Sex, Stress, and Oxygen Deprivation: Gender-Specific Phenotypes Modulate Survival in Anoxia

Michelle LeBlanc
University of North Texas
Ronald E. McNair Program
Oxygen Deprivation

• What is Anoxia?
 – <.001 kilopascal of oxygen in environment
 – Health Issues
 • Stroke
 • Ischemia
 • Center of cancerous tumors
 – Environmental Deficits
 • Oceanic dead zones
Suspended Animation

• Reversible state of dormancy
 – initiated due to environmental stress
• Mammals
 – Hibernation
 – Estivation
• We can study SA with the model organism *Caenorhabditis elegans*!!
Caenorhabditis elegans

Image adapted from Wormbook
Hypothesis

- An modification in gonad function will modulate survival of long-term oxygen deprivation.
 - Sterile animals may survive anoxia differently than wild-type animals.
 - Sex may modulate survival in anoxia.
dsRNA

RNase III-like enzymes bind to dsRNA

Cleavage

siRNA

siRNAs form RISC complex

RISC

RISC recognizes target mRNA

Cleavage

Target mRNA

Target mRNA degradation
Experimental Schematic

- L1 from hypochlorite
- 48 hours
- 24 hour post L4 molt
- 50 L4 per plate
- Anoxia - 3 days
- 24 hour recovery in normoxia
- Assay survival and motility
RNAi of sterile-reported genes

<table>
<thead>
<tr>
<th>RNAi</th>
<th>3 Day Anoxia Survival Rate</th>
<th>Wild-type Motility Post 3 Day Anoxia</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>47.12%</td>
<td>16.01%</td>
<td>438</td>
</tr>
<tr>
<td>*plc-1</td>
<td>83.54%</td>
<td>67.97%</td>
<td>464</td>
</tr>
<tr>
<td>*ksr-1</td>
<td>78.46%</td>
<td>62.72%</td>
<td>442</td>
</tr>
<tr>
<td>*unc-45</td>
<td>73.67%</td>
<td>54.68%</td>
<td>433</td>
</tr>
<tr>
<td></td>
<td>Normoxia</td>
<td>3 days anoxia</td>
<td>24 hour recovery</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>wildtype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ksr-1 (RNAi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plc-1 (RNAi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unc-45 (RNAi)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gender in Anoxia

Phenotype Frequency

- **Survival**
- **Normal Motility**

wild-type males

- Survival: 100
- Normal Motility: 90

wild-type hermaphrodite

- Survival: 50
- Normal Motility: 20
Male Genotype vs Phenotype

- **Survival**
- **Normal Motility**

Phenotype Frequency

- **wild-type males**
- **wild-type hermaphrodite**
- **tra-2(q276) males**

XX males
Females in anoxia

Percent Survival Post Three-Day Anoxia

Strains

- N2
- fog-2(q71) virgins
- fog-2(q71) mated

Legend:
- Survival
- Normalcy
Oocyte flux and survival

Percent Survival Three Day Anoxia

- N2
- spe-9(hc52)
- glp-4(bn2)
Future Aims

• What underlies the *fog-2(q71)* phenotype?
 – Sperm signaling
 – Signaling from fertilized embryo

• Does oocyte flux affect survival?
 – *spe-12(hc76)* and *fer-15(hc15)*
 • Animals that cannot produce spermatids
Acknowledgements

Dr. Pamela Padilla
Alexander Mendenhall and Desh Mohan, project collaborators
The rest of the Padilla lab
Ronald E. McNair Program
References

