UNCLASSIFIED
Security Classification

NAA-SR-MEMOs are working papers and may be expanded, modified, or withdrawn at any time, and are intended for internal use only.

This report may not be published without the approval of the Patent Branch, AEC.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
STATEMENT OF PROBLEM

Some experimental data on a lattice similar to the HNPF reactor was required to reduce the uncertainty in making calculations of the lattice parameters. Also, information regarding the detailed thermal neutron flux distributions within a lattice are useful in helping to solve some of the heat transfer problems.

ABSTRACT

This report covers the measurements required to determine the values of thermal utilization for the U-10 Mo fuel elements in hexagonal lattices of three different spacings. The experiments and the results which lead to the values of thermal utilization are discussed. This includes a description of the lattice cells studied, the results, in graphical form, of the detailed neutron flux distributions in the various materials in the cells, and the values obtained.

Epi-cadmium neutron flux distributions and cadmium ratios for each of the lattice cells studied are also included in this report.
TABLE OF CONTENTS

I Introduction
II Summary of Results
III Experimental Measurements
 A. Description of Apparatus
 B. Measuring Techniques
 C. Thermal Neutron Flux Distribution Measurements within a Lattice Cell
IV Calculation of Thermal Utilization
V References and Appendices
For the first fuel loading of the sodium-cooled, graphite-moderated Hallam reactor (1) a uranium-molybdenum alloy is to be used. Because the Hallam reactor core design differs substantially from other sodium graphite reactors for which experimental details are available, exponential experiments were performed to provide some firm data on which to base calculations for the reactor core. The design of the reactor includes multi-rod fuel elements loaded at the vertices of regular hexagons (hexagonal lattice). Because of the difficulty in making calculations for this type geometry, the reactor core was mocked-up as closely as practical in an exponential lattice, and the lattice parameters were measured. Measurements to determine thermal utilization were also made in assemblies where the lattice spacing was different from that of the Hallam reactor and in one lattice with fuel element of lower enrichment than that of the full fuel loading. In this report the intracell measurements required to determine thermal utilization are to be discussed. In addition to contributing to the determination of thermal utilization, these measurements can be used to aid in solving some heat transfer problems pertinent to the Hallam reactor. Additional internal reports are being issued to cover the other lattice parameters measured. 2,3

Three lattices were studied to determine the values of thermal utilization. The lattices were formed by fuel elements at the
vertices of regular hexagons, the distance across the flats of the hexagons being 13-inches, 16-inches, and 19-inches. For these three lattice spacings a unit cell containing a fuel element of 19 rods, 3½ w/o enriched U-10 w/o Mo as shown in Figure (1) was studied. Using the 16-inch hexagonal lattice, an 18 rod fuel element of the same fuel composition and a 19 rod, 2.75 w/o enriched U-10 w/o Mo fuel element were studied in a unit cell. Also, the 19 rod 3½ w/o enriched U-10 w/o Mo fuel element was studied in the 16-inch hexagonal lattice where it was surrounded by a zirconium tube to mock-up the process tube and stainless steel to mock-up the moderator cladding present in the actual reactor. See Figure 2 for a description of this cell.

The thermal neutron flux distributions were measured within a representative unit cell of each lattice. Then by means of graphical integration, the relative average thermal neutron fluxes were determined for each fuel rod and each material within the unit cell. The values of these obtained for the fuel rods were used to determine the power disadvantage factors for each fuel element. The power disadvantage factor is defined as the average thermal neutron flux in the fuel, where the relative thermal neutron fluxes have been normalized so the average flux in a fuel rod of the outer ring of rods is equal to one. By using the relative average thermal neutron flux values obtained for each material of a cell with their corresponding macroscopic thermal neutron cross sections and volumes, the value of thermal utilization for each lattice was calculated. The values obtained for
thermal utilization and the power disadvantage factor for each lattice studied are listed in Table I. The comparison of the power disadvantage factors for the 19-rod and the 18-rod fuel elements aided in the decision to change the design of the Hallam fuel elements from 19 rods per element to 18 rods.

TABLE I

<table>
<thead>
<tr>
<th>Fuel Element, Lattice</th>
<th>Thermal Utilization</th>
<th>Power Disadvantage Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-rod, 3½ w/o e U-10 w/o Mo, 13-inch hexagonal</td>
<td>0.919 ± 0.013</td>
<td>0.850 ± 0.006</td>
</tr>
<tr>
<td>19-rod, 3½ w/o e U-10 w/o Mo, 16-inch hexagonal</td>
<td>0.885 ± 0.009</td>
<td>0.840 ± 0.004</td>
</tr>
<tr>
<td>18-rod, 3½ w/o e U-10 w/o Mo, 16-inch hexagonal</td>
<td>0.884 ± 0.011</td>
<td>0.868 ± 0.005</td>
</tr>
<tr>
<td>19-rod, 2.78 w/o e U-10 w/o Mo, 16-inch hexagonal</td>
<td>0.876 ± 0.010</td>
<td>0.856 ± 0.005</td>
</tr>
<tr>
<td>19-rod, 3½ w/o e U-10 w/o Mo, 16-inch hexagonal with stainless steel and zirconium</td>
<td>0.859 ± 0.010</td>
<td>0.848 ± 0.005</td>
</tr>
<tr>
<td>19-rod, 3½ w/o e U-10 w/o Mo, 19-inch hexagonal</td>
<td>0.832 ± 0.012</td>
<td>0.821 ± 0.006</td>
</tr>
</tbody>
</table>

III EXPERIMENTAL MEASUREMENTS

A. Description of Apparatus

A sketch of the AE-6 reactor with an exponential assembly on the reactor thermal column is shown in Figure 3. The AE-6 water boiler reactor and the vertical thermal column (4) supply the thermal neutrons to the exponential assembly. The thermal column is five feet in diameter. The thermal neutron flux at the top of
the thermal column is about 10^5 neutrons/cm2/sec/watt. The reactor can be operated at a maximum steady state power level of two kilowatts. The exponential assemblies are contained by a cadmium sheet which serves as definite boundaries on the four sides for thermal neutrons. Graphite blocks and fuel clusters can be loaded into or removed from the assembly by use of the overhead crane.

The graphite moderator blocks in the assembly were 69-inches high. The graphite was machined to provide channels for the fuel clusters, these holes being 4.75-inches in diameter. The graphite dimensions were designed to allow stacking a basic assembly where fuel channels are at the vertices of regular hexagons, the distance across the flats of the hexagons being 13-inches. By adding spacer blocks, the basic assembly could be expanded to allow for fuel channels to be at the vertices of hexagons either 16-inches or 19-inches across the flats. The 16-inch spacing is the same as that proposed for the Hallam reactor. Figure 4 shows the top view of the 16-inch hexagonal lattice. For brevity the different lattices are to be referred to as the 13-inch, 16-inch, and 19-inch lattices throughout the remainder of this report.

In the actual Hallam reactor core (1) the fuel slugs are to be contained in stainless steel tubes, and sodium coolant will flow through the fuel clusters. Also, zirconium and stainless steel are to be used for process tubes and moderator cladding respectively. Because it was not practical to mock-up these structural
materials for the exponential experiments, they were omitted from the measurements except in one case mentioned in Part II of this report. The sodium around the fuel elements was mocked-up using aluminum because the two materials have similar macroscopic thermal nuclear properties, and aluminum is a convenient metal with which to work. The fuel holders consist of 1100F aluminum cylinders, 4¾-inches in diameter by 66-inches long with 19 holes drilled parallel to the axis of the cylinders. For details of the fuel element, see Figure 5.

The 3½ w/o enriched U-10 w/o Mo as cast slugs were made in 12-inch lengths and 6-inch lengths. The slugs were cast to a 0.590 ± .005-inch diameter specification. The average diameter of the slugs was checked as 0.592-inches. The fuel slugs were loaded into the holes of the aluminum holders to give a fuel height of 66 ± Y-inches and a fuel area of about 5.2 square inches. The average composition of the slugs is 10.15 w/o molybdenum and 89.85 w/o uranium with an enrichment of 3.448 w/o U²³⁵. A detailed description of the fuel slugs can be obtained from Reference 5.

B. Measuring Techniques

The intracell thermal neutron flux distributions were determined by activating small detector foils. The foils are one-centimeter by two millimeters by 0.005-inch thick. Their composition is 15% by weight dysprosium oxide dispersed in aluminum. These foils were inter-calibrated by exposing them on a rotating disc to flux from the AE-6 reactor and then measuring their beta
activities. The reproducibility of the calibration of a foil was found to be within 0.15%. The foils were exposed in the graphite, aluminum and fuel in which these foils were covered with either aluminum or cadmium boxes. This was done to obtain relative total (bare or aluminum covered) and relative epithermal (cadmium covered) neutron fluxes. The thickness of the cadmium boxes was 0.020-inch.

After exposing the detector foils in the various assemblies, their relative activities were determined by means of gross beta counting with scintillation counters. These counters consist of photomultiplier tubes with 2 mm thick anthracene crystals and the other necessary instrumentation. Three counting channels were in operation where 0.1% counting statistics were obtainable.

C. Thermal Neutron Flux Distribution Measurements Within a Lattice Cell

For each of the lattices studied, thermal neutron flux distribution measurements were made within a lattice cell. These measurements were used to determine the average relative thermal neutron flux in each material. The lattice cell was taken as an equilateral triangle containing the fuel element as shown in Figure 1. Provisions were made in a lattice cell to allow for the placement of the small dysprosium oxide detector foils. Figure 6 shows a horizontal cross section of a cell with the locations provided for foil measurements. Measurements were also made in neighboring cells as a check on reproducibility. Detector foils were placed in the graphite, aluminum and fuel where the foils were exposed both bare and cadmium covered to allow for the
determination of the relative thermal neutron flux distributions.
The fuel element of interest was placed in the geometric center
of the lattice in the 16-inch and 13-inch lattices. In the 19-inch
lattice, the center of a hexagon formed by the fuel elements was
at the geometric center of the lattice.

All measurements were made at a height of 30 inches from the base
of the assembly where experiment revealed that higher harmonics
were not present. The observed data were divided by a factor
\(\cos \mu_x \cos \mu_y \), where \(x \) and \(y \) are the horizontal coordinates of
the data point with reference to the lattice axis, and where \(\mu_x \)
and \(\mu_y \) are the horizontal lattice bucklings. This correction
transforms the observed flux to that which would exist in a cell
situated in a lattice of infinite extent. All the data listed
in this report have been corrected in this way. Graphs are
included to show the results of each situation studied. The
different arrangements studied were:

1. 3.448 w/o e U-10 Mo, 19 rod fuel element in the 13-inch
 lattice.
2. 3.448 w/o e U-10 Mo, 19 rod fuel element in the 16-inch
 lattice.
3. 3.448 w/o e U-10 Mo, 18 rod * fuel element in the 16-inch
 lattice.

* The 18-rod element is the same as the 19-rod element except
 that the central fuel rod has been removed, and a void is
 left in its place.
4. 3.448 w/o e U-10 Mo, 19 rod fuel element in the 16-inch lattice with stainless steel and zirconium.**

5. 2.78 w/o e U-10 w/o Mo, 19 rod fuel element in the 16-inch lattice.

6. 3.448 w/o e U-10 w/o Mo, 19 rod fuel element in the 19-inch lattice.

For all the arrangements listed above, the remainder of the lattice was made up of the 19 rod, 3.448 w/o e U-10 w/o Mo type of fuel elements.

In the fuel, measurements were made across the diameters of the fuel rods. Figure 7 shows two slotted fuel slugs with inserts for cadmium covered and bare foil measurements. The bare foil measurements were made with 0.0003 inch aluminum wrappings to eliminate any possible fission products which might contribute to the counting rate. The cadmium covered foils were contained in 0.020 inch thick cadmium boxes. For the central rod where the distribution was symmetrical about the rod axis within the accuracy of the measurements, flux measurements along one fuel rod diameter sufficed. For the inner and outer rings of fuel rods where the distributions were not axially symmetrical, a two-dimensional survey of the flux in these rods was obtained by making diametrical flux traverses at angles of 0°, 45°, and 90° to a line through the center of the fuel rod to the center of the

** Figure 2 gives a detailed description of the lattice cell with stainless steel and zirconium present.
cell. The locations of these measurements can be seen in Figure 6. By studying the four fuel rods marked 1, 2, 8, and 9 in the Figure, the average fluxes for the 19 rods of the element are obtained by consideration of the symmetry present. From the data shown in Figures 8 to 29, the average relative thermal neutron flux in the various fuel rods for the different situations studied was determined by graphical integrations.

Several of the aluminum fuel holders were designed so they could be split at the 21-inch and 30-inch levels to allow for the removal of a 6-inch section which contained the detector foils for the neutron distribution measurements. This 6-inch section of aluminum fuel holder can be seen in Figures 7 and 30. Figure 30 shows the aluminum fuel holder with the provision for determining the neutron flux distribution within the aluminum. Measurements were also made at the surfaces between the aluminum and the fuel rods. The holes shown in the Figure were either filled with aluminum plugs containing detector foils or with solid aluminum plugs. The solid plugs were used when measurements were not required in that material. By measuring the thermal neutron flux distributions in a 30° section of the aluminum fuel holder, the thermal neutron flux in the entire aluminum holder was represented through symmetry. The measured value of the relative thermal neutron flux was plotted for each measured point in the aluminum to make a contour mapping of the relative fluxes in the aluminum. Figures 31 to 35 show the results of this work. By graphically integrating the small areas, using a compensating polar planimeter, and finding the average
relative fluxes, the average relative thermal neutron flux in the aluminum was determined.

To obtain the relative average thermal neutron flux in the graphite, neutron flux distribution measurements were made in the locations shown in Figure 6. Holes, 5/8-inch in diameter, were drilled in the graphite in the lattice cell being studied to accept the graphite foil holders. The graphite foil holders had provisions for foils to be placed at one-centimeter intervals. Some of the many graphite foil holders used for the measurements can be seen in Figure 36. The equilateral triangle which makes up a lattice cell can be divided into 6 symmetrical 30°-60°-90° triangles with the 60° vertex in the center of the cell. By determining the average relative thermal neutron flux in one of these right triangles, the average flux in the graphite is known. To determine the average flux in the 30°-60°-90° triangle, flux plots were made at 15° intervals through the 60° angle. See Figure 6. Graphs showing these plots for each of the situations studied can be seen in Figures 37 to 41 inclusive. From these plots the average relative thermal neutron flux in the graphite was determined by graphical integration.

For the one case where the fuel element was surrounded by stainless steel and zirconium, Figure 2, the relative average thermal neutron fluxes for these materials were determined by placing detector foils along their surfaces and averaging the measured values obtained.
Table II gives a summary of the relative average thermal neutron flux determined for each material of each cell studied. For the case of the 18-rod fuel element in the 16-inch lattice, a minimum number of measurements were performed in the aluminum and the graphite. A few were made, and it was found that the values obtained agreed with the 19-rod, 16-inch lattice work so the results from that series of measurements were used for the 18-rod work. Also, because in the other measurements, the average relative thermal neutron flux for rods 8 and 9 were equal within experimental uncertainty. Measurements were made mostly in rod 8 for the 18-rod measurements. The results from rod 8 were used for rod 9.

IV CALCULATION OF THERMAL UTILIZATION

In addition to the relative average thermal neutron flux for each material, the volumes and macroscopic thermal neutron absorption cross sections are required for each material to determine thermal utilization from the equation:

\[
\tilde{f} \ (\text{thermal utilization}) = \tilde{\phi}_{\text{fuel}} \frac{V_{\text{fuel}}}{\Sigma_{\text{i}} i} \frac{\Sigma_{a_{\text{fuel}}}}{V_{\text{fuel}} \Sigma_{a_{\text{fuel}}}}
\]

where \(\tilde{\phi} \) is the average flux, \(V \) is the volume fraction, and \(\Sigma_a \) is the macroscopic absorption cross section. The average fluxes are listed in Table II. Table III gives the fuel composition.
TABLE II

RELATIVE AVERAGE THERMAL NEUTRON FLUX

<table>
<thead>
<tr>
<th>CELL STUDIED</th>
<th>Rod 1</th>
<th>Rod 2</th>
<th>Rod 3</th>
<th>Rod 4</th>
<th>Avg</th>
<th>GRAPHITE</th>
<th>ALUMINUM</th>
<th>SS</th>
<th>Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.448 w/o e U-10 w/o Mo, 19 rod fuel element in the 13-inch lattice</td>
<td>0.510</td>
<td>0.606</td>
<td>0.991</td>
<td>1.009</td>
<td>0.850</td>
<td>3.596</td>
<td>1.467</td>
<td>±.003</td>
<td>±.016</td>
</tr>
<tr>
<td>3.448 w/o e U-10 w/o Mo, 19 rod fuel element in the 16-inch lattice</td>
<td>0.464</td>
<td>0.584</td>
<td>1.000</td>
<td>1.000</td>
<td>0.840</td>
<td>4.670</td>
<td>1.516</td>
<td>±.003</td>
<td>±.012</td>
</tr>
<tr>
<td>3.448 w/o e U-10 w/o Mo, 18 rod fuel element in the 16-inch lattice</td>
<td>0.605</td>
<td>1.000</td>
<td>1.000</td>
<td>0.868</td>
<td>4.609</td>
<td>1.496</td>
<td>±.009</td>
<td>±.010</td>
<td>±.010</td>
</tr>
<tr>
<td>3.448 w/o e U-10 w/o Mo, 19 rod fuel element in the 16-inch lattice with stainless steel & zirconium</td>
<td>0.608</td>
<td>1.000</td>
<td>1.000</td>
<td>0.848</td>
<td>4.833</td>
<td>1.399</td>
<td>3.381</td>
<td>2.265</td>
<td>±.004</td>
</tr>
<tr>
<td>2.78 w/o e U-10 w/o Mo, 19 rod fuel element in the 16-inch lattice</td>
<td>0.522</td>
<td>0.625</td>
<td>0.994</td>
<td>1.006</td>
<td>0.856</td>
<td>4.113</td>
<td>1.438</td>
<td>±.010</td>
<td>±.009</td>
</tr>
<tr>
<td>3.448 w/o e U-10 w/o Mo, 19 rod fuel element in the 19-inch lattice</td>
<td>0.441</td>
<td>0.525</td>
<td>1.000</td>
<td>1.000</td>
<td>0.821</td>
<td>5.353</td>
<td>1.651</td>
<td>±.005</td>
<td>±.012</td>
</tr>
</tbody>
</table>
TABLE III
FUEL COMPOSITION

<table>
<thead>
<tr>
<th>FUEL</th>
<th>w/o U²³⁸</th>
<th>w/o U²³⁵</th>
<th>w/o Mo</th>
<th>ρ density</th>
<th>gm/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>3½ w/o</td>
<td>86.75</td>
<td>3.10</td>
<td>10.15</td>
<td>17.12</td>
<td></td>
</tr>
<tr>
<td>2.78 w/o</td>
<td>87.35</td>
<td>2.50</td>
<td>10.15</td>
<td>17.12</td>
<td></td>
</tr>
</tbody>
</table>

The aluminum density is taken as 2.67 gm/cm³. The densities and macroscopic thermal neutron absorption cross sections were determined for the graphite in each assembly by weighing and from thermal neutron diffusion length measurements respectively. These results are discussed in another report, Reference 2. The volumes and macroscopic cross sections used for the different materials in each assembly are listed in Table 4. The results of the calculation of f are listed in Table 1.

In order to determine the relative average thermal neutron flux distributions, relative total and epi-cadmium flux distributions were measured. Plots of the relative epi-cadmium neutron flux and the cadmium ratios along the cell diagonals are also included in this report. See Figures 42 - 47. Figures 48 - 53 show the relative thermal neutron flux distributions along the cell diagonal. These are the results using dysprosium detector foils.

These results are being used as a basis for checking calculational models used to predict lattice parameters. They were useful in establishing a fuel element design for the Hallam reactor. The
<table>
<thead>
<tr>
<th>CELL STUDIED</th>
<th>VOLUME (cm³)</th>
<th>FUEL</th>
<th>GRAPHITE</th>
<th>ALUMINUM</th>
<th>SS</th>
<th>Zr</th>
<th>²⁵A (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.448 w/o E U-10 w/o Mo, 19 Rod Fuel Element in the 13-inch Lattice</td>
<td>33.74</td>
<td>+0.13</td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>0.9245</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td>3.448 w/o E U-10 w/o Mo, 19 Rod Fuel Element in the 16-inch Lattice</td>
<td>33.74</td>
<td>+0.12</td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>0.9245</td>
</tr>
<tr>
<td></td>
<td>±0.12</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td></td>
<td>±0.12</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td>3.448 w/o E U-10 w/o Mo, 18 Rod Fuel Element in the 16-inch Lattice</td>
<td>31.96</td>
<td>±0.13</td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>0.9245</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td>3.448 w/o E U-10 w/o Mo, 19 Rod Fuel Element in the 16-inch Lattice with Stainless Steel and Zirconium</td>
<td>33.74</td>
<td>+0.13</td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>0.9245</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td>2.78 w/o E U-10 w/o Mo, 19 Rod Fuel Element in the 16-inch Lattice</td>
<td>33.74</td>
<td>±0.13</td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>0.7679</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td>3.448 w/o E U-10 w/o Mo, 19 Rod Fuel Element in the 19-inch Lattice</td>
<td>33.74</td>
<td>+0.13</td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>0.9245</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
<tr>
<td></td>
<td>±0.13</td>
<td></td>
<td>±0.29</td>
<td>±0.60</td>
<td></td>
<td></td>
<td>±0.06</td>
</tr>
</tbody>
</table>

(This is a copy)
18 rod fuel element was chosen in preference to a 19 rod fuel element after examining the results of these experiments. It is felt that these results may be of further use in future calculations concerning sodium graphite reactors.
V. REFERENCES

2. O. R. Hillig, "Diffusion Length and Buckling Measurements in the Hallam Exponential Assemblies", TDR #5660 (September 1960).

1. Unit Cell in the Hexagonal Lattice
2. Unit Cell in the 16-inch Hexagonal Lattice with Stainless Steel and Zirconium Present
3. Cutaway View of Exponential Assembly and Water Boiler Reactor
4. 16-inch Hexagonal-Type Assembly
5. Cross Sectional View of Fuel Cluster with Dimensions
6. Foil Locations Available within a Unit Cell
7. Fuel Slugs with Inserts for Detector Foils and 6-inch Aluminum Fuel Holder Section
8-29. Thermal Neutron Flux Distributions in the Fuel Rods
30. 6-inch Section of Aluminum Fuel Holder with Provisions for Measurements in the Aluminum
31-35. Sections of Aluminum Fuel Holders Showing Relative Average Thermal Neutron Fluxes
36. Graphite Foil Holders
37-41. Thermal Neutron Flux Distributions in the Graphite
42-47. Epi-Cadmium Neutron Flux Distributions and Cadmium Ratios Along Cell Diagonals
48-53. Thermal Neutron Flux Distributions Along Cell Diagonals
<table>
<thead>
<tr>
<th>TABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Thermal Utilization and Power Disadvantage Factor</td>
</tr>
<tr>
<td>II. Relative Average Thermal Neutron Flux</td>
</tr>
<tr>
<td>III. Fuel Composition</td>
</tr>
<tr>
<td>IV. Volumes and Macroscopic Thermal Neutron Cross Sections</td>
</tr>
</tbody>
</table>
Figure 1 Unit Cell in the Hexagonal Lattices
Figure 2: Unit Cell in the 16-inch Hexagonal Lattice with Stainless Steel and Zirconium Present.
FIGURE 3. CUTAWAY VIEW OF EXPONENTIAL ASSEMBLY AND WATER BOILER REACTOR
Locations marked A and B show positions of voided channels.

FIGURE 4. LOCATION OF VOIDED FUEL CHANNELS
Fuel Composition: 86.75 w/o U^{238} 3.10 w/o U^{235} 10.15 w/o Mo

Fuel Density: 17.12 g/cm³

Aluminum Density: 2.67 g/cm³

Graphite Density: 1.685 g/cm³

Figure 5. Cross Sectional View of Fuel Cluster with Dimensions
Figure 6 Foil Locations Available within a Unit Cell
Figure 7 Fuel Slugs with Inserts for Detector Foils and 6-inch Aluminum Fuel Holder Section
Figure 10 Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 3½ w/o Enriched U-10 w/o No Fuel Element in the 13-inch Lattice
Figure 11 Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 1.5-inch Lattice
Figure 12 Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod
34.5 w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice
Figure 13 Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice
Figure 14 Thermal Neutron Flux Distributions in Fuel Rods for the 19 Rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice
Figure 15 Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 3\(\frac{1}{2}\) w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice
Figure 16 Thermal Neutron Flux Distributions in Fuel Rods for the 16 rod 3\(\frac{1}{2}\) w/o Enriched U-10 w/o No Fuel Element in the 16-inch Lattice
Figure 17 Thermal Neutron Flux Distributions in Fuel Rods for the 16 Rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice
Figure 18: Thermal Neutron Flux Distributions in Fuel Rods for the 19 rod 3\% dense lattice with Stainless Steel and Zirconium present.
Figure 19 Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice with Stainless Steel and Lirconium Present
Figure 20 Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice with Stainless Steel and Zirconium Present
Figure 21 Thermal Neutron Flux Distributions in Fuel Rods for the 19 rod 3\(\frac{1}{2}\) w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice with Stainless Steel and Zirconium Present
Figure 22 Thermal Neutron Flux Distributions in Fuel Rods for the 19 rod 2.78 w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice
Figure 23: Thermal Neutron Flux Distributions in Fuel Rods for the 19 rod 2.78 w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice
Figure 24: Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 2.78 w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattic...
Figure 25: Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 2.78 w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice
Figure 26 Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 19-inch Lattice
Figure 27: Thermal Neutron Flux Distributions in Fuel Rods for the 19 Rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 19-inch Lattice
Figure 29 Thermal Neutron Flux Distributions in Fuel Rods For the 19 rod 3\(\frac{1}{2}\) w/o Enriched U-10 w/o Mo Fuel Element in the 19-inch Lattice
Figure 30 6-inch Section of Aluminum Fuel Holder with Provisions for Measurements in the Aluminum
Figure 32 Section of Aluminum Fuel Holder Showing Relative Average Thermal Neutron Fluxes
19 Rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Hexagonal Lattice
Figure 33 Section of Aluminum Fuel Holder Showing Relative Average Thermal Neutron Fluxes

19 Rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Hexagonal Lattice with Stainless Steel and Zirconium
Figure 34 Section of Aluminum Fuel Holder Showing Relative Average Thermal Neutron Fluxes
19 Rod 2.76 w/o Enriched U-10 w/o Mo Fuel element in the 16-inch Hexagonal Lattice
Figure 35: Section of Aluminum Fuel Holder Showing Relative Average Thermal Neutron Fluxes
19 Rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 19 inch Hexagonal Lattice
Figure 36 Graphite Foil Holders
Figure 37 Thermal Neutron Flux Distributions in the Graphite for the 19-rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 13-inch Lattice
Figure 38 Thermal Neutron Flux Distributions in the Graphite for the 19 rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice
Figure 39 Thermal Neutron Flux Distributions in the Graphite for the 19-rod 3½ w/o Enriched U-10 w/o Mo Fuel element in the 16-inch Lattice with Stainless and Zirconium
Figure 40: Thermal Neutron Flux Distributions in the Graphite for the 19-rod 2.78 w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Lattice.
Figure 41 Thermal Neutron Flux Distributions in the Graphite for the 19 rod 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 19-inch Lattice
Figure 42 Epithermal Neutron Flux Distribution and Cadmium Ratio For The 19 rod, 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 13-inch Hexagonal Lattice
Figure 49: Epithermal Neutron Flux Distribution and Cadmium Ratio For The 19 rod, 3/2 W/o Enriched U-10 W/o Mo Fuel Element in the 16-inch Hexagonal lattice.
Figure 44: Epithermal Neutron Flux Distribution and Cadmium Ratio for the 18 Rod, 3/8 w/o Enriched 0-10 w/o Mo Fuel Element in the 16-inch Hexagonal Lattice
Figure 45 Epithermal Neutron Flux and Cadmium Ratio For the 19 rod, 3/2 w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Hexagonal Lattice with Stainless and Zirconium
Figure 46: Epithermal Neutron Flux and Cadmium Ratio for the 15 rods, 2.70 w/o Enriched H-16 w/o Na-26;

Element in the 16-inch Hexagonal Lattice
Figure 47: Epithermal Neutron Flux Distribution and Cadmium Ratio for the 19-inch, 2.5% w/o Enriched 0-10 w/o

Mo Fuel Element in the 19-inch Hexagonal Lattice
Figure 46
Thermal Neutron Flux Distribution For The 19 rod, 3/8 w/o Enriched U-10 w/o Mo Fuel Element in the 13 inch Hexagonal Lattice
Figure 49 Thermal Neutron Flux Distribution For The 19 Rod, 3½ w/o Enriched U-10 w/o Mo Fuel Element in the 16-inch Hexagonal Lattice
Figure 50

Thermal Neutron Flux Distribution For The 18 rod, 3 1/2 w/o Enriched U-10 w/o Mo Fuel Element in the 16 inch Hexagonal Lattice
Figure 51
Thermal Neutron Flux Distribution For The 19 rod, 3/8 w/o Enriched U-10 w/o Mo Fuel Element in the 16 inch Hexagonal Lattice with Stainless Steel & Zirconium
Figure 52: Thermal Neutron Flux Distribution For The 19 rod, 2.778 w/o Enriched U-10 w/o Mo Fuel Element in the 16 inch Hexagonal Lattice
Figure 53 Thermal Neutron Flux Distribution For The 19 rod, 5/2 w/o Enriched U-10 w/o Mo Fuel Element in the 19 inch Hexagonal Lattice