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LOW -ENERGY PHOTOPION PRODUCTION 
FROM PIONS AND NEUTRAL-PION DECAY 

. I 

How-sen Wong 

(Thesis) 

Lawrence Radiation Laboratory 
University of California 
Berkeley, California 

June 2, 1960 

ABSTRACT 

The Mandelstam representation is applied to the process 

'( + 1T - 2 1T, It is shown that a homogeneous integral equation may be 

obtained for the p-wave amplitude whose solution _allows one ·arbitrary 

real multiplicative constant, which at pre sent must be determined from 

experiment. By the use of crossing symmetry, a simple and tractable 

approximate solution of the integral equation is obtained. Higher partial 

waves may be calculated in terms of.the p wave. The order of magni­

tude of the new constant is estimated by considering the decay rate .of 

the neutral pion, in which the amplitude for '( + 1T - 2 1T should play a 

prominent role. 
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I. INTRODUCTION 

1 
·Recently,· Chew and Mandelstam have developed a .new 

method for calculating the .interactions of strongly interacting partic::le s 

and have applied this method to the .problem of the pion-pion inter-

action. Their procedure is based·on. the two-dimensional representation 

.proposed by ·Mandelstam, 
2 

.which prescribes a method of simultaneous 

analytic continuation of scattering amplitudes into the complex planes as 

a function of .both. the energy-and momentum.:. transfer variables. In 

particular, this representation gives the location and character of all 

singularities of a scattering amplitude and· enables one to write partial­

wave dispersiori.relations. Chew and Mandelstam have developed the 

theo.ry further by adopting the philosophy that ·the functions are .dominated 
' by nearby singularities. Accepting this philosophy an~ applying the 

. unitary condition; ·one· obtains a system of integral equations in most 
3 

scatter1ng problems. Frazer and Fulco have applied these ideas to the 

problem of iT. + ;r :..... N + N ·and then to the nucleon electromagnetic- struc­

ture problem .. Here w.e· use· the same approach to calculate the matrix . . . . * 
element for low -energy photopion production from .. pions. 

If both the Mandelstam representation and the philosophy of 

the importance of nearby singularities are accepted, no further sub­

stantial theoretical work may be done in strong- coupling physics in-. 

volving photons ,and other elementary. particles until we understand 
. . . ' 

something about the problem of ph~to.pion production from pions, lp. 

other words, this problem plays a role ,similar to that of ;r - ;r 

scattering in any phenomena involving at least one photon. For 

example, Ba11
4 

has recently investigated photopion: production from 

::c 
A preliminary account of this work was given at the 1959 Thanksgiving 

meeting of the American Physical Society, November 27-28 1 1959 

[How-sen Wong, Bull. Am. Phys. Soc. 4, 407 ( 1959)] • 
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nucleons and found that the prC?ce·ss 'I + 1T - 2 1T produces an additive 
' 5 

correction to the CGLN formulas. Further work on "photo•• problems 

such as 'I +· 1T -'I + 1T and 'I + N- 'I + N will also require a knowledge 

of the 'I + 1T - 2 1T reaction. 

In the following section, kinematics, isotopic spin and 

partial-wave decompositions will be considered. It is shown by 

invariance requirements that the problem under consideration requires 

only a single ·invariant function. By assuming that this function has the 

Mandelstam representation, we are able to locate the singularities ahd 

hence. to write dispersion relations for the partial-wave amplitudes. 

Using the unitary condition and th~ Omn~s 6 
-Frazer -Fulco 

3 m~thod, we 

find that the p-wave amplitude satisfies a homogeneous integral equation 

and depends on a single real parameter 1\. This constant, although not 

fundamental, cannot be related to fundamental consta~ts at this stage of 

the theory and must be determined from experiment. Higher partial 

waves for our process are related directly to the p wave. The p-wave 

integral equation is solved by the Chew-Mandelstam technique of 

replacing unphysical singularities by a series of poles, whose positions 
. . 7 

and residu.es are .determined by crossing symmetry. 

Finally in Section III, we discuss neutral-pion decay. It is 

·Shown .that the decay rate is related to the unknown parameter. A 
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II. LOW -ENERGY PHO.TOPION PRODUCTION FROM PIONS 

A. Kinematics 

Let the four-vector momenta of the pions be p
1

• p
2

, and 

p
3

, and let K and e be the four-vector .photon momentum and polarization, 

* respectively .. Define the variables 

and 

z· 
s

2 
= - (K- p

2
) , 

which are related by the condition 

s 1 + s 2 + s
3 

= 3. 

( 1) 

(2) 

These three Lorentz-invariant variables are just the squares of energies 

in the barycentric systems of the corresponding processes a, b, and c 

in. Fig. 1.. We sue these variables because of the fundamental stru<;ture 

of the Mandelstam representation. 

In the case when the photon K and meson ·p 
1 

are the­

incoming particles (we shall call this channel I), the variables s
1

, s
2

, 

and s
3 

are related to the energy and momentum transfer in the following 

ways: 

2 2 
sl = ( p 1 + K) = 4( 1 + p } 

s - <:Pz - K)
2 = 1 2~E + 2kp cos e

1 2 

53 = (p3 - K)
2

- 1 2kE - 2kp cos () 1' 

* - -We use the fundamental metric tensor such that p 1 . Pz = p-1 Pz - P 1 0P20 · 

.Units are used in which 1i = c = 1 and 1-L = i, where 1-L is the mass of the 

pion. 
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Fig. 1. The three channels of the '{ + 1T -+ 21T problem. 
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. '?'here p and E are the magnitudes of the outgoing pi,an momenta and 

e.nergy re4Pe~ively, k is the energy of the photon,· and we have 

cos f) 
1 

= P ~kK:, all in the barycentric system. Energy-momentum 

conservation leads to Eq. (2) and k = (s
1
-I}/2.j;"

1 
'I'he S matrix for photopion production from pions c.an be 

written as 

where P
10

, P
20

, and P
30 

are the energ1es of the mesons. 

The decomposition of · T will be considered as follows: 

First, we decompose T into the ·product or sum of the products of an 

isospin-dependent function and an isospin-independent function .. Next, 

the isospin-independent function {functions) is (are) decomposed into 

the product or sum of products of a gat;tge -invariant, Lo.rentz -invariant 

function and.a function of s
1

, s 2; and s
3

. ·We can, perform all these 

decompositions by using the known conservation laws or invariance 

properties such as the conservation of parity, conservation of G-parity 

( G-conjugation is the combined operation of charge conjugation and 

180-deg rotation about the y axis in isotopic spin space), gauge in­

variance ·etc: With these invariance properties and the pseudoscalar 

nature of pions, we find that only a single pseudoscalar quantity can be 

·formed from the four independent kinematic four-vectors, and the final 

Z.1T st;;~ .. te mi.1 st have isotopic spin ope, Thus the problem under con­

sideration ·requires only one scalar transitibn amplitude. Therefore, 

we can define the scalar amplitude M( s l s
2 

s 
3

) by 

wher.e 0., f\, and '{ are the isotopic indiceS Of the pions, and E A and 
O.t--Y 

e x_ 5!J.v are the conventional a·ntisymmetric tensors of third and fourth 

rank, re spectivefy; The fact that a single scalar transition amplitude 

is required for the problem is a great simplification;· we be"Iieve this 

' may be the unique situation in strong-coupling physics with such a nice 

property. 
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The consequences of crossing symmetry are very simple in 

this case. Interchanging the numbers of various pion pairs evidently 

amounts to interchange of the s variables. Thus we have 

since the product. of the factors multiplying M in formula (5) are 

symmetric und.er any pio~ interchange. 

B. The Mandelstam Repre senta~ion 

( 6) 

We a.s sumc that, except for suLL1·a.cLiuus that may be required, 

the invariant function M satisfies the two-dimensional representation 

proposed by Mandelsta.m: 

1 
M=z 

1T 

00 

uO 

+-1- (J 
1T2 J J 4 

2 

00 

JJ 
4 

ds'
3
ds 1

1
p

2
(s 1

3
s' 

1
) 

(s'3-s3)(s'l-sl) 

· Cun~;;ervation laws preclude the presence of any poles. 

( 7a) 

Although the variables s
1

, s
2

, and s
3 

are not independent, 

being related by (2), we shall often write them all out explicitly in order 

to see the synn.netry of the representation. The assun1pt:ion nf the 

Mandelstam representation is the essential t.nnl fnr setting up an integral 

equation for the p-wave amplitude. We use the representation not only 

to locate the singularities of the partial-wave amplitudes in the s 1 (energy 
' 0 _,. 

·. 

square in Channel I) plane, but also to relate the unphysical and physical .. 

cuts in th.is plane. This is discus s_ed in the following sections. 

Using the crossing relations[ Eq. (6)], we find that all spectral 

functions pin Eq. (7a) are equal and symmetric in the two variables. 

Therefore Eq. ( 7a) becomes 
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(7b) 

As shown by Mandelstam, one can easily derive a one-dimensional 

relation from Eq. ( 7a)with either s 
1

, s
2

, or s 
3 

fixed. The spectral 

function: p is non zero in regions whose boundary can be calc.ulated from 

perturbation theory or whose formulas are giyen by Mandelstam. ·It is 

shown that p is bounded by the following two curves ['see Fig. (2)]: 

4)s
2 

= 8 (2s
1 

+ 1) 

(s 2 - 4)s
1 

= 8 {2s
2 

+ 1). 

( 8a) 

(8b) 

The c.urve for Eq. ( 8b) is obtained from Eq. (8a) by interchange of s 
1 

and s 2 . From Eq s. ( 8a) and ( 8b) it is evident that the region in which 

p is not :zero is asymptotically bounded by the limits of integration in 

Eq. (7a): 

C. Analytic Properties and :D:icsp.ea-fi>iir.o.n Reiations 

for ·Partial-Wave Amplitudes 

Our approach to this problem requires the same sharp 

distinction between high and low angular -momentum states as in the 

problem of lT-lT scattering of Chew and Mandelstam. The discussion of 
. . 

their work in '.this connection may be repeated almost word by word. 

Here we separate out the p-wave part. for special consideration, the 

higher part of the amplitude to be calculated later in terms of the p-wave 

part. 

Using t.he method of Jacob and Wick, 
8 

we can write the 

partial-wave decomposition of our scala~ amplitude M as 

(9a) 

I. 
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where e 1' the angle of emission; is given by 

2 s
2 

+ s 
1 

- 3 
.cos.e

1
(s

1
,·s

2
)=· 

1 s i - (~) 1/2 
s - 4 '· 

1 

and P'.e is the derivative of Legendre· polynomials of orde.r £. 

' ( 10) 

In order t9 obtain the dispersion relations for partial-wave 

amplitudes, we write 

M( s l, cos 

where 

. 1 ·f· 00 

e >=-l 'IT . 

4 

00 r 
p(x,s'2) l_1_ x-s

1 

.. 1 
e) + I a) 

1 
s 

2
-s

3
, cos 1:1 2 

(11) 

dx. + 1 ] · x+s + s' -3 
1 2 

It is easy to see that p' ( s
2

, s 
1

) is the imaginary part of M for s
2 
~4, 

and s. 1 ~ 0 and the analytic continuation of this function is otherwise. 

In other words, the spectral functio.n p' is the imaginary part of M 

when·the photon· and meson p
2 

are the incoll1ing particles (se shall call 

this channel II). Equatic;m ( 11) is a one -dimensional representation of 

the amplitude M that shows explicitly the dependence on the momentum­

transfer variables s
2 

and s
3 

and thus the angle 8 l, since 

1 [3 s
1 

+ (s
1
-l) ("!:4 r/2 cos 91] s2 -z-

I [ s =- 3 1 7,. 
- s ·-(s -1) 

. l J 
("1;-14) 1/2 cosa1] 

Using the formula 

1 

M
1 

(s
1

) 2£ + 1 L ( 1 
2 P' (z)M(s

1
,z) d.i = 

2£(.€+1) - z ) 
l 

( 13) 
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in our partial-wave decomposition,. yre find 

= 2(2.£+1) 
£(£+1) 1r 

1 00 

J . . 2 : 1· . . Im M( s i 2 ' c 0 s e 2 ( s I 2 ' s 1) ) 

~1 (1-z )P'£(z) dz 4 ds'z . . ('sl-4 )1/2.. 
2 s v 2 + s 1- 3+( s 1 -1) -- z 

. . sl 

( 14) 

where e
2

, the barycentric- system emission angle for channel II, can be 

obtained from formula ( 1 0) by interchanging s 
1 

and s
2

. 

Before discussing the analytic properties· of partial-waves, 

let us make a subtraction by removing the p-wave part of Eq. (7b): 

M( s l, cos 

Kl(sl' s'z>] • 

( 15) 

where 

In our approximation on below, we shall let lm M( s
2

, cos e
2

) =:: lm M 1 ( s 2 ), 

assuming that 1r-1r phase shifts are small in all states for £ > 1; so that 

Eqs. (l3) and (15) give the formula for the higher-angular-momentum part 

of t4e- amplitude in terms of the p wave. 

It is not hard to locate the singularities of the M/s· in the s 1 
(energy-square) plane from. Eqs. (11) and (12).· The M

1
1 s are analytic ~-

in the whole complex s 
1 

plane except for left--hand and right-hand branch 

cuts on the real axis.· The right-hand cut rnn:s from 4, the physical thres­

hold for two pions, to oo. The vanishing of the denominators in formula ( 11) 

? 
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gives the left-hand cut from 0 to -oo. The· discontinuity across the 

left-hand cut is related to the absorptive part of the· amplitude for 

channel II by crossing relations. The apparent singularity from the 

vanishing of the second denominator in formula ('12) was introduced 

artificially through the .separation into partial fractions of one of the 

terms in formula (7b). This singularity can be easily seen to vanish 

·after the integration in Eq. ( 13) is performed. 

In order to be able to write the dispersion relation for the 

part.ial-wave amplitudes, we must consider their asymptotic behavior. 

The unitary condition tells us that M
11 

(s
1

) goes to zero as s 1 approaches 
3/J. 

infinity at least as fast as does s 
1 

··. Guided by this asymptotic behavior 

and using the analytic properties we have found, we can write the follow­

ing dispersion relations without subtractions: 

0 

![ 
-00 

~J 
4 

Im M
11 

( s 1 

1
) ds' 

1 
s~l-sl 

(16) 

For consistency, it is necessary that Im M
11

( s 
1

) vanish at -oo as well 

as + oo. We shall consider this later. 

· Our next task is to evaluate Im M
11 

( s 
1

) on the unphysical cut 

( •oo < s 1 ~ 0). In this region, we find, from the crossing -relation 
. * ·formula ( 14), 

Im 

(17) 

where 

and 

* See .Appendix. 
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4(2i.tl)~ Jl 3-s 1-2 s 2 2 1 
h n ( s 2',. s' 1) ·= / 1 - s ( / ) 
~ ('i.+l)(s 1 -l)(s 1_~4)1 2. ·· . 1 (s 1 -l)(s

1
-4)1 2 

. [~ (3-s -2s ) 
i 1 1 2 

· X P 'i.' ( s - 1 )( s - 4) 1 /2 
1 1 l 

Although in Eq. ( 17) the variable. s
2 

is the energy yariable in the physical 

regiion for channel, II, the upper limit v( s 
1

) is ·such that we have 

cos el < -1. Therefore we must make an analytic continuation from the 

physical region. One method of continuation is to expand Im Mf s
2

, cos8
2
( ~, s

1
)] 

in Legendre polynomials·: 

The region of convergence of our Legendre polynomial expansion 

can be determined from formula ( 12). Since a function of co.s e
2 

can be 

expanded in Legendre polynomials within a singularity-free ellipse with 

foci at -1 and + 1, we must find the position of the nearest singularity in 

cos e,. This singularity can be located frc;>m the vanishing of the deno-
L.. 

minator of formula ( 12) in ~he region where p is not zero. Using formulas 

(Sa) and 8b).for the bounqary curves of this region, we find that the expan-, 

sion converges on the left-hand cut as long as we have s 
1 
~- 33.94. 

Bey~nd the region of convergence of the polynouiial expansion, 

a more subtle method of analytic continuation will be necessary. However, 

since we know from general principles that Im M£.( s 
1

) must vanish as 

s 
1 

approaches -co, it is reasonable to expect the contribution of Im Mi s 
1

) 

for s 
1 
~- 33.9 4 to be small. If we ke'ep only the p-wave amplitude in the 

partial-wave expansion (9 6), we see that Im M 
1 

( s 
1

) for s 
1 
~ 0 oes to zer_o· 

lik.e s 1-3/~ so that no cut~off parameter is needed. The situation is thus 

more favorable than in the problem of pion-pion scattering. The extra 

convergence here is a conseq,u'ence of the gauge condition. 
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D. The Integral Equation 

We shall proceed t.o transform the Cauchy integrals ( 16) . 

into another form from which we hope to obtain solutions. Applying the 

unitary condition and adopting the assumption that the functions are 

determined by nearby singularities so that only the intermediate 

two-pion state need be con.sidered, we write 

( 18) 

where 5
1

( s 1 ) is the pion-pion phase shift for the £ angular -momentum 

state. 

Frazer and Fulco have· extended the Omri.es investigations on 

the Chew-Low type Eq; (18) and find that M
1
(s

1
) 's satisfy 

0 

l j~ 
D £ ( s 1 l ) Im M £ ( s 1 l ) ds' 

M
1

(s
1

) 
l 

= 1rD~,( s
1

) s l - s 1 
( 19) 

where 

D1(s 1) = exp [ 

00 

l J 51
(s'

1
)ds'

1 s 

J 1T ( I · ) i s 1-sl s l 
4 

(2 0) 

In this problem, the imaginary part of M
1 

( s 
1

) for s 
1 
~ 0 is not known 

but is related to· the p-wave amplitude through- the crossing relation ( 17). 

F•rom now on we shall concentrate on the £=1 solution and 

leave the calculation of higher waves to Eqs. ( 13) and ( 15). By ·substi­

tuting Eq. ( 17), wher·e we approximate Im M ~ Im M
1 

in the integrand, 

into the Omn~s-Frazer-Fulco solution ( 19); we obtain a homogeneous 

equation for the p-wave amplitude. The homogenity of this ·integral 

equation, whose solution is not unique at least with respect to a multi­

plicative factor, would be removed if we kept any contri.bntion from in~ 

.elastic pro~e sse s ·: In the. calculation below, we shall fix this 

' 
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multiplicative factor/\ a~ the vah;1e of M
1
(s

1
) at s

1 
= l. At present, 

we do not know how to r'e1ate this unknown parameter 1\ to fundamental 

~onstants, in particular to the electromagnetic coupling constant e, 

which certainly plays a. fundamental role here. For the time being, 1\ 
must be determined from e>4reriment. Although we do not know the 

r~lationship between /\and other constant~, we have no reason ~o be­

lieve that it is itself fundamental. It ·should be possible to calculate 1\ 
if and when techniq\:re.s for handling high-mass singularities bet::ome 

available. 

1<:. The Pole App1;o:ximatiou 

To proceed further we need the denominator function D
1

, 

for p-wave pion-pion scattering. The pion-pion calculations of Chew 

and Mandelstam have not yet reached a conclusive stage but these 

authors have given an appr-oximate form for n
1 

which corresponds to 

the replacement of the unphysical branch cut in the pion-pion amplitude 

by a finite number of poles. Further, they have shown that two poles 

lead ~o an accurate approximation in the physical region up to s 1- 40. 

Once the parameters of the two -pole fo'rrr:iula have been determined, it 

will be a straightforward problem to incorporate the information into 

the amplitude for '( + TT' ....... 2TT'. The determination of the pion-p·ion para­

meters is still in progress,?·., 9 but we outline here, for further use, 

the form of the solution of our problem that corresponds to the pole 

approximation of Chew and Mandelstam. We shall illustrate the method 

with the one-pole, pion-pion amplitude, for which parameters have been 

given by Frazer and Fulco. 

We th1.1 s propose to replace the left-hand cut of the amplitude 

M
1 

by poles with appropriate positions and residues. This philosophy 

of replacing cuts by poles has been successful in many circumstances 

and can perhaps· be best understood by,lookiug into the connection with 

. the effective-range formulas of low-energy nuclear physics. It is 

well-known that the effective-range formula gives a useful description 

cf low:-e:rergy nucleon-nucleon scattering. If the formula is written in 

the form 
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f = - e sm S ~ 

q 
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r 2 1 .:..1·· 
z.-q -lq--a), • ( 2 1) 

I 

where . q is the center -of -mass momentum, a is the scattering length, 

and r the effective range, we see that the· s-wave effective-range 

formula implies that the a~plitudes has two poles in the complex q 

plane at 

= i 
1 . 2 

+(z: -a:r) 
r 

and 

i r~ - ( 
. 1 ~) 1/2] q = -2--2 a r 
r 

Usually, one of these poles q
1

, is· in the physical sheet (-iq
1

) 0) and 

the other one is either in the unphysical sheet ( -iq2 (0) or becom~s a 

bound. state pole.· The effective-range fo:r:mula (22) can be now equiva­

lent! y characterized by. a single pole· q 
1

, the interaction pole, and its 

re si.due 

r = 1 . 
1 q 1 + q2 

i ( ql - q2)' 

and may be called the "one -pole formula 11
• This relation between poles 

. and effective-range formulas has been known for some time, but was 

not emphasized and interpreted until recently by Chew and Wong after 

the Mandelstam representation was proposed. 
10 

In fact, the interaction 

pole lying in the·negative real axis of the q·?· plane can be considered to 

be the replacement of left-hand singularities implied by the Mandelstam 

representation. 

In general, we· would obtain a. ••multiple -pole formula 11 by 

replacing the left-hand branch cuts by a series of pole.s. The 
11 n-pole formula•• thus obtained should contain 2n parameter.--the 

residues and positions bf the poles. For our y + lT - 2lT problem, 
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replaCing the left cut by poles correspo(lds to approximating M
1
(s

1
) 

for s 1 -~ 0 by a finite number of delta functio~s here and enables one 

to transform the integral Eq. ( 19) into an algebraic and trivially soluble 

equation. But the question now arise·s how to determine the· residues and 

·positions of the pole.s, which correspond to the strength a.'nd range of the 

various contributing. interactions. Recall that a parameter A must enter 

into our final solution, so we might as well introduce it through the 

residues of one of the pole~. The rest of the parameters may be deter­

mined from the crossing relation Eq. (6). 

As in the lT-lT pcoblem, we have a point of maximum symmetry. 

This occurs at th~ unphysical point s
1 

= s
2 

= s
3 

= l, or s 
1 

= 1 and 

z 
1 

= cos (} 1 = - ~3 i, where M is real. By differentiating the general 

crossing relation (6) or the Mandelstam representation with respect to 

these variables, we can derive an infinite number of conditions on the 

derivatives of the amplitude M at the symmetry point (referred to 

hereafter as· ~P): Three of these conditions which may be useful for our 

further discussions, are 
'· 

constant, (22a) 

aM (s 1 
z, ) 

1 0, = a s1 
SP 

(22b) 

a."nd 

z 
7: 1) FJ ;·~(Rl 

0. = 
a~l' a z 

1 SP 

(22c) 

In audition, from the Mandelstam representation we can also find the 

following relation: 

a l M < s 1_ z 1 > 

2 
as 1 s = 1 1 

· = constant x ('1.- z~). (2 3) 
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Equation (24) together with the crossing conditions (22a) to ~2c), imply 

- 1\ 
SP 

(24a) 

for .£. ~3, and 

(24b) 

for all .£., 

2 a Mi. (s 1) 
=0 (24c) 

as 1 
2 s = 1· 

1 

for .£. ?5 and 

2 a2 
M ( 1) a M~ ( s 1) 1 1 (24"d) = -b 2 s = 1 2 

. as 1 
l as 1 

These relations are exact, but only Eqs. (24a), (Z4b), and 

(24d) are of direcyu.se in determining the pole parameters for th,e p wave, 

The additional relations needed depend on Eq. ( 15) which is only approxi­

mate: To obtain these formulas, let us write Eq. ( 15) in the following 

form: 
11 ~ 

00 00 

,l I T.m M 
1
(x) dx 1 f M( s l z l).:: Tr + Im M

1 
(x) 

X - S 1T . 1 
4 "4 

X [ 1 .+ l l dx. 
( 2 5) 

x-s
2

(s
1

, z l) x-s
3
(s

1
, z l) 
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. . 
Evidently, the first integral is the contribution from the right-hand cut 

. and the second integral that from the left. This equation, although not 

exact, satisfies all the exact crossing relations· (22a) to (22c) and (23). 

The importance of Eq. (25) lies in the fact that at the symmetry 

point the contribution from 'tWe".left cuts is simply related to that from the 
\~~-

right~ Defining 
co 

R 1 ~ 
Im M

1 
(x) dx 

· M (s z 1) = -1 TT X - S l 

and 

l co 

(x) [ x -
1 1 

i !4 
Im M

1 + dx, 
L s2(sl' zl) X - s3(sl' zl) .M (s

1
z

1
) = 

with the obvious .meaning for the notations, we see from Eq. (25) that 

at the symmetry point we have 

and 

= 5 

Using thes.~ relations. and Eqs" (24a) to (24d), and remembering 

L · L 
<=l>- M = M 1 ( 1), 

MR; Ml R ( 1), 

a2 ML 
= 

as 1 
2 

and 

a2 MR 
= 

. as 1 
2 

2 L 
a 

2 M
3 

( 1) "a .~I ( 1) 
24 

3 2 a s 1 as 1 

a2 Ml R (1) 

as 1 
2 



we obtain 

L R 
· M l ( 1) = 2 ·M

1 
, ( 1), 

a M.I L (1) 

as 
1 

and 

as . 1 
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(2 6a) 

., (26b) 

(26c) 

There are relations of this kind _for all derivatives at S 
1 

·= 1, but these 

three will serve our purpose if we consider only one- or two -pole 

formulas. In general, "the more poles we put in to replace the left cut, 

the more accurate the p-wave solution we would obtain and the more 
' ' 

derivative conditions we need . 

. We a~e now in a position to derive pole formulas for our 

. problem. The "on,e-pole'' case will be considered first. Let us write 

1\' 
s 1+a 

00 

+ .!_ 1 :rr 
. . 4 

M{s' 
1

) e-iSl(s' 1.) sin6
1 

(s'
1

) ds' 
1 

s 1 - s 1 

where 1\ 1 is real, and ·a is real and positive. This assumption evidently 

corresponds to setting 

for s 1 ~- 0, so that from Eq. · ( 19) we hav~- the p-wave solution 

where 
A' = A( 1 +a) :b 1 ( 1) 

n
1 

(-a.) 

(2 7) 
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since we have defined 1\ = M
1 

(1). 

function is used for a resonance at 

If th_~\Frazer-Fulco orie-pole D 1(s 1) 

s 
1 

= \~JO we find a = 5. 7 from the 

crossing relation (26a). Since the calculation- of the two-pole pion-pion 

parameters is still in progress, we are not able to give "good" two-pole 

y +'IT -. 2'1T results here, but we derive th~ two-pole for~ula for future 

reference. Writing 

In1 M 
1 

( s 
1

) =,-'IT 1\ ' [ 6( s 1 + a) 

for s 1 ~ 0, where 1\1 and A'l 
positive, we find 

where 

[
·:Dl (-a.) 

(1 + a) + 

+ A ~sl+b)l 1 

are real,. 

D
1 

(-b) 

( 1 +b) 

and a 

l-1 

and b are real and 

(28) 

The parameters' a, b, and Ai · ma:y be determined ·from the crossing 

l'elatious (Z6a) ll) (Z6t:). It turn!:l uut that no a, b, and A c.;an !:lci.tisfy all 

three crossing conditions (26a) to (26c) j.f the Frazer-Fulco one-pole 

form is used; However, if we fix the position-of one of the two poles 

between zero and '-4.92 (0 ~-a~ 4.93) and ignore the second-derivative 

condition, we find that the first two conditions of Eqsd·. (26) do have 

solutions for a, b and /\ . The results of this calculation show that 

the p-wav:e amplitude in the physical region is not sensitive to the 

positions of the poles, as can be seen from Table I. The table also 

lists the values of b, '\' and AI for different values of a.:_ The fact 

that a and b must be between 0 and -4.93 indicates that relatively 

small contributions to the .p-wave amplitude come fr·om the far-away· 

left-hand singularities. 

Note finally that in the physical region, the difference between 

our one-pole and two-pole solutions is not great. Thus we may be con­

fident of the accuracy of our two -pole re suits once the parameters of the 

two-pole 'IT'IT scattering formula are known ... 

. I 



Table I 

Table of parameters and p-wave amplitudes for various values of a, 
v Ml{sl)7A · 

a b _A_ 1\ · s =4 s =8 · s = 12 ·s =20 · 
/\ 1 1 1 .1 1 . 

a5.7 4.47 0.96 
0.453 0.35 0.241 
D

1 
(8) D

1
(12) ~1 (20) 

b4.93 0 4.5 2 • -0.021 0.98 
0.455 . 0.345 0.239 

. D
1
(8) D

1
(12) . D

1
(20) 

b4.0. 1 . L 3 5.2 -0.152 0.994 
0.46. 0.35 0.236 

/ D
1
(8) - D

1
(12) D

1
(20) 

b3.0 2 .2.5 11.5:3 -0.169 0.995 0.458 0.35 0.235 
. Dl(-8) D

1
(12) D

1 
(20) 

c2.62 5.8 5 -1.54 1.01 0.465 0.355 0.241 
D

1 
(8) D

1
(12) D

1
(20) 

a One-pole solution see Eq .. (27) 

b Two-pole solution see Eq. (28) 

c A single pole and a dipole placed at -a. In this case, M
1 
( s 

1
) is given by. 

+ 

s 1- 00 

6.2 
slDl(sl) 

5.82 
slDl(sl) 

5. 78 
slDl(sl) 

5. 73 I 

slDl(sl) 
N 
~ 

5.85 
slDl(sl) 
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F. A Method of Determination· of 1\ 

Re.c.ently,: Ch~w and. ~ow have p'~dposed a 'general method for 

analyzing the scattering. of par.ticle A by particle B, leading to three 

or more final particles, in order to obtain the cross section ~or the 
. . . . . " 12: 

interaction of A with a particle which is virtually contained in B. · 

This method is useful for unstable particles sudi. as pions and neutrons 

from which free targets cannot be made, and hence can be applied to 
. . 

determine the unknown pa;ameter 1\ of photc;>pion production from pions. 
. + 

Let us consider the reactions -y Fp - p+ 'IT + 'IT and 
: + 0 

'y + jJ- u+ 'IT +'IT • {Fig. 3). We cunjeclure lhe exi::;ler1ce uf a pule iu 

the momentum -transfer variable 1:::.
2 = (p 

1
2 

- p
2 

)
2 

at -1. . The residue 
2 . . . . 

of the pole in !:::. is found from the g·eneral formula given by Chew and 

Low: 

82a(W2, .6.2) 

aw2 a~:::.2 
.T 

a {W), 

{29) 

2 . 2 I 2 2 where f - 0.08 and a a aw a!:::. is the differential cross section 

for -y + p - p + 'IT+ + 1T- in the variables .0.2 and the total energy of the 

two outgoing pions W in their barycentric system, KL is the photon 

energy in the ·rest frame of the target proton, and a T{W) is the total 
. * 

·eros s section. for photopion production from pions which is given by 

aT(W)- ~ (w:;;/> { w42 -1)3/2 2 
(30) 

provided we neglect all higher partial-wave contributions. 

* + 0 The eros s section for 'IT , 'IT and 'IT is the same. 
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' ' ' .\ 
·-

I 
I 

I 
I 

K 

· MU-20474 

,.. 
i + -

Diagram of y + p -+ { 1T+ + 1r0 + p. 
l1T + 1T + n 

This figure shows the pole of interest. 
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. IlL NEUTRAL-PION DECAY 

One application of the -y + TT _. rr + TT process is to calculate 

the decay rate 9~ neutral pions. Goldberger and Treirnan were the first 
0 

to analyze TT decay by using dispersion relatl.ons,, but they considered 

nucleon-antinucleon pairs as the most important intermediate states and 

neglected multi-pion stateso 
13 

It seems to the author that this may not 

be a good approximation, since it involves only c.ontributions from far­

away .singularities but not from near ones. Here we adopt a different 

approach and consider the contribution of the least massive stateo This 

can be done if we extend a photon variable q
2 

into the complex pla~e 
instead of the meson var.iable p2 used by Goldb .. erger and Treimano 

Following the standard method, one has (see Fig 0 4) 

Because of translation i~variance, Eq 0 ( 31) becomes 

( q ( IJ.) k( v) T ) 
i(2rr)4 

p ( 3) = 
4 2 

5 (p-q-k) F (-q · 
v ' 

where we have 

(32) 

and p is the pion four-momentum. The indices 1-L and v refer to the 

polarization state of the photons of lYJOlYJenta. q a.r:11:l k,. l'e8.f:Jt!clivt::ly; 

The number ''3" inside the matrix element represents a neutral meson 

iu the initial state; J is the source of the electromagnetic field and 

satisfies 

2 0 A =J 
jJ. jJ. 
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- K (E') 

q(E) 

MU -20475 

() 

Fig. 4. Neutral·pion decay, with only the Z1r intermediate state 

coDsidered. Wavy lines are photons; broken lines, pions. 



-29-

From general invariance arguments, the F function c·an be 

written in the form: 

F( 2 k2 2) k Trf( 2 k2 . 2) -q ; - ; -p = E P. q P. E E -q ; - ; -p . 
a.t-'f.Lv a t-' fl. v 

(33) 

We can write this form because F must satisfy three conditions: 

(a) K. e = 0 (b) q. e' = 0 and {c) e. e 1 = 0. The gauge-invariant 

photons require the first two conditions. The last condition is due to 

the fact that the meson is a. pseudoscalar spinlesc particle; and the 

polarizations of two photons decaying from it must l;>e perpendicular to 

each other. 

We assurne that, with both p
2

. and k
2 

on the mass-shell, t~e 
scalar fu~ction f( ~q 2 ) is analytic in the whole complex q

2 
plane 

except ·for a l;>ranch cut on the real axis from - 4 to - oo. Using these 

analytic properties, we can write the dispersion relation for f( -q
2
): 

2 2 
lm f( u ) da 

2 2 
(J - q 

( 34) 

Using the unitary condition, we can express the absorptive 

part of F in formula ( 32) as 

Since our approach is to assume that the function is determined 

by nearby singularities, no intermediate states except the least massive 

state--the 21T state- -will be considered here. Actually, we should not 

neglect the 31T contributions, especially if they produce a resonance or 

.-:::ven forn'l a bound state al l'Ougl1ly llH~ l::ii::LIIH:~ euergy al::i Lhe Lwo-piou 
14 * resonance. ' 

~:c 

The author wishes to thank Professor R. J. Eden of Cambridge 

University for indicating this point to him. 
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At present, however,. we are not able to handle this part. By considering 

·( 35) . 

The first factor of the integrand, i.e. the matrix element describing the 

disappearance of a pion pair with the creation of a photon, may be 

written as 

( 36.) 

where F t (S) is the hermitian conjugate of F (S), the pion form factor 
~ ~ 

and is given by 

F (S) = 
~ 

where the. D
1 

function is given by formula (20). The second factor in 

Eq. ( 35) is just the m·atrix element for photopion production from pions: 

I 
· I ·). · :1 e3ij eal36)pl)a (p2)@. K6 

(Pl(i): p2(j) J )0) p(3) = (-::;-;_-) M (8 plO p20 PO) l/2 

where · 

M = M [-(pi+ Pzlz. -(pi- Pzlz ]. . \ . ( 3 7) 

Substituting Eq. ( 36) and ( 3 7) into ( 35 ), letting q 1 = p 
1 

+ p
2 

and 

Q = .!_ (p - p
2

); carrying the .isotopic-spin sum, and integrating over 
4 2 1 4 

d q' and d · Q, we ha~e 

e ' 2 5/l 2 · r (-q - 4) · A( q ) - E q K E . E I 
· -. - 48~ al3iJ.v a 13 iJ. y ( 2)-l/2 . -q 

(38) 
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.. . 4 .. .• 
Notice that the integration over d Q projects ~~{the p wave. of M only . 

.. 

This is also evident from: the fact that the photon has spin one. Comparing 

Eqs .. (33) and (38), _we obtair::t 

00 

e ·· 2 r 
f ( -q ) -. -:.-..., 

48.;2 l ( (T 2 - 4) 3/2 t 2 . 2 2 
2 2 F; (o- ) Ml (o- )_do- ' 

<T(<T - q ) 

and the pi_on decay rate 1s g1ven by 

1 I w = 641T f(O) 
2 

The numerical evaluatio:n 6f f( 0) is carried out by using 

Simpson's rule in steps,of 0.01 fort from 0 to l, where t= 4/o-
2

. 
. . 0 

We use Eq. (28b) for M and find that the decay rate of th~ 1T is 
l 

given by 

7.0 X l0- 16 

2 

" 
sec, 

where f\ is expre~sed in the unit of e(e 2 =. l/137,) .. ·For{\ = ± 1.3, *. 
· · · · · · 1 4 ·lo- 16 · h 1· · f 0 l"f · 'T . 1s approx1mate y : X: , se.c, t .e upper 1n11t ron1 1T 1 et1111e 

15 
expe:r:iments performed by Harris, Orear, and Taylor. 

* · Dr. J. S. Ball, pf Lawrence Radiation Laboratory, has applied the 

.. Mandelstam representation to the '( + N- 1T + N problem and finds 

··that IAI is l~ss thari l ~:3 in ·order to make his calculated cross- section 

compatible with experimental data. The author wishes to thank Dr. Ball 

:for information about his results before publication. 
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IV. CONCLUSION 

Fr.'Gm the assumption that the matrix element for photopion 

production from pions has the Mandelstam repre.sentation, we have 

been able to formulate a set of integral equations for th~ partial~wave 

amplitudes. In our approximation, this set of equations has' been 
. . . i . 

reduced to a single homogeneous integral equation for the p-wave ampli-

tude, whose solution depends on an unknown parameter 1\, and to . . . . . . 

formulas for the higher partial waves in terms of the p wave. 

Using the pole-approximation technique of Chew and Mandelstam, 

we have been able to solve the p-wave integral equation and have given the 

explicit form of the two-pole formula in. terms of 1\ and three other para­

meters. These parameters can be calculated in a straightforward mapner 

from crossing relations, once the parameters of the two-pole 1T-1T fo.rmula 

are known. 

We have proposed a method to determine 1\ by extrapolation of 
+ + 0 

the cross section for '{ + p ..... p + 1T + 1T and'{+ p--+ n + 1T + 'IT • However, 

this experiment is very difficult and can only determine the parameter .I\ 
up to its absolute value. We have estimated the or de! of magnitude of 1\ 
here by considering the decay of neutral pions,· assuming that the '{+1T-21T 

process should play a prominant role. Our calculation is based on the 

assumption that only the least-massive intermediate states contribute to 

the dispersion integral, but there is no good reason to expect the 31T. 

contribution to be negligible. A better estimate of 1\ may come from 

photopion production on nucleons, where Ball has shown that '{+1f-+21f makes 

an important and characteristic contribution. Other problems in which A 
. appears include the calculation of 31T ·contributions to the nucleon isotopic 

16 
scalar form factors. Up to now, however, no one has succeeded in 

treating the matrix ~1 ~ment ( NN 131T>' which is .also needed here. 
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APPENDIX 

The sign function e(x) used in Eq. ( 17) is defined as 

e (x) 

·· .. 

for 

={_J 
>< J>oj, 

ka 
} . . · 

.'l: 

·. :· : 

',:'t • :, : . .... 

The sign function arises because of the complicated s 
1 

dependence of the 

denominator in Eq. ( 17). Since we have 

2i Im 
1 

1 = 

= - 2'ITl E 

(

s 1-_4)1/2 
, , z'l 

.sl 

1 

("!JI/\)-
from the limits of s

2 
I {4 and-} [3-s 

1
-( s 

1
-1) ("! -4

) I/Z z 
1

] for s I < 0 r 
one sees that ~he argument of the sign function altvays lies between the 

limits · x
1 

and x
2

, where we have 



and 

= -2 (2s 1 + 1)(2s 1 - 5) 

s
1
(s

1
-l)(s 1-4) 

2. 
s

1
-2s

1
-2 

s 1 ~ s 1- 4 ~ 1/2 
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in the range .CXll ~s 1 ~0. These two functions x
1 

and x
2 

vanish for. 

· the. unique value s·1 = - t . They are both positive for -co < s 1 < - } 

and both negative for ·- 2 < s 
1 
~ 0 so that we may simp~y write 

e ( s 1 +}) ih the left-hand cut discontinuity. 
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