, analoéous to W, of Step 2 above as follows.
Find the pair of points being served by‘the same source

such that distance between them is a maximum. Let the
sources be su,.u é 1,...,m and Qﬁ be the subsets of destina-
tions. Then we Wish to find a pair‘of points ps,Apt as

follows: .
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_ . | X
Dy = ’ﬁa’i [xpyxpg) * + (ypy-vp * ]
|  2EQ |
(8) | .
2 _ 2 _
[(xps*pe) ® + (¥pg~¥pe) 17 = Max D,
. . ) u=l’ . o ,m

Let the subset in which this occurs be’Qh with source sy We

then eliminate source s, and replace it with pdints PgrPy- We

h

lnow'have a set of m+l sources (su, u=l,,;.,m; u#h) , PgrPy-
Therefore we have one more source than is desired. Let |
"R = {(su, u=1l,...,m; u#h), ps,pt}. The source coordinates

), o

xDs’st th’yDt)' For ndtational . 4 )

-simplicity we rename the sources as Sy* Therefore R = {svlv =

are (xu,yu) for u#h, (

r

1,...,m+1l}, where the first m-1 sources are su(u#h) and Sm = Pg

Spm+1 = P We now wish to find the pair of sources S5 and sb:
. that are closest together. Let us designate the set of indices

\

v, corresponding to s, € R, as V, i.e., V ='{v|sV € R}. The pair

of sources’s_ and s, are now determined by:

[x-x)2 + (y v 2)7 = Min  [(x-x,)% + (y,-v,)?]"
a b a_b] k,SZ,eV[kQ' L
k#2

Having found the pair of sources, S575h that are closest together,
first we eliminate S, and apply the ‘"alternate" method of
successive location and allocation until convergence as referred

to under step 1 above. . This will determine a second solution. Next
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we restore source S, and eliminatelsb, apply the "Alternate"
procedure and obtain a third solution. We calculate two new

matrices W; and W, corresponding to these solutions, as we did

in step 2.

4, Sum the requirements for each subset of destinations served

by one source, i.e., calculate'z r. for each subset Si, i=1,...,m."

- jES.
JES;

¢ ; .
. We now calculate the differences, c; - z r., i=1,...,m. A

. j’
jesi

ﬁegativ§~difference imp;ies a capacity deficit and a positive
difference indicates a capacity surplus. | |

5. The iterative calculation begins with this step. Let I_ be
any sét with a capacity deficif and let I be any set withla
‘capacity surplus. Choose'é déstination point, Py s in the set I_
-such that the différence in the‘distances'from Py to the sgource

of I_ and from p, to the source of I+ is a -minimum. Syﬁbolically,

if Py has co-ordinates (xpk,y ) and the source location of I_

pk

is (x_,y_) and of I is (x ), then we choose Py, as thé.index

+Y4
j from I_ such that

- Min | e V2 - 211/2_ _ 2 _ 2,1/2]
6 = ?;g [y x )% 4 (ypmy D P17 D y=x )+ (ypy-y )] 7
6. We now reallocate‘part or all (if possible) of the requirement

at p, from the source in I_ to the source in I,. The amount reailf
ocated depends on the size of the deficit at I_ and the surplus

at I_. The four cases are
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a) If the (requirement at pk) > (deficit for I_) and the
‘(surplus for I,) > (deficit for I_), then we reallocate
the deficit from I_- by supplying that amount to'pk from

\

I, instead of I_. .
“b) If the (requirement at p,) > (deficit for I_) and the
(éurplus.fof I,) < (deficit for I_), then we realloéate
“the émdunt of the surplus at I+,by supplying that amount-
to py from I, instead of I_;

c) | If the (réquirement at p,) < (deficit for I_) and the
(surplus at I+) > (requirement at pk), then .we reallocate
the entire-requiremént at p, from I_.to I_.

d) If the (reqﬁirement at p,) < (deficit fdr'i_) and the
(surplus at I+) < (requirement at pk),‘then we reallocate
the amount of the surplus at I+ by supplying that amount
to p, from I, instead of i;.

7. With the new allocatioﬁs, new source locations are computed
for each subset of destinafltions,.si by the use of equations (34)
and (35), using the al;ocations as weights.

8. Each subset of destination points, Si' is now examined for
those points which might be closer to a different source with an
excess capacity. If possible, we‘reallocate part or all of its
requirement,‘depending on the amount of the surplus at that source.
9. We now repeat steps’7 and 8. (exact source location and |
subsequent réa110cation to satisfy requireﬁents), until no further

change in the allocation matrix occurs.
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10. The entire reallocation process (steps 5-9) is now reéeated
until all capacity deficits are removed. The value of z for this
ellocation matrix, W, is computed.

11. The procedure of steps 4-10 is repeated for allocation matrices
W2 and Ws.

12. The minimum of the three values of z obtainedvie chosen as

the solution, together with its source locations and.destination

allocations.

This heuristic method was tested on the eight 2 source - 7
destination problems listed in [3]. The requirements were generatesd
rendomlg. The sum of the capacities'werelchosen as five per cent
higher than the sum of the requirements and were ali equal. In
order fo have exact solutions to compare the heuristie*against,
the exact extremal equations (34) and (35) were used to eolve for
all possible allocations. For these eight prebleme, the heuristic
method produced the optimal solution.

In [1] this basic method was also applied to lOOIrandely
generated problems with apparently good fesults, although the

correct solutions. were not known in advance.

8. Recommendations for Further Work

In section 4 of this paper an exact enumerative algorithm is
presented for solving the transportatien=lo¢ation problem.
However, as was indieated, it'will not be computetionally attractive
for any but small pfoblems. Hewever,-the possibility.exists that 
a truncated enﬁmeration mefhod of the "bfanch and bqundf variety

might be constructed to drastically reduce the number of basic
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l. feasible solutions examined in order to find the optimal basic
feasible solution. 1In this connection references [8], [9] may bhe

consulted. -
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