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i Abstract 

 It is well established that many fundamental properties of polymer materials are 

directly governed by chain dynamics; and both experimental and computational efforts to 

probe this motional spectrum have been many.  Recently, multiple quantum (MQ) 

nuclear magnetic resonance (NMR) has afforded the capability to extract meaningful 

quantities from such measurements, namely, an effective molecular weight distribution 

between various topological constraints (cross-links, entanglements, etc.).  We describe 

herein the results of recent work on model end-linked poly(dimethylsiloxane) networks 

where mesoscale computational studies were used to calculate elastic moduli using the 

NMR-derived molecular weight distributions as their sole input.  These results are then 

compared to dynamic mechanical analysis measurements to assess the degree to which 

this new methodology can predict the mechanical properties of these simple elastomers.  

The results of this initial study suggest a high confidence in prediction and portend a non-

destructive methodology capable of monitoring subtle changes in network structural 

motifs associated with material performance and age. 

 

1 Introduction 

	  
 Due in no small part to the versatile cross-linking chemistry available, over the 

last fifty years significant investment has been made in the research and development of 

specialized, highly tailored poly(dimethylsiloxane) (PDMS)-based materials with ever 

increasing complex network structures. Creating an elastomeric network with specified 

material properties can be an Edisonian trial and error task, and there has been much 

effort spent to determine the structural motifs that control and tune resultant properties. 
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One key observation from much of this work is that the combination of the complex 

nature of the siloxane elastomeric composites with frequently complex analytical and 

modeling techniques often presents significant challenges in the attempt to correlate 

various data with specific material constituents or network structural motifs.  That is, 

fillers, stabilizers, cross-linking, network architecture, etc. presumably all affect the 

overall analytical observation, yet it is often not well understood how and to what degree 

the complexity of the materials (some components of which may be completely 

unknown) obfuscates subsequent interpretation of the data. In response to the above 

complication, there is a recognized need to investigate the physical chemical behavior of 

simple, idealized materials in an effort to identify the analytical “origins of response.” 

For example, the effects of filler, network modalities, parent chain length, etc. have been 

investigated to understand their separate effects on resultant material properties.1-8 

Simultaneously, there has been considerable effort to probe to degree to which an 

actual ideal PDMS network can be realized in the laboratory.  These materials have been 

then used to test various rubber elasticity theories, to determine the effects on various 

chemical constituents and curing chemistries on mechanical properties, and so forth. A 

large subset of this work has focused on the investigation of structure-property 

relationships of a variety of monomodal, bimodal, as well as more complex siloxane 

networks.2, 9-16  Significant gaps, however, still exist in the fundamental understanding of 

how basic microscopic physical and chemical details of elastomers govern and modify 

macroscopic material properties.  In an effort to address directly these gaps, complex 

experimental and modeling tools are being developed to be used along side more 

traditional swelling, mechanical, and rheological testing.  
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Recently, it has been shown that the use of multiple quantum nuclear magnetic 

resonance (MQ-NMR) can provide an intriguing level of insight into the structure-

property relationships in elastomeric networks.17, 18  MQ-NMR is sensitive to motion of 

polymer chains under the influence of various topological constraints (cross-links, 

physical entanglements, filler adsorption, etc.), and these dynamics can be related directly 

in principle to effective dynamic chain lengths (vide infra).  Further, many of the 

macroscopic properties of engineering materials can be directly related to the mobility of 

chains comprising the elastomer network, and MQ-NMR data has been therefore used to 

obtain quantitative insight into network changes due to swelling,17, 19, 20  thermal 

treatment,16 filler content,1 and radiation exposure.21, 22  It remains poorly understood, 

however, the degree to which the NMR distributions reflect actual molecular weight 

(MW) distributions in these soft solids and how much the distributions obtained by MQ-

NMR can be relied on to predict material properties such as elastic shear modulus.   

Since it is difficult to derive a theory that can predict macroscopic stresses from 

microstructural deformations, many of the predictive constitutive equations are 

phenomenological or empirical in nature. Furthermore, the complexity of multimodal 

networks generally prohibits obtaining high fidelity results using molecular dynamics 

(MD) methods. In an effort to increase the amount of coarse-graining, as compared to 

previous MD simulations, we have developed a mesoscopic numerical model that 

incorporates some details of polymer identity and microstructure without resorting to 

computationally intensive MD calculations, while maintaining the functionality and 

predictability required for engineering applications. Similar physics-based models have 

appeared in the literature. Arruda and Boyce proposed an eight chain network model to 
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reproduce the stress response of elastomers for several types of deformation.23 Hanson 

developed a model for filled and unfilled polydimethylsiloxane (PDMS) by physically 

modeling a small fraction of the polymer chains in a given volume, where the polymer 

intra-chain forces and polymer-filler forces were based on more detailed MD 

simulations.24  

Here, we report a concerted application of solvent swelling, mechanical analysis, 

MQ-NMR, and mesoscale modeling to a narrow range of bimodal networks of PDMS.  It 

is the goal of this study to enhance the current applicability of the MQ-NMR technique 

by comparing dynamic mechanical analysis (DMA) results with moduli derived from 

mesoscale modeling that uses the NMR-based MW distribution data as its sole input.  

The technique will also be discussed in terms of its limitations as revealed through the 

comparison of derived and experimentally determined elastic shear moduli. 

 

2 Experimental 

 

2.1 Materials 

 

 The model networks consisted of telechelic, hydroxy-terminated linear 

polydimethylsiloxane (PDMS-OH) of two different chain lengths.   The di-functional 

chains were cross-linked using tetraethoxysilane (TEOS), a tetra-functional cross-linking 

agent, using tin(II) 2-ethylhexanoate as a catalyst.  All chemicals were obtained from 

Sigma Aldrich.   
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The sample matrix consisted of four monomodal samples and seven bimodal 

samples.  The monomodal samples were comprised of chains with nominal Mn of 8.0, 9.4, 

32, and 54 kg/mol.  All the polymers were characterized using gel permeation 

chromatography (GPC) (Malvern, Worcestershire, UK) using THF as the mobile phase.  

The polymers used in the bimodal systems are characterized by number-average 

molecular weights, Mn, of 8.0 kDa and 132.6 kDa with polydispersities of 1.42 and 1.73, 

respectively.  The nomenclature for the bimodal series goes as “VMP_X_Y,” where X 

and Y are the mole percents of 8.0 kDa and 132.6 kDa chains, respectively.  Note that the 

range appears quite narrow (100% to 50% short chains with an emphasis above 80%), 

though the formations are based on mole fractions to highlight the effects of the 8.0 kDa 

chains on samples when compared on an “average” chain molecular weight basis.   The 

percentage cyclic and other volatile species was determined to be small (<3%) for the 

base polymer materials using gravimetric techniques and is consistent with previous 

reports on linear PDMS materials.25 

 The networks were synthesized by thorough mechanical mixing of the appropriate 

amounts of precursor chains followed by a degassing cycle (a vacuum oven under 

reduced pressure) at 25°C in a circular PTFE mold.  A 10% excess of a stoichiometric 

amount of TEOS was then mixed into the reaction mixture followed by another degassing 

cycle.  The mixture was then put over an ice bath while a small amount (typically 25-50 

mg tin) of catalyst in hexanes was added, stirred, then degassed again over ice to prevent 

premature cross-linking.  When the mixture contained no more bubbles (introduced 

through the mixing process), it was taken off the ice bath, put in a vacuum oven, and 

cycled again under reduced pressure.  The temperature was slowly increased to 55°C over 
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several hours to evaporate off the hexanes thereby preventing the trapping of bubbles in 

the curing material.  Finally the temperature was increased to 70°C and the network was 

left to cure overnight.  In some cases, particularly those where the mole percent 132.6 

kDa chains are large, the samples were left to cure for 2-3 days to promote a full cure. 

  

 

2.2 Swelling 

 

 Swelling of the samples was performed using a 5:6 v/v toluene/acetone mixture at 

29.5°C as the swelling medium.  This provides a theta condition that allows for a more 

direct comparison of other systems studied previously.26-29  Small samples (each 

weighing about 50 mg or less) were swollen for 48 hours and weighed periodically to 

monitor the process.  Gravimetric analysis was performed with a microbalance (Mettler 

Toledo, Columbus, OH) and three samples of each polymer were swollen to assess curing 

homogeneity.  After measurement, the networks were unswollen gradually in methanol 

then dried in a vacuum oven overnight at 45°C.  The samples were measured again to 

calculate the fraction soluble material extracted during the swelling process. 

 

2.3 Mechanical Analysis 

 

Dynamic mechanical analysis (DMA) of the bimodal polymers was conducted 

using a TA Instruments ARES-LS2 rheometer (New Castle, DE). Dynamic frequency 

sweep tests were conducted over the range ω = 0.1 - 100 rad/s at 23°C using a torsion 
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rectangle test geometry.  Samples were approximately 1.0 cm by 2.0 cm in size with a 

variable thickness which averaged ~0.3 cm.  A shear strain of 6% or 10% was used 

(depending on specimen thickness), which is within the linear viscoelastic region of the 

material based on initial dynamic strain sweep tests at ω = 100 rad/s.   

 

2.4 NMR 

 

 MQ-NMR allows for the quantification of dipolar couplings originating between 

protons on polymer chains experiencing a variety of physical and chemical topological 

constraints, which prevent the complete motional averaging of the homonuclear (1H-1H) 

dipolar interaction.  The parameter that quantifies this resultant dynamical scaling of the 

nominal dipolar coupling strength is called the residual dipolar coupling magnitude, Dres, 

and be expressed through   

 !!"#
!!"#"

= !
!
!!

!
!! cos!  (1) 

which relates it mathematically to the number of effective statistical segments between 

constraints, N.  In the above expression Dstat is the static dipolar coupling value (8.9 kHz 

when considering rapidly rotating methyl groups); r2 (assumed herein to be unity) is the 

squared end-to-end vector normalized by its unperturbed, melt state value; and 

!! cos!  is the time-averaged second order Legendre polynomial of the cosine of α, 

the angle between the Si-C vector and the chain backbone.  This term takes into account 

rapid, intrasegmental motions; and because the angle α is roughly 90°, the time average 

value is therefore generally taken to be 1/2.  The prefactor of 3/5 arises from considering 

average segmental orientations over the end-to-end vector of an idealized chain.30   Eq 1 
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expresses the anisotropy of the proton-proton dipolar interaction resulting by the non-

zero correlation between semi-local segmental motion and the chain end-to-end vector.   

 The NMR experiments were performed on a Bruker Avance spectrometer 

operating with a proton Larmor frequency of 400.13 MHz.  MQ build-ups were measured 

using the method described by Saalwächter et al. with a pulse sequence designed to 

excite even-quantum coherences.31   The resulting normalized build-ups were fit in a 

model-free way with the Tikhonov regularization package, FTIKREG, using the kernel 

function introduced in Chinn et al.18 and covered in detail in Chassé et al.32 

!!"# !!" ,!!"# = 0.5 1− exp − 0.378  !!"#  !!"
!.! cos 0.583  !!"#  !!" . (2) 

In these experiments 90° pulse lengths of τp = 3.3 µs and a recycle delay of 5 s were used.   

40-50 time points (!!") were chosen to measure the MQ build-up curve with more points 

chosen at early times to increase the confidence in the results from regularization.  

 

2.5 Modeling 

To compare with experiments and to explore how the structural motif contributes 

to the material strength, we employ a coarse-grained, mesoscopic polymer network 

model previously applied to radiation-induced aging of a filled PDMS material.33  This 

“vertex” model consists of a set of cross-link nodes (beads) connected via a single finite 

extensible nonlinear elastic (FENE) potential,  

 !!"#" = − !
!
!!!!  !" 1− !

!!

!
,          ! < !! 

(3)
 

which represents the chains (springs) between cross-links.  In the above equation k is the 
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spring constant and R0 is the maximum extension of the FENE bond.  In addition, there is 

a repulsive Lennard-Jones interaction between all cross-link positions to simulate 

excluded volume effects, 

     !!" ! = 4! !
!

!"
− !

!

!
+ !

!
,            ! ≤ 2!/!!

                          = 0,          ! > 2!/!!
 (4)

 

where ε is the energy scale of the potential and σ is the diameter of a sphere that 

represents the cross-link.34   

The network was generated by randomly placing cross-link nodes within the 

computational domain by sampling from the MW distributions measured with MQ-NMR. 

The cross-links were then connected by inserting FENE bonds, such that each node was 

tetra-functional. The FENE bond length, l, was computed using the mean squared end-to-

end distance for an ideal chain in a network:   

 ! = !! = !"!!!"#!!

!"!"#"!$%!!
 

(5)
 

where b is the Kuhn length, and Nk is the number of monomers in a Kuhn length. 

Assuming an entropic spring, the spring constant can be expressed as k = 3kBT/l2.  Also, 

the cross-link density in the model was consistent with the average density computed 

from these distributions. Once complete, we relax the system to equilibrium and check 

the resulting bond distribution to verify it has not deviated from the original NMR data. 

To compute the shear modulus, we apply a sequence of small strain uniaxial 

deformation steps (! = !!
!
= 1.00675) followed by an energy minimization step and then 

calculate the slope of the resulting stress response.  Note that dynamics are completely 
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removed from the system by using the energy minimization between each deformation.  

These calculations were performed using custom software to prepare the networks, and 

the LAMMPS molecular dynamics simulator to model the deformation and compute the 

stresses.35  Despite its simplicity, the model can reproduce non-linear elastic behavior as 

well as predict the permanent set of an irradiated material under strain.33 

 

3 Results and Discussion 

 

3.1 Network ideality: swelling 

 

 Equilibrium solvent swelling was employed to investigate the molecular structure 

of the “model” networks.  Considerable effort over the last forty years has sought to 

probe to degree to which an actual ideal PDMS network can be realized in the laboratory.  

Here, swelling serves to assess the similarity of the current materials to those investigated 

previously.  More importantly, the results are also used to quantify the various network 

non-idealities inherent in these materials and correct for them in regards to the 

mechanical and computational data. 

The measured swelling ratio, Q, is given in Table 1.  Comparing these values 

against those for similar networks26-29 (also swollen under approximate theta conditions) 

demonstrates that despite different workers, chemistries, and starting materials, our 

materials compare well with others investigated previously.  The work of Patel and 

coworkers8 represents the only exception to the observation, and this difference is 
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attributed to a significant excess of cross-linking agent used to synthesize the sample 

matrix.  In that study, each sample synthesis was “optimized” based on the minimal 

degree of swelling (i.e., maximum equilibrium polymer volume fraction, v2).  This 

procedure resulted in significantly higher cross-linker to polymer ratios, r, typically 

around 1.7, whereas for the current work, the networks were made with a constant ratio 

of 1.1 (10% excess) in order to compare them more directly with the majority of 

previously investigated materials.    

 

Table 1.  Base characteristics, swelling results, and network analysis of the investigated 

PDMS networksa 

Sample  mol% 
8k 

Mn,eff 
(kDa) 

Q XLD 
(mol/cm3 

× 103) 

v2 ws Te favg 

VMP_100_0_1 100 8.0 3.48 
(0.05) 

0.12 0.318 0.002 
(0.0005) 

0.826 3.41 

VMP_100_0_2 100 8.0 3.60 
(0.07) 

0.12 0.302 0.014 
(0.001) 

0.604 3.20 

VMP_95_5 95 14.2 4.20 
(0.01) 

0.068 0.253 
 

0.008 
(0.0006) 

0.686 3.27 

VMP_90_10 80 20.5 4.65 
(0.02) 

0.047 0.228 0.011 
(0.0006) 

0.638 3.23 

VMP_85_15 85 26.7 4.93 
(0.45) 

0.036 0.215 0.027 
(0.001) 

0.484 3.13 

VMP_80_20 80 32.9 5.49 
(0.08) 

0.029 0.192 0.015 
(0.0007) 

0.592 3.19 

VMP_50_50 50 70.3 7.46 
(0.41) 

0.014 0.140 0.013 
(0.0008) 

0.616 3.21 

M_8.0k -- 8.0 3.27 
(0.09) 

0.12 0.328 -- -- -- 

M_9.4k -- 9.4 3.67 
(0.09) 

0.10 0.290 -- -- -- 

M_32k -- 32.0 4.82 
(0.05) 

0.030 0.219 -- -- -- 

M_54k -- 54.0 6.45 
(0.09) 

0.018 0.163 -- -- -- 

a Effective number average molecular weight (Mn,eff), swelling ratio (Q), mean cross-link 

density (XLD) determined from Mn,eff, measured volume fraction polymer in swollen gel 

(v2), weight fraction extractable sol corrected for inert components (ws), trapping factor 
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(Te) and average cross-link functionality (favg) calculated from eq 7.  Error on 

experimental Q given in parentheses. 

 

 A key component of this swelling study is the quantification of the soluble sol 

fraction present in these materials.  Analysis of the fraction soluble material can provide 

direct information on many network characteristics such as elastically inactive chain 

defects, average junction functionality, etc. and yield parameters that are extremely 

sensitive to, for example, slight incompleteness in the end-linking process.36, 37  Following 

the branching theory formalism developed previously36 we have calculated  for the 

bimodal networks the various parameters that quantify the structure of an A4 + B2 

network (that is, a di-functional polymer, B2, reacted with a tetra-functional cross-linker, 

A4).  The results of this swelling analysis are tabulated in Table 1 and also include the 

equilibrium swelling degree, Q, and the fraction polymer in swollen gel, v2, for both the 

bimodal and monomodal networks.  Also included are the fraction sol material, ws, the 

trapping factor, Te, and the average functionality of a cross-link, favg (vide infra).  Note 

that ws has been corrected for the 2.5 wt% unreactive (presumably cyclic oligomers) 

present in the starting PDMS melts and that it is reported to high accuracy due to the 

sensitivity of the microbalance to the small weight losses associated with the sol 

extraction.  The weight percents extractable are all at or under 2.7 wt%, which is 

consistent with previous reports.37, 38  Also values for the trapping factors are all 

approximately 0.6 to 0.7 with exceptions for the VMP_100_0_1 and VMP_85_15 

networks.  This observed range is roughly consistent with those for end-linked PDMS 

networks that are made with slight stoichiometric imbalances (r = 1.1 - 1.25) of the cross-
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linker.37-40 

The data in Table 1 can be used to, for example, to test various theories of rubber 

elasticity.  Here we employ a common theory that takes into account both the effect of 

physical topological interactions (i.e., entanglements) and the effect of elastically active 

strands and junction points.  It is based on the phantom network theory41 and also takes 

into account the presence of an effective network of entanglements.42  The modulus, G, 

under this theory can be expressed as 

! = ! − ! !!! + !!!! 

  (6)  

where ν and µ are the concentrations of elastically active strands and junctions, 

respectively, Te is the trapping factor, and Ge is the maximum contribution to the overall 

modulus due to trapped entanglements.  Ge is typically taken to be !!! , the modulus of the 

rubbery plateau of a polymer melt above the entanglement molecular weight (0.20 – 0.29 

MPa for linear PDMS43, 44).   From eq 1 the trapping factor can be thought of as the 

fraction of entanglements that are trapped by the network (i.e., not relieved in the 

swelling process).  It is clear then that as the extent of reaction approaches unity, the 

trapping factor should also approach unity, indicating a completely linked network.  It is 

apparent from the values of Te that these networks, in fact, deviate strongly from the 

descriptor of “ideal.”  These values (given in Table 1) will be therefore used to adjust the 

experimental and computational moduli discussed below to account for the effects of 

these network imperfections. 

 Further analysis of the swelling data can yield information on the average 
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functionality of a cross-link.  One can express favg through the concentrations of 

elastically active components: 

 favg = 2ν/µ. (7) 

Use of eq 7 requires the calculation of both ν and µ, which can be done again through the 

branching theory used to calculate Te . This method is preferable, for example, to the 

more commonly employed ν = ρRT/Mn that assumes complete end-linking of 

monodisperse polymer chains.  From Table 1 it can be seen that the average functionality 

of cross-links for the bimodal samples is significantly less than 4, the value expected 

from the reactants.   

 The deviation of Te and favg from their expected values indicates that the networks 

are far from idealized systems.  These materials are consistent, however, with much of 

the library of networks investigated previously.  Ultimately, the quantification of the 

nonideality is all that is required for the current work, and references to this deviation will 

be made only when necessary.  Because the detailed treatment presented above was not 

done on the monomodal samples, they will no longer be discussed.   

 

3.2 Mechanical Testing 

 Table 2 provides the storage modulus, Gmech obtained from DMA of the bimodal 

materials.  The values were taken by extrapolating Gʹ′ data to zero frequency.  Also 

included is the reduced modulus Gmech/RT expressed in mol/m3.  As expected, the 

modulus decreases with increasing effective molecular weight, Mn,eff, calculated from a 

weighted molar average of the parent chain masses.  Figure 1 shows the DMA results 
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against the swelling-derived data using eq 6, which is derived form phantom network 

theory.  The modulus values have been reduced by both RT and the value of Te 

determined experimentally for each sample.  Linear regression of the data yields an 

intercept at 85 mol/m3, a value consistent with the reported !!!  values given above (0.20 

MPa/RT = 81 mol/m3).  These data will be considered in further detail when making 

comparisons to the computationally derived modulus predictions below. 

 

Table 2. Elastic and reduced moduli from dynamic mechanical analysis, Gmech, and 

mesoscale simulation, Gmod and Gpre a 

Sample  Gmech (MPa) Gmech/RT 

(mol/m3) 

Gmod (MPa) Gmod/RT 

(mol/m3) 

Gpre/RT 

(mol/m3) 

prefactor 

VMP_100_0_1 0.251 (0.006) 101.3 (6.8) 1.37 (0.050) 553 (20) 63.9 (5.0)b 0.388 

VMP_100_0_2 0.224 (0.028) 90.4 (18.3) 1.37 (0.050) 553 (20) 63.9 (5.0)b 0.388 

VMP_95_5 0.218 (0.006) 88.0 (5.4) 1.04 (0.045) 420 (15) 48.6 (3.6) 0.385 

VMP_90_10 0.201 (0.018) 81.1 (8.1) 0.850 (0.030) 343 (13) 39.9 (2.9) 0.387 

VMP_85_15 0.170 (0.024) 68.6 (12.4) 0.737 (0.025) 297 (11) 34.6 (3.0) 0.395 

VMP_80_20 0.165 (0.014) 66.6 (5.5) 0.852 (0.024) 343 (15) 39.7 (5.2) 0.385 

VMP_50_50 0.117 (0.005) 47.2 (4.0) 0.679 (0.024) 274 (10) 30.7 (2.9) 0.383 

VMP_50_50 
(truncated) 

-- -- 0.652 (0.030) 263 (10) -- -- 

VMP_50_50 
(notched) 

-- -- 0.682 (0.032) 275 (12) -- -- 

aError given in parentheses. bk and ε determined so that prefactor was ca. 0.38 for 

VMP_100_0 material.  Bimodal samples were then simulated with these values and a 

prefactor determined post-simulation. 
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Figure 1.  Reduced elastic modulus extracted from DMA data against strand density 

determined from swelling experiments (assuming phantom network model).    Both 

values have been adjusted by the trapping factor, Te.  Solid line is a linear fit to the data 

and the dotted line reflects the modulus due to entanglement only, !! ≈ !!! . 

 

 

3.3 Multiple Quantum NMR 

 Results from the regularization of the multiple quantum build-ups for the bimodal 

networks are shown in Figure 2.  The residual dipolar couplings were converted into 

distributions of effective chain length, N, through the application of eq 1.  Then these 

statistical lengths were converted into molecular weights by !!,!"# = !!!!"!"#"!$% 

where !"!"#"!$% = 74 g/mol is the dimethylsiloxane repeat unit molecular weight and 

!! = 6.43 is the characteristic ratio of PDMS (assumed herein to be in the large 

molecular weight limit).45  Though it is strictly incorrect to assume that !! represents the 

number of repeat units in a statistical segment,46 it is a reasonable approximation for 
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polymers with large backbone valence angles.  It is important to note that this conversion 

process does not preserve relative areas under the population distributions due to the 

inverse dependence of Dres on N.  Numerical correction is done after converting the data 

to molecular weight so that any given area between two given Dres values remains 

constant after conversion to Mn,nmr.  This process is described in more detail in a previous 

publication.22 

 

 

Figure 2.  Normalized NMR-derived molecular weight distributions (in kDa) for the 

bimodal series.  The distribution for VMP_100_0 represents an average over those of the 

two samples synthesized. 

 

 The general trend in the NMR data is a rightward shift in the distribution as the 

mole percent of 132.6 kDa chains increases.  However, once this effective molecular 

weight (Table 1), surpasses the entanglement molecular weight for PDMS (Me = 12 kDa) 

the distribution mean and peak value remain roughly constant.  The distribution peak and 
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that the agreement between the GPC determined molecular weight and that from the 

NMR measurements is good.  Above Me, however, this agreement is poor but expected, 

as isothermal MQ-NMR as employed in this study is unable to distinguish between 

physical entanglements and chemical cross-links.  Because entanglements represent the 

largest contribution to mechanical and viscoelastic properties for pure polymer networks 

with parent chain lengths well above Me, one would expect the NMR response to plateau 

at this critical molecular weight as is indeed seen in Figure 3.  As a final comment, there 

are several assumptions that go into converting the residual dipolar coupling into an 

effective molecular weight: the use of !! as opposed to a molecular weight dependent Cn, 

the assumption that the end-to-end distance squared is Gaussian, and that motions about 

this end-to-end vector are ideal.22, 47, 48  Despite these assumptions the NMR data is 

observed to behave roughly as expected: 

 ; (8) 

and this observation increases the confidence in using the NMR data as a direct input into 

the modeling component discussed below. 
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Figure 3.  NMR-derived peak and average molecular weights, Mn,nmr, as a function of 

average molecular weight determined via GPC, Mn,eff.  The solid line denotes the 

entanglement molecular weight, Me = 12 kDa; and the dashed line is the 45° line.  The 

error bars in the figure serve to approximate the confidence in the multiple quantum 

analysis procedure.  

 

 As a final comment, it is interesting to note that in the case of these bimodal 

networks, the extracted distributions of the residual dipolar strength (and the effective 

chain length, Figure 2), much like the monomodal 8 kDa network, feature only a single 

peak.  At first glance, this might seem unexpected given the bimodality of the materials 

themselves.  For the studied networks, however, there is most likely significant 

microscopic overlap (on the order of Rg) between the 8 kDa and the 132 kDa chains, 

which presumably serves to homogenize the overall dynamics of the system.  Coupled 

with NMR’s natural sensitivity to local proton motions, we conclude that it is not 

unreasonable for these materials to display a relatively homogeneous RDC response.  

Indeed, these data are consistent with previous observations for a chain molecular weight 
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ratio of 20 (the present materials have a ratio of 16);32 and only for more disparate parent 

chain lengths (with a ratio on the order of 60) has a distinct bimodality in RDC been 

observed.31 

 

3.4 Modeling 

 The NMR-derived normalized molecular weight distributions plotted in Figure 2 

are used to first construct an initial “cell” of polymer network.  As stated in the methods 

section the cross-links were randomly placed through the simulation cell but their relative 

positions are consistent with the distributions from the NMR data as the selection 

criterion.  This system of cross-links, which conforms to the cross-link density 

determined by NMR, is joined by FENE bonds and then relaxed to equilibrium.  This 

resultant network cell is then crosschecked against the original NMR molecular weight 

distribution to ensure that it remains consistent.  An image of a representative simulated 

material using this mesoscopic model is shown in Figure 4. 
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Figure 4.  a) Representation of typical bead-spring cell employed in the mesoscopic 

model approach.  Cross-link junctions are represented schematically as beads connected 

through springs (straight bars) which serve as the polymer chains.  For simplicity of the 

image, the bead radius has been chosen arbitrarily.  b) A break-out consisting of one 

central bead connected to nearest and next-nearest neighbors.  The dashed line represents 

schematically the real chain that has been replaced by a single, effective entropic spring 

with ! = !!!!
!!

. 

a)

b)



	   23 

 

 The FENE potential is used to parameterize the elastic energy of the system, and 

the resulting modulus depends weakly on the value of l2 chosen to calculate the spring 

constant, k, compared with the mean cross-link density of the network, which strongly 

affects the derived modulus values. This observation perhaps results from the fact that 

only a fraction of the bonds contribute to the stress experienced under deformation, and 

studies are currently underway by this group to investigate this phenomena in more detail. 

Excluded volume interactions are parameterized through a standard Lennard-

Jones potential to provide a balancing force to the compressive spring potential and to 

prevent neighboring chains from passing through another as in the idealized phantom 

network model. The magnitude ε,  was assigned a value of !/30!!, in accordance with 

more detailed molecular dynamics simulations of polymer systems49 and the distance 

parameter, σ, was chosen to equal to the bond distance, l, to maintain the shape of the 

initial molecular weight distribution in the post-equilibrium state.  

The model networks experienced uniaxial strains of values up to 40%. The shear 

modulus was derived from the linear regression slopes of true stress vs. true strain for 

data between 0 and 3% strain. The mechanical testing introduced strains up to 10%, but 

the computed modulus was insensitive to the inclusion of higher strains in the regression. 

The values of the storage modulus, Gmod from the bimodal networks are also tabulated in 

Table 2.  

The values of Gmod derived from the uniaxial extension simulations are presented 

in Figure 5.  Plotted for comparison is the DMA data, Gmech, presented in Figure 1.  All of 
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these data have been divided by the trapping factor, Te, to account network imperfections 

due to incomplete end-linking.  As with the mechanical testing results, the 

computationally determined reduced moduli, Gmod/RT, all lie above the value of the 

reduced plateau modulus, !!!/!", as expected.  Additionally, we have scaled the 

modeling data by a factor of 5 to bring it into approximate accord with those values 

determined via DMA.  More comments on this seemingly arbitrary scaling factor will be 

given below. 

 

 

Figure 5.  Simulation-derived reduced elastic moduli (black circles) against strand density 

determined from swelling experiments.   Mechanical data (black squares) from Figure 1 

overlayed for comparison.  Error bars for swelling data only shown on Gmech data for 

clarity.  Dashed line denotes !!!/!" = 81 mol/m3.  

 

Simulations were performed on the VMP_50_50 sample to quantify the 

dependence of the extracted Gmod values on the overall shape of the distribution.  This 

sample was chosen due to its significant tail at Mn,nmr > 12 kDa.  In addition to the NMR-
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derived distribution, also tested were a delta function at the nominal distribution mean 

and a truncated (and renormalized) distribution that replaces populations above Me with a 

delta function (of appropriate area) at 12 kDa.  Truncating the distribution in the tail does 

change the average molecular weight, but we fixed the value from the original 

distribution to isolate effects due to the shape of the profile.  Though the majority of data 

in Table 2 were generated with networks with molecular weight distributions from NMR 

as the computational input, the final Gmod values are effectively independent of the overall 

shape of the distribution.  We believe this observation results because, like a mechanical 

measurement, storage moduli are determined as a bulk average and are therefore 

dominated by the average chain molecular weight dictated by the chemical and physical 

topological constraints imposed on the networks.  Additionally, the parent chain 

molecular weights are large enough and the deformation strains small enough that issues 

of finite extensibility are assumed to be not an issue. The universality of this observation 

is not fully known, but for this range of bimodality under low strain, a modulus 

independent of MW distribution is not unreasonable.  To address this knowledge gap, 

however, we are currently considering extremely bimodal networks (those with MW 

ratios greater than those currently investigated) and their associated behavior under both 

low and high strain conditions.  

Finally, since the current goal of this work is to demonstrate the ability of NMR 

and modeling to predict the elastic modulus of an elastomeric network, Figure 6 

correlates the computationally- and experimentally-derived moduli.  Also, the effects of 

correcting for network non-ideality (as expressed by the trapping factor, Te) are also 

demonstrated, resulting in an upward shift in reduced moduli for both methods.  Note that 
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this simple Te correction (the red line in Figure 7) is not sufficient to bring into agreement 

the modeling and the DMA results.  From the figure it is apparent that the reduced 

moduli values, Gmod, from the modeling results are overestimated by approximately a 

factor of 5. 

 

 

Figure 6.  Direct comparison of reduced elastic moduli extracted from mechanical and 

computational analyses.  Black squares represent the data without correction for network 

nonideality by the trapping factor, Te.  Open circles denote the corrected modulus values.  

The modeling moduli scaled by a factor of 5 (to bring them into accord with mechanical 

data; black triangles) are shown against the dashed gray, 45° line. 

 

The present NMR distributions cannot distinguish between entanglements and 

cross-links for chain lengths greater than the entanglement molecular weight, and the 

model used presently is subsequently forced to treat the constraints equivalently.  In 

addition, because this basic model connects cross-link beads with springs that represent 
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an entire chain, it is unable to generate explicitly the chain structures necessary for 

entanglement.  In fact, the only place where chains statistics enter this model is when 

they are invoked in the calculation of the spring constant.  Despite these factors, the 

modulus data from simulation are still in fairly good agreement with the mechanical tests.  

A possible explanation for the disparity between simulation and experiment is the 

difference between the average cross-link functionalities of the real and virtual networks.  

Though the effective cross-link densities (including the contribution from entanglement 

“cross-links”) are preserved in the model by use of the NMR distributions, there is 

nothing about the generation of the present model systems that insures agreement of 

functionalities, a variable expected to strongly influence overall mechanical properties of 

networks.  For example, increasing the functionality of the cross-linking agent from 3 to 

4 would expect to increase the modulus, for example, of a phantom network by a factor 

of 1.5 holding strand density (molecular weight) constant.  Though swelling data 

indicates the mean functionality of the current networks is 3.2, the model networks have a 

higher value of 3.8, which is consistent with the larger modulus values derived from the 

model.  This difference, however, amounts to only a factor of 1.51 and is therefore not 

large enough to account solely for the present disparity. 

A suspect of larger consequence on the computed moduli is the equivalent 

treatment of chemical and physical constraints.  Recall that the present NMR experiment 

is largely insensitive to the differences between chemical and physical constraints in the 

material.  Therefore, the effects of entanglements and cross-links are both present in the 

data in Figure 3, and one cannot separate their individual contributions for input into this 

model.  Modeling these distributions strictly as cross-linked systems (i.e., ignoring the 
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fundamental differences between cross-links and entanglements), one would indeed 

expect an overestimation in the value of the elastic modulus.  It has been shown both 

experimentally8 and computationally50 that roughly 2.2 entanglement lengths are needed 

to contribute to the modulus in the same way as one chemical cross-link.  Within the 

framework of both the affine and phantom network models for rubber elasticity one can 

attempt to estimate the effect on the modulus of modeling the entanglements as 

elastically active cross-links. 

For an affine network, the elastic modulus is expressed by 

 ! = !!!! + !!!! (9) 

where we have explicitly accounted for the entanglement contribution as in eq 6.  For the 

phantom network eq 6 can be rewritten in terms of the average cross-link junction 

functionality, 

 ! = !!!!
!!!
!

+ !!!! . (10) 

If we take the results mentioned above, replace !! with 2.2!!!!, and use the average 

values for the trapping factor and functionality (!! = 0.635; ! = 3.23)  we can calculate 

the degree to which !/!! is overestimated when considering both chemical and physical 

topological constraints as cross-links.  At the phantom network and affine network limits: 

!/!!   =   4.1!!!! and 5.0!!!!, respectively.  Taking ratios of these moduli to those 

obtained by considering only the network chain contributions to the modulus (i.e., the 

second right-hand terms in eq 9 and eq 10) yields a range of 3.2 – 6.8, which bounds the 

overestimation observed with the present model.  In fact, the “average” overestimation is 

precisely 5, the effectively arbitrary factor used in Figures 5 and 6 to scale the simulation 
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data. 

Another approach to addressing this overestimation is to alter the value of a 

model parameter such that the calculated modulus values are agreement with the 

mechanical data.  Under this strategy, k is fixed by invoking the idea of the entropic chain, 

and the bead diameter, σ, is held constant at the value of !! .  The only remaining 

fundamental parameter, then, is ε, the energy scale of the potential that dictates the 

strength of repulsion between beads.   Traditionally, the value of ε has been fixed at ~kBT, 

but it is interesting to determine the value at which the modeling and experimental 

moduli are brought into accord.  One would expect that to lower the modulus, the 

strength of bead-bead repulsion must necessarily decrease, indicating a “weaker” network 

from the perspective of interbead interactions.  In previous work the value of k has been 

calculated as 30ε/σ2, where the factor of 30 is chosen to provide a balance between bead 

repulsion and the spring constant, effectively preventing chains crossing through one 

another.50  Under the current considerations, the parameters k, ε, and σ are all being 

adjusted independently of one another, ands this action is therefore equivalent to 

changing the factor, 30.  For these comparative simulations, the value of ε has been 

chosen so that the prefactor for the modulus under the phantom network model, 

(! − 2)/!, is the value calculated from the experiments.   As the average functionality (f 

= 3.23) is roughly constant for all the networks synthesized, this prefactor is set at 0.38.  

To do this within the simulations, the values of both k and ε were adjusted so that 

the simulation yielded the appropriate prefactor, 0.38.  This process was done for the 8 

kDa monomodal sample only, and the resultant values were used for the remainder of the 
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(bimodal) systems to ensure that they could independently generate simulations with a 

consistent value for this prefactor.  To produce the proper values, both k and ε had to be 

reduced such that !  ~  !!!/! and !  ~  !!!/300.  A reduction in ε alone, indicating a 

more weakly repulsive system, was not enough to modify the prefactor to the desired 

level.  Only when the spring constant was modified in tandem were we able to reduce the 

value to 0.38.  For the systems studied, only a single value each for the two parameters 

was sufficient, demonstrating the consistency between simulations and a strong linear 

response to increases in cross-link density. The moduli, Gpre, and prefactors extracted 

from these simulations are given in Table 2 and reveal an underestimation in the elastic 

modulus for the entire series of materials.  This observation is not unexpected as these 

simulations consider a phantom network-like system where the effects of entanglement 

and excluded volume are not explicitly modeled.  It is promising, however, that these 

results along with those from the simulations considered above bound the experimental 

data.  Though it is difficult in this simple model to ascribe a physical quantity to the value 

of the strength of the Lennard-Jones potential, one can tune the value of the energy scale 

so that the extracted moduli from the simulations represents well those measured 

experimentally.  For the present samples, the values of ε and k that accomplish this are 

given by 3!!!/800 and 3!!!/2!!, respectively. 

Since NMR is used as the sole input for the creation of the polymer network cell 

using in the mesoscale modeling, the MQ data must also be considered to explain the 

discrepancy between the modeling results and the experiments.  The conversion of 

residual dipolar couplings to molecular weight requires various assumptions, many of 

which were mentioned above.  The simplest approximation to address is the assumption 
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that the value of !! to any network regardless of the molecular weight of the parent 

chain.  The use of !! as opposed to Cn might be expected to cause overestimations in the 

molecular weight values (and hence average and peak masses) particularly at low average 

molecular weights like the VMP_100_0 samples.  Molecular dynamics simulations, 

however, have shown45 that for PDMS chains above ca. 4000 g/mol the value of Cn does 

not differ markedly from !!.  For example, use of Cn in molecular weight calculations 

would result in masses differing by only a factor of Cn/!! = 0.94.   

Other, more complex assumptions made when processing the NMR data may also 

affect the computational predictions.  The local quantities observed by NMR must be 

extended, in some sense, to quantities that reflect the long range, connective nature of a 

linear polymer chain.  Specifically, the NMR observable, which ideally reflects only local 

two-body dipolar interactions (between, e.g., protons within a single dimethylsiloxane 

monomer), is strongly affected by concerted, long-range chain motions.  To directly 

relate, then, local to global dipolar coupling measurements, one must take into account 

formally some notion of chain conformational statistics, dynamical modes, etc.  This is 

generally done by assuming chains behave ideally and can be therefore be described by 

basic conformational models.  These treatments generate effective scaling factors by 

which the static dipolar interactions are reduced, with each factor relating to a different 

motion being averaged over (for example, an average about the backbone or an average 

over the contour of the backbone).47  Choosing an inappropriate or incomplete description 

of chain conformation would be expected to generate erroneous scaling factors, and 

therefore values for N and Mn,nmr would subsequently be suspect as well. Nevertheless, it 

is promising that the modulus values predicted by simulation using NMR data as the only 
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input are within an order of magnitude with those derived experimentally.  On-going 

research by the current group aims to refine the present mesoscopic model by including, 

for example, modeling individual chains as multibead-spring entities, which allows for 

the explicit consideration of the role of entanglement in these simulations.  In addition, 

alternative model networks differing in network architecture, structural motif, etc. are 

being synthesized to probe in more detail the fundamental limits and applicability of this 

methodology.  

 

4  Conclusion 

 

Herein we describe the application of multiple quantum NMR experiments to the 

prediction of siloxane network elastic moduli using a mesoscale computational modeling 

approach.  Using only a few polymer specific quantities (characteristic ratio, monomer 

molecular weight, etc.) and invoking basic polymer physics concepts, we are able to 

reasonably predict a practical mechanical property with NMR data as the model’s only 

input.  Issues in faithfully reproducing mechanical analysis data were discussed in terms 

of treating entanglements and cross-links equivalently, disparities in average cross-link 

functionality, Leonard-Jones energy scales, and NMR data analysis.  Realistically, a 

combination of several of the approximations discussed above are likely to account for 

the observed discrepancy, but from a practical perspective, the results from the present 

model bimodal networks can serve as a training set that will enable us to further test this 

methodology on more complex networks such as bimodal networks with extremely short 

chain lengths,2, 9 silica-reinforced filled networks, and engineering materials that have 
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been investigated by this group in detail previously.  We anticipate that this potentially 

non-destructive, non-invasive methodology can also be applied in a straightforward 

fashion to, for example, in situ monitoring of subtle aging mechanisms or the effects of 

material usage in harsh environments. 

 

5 Acknowledgements 

This work performed under the auspices of the U.S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 



	   34 

   

1. Papon, A.; Saalwachter, K.; Schaler, K.; Guy, L.; Lequeux, F.; Montes, H. 

Macromolecules 2011, 44, (4), 913-922. 

2. Llorente, M. A.; Andrady, A. L.; Mark, J. E. J. Polym. Sci. Pol. Phys. 1981, 19, 

(4), 621-630. 

3. Llorente, M. A.; Andrady, A. L.; Mark, J. E. Colloid. Polym. Sci. 1981, 259, (11), 

1056-1061. 

4. Aranguren, M. I.; Mora, E.; Degroot, J. V.; Macosko, C. W. J. Rheol. 1992, 36, 

(6), 1165-1182. 

5. Cohenaddad, J. P.; Ebengou, R. Polymer 1992, 33, (2), 379-383. 

6. Cohenaddad, J. P. Polymer 1989, 30, (10), 1820-1823. 

7. Aranguren, M. I.; Mora, E.; Macosko, C. W. J. Colloid. Interf. Sci. 1997, 195, (2), 

329-337. 

8. Patel, S. K.; Malone, S.; Cohen, C.; Gillmor, J. R.; Colby, R. H. Macromolecules 

1992, 25, (20), 5241-5251. 

9. Andrady, A. L.; Llorente, M. A.; Mark, J. E. J. Chem. Phys. 1980, 72, (4), 2282-

2290. 

10. Maiti, A.; Gee, R. H.; Weisgraber, T.; Chinn, S.; Maxwell, R. S. Polym. Degrad. 

Stabil. 2008, 93, (12), 2226-2229. 

11. Wen, J. A.; Mark, J. E. J. Appl. Polym. Sci. 1995, 58, (7), 1135-1145. 

12. Shim, S. E.; Isayev, A. I. Rheol. Acta. 2004, 43, (2), 127-136. 

13. Gee, R. H.; Maxwell, R. S.; Balazs, B. Polymer 2004, 45, (11), 3885-3891. 

14. Charlesby, A. P. Roy. Soc. Lon. A 1955, 230, (1880), 120-132. 



	   35 

15. Cochrane, H.; Lin, C. S. Rubber Chem. Technol. 1993, 66, (1), 48-60. 

16. Giuliani, J. R.; Gjersing, E. L.; Chinn, S. C.; Jones, T. V.; Wilson, T. S.; Alviso, 

C. T.; Herberg, J. L.; Pearson, M. A.; Maxwell, R. S. J. Phys. Chem. B 2007, 111, 12977-

12984. 

17. Saalwachter, K. Prog. NMR Spect. 2007, 51, 1-35. 

18. Chinn, S. C.; Alviso, C. T.; Berman, E. S. F.; Harvey, C. A.; Maxwell, R. S.; 

Wilson, T. S.; Cohenour, R.; Saalwächter, K.; Chassé, W. J. Phys. Chem. B 2010, 114, 

(30), 9729-9736. 

19. Cohenaddad, J. P.; Domard, M.; Herz, J. J. Chem. Phys. 1982, 76, (5), 2744-2753. 

20. Cohenaddad, J. P.; Domard, M.; Lorentz, G.; Herz, J. J. Phys.-Paris 1984, 45, (3), 

575-586. 

21. Maiti, A.; Weisgraber, T.; Dinh, L. N.; Gee, R. H.; Wilson, T.; Chinn, S.; 

Maxwell, R. S. Phys. Rev. E 2011, 83, (3), -. 

22. Dinh, L. N.; Mayer, B. P.; Maiti, A.; Chinn, S. C.; Maxwell, R. S. J. Appl. Phys. 

2011, 109, 094905. 

23. Arruda, E. M.; Boyce, M. C. J. Mech. Phys. Solids 1993, 41, (2), 389-412. 

24. Hanson, D. E. Polymer 2004, 45, (3), 1055-1062. 

25. Gottlieb, M.; Macosko, C. W.; Benjamin, G. S.; Meyers, K. O.; Merrill, E. W. 

Macromolecules 1981, 14, (4), 1039-1046. 

26. Clarson, S. J.; Galiatsatos, V.; Mark, J. E. Macromolecules 1990, 23, (5), 1504-

1507. 

27. Cohen, C.; Yoo, S. H.; Hui, C. Y. Polymer 2006, 47, (17), 6226-6235. 

28. Sivasailam, K.; Cohen, C. J. Rheol. 2000, 44, (4), 897-915. 



	   36 

29. Sukumaran, S. K.; Beaucage, G.; Mark, J. E.; Viers, B. Euro. Phys. J. E 2005, 18, 

(1), 29-36. 

30. Sotta, P.; Deloche, B. Macromolecules 1990, 23, (7), 1999-2007. 

31. Saalwächter, K.; Ziegler, P.; Spyckerelle, O.; Haider, H.; Vidal, A.; Sommer, J.-U. 

J. Chem. Phys. 2003, 119, 3468-3482. 

32. Chassé, W.; Valentin, J. L.; Genesky, G. D.; Cohen, C.; Saalwächter, K. J. Chem. 

Phys. 2011, 134, (4), -. 

33. Weisgraber, T. H.; Gee, R. H.; Maiti, A.; Clague, D. S.; Chinn, S.; Maxwell, R. S. 

Polymer 2009, 50, (23), 5613-5617. 

34. Grest, G. S.; Kremer, K. Phys. Rev. A 1986, 33, (5), 3628-3631. 

35. Plimpton, S. J. Comput. Phys. 1995, 117, (1), 1-19. 

36. Miller, D. R.; Macosko, C. W. Macromolecules 1976, 9, (2), 206-211. 

37. Valles, E. M.; Macosko, C. W. Macromolecules 1979, 12, (4), 673-679. 

38. Llorente, M. A.; Mark, J. E. Macromolecules 1980, 13, (3), 681-685. 

39. Meyers, K. O.; Bye, M. L.; Merrill, E. W. Macromolecules 1980, 13, (5), 1045-

1053. 

40. Granick, S.; Pedersen, S.; Nelb, G. W.; Ferry, J. D.; Macosko, C. W. J. Polym. Sci. 

Pol. Phys. 1981, 19, (11), 1745-1757. 

41. Flory, P. J.; Gordon, M.; McCrum, N. G. P. Roy. Soc. Lon. A. 1976, 351, (1666), 

351-380. 

42. Graessley, W. W. Macromolecules 1975, 8, (2), 186-190. 

43. Langley, N. R. Macromolecules 1968, 1, (4), 348-352. 

44. Langley, N. R.; Ferry, J. D. Macromolecules 1968, 1, (4), 353-358. 



	   37 

45. Neuburger, N.; Bahar, I.; Mattice, W. L. Macromolecules 1992, 25, (9), 2447-

2454. 

46. Flory, P. J., Principles of Polymer Chemistry. Cornell University Press: Ithaca, 

NY, 1953. 

47. Sotta, P.; Deloche, B. Macromolecules 1990, 23, (7), 1999. 

48. Mayer, B. P.; Chinn, S. C.; Maxwell, R. S.; Reimer, J. A. Chem. Eng. Sci. 2009, 

64, (22), 4684-4692. 

49. Kremer, K.; Grest, G. S. J. Chem. Phys. 1990, 92, (8), 5057-5086. 

50. Duering, E. R.; Kremer, K.; Grest, G. S. J. Chem. Phys. 1994, 101, (9), 8169-

8192. 

 
 


