Pacific Northwest Laboratory
Monthly Report to
Advanced Nuclear Energy Systems, Space and Special Purposes Division
for August 1975

September 1975

Prepared for the U.S. Energy Research and Development Administration under Contract E(45-1):1830
NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PACIFIC NORTHWEST LABORATORY
operated by
BATTELLE
for the
U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
Under Contract E(49-1)-1830

Printed in the United States of America
Available from:
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $4.00; Microfiche $2.25
PACIFIC NORTHWEST LABORATORY MONTHLY REPORT
TO ADVANCED NUCLEAR ENERGY SYSTEMS, SPACE
AND SPECIAL PURPOSES DIVISION
FOR AUGUST 1975

by
H. T. Fullam

September 1975

Battelle
Pacific Northwest Laboratories
Richland, Washington 99352
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRONTIUM HEAT SOURCE DEVELOPMENT PROGRAM</td>
<td>1</td>
</tr>
<tr>
<td>Compatibility Studies</td>
<td>1</td>
</tr>
<tr>
<td>Solubility of Strontium Fluoride</td>
<td>2</td>
</tr>
<tr>
<td>DISTRIBUTION</td>
<td>Distr-1</td>
</tr>
</tbody>
</table>
STRONTIUM HEAT SOURCE DEVELOPMENT PROGRAM

At Hanford, strontium will be separated from the high-level waste, then converted to the fluoride, and doubly encapsulated in small, high-integrity containers for subsequent long-term storage. The fluoride conversion, encapsulation and storage will take place in the Waste Encapsulation and Storage Facilities (WESF). This encapsulated strontium fluoride represents an economical source of 90Sr if the WESF capsule can be licensed for heat source applications under anticipated use conditions. The objectives of this program are to obtain the data needed to license 90Sr$_2$F$_2$ heat sources and specifically the WESF 90Sr$_2$F$_2$ capsules. The information needed for licensing can be divided into three general areas:

1. Long-term Sr$_2$F$_2$ compatibility data.
2. Chemical and physical property data on 90Sr$_2$F$_2$.
3. Capsule property data such as external corrosion resistance, crush strength, etc.

The current program is designed to provide the required information.

COMPATIBILITY STUDIES

The topical report summarizing the results of the short-term compatibility tests has been submitted to DANES for review.

A meeting was held in August with DANES personnel at ERDA headquarters to discuss the long-term compatibility testing program. At the meeting it was decided to reassess the planned long-term tests to see if an expanded testing program will be required. Redefinition of the testing program will be completed by the end of September. It was also decided to institute additional short-term scouting tests to evaluate potential containment materials not covered in the original short-term tests.
Thermal aging tests on Hastelloy C-4 have been initiated. The Hastelloy C-4 is being considered as the outer strength member of a double-walled capsule to contain $^{90}\text{SrF}_2$; it is reported that the Hastelloy C-4 does not suffer the severe thermal aging effects observed with alloys such as Haynes 25. Charpy V-notch test specimens are being tested at 600, 800, 900 and 1000°C for periods up to 30,000 hr.

A suitable licensed shipping cask (NRBK-43) has been identified for transferring WESF $^{90}\text{SrF}_2$ from ARHCO to PNL. The cask has been ordered and should be available in October. The fuel-grade WESF $^{90}\text{SrF}_2$ should be available for shipment in November.

SOLUBILITY OF STRONTIUM FLUORIDE

The solubility of strontium fluoride in demineralized water (2 megohm resistivity) and seawater at 23°C was measured. Three grades of strontium fluoride were used in the tests:

a. high-purity strontium fluoride containing less than 1000 ppm total impurities (Na and Ca were the principal impurities),

b. commercial strontium fluoride containing about 0.5 wt% impurities (Na, Ca, Ba and SO$_4$ were the principal impurities),

c. WESF-grade strontium fluoride containing about 4.5% impurities and corresponding to the composition of WESF-produced $^{90}\text{SrF}_2$ (Na, Ca, and Ba being the major impurities).

In the tests the various grades of SrF_2 were contacted with water for extended periods of time (up to 6 months), and the mixtures sampled periodically, filtered and analyzed for dissolved strontium and fluorine. The strontium and fluorine concentrations reached their equilibrium levels (within experimental error) after approximately 30 days exposure. The equilibrium concentrations for the three grades of SrF_2 in the demineralized water and seawater are given in Table 1. The low strontium and high fluorine concentrations in the mixture of demineralized water and WESF-grade SrF_2 resulted from the rapid dissolution of sodium fluoride (which is present in the WESF-grade SrF_2 as an impurity).
TABLE 1. Solubility of SrF$_2$ in Demineralized Water and Seawater at 23°C

<table>
<thead>
<tr>
<th></th>
<th>Demineralized Water</th>
<th>Seawater</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sr</td>
<td>F</td>
<td>Sr</td>
<td>F</td>
</tr>
<tr>
<td>High-Purity SrF$_2$</td>
<td>0.0010</td>
<td>0.0019</td>
<td>0.0011</td>
<td>0.0026</td>
</tr>
<tr>
<td>±0.00013</td>
<td>±0.00021</td>
<td>±0.00003</td>
<td>±0.00015</td>
<td></td>
</tr>
<tr>
<td>Commercial SrF$_2$</td>
<td>0.0006</td>
<td>0.0045</td>
<td>0.0013</td>
<td>0.0032</td>
</tr>
<tr>
<td>±0.000061</td>
<td>±0.00024</td>
<td>±0.00027</td>
<td>±0.00020</td>
<td></td>
</tr>
<tr>
<td>WESF-Grade SrF$_2$</td>
<td>0.000093</td>
<td>0.011</td>
<td>0.0012</td>
<td>0.0024</td>
</tr>
<tr>
<td>±0.000017</td>
<td>±0.00042</td>
<td>±0.00008</td>
<td>±0.00031</td>
<td></td>
</tr>
</tbody>
</table>

(a) Each value represents the average of at least four values obtained over a 4-month period.
DISTRIBUTION

No. of Copies

OFFSITE

1 ERDA Chicago Patent Attorney
 9800 S. Cass Avenue
 Argonne, IL 60439
 A. A. Churm

1 ERDA Division of Biomedical and Environmental Research
 Washington, DC 20545
 J. N. Maddox

2 ERDA Division of Production and Materials Management
 Washington, DC 20545
 F. P. Baranowski
 R. W. Ramsey, Jr.

11 ERDA Advanced Nuclear Energy Systems, Space and Special Purposes Division
 R. T. Carpenter
 G. P. Dix
 T. J. Dobry, Jr.
 N. Goldenberg
 A. P. Litman (3)
 J. J. Lombardo
 G. A. Newby
 B. J. Rock
 E. J. Wahlquist

1 ERDA Oak Ridge Operations Office
 P.O. Box E
 Oak Ridge, TN 37830
 D. C. Davis, Jr.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ERDA Savannah River Operations Office</td>
</tr>
<tr>
<td></td>
<td>P.O. Box A</td>
</tr>
<tr>
<td></td>
<td>Aiken, SC 29801</td>
</tr>
<tr>
<td></td>
<td>R. H. Bass</td>
</tr>
<tr>
<td></td>
<td>T. B. Hindman</td>
</tr>
<tr>
<td></td>
<td>R. K. Huntoon</td>
</tr>
<tr>
<td>27</td>
<td>ERDA Technical Information Center</td>
</tr>
<tr>
<td>1</td>
<td>Department of the Army</td>
</tr>
<tr>
<td></td>
<td>Headquarters, U.S. Army</td>
</tr>
<tr>
<td></td>
<td>Facilities Engineering Support Agency</td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, VA 22060</td>
</tr>
<tr>
<td></td>
<td>H. Musselman, Technical Director</td>
</tr>
<tr>
<td>1</td>
<td>Electronics and Applied Physics Division</td>
</tr>
<tr>
<td></td>
<td>Building 347.3, AERE Harwell</td>
</tr>
<tr>
<td></td>
<td>Oxfordshire OX11 ORA</td>
</tr>
<tr>
<td></td>
<td>Great Britain</td>
</tr>
<tr>
<td></td>
<td>E. H. Cooke-Yarborough</td>
</tr>
<tr>
<td>1</td>
<td>General Atomics Company</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 81601</td>
</tr>
<tr>
<td></td>
<td>San Diego, CA 92138</td>
</tr>
<tr>
<td></td>
<td>H. C. Carney</td>
</tr>
<tr>
<td>1</td>
<td>General Electric Company MSVD</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 8555</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19101</td>
</tr>
<tr>
<td></td>
<td>P. E. Brown</td>
</tr>
<tr>
<td>1</td>
<td>General Electric Company, Vallecitos Laboratory</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 846</td>
</tr>
<tr>
<td></td>
<td>Pleasanton, CA 94566</td>
</tr>
<tr>
<td></td>
<td>G. E. Robinson</td>
</tr>
<tr>
<td>3</td>
<td>Los Alamos Scientific Laboratory</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1663</td>
</tr>
<tr>
<td></td>
<td>Los Alamos, NM 87544</td>
</tr>
<tr>
<td></td>
<td>S. E. Bronisz</td>
</tr>
<tr>
<td></td>
<td>R. A. Kent</td>
</tr>
<tr>
<td></td>
<td>R. N. Mulford</td>
</tr>
</tbody>
</table>

Distr-2
No. of
Copies

1 Monsanto Research Corporation
 Mound Laboratory (ERDA)
 Nuclear Operations
 P.O. Box 32
 Miamisburg, OH 45342
 W. T. Cave

1 Naval Nuclear Power Unit
 P.O. Box 96
 Ft. Belvoir, VA 22060
 F. E. Rosell

1 Naval Facilities Engineering Command
 Nuclear Power Division (FAC04N)
 200 Stovall Street
 Alexandria, VA 22332
 G. E. Krauter

1 Navy Office of the Chief of Naval Operations
 Washington, D.C. 20390
 Head, Reactor Branch

4 Holifield National Laboratory
 Oak Ridge, TN 37830
 R. S. Crouse
 J. R. DiStefano
 E. Lamb
 A. C. Schaffhauser

3 Teledyne Energy Systems
 110 W. Timonium Road
 Timonium, MD 21093
 P. Dick
 R. Hannah
 P. Vogelberger

1 Westinghouse Astronuclear Laboratory
 P.O. Box 10864
 Pittsburgh, PA 15236
 C. C. Silverstein

Distr-3
No. of Copies

ONSITE

2

ERDA Richland Operations

W. C. Johnson
B. J. Melton

7

Atlantic Richfield Hanford Company

L. I. Brecke
R. E. Isaacson
L. M. Knights
C. W. Malody
J. D. Moore
G. C. Oberg
H. P. Shaw

23

Battelle-Northwest

J. W. Bartlett
R. E. Burns
T. D. Chikalla
R. L. Dillon
J. W. Finnigan
H. T. Fullam (3)
A. J. Haverfield
J. H. Jarrett
R. S. Kemper
R. P. Marshall
R. W. McKee
J. M. Nielsen
R. E. Nightingale
L. D. Perrigo
A. M. Platt
J. L. Simmons
H. H. Van Tuyl
Technical Information Files (3)
Technical Publications

Distr-4