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University of California
Berkeley, California

June 2, 1960
ABSTRACT

The Mandelstam representation is ap}plied to the process
y+m™—= 2w Itis shown that a homogeneous integral equation fnay be
obtained for the p-wave amplitude whose sc;lution allows one arbitrary
real multiplicative constant, which at present must be determined from
- experiment. By the use of crossing symmetry, a simple and tractable
approximate solution of the integral equation is obtained. Higher partial
waves may be calculated in terms of.the p wave. The order of magni-
tude of the new constant is estimated by considering the decay rate of
the neutral pion, in which the amplitude for y+ m - 2 w should play a

-prominent role,



I. INTRODUCTION

'Recen‘tly,- Chew and Mamdelstarnl have developed a new .
method for’ calculating the interactions of strongly interacting ’parti;leé
and have applied this method to the .problem of the pion-pion inter-
action. Their p;;ocedure is based-on.the two—dimens'ional representation
proposed by ‘Mandelstam, Z‘Which prescribes a method.of simultaneous
analytic continuation of scattering ampl’itude.s into the complex planesas
a function of both the energy-and momentum:transfer variables. In
particular, this representation gives the location and character of all
singularities of a scattering amplitude and enables one to write partial-
wave dispersion relations. Chew and Mandelstam have. déveloped the
theory further by adbpting the philosbph'y that the functions: are .dominated
b\y nearby. siﬁgularities., Accepting this philosophy and applyin_g the
_unitary condition; ‘one obtains a system of integral equations in mo_s't
scattering problems. Frazer and Fulco3 have applied these ideés to the
problem of m + m = N + N-and thén to the nucleon electromagnetic-struc-
. ture problém; ~Here'we use the same approach to calculate the matrix
element for lbw—energ.y photdpion pfoductidn from. pions. ¥

If both the Mandelstam fe_preéentafion ahd the phil-oso‘phy of
the importance of nearby singularities are accepted, no further sub-
~ stantial theoretical work may be done in strong—coupling physics in-.
volving photons.and other elementary particles until we understand
something about the problem of photopion pr(')duc':tipn‘ from'pions, In
other words, this problem plays a role\similar to that of = - 7 A
scattering in any phenomena involving at least one phdton. - For

example, ‘Ball4 has recently investigated pho£0piori production from

X

A preliminary account of this work was given at the 1959 Thanksgiving
meeting of the American Physical Society, November 27-28, 1959
[1~Io~w<sen Wong, Bull. Am. Phys. Soc. 4, 407 (1959) ]



nucleons and found that the process y+ w =2 m produces an additive
correction to the CGLN formulas. > Further work on '"photo'" problems
suchas y +m—>y+mand y+ N—-y+N will also require a knowledge
of the y+ m = 2 m reaction.

‘ In the following section, kinematics, isotopic spin and
partial-wave decompositions, will be considered. It is shown by
invariance requirements that the problem under consideration requires
only a singleinvaris.nt function. By assuming that this function has the
Mandelstam representation; we are able to locate the singularities and
hence to write dispersion relations for the partial-wave amplitudes.
Using the unitary condition and the Omnés —Frazer—Fulco3 method, we
find that the p-wave amplitude satisfies a homogeneous integral equation
and depends on a single real parameter /\ This constant, although not
’ fundamenfal, cannot be related to fundahﬁental constarits at this stage of
.the theory and must be determined from experiment. Higher partial '
waves for our process are related directly to the p wave. The p-wave
integral equation is solved by the Chew-Mandelstam technique of
replacing unphysical singularities by a series of poles, whose positions
and residues are determined by ofossin-g symmetry.

Finally in Section III, we discuss neufral—Pion decay. It is

-shown that the decay rate is related to the unknown parameter.



II. LOW-ENERGY PHO,TOPI_ON PRODUCTION FROM PIONS
A.  Kinematics
Let the four-vector momenta of the pions be P+ Pys and

Ps and let K and € be the four-vector photon momentum and polarization,

*
respectively.. Define the variables

.\ — 2
§; = —(K+p1)',
w2
SZ - —(K_pz) 3 (1)
and _ -
s ='—(K---p')2'
3 o 3"

which are related by the condition

sl<+'sz+s3=3. . : }(2)

These three Lorentz-invariant variables are just the squares of energies.
in the ba,rycentric systems of the corresponding processes a, b, and c
in Fig - We sue these variables because of the fundamental structure

of the Mandelstam representation,

In the case when the photon K and meson p1 are the’

1ncom1ng particles (we shall call this channel I), the variables Sy, Sy
and s3 are related to the energy and momentum transfer in the following
ways:
' 2 2
s;= —(py+K =41+p)
S = An 2 o
.bz = - (p2 ~-K)y"=1 - ZkE + 2kp cos(}i1

= = (p,y - K)®— 1 - 2KE - 2kp cos 6,

% _ . ) = . ,
We use the fundamental metric tensor such that P, P, =P} - P, -~ P1gPjq-
Units are used in which = ¢ = 1 and p = I, where p is the mass of the

pion.
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Fig. 1. The three channels of the y + ™ = 27 problem.



.where p and E are the magnitudes of the outgoing pion momenta and

energy reﬂ)e tively, k 1is the energy of the photon, - and we have
P. K

Pk
conservation leads to Eq. (2) and 'k = (sl-I)/Z '\/_S_l

The S matrix for photopion production from pions can be

cos 91 , all in the barycentric system. Energy- ~momentum

written as

_ f1 D
S.= 1(2-rr) &2 (K+p.-pP,-p,) , (4)
fi 1 P27P3/ (16 P P, Py k) 1/2

where PIO O’ and P’30 are the energies of the mesons.

The decomposition of T will ‘be cons1dered as follows:
First, we decompose T into the product or sum of the products of an
isospin—depeﬁdent function and an isospin-independenf f,unction.' <Next,
the isospiﬁ-independent funct.ion (functions) is (are) decomposed into
the product or sum of products of a gauge - -invariant, Lorentz-invariant

funct1on and a funct:on of s, 53 and s We can perform all these

decompositions by using thelknown conseration laws or invariance
properties such as the conservation of parlty, conservation of G- parlty
(G- conJugatlon is the combined operation of charge conjugation and
180- -deg rotatlon about the y axis in isotopic spin space), gauge in-
variance etc.. With these invariance properties and the pseudoscalar
nature of pions, we find that only a single pseudoscalar quantity can be
‘formed from 'the.f:our independent kinematic four -vectors, and the final
2w state miist have isotopic spin one, Thus the problem under con- :
sideration requires only one sc‘é.laf transitidn amplitude., Therefore,

we can define the scalar amplitude M(s1 s, s3) by

_ i : o 4

where a, B, and y are the isotopic indices of the pions, and eﬂﬁ‘Y nd

€, are the convent1ona1 ant1symmetr1c tensors of third and fourth

Aépv
rank, respectively. The fa.ct that a ‘single scalar transition amplitude
is required for the problem is a great simplifilcation;' we believe this

may be the unique situation in strong-coupling physics with such a nice

property.



The consequences of crossing symmetry are very simple in
this case. Interchanging the numbers of various pion pairs evidently

amounts to interchange of the s variables. Thus we have

M(s = M(s (6)

M(s.ls =M(szs 3-8, Sl)’

2 83) ] 830 = 53 8

‘since the product of the factors multiplying M in formula (5) are

symmetric undet any pion interchange.

B. The Mandelstam Representation A

We aseumec that, except for sublraclivns that may be required,
the invariant function M satisfies the two-dimensional representation

proposed by Mandelsta,m:2

1 2 ds’ 3"1(S 2 '3 ds',ds’ p,(s'5s'))
=z 3 ST s
n’ s'pmspsTyms S 1751

ds'. dsg' p,(s',s',) : .
+'L2 [[ (sT 1—s )Z(s? —sl )2 ’ ' (72)
™ » 175118 27%; |

. Cunservation laws preclude the presence of any poles,

Although the variables s 2 and s, are not 1ndependent

being related by (2), we shall often w11'1te them all out explicitly in order
lto see the symmetry of the represeﬁtation. The assumption of the
Mandelstam representation is the essential tonl for setting up an integral
eqqation for the p-wave amplitude. We use the representation not only
to loc:ate the singularities of the partial-wave amplitudes in the 3 (energy
square in Channel I) plane, but also to relate the unphysical and physical
cuts in this plane. This is discussed in the following sections.

Using the crossing relations[ Eq. (6)], we find that all spectra.l

functions p in Eq. (7a) are equal and symmetric in the two variables.

' Therefore Eq. (7a) becomes

”
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)
M:l_z'[ G Tt 31< =57y | Pixey) dxdy.
SRR S 11985 2"1Y7%3 XS33’51J
(7b)
As shown by Mandelstam, one can easily derive a one-dimensional |
relation:from Eq. (7a)with either Sys S,s OF sy fixed. The spectral
function:.p is non zero in regions whose boundary can be calculated from
perturbation theory or whose formulas are given by Mandelstam. It is

shown that p is bounded by the following two curves[see Fig. (2)]:

(s, - 4)s, = 8 (25, + 1) : . (8a)

(s, - 4)s1

5 8 (25, + 1). | | (8b)
The curve for Eq. (8b) is obtained from Eq. (:8a) by interchange of S
and S, From Egs. (8a) and (8b) it is evident that the region in which
p is not zero is asymptotically bounded by the limits of integration in

- Eq. (7a):

C. Analytic Properties and Dispession Relations

for Partial-Wave Amplitudes .

Our approach to this problem requires the same sh‘arp
distinction between high and low angular-momentum states as in the
problem of m-w scattering of Chew and Mandelstam. The discussion of
their work inthis connection rhay be repeated almost word by word.
Here we separate out the p-wave part'for special consideration, the
higher part of the amplitude to be calculated later in terms of the p-wave
part.

Using the method of Jacob and Wick, 8 we can write the

partial-wave decomposition of our scalar amplit{lde M as

M(s > cos 61) = T34 2 Mﬂ(sl) P'l (cos 91)_, (9a)
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Fig. 2. Boundé.ry curve of the spectral f_uncﬁon p (sl, SZ)'
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where 61, the angle of emission; is given by

: 2s, + s, -3 s 1/2.
cos. 0, (s,, s,) = 2 1 1 ' - . (10)
. . 1 1’ 2 . S]'.,‘ 1 51_4 3. . .‘ L

and P‘I is the derivative of Legendre polynomials of order {£.
In order to obtain the dispersion relations for partial-wave

amplitudes, we write

IR ENED B -1 .

M(s,,cos 8. )== | p' (s',,s,)| 5 o ds’,,

1 1" = . 2’7 1's 2—52(,sl,cosl61) s',-83,CO08 62) 2
where . | (11)

. " w ’ ’ ’ N "

- r :

o'(s',s,) = = (x,s'.) | =L— + 1 Cdx (12)

271" = PS5, X-8 “x+s, *+ s'_-3 )

4 1 17 %2

It is easy to see that P'(Sz.' sl) is the imaginary part of M for 5, >4,
and s, < 0 and the analytic continuation of this function is otherwise.

In other words, the spectral function p' is the im aginary part of M
when the phpton‘ and rﬁeson P, are the ipcomi:ng particles (se shall call
th_is channel II). Equation (11) is a one-dimensional representation of
the amplitude M that shows explicitly the dependence on the momentum-

transfer variables s, and s, and thus the angle 6, since

2 83

B 5,4\ 1/2 N \
s, = > 3 -sl+(sl—1) 5 'co-s 01

T [sma\ 122 1 ’
S37 5> 3 —:s]l - (s.]—l) B | cosial‘
Using the formula

_ 20 +1 ~ 2. o . S

My (sy) = srae (1 -2z7) Py (z) M(s),2)dz = (13)

-1
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in our partial-wave decomposition, we find

1 - 2 .
: '» S Im M(s'_,cos 8 (s',,s,))
_2(22+1) S 2, S 52 2'8 20 %)

51—4 1/2‘
) .

f
v - -
2s 2+s1 3+(s1 1)( 5
(14)

where 62, the barycentric-system e€émission angle for channel II, can be
obtained from formula (10) by interchanging &4 and CPE '

Before discussing the analytic properties of partial-waves,
let us make a subtraction by removing the p-wave part of Eq. (7b):

' o©
Mis _ ! : :
M(sl,cos 61) _Ml(sl)+? / ds > Im M(s 55 COS 62)
_ 4 :
. . N 1 ' ]. B
X | =— Lp— <K(s,s')},
[sz sz(sl,cosel) s’ s3(sl,cosel) 1'71 2

(15)

where

. - | o .
. , ' ]
Ko(s.. ') 6s,(2s' +s,-3) , 3 s; \I2 1 s,(2s',+s,-3)
1'81°8,)° (sl-l) 51-4 . 5

(s,-4)%(s,-4) (s,-4)s,-1)

‘51-4‘) 1/2

'. . e -
N 2s2+sl-3+(s1 1)<sl
X 1n |

, s.- 1/2
2s 2+sl-3-(s'1'-1) ———-sl ]

In our approximation on below, we shall let Im M(sz, cos 92)5 Im MI(SZ)’

assuming that w-m phase shifts are small in all states for £>1; so that
Eqs. (13) and (15) g.ive the formula for the higher-angular -momentum part
of the.-amplitude in terms of the p wave. , _

It is not hard to locate the singularities of the MI'IS' in the s,

(energy-square) plane from Eqs. (11) and (12).. The M,'s are analytic —

‘ 2
in the whole complex S plane except for left-hand and right-hand branch
cuts on the real axis.  The right-hand cut funs from 4, the physical thres-

hold for two pidns, to «, The vanishing of the ‘dehominators in formula(11)
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gives the left-hand cut from 0 to -. The discontinuity across the
left-hand cut is related to the absorptive p‘-a.rt of the’ amplitude for
channel II by crossing relations. The Aapparent singularity from the
vanishing of the second denominator in formula (12) was introduced
artificially through the .éeparation into partial fractions of one of the
terms in formula (7b). This singularity can be easily seen to vanish
"after the integration in Eq. (13) is performed.

In order to be able to write the dispersion relatioh fof the
partial-wave amplitudes,‘ we must consider their asymi)totic behavior.
The L_mita.ry condition tells us that Mﬁ (sl) goes to zero as s, approaches

infinity at'least as fast as does s Guided by this asymptotic behavior

1 _
and using the analytic properties.we have found, we can write the follow-

ing dispersion relati‘Aon.s without subtractions:

0 0

- t 1 - 1
1 Im Mf(s 1) ds'1 Im Mﬂ(s 1) ds 1
Ml(sl)— — " — + . . . (16)
u s', -8 st, - 8
RS . 178 o

- 00

3|~

For co’nsi‘stency,‘ it is nec'e‘sséry tha; Im Mﬁ(sl) vanish at -« as weli
as + «©. We shall consider this later. ‘

: l "Our next task.is to evaluate Im Mi(sl) on the unphys‘ic‘al cut
(=0 < s g 0). 5 In this region, we find, from the crossing-relation
formula (14),

v(sl)
. 1 '
~Im Mﬂ'(sl) ==e (SI+Z) hz(szsl) Im M'[sz,co‘s 92(52’51)] dsz.
4
(17)
where A _
! , s, -4\1/2 o B
vis)) =5 ‘,3'31"(5_1' 1) 5, ' .
and

>l<See Appendix.
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Although in Eq. (17) the variable s, is the. energy variable in the physical

2
region for channel II, the upper limit v(sl) is such that we have

cos Gz'f -1. Therefore we must make an analytic cortinuation from the
physical region. One method of continuation is to expand Im M[s?, cos9?(sz,s'1)]

in Legendre polyﬁom.ié.l s

— s A 1 . 3
)= = Im M (SZ) P ]Z(cos 92).

Im M(sz,cos 0 . 2
. odd ¢

2

The region of convergence of our Legendre polynomial expansion
can be determined from formula (12). Since a function of cos 62 can be
expanded in Legendre polynomials within a singularity-free ellipse with
foci at -1 and +1, we must find the p_osifion of the nearest singularity in
" cos 62. This singularity can be located from the .v,anishing, of the deno-
minator of formula (12) in the region where p is not zero. Using formulas
(8a) and 8b).for the boundary curves of this region, we find that the expan-
sion converges on the leftA—hand cut as long as we have slv>/-33.94.

Beyond the region of convergence of the polynomial expansion,

a rhore subtle method of analytic continuation will be necessary. However,
since we know from general prin'ciples that Im Mf'(sl) must vanish as

) approaches -« , it is reasonable to expect the contribution of Im MZ(S].)
for s

1 .
partial-wave expansion (96), we see that Im Ml(sl) for S5 £ 0 oes to zero

>- 33.94 to be small. If we keep only the p-wave amplitude in the

. -3 - . . . .
like s / , so that no cut-off parameter is needed. The situation is thus
more favorable than in the problem of pion-pion scattering. The extra

comvergence here is a consequence of the gauge condition.



_16-

D. The Integrai Equation

‘ We shall proceed to transform the Cauchy integrals (16) .
into another form from which we hope to obtain solutions. Applying the
unitary condition and adopting the assumption that the functions are
determined by nea..rby singularities so that only the intermediate

two-pion state need be considered, we write

. _ . .
L. 1] ] . t : 1] 3 H 1
] Im M,(s' ) ds'} - sz(sAl)exp[16£(s 1)]s1n6£(s‘ ds'y
Ml(sl) T T s'., - s ta s'. - s ’
' 1 1. -J 1 1

(18)

where '61(51) is the pion-pion phase shift for the £ angular-momentum
state. ' ‘
Frazer and Fulco have extendéed the Omnes investigations on

the Chew-Low type Eq. (18) and find that Mﬂ(sl) 's satisfy

1 3 P '
Dl(s 1) Im Mﬁ(s 1) ds 1

0
AR ﬂDf‘<s~1; ,s'l -s; N
. ‘ o i

where

: dil(s'l)ds'1 ]

o —a s |-
(s1 Sl)SIJ

Alw

Dﬁ(sl) = exp|( - (20-) .

4

In this problem, the imaginary part of Ml(sl) for s, £ 0 is not known

but is related to the p-wave amplitude through the crlossing relation (17).
From now on we shall concentrafe on the £=1 solution and
leave the calculation of higher waves to Egs. (13) and (15). By substi-
tuting Eq. (17), where we approximate Im M & Im M]‘ in the integrand,
into the Omnés-Frazer-Fulco solution (19), we obtain a homogeneous
equation for the p-wave amplitude. The homogenity of this'infe'gral
equation, whose solution is not unique at least with respect to a multi-

plicative factor, would be removed if we kept any contribution from in-

elastic processes. In the calculation below, we shall fix this
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multiplicative fact_or/\ as the value of M (sl) at s, = 1. At present,

we do not know how to relate this unkn‘owii parameler N\ to fundamental
constants, in particular to the electromagnetic coupling constant e,
which certainly plays a fundamental role here. For the time being, A
must be determined from eypenment Although we do not know the
'relationship between /\ and other constants, we have no reason to be-
lieve that it is 1tself fundamental, It -should be possible to calculate A

if and when techniqies for handling high-mass singularities become

ayail_able .

K.. The Pole Approximatiou

. To proceed further we need the denominator function Dl’
for p-wave pion-pion scattering. The pion-pion calculations of Chew
and Mandelstam have not yet reached a conclusive stage but these
authors have given an appr-o:ximate form for D1 which corresponds to
the replacement of the unphysical branch cut in the pion-pion amplitude
by a finite number of poles. Further they have shown that two poles
lead to an accurate approx1mation in the physical region up to s~ 40,
Once the parameters of the two- -pole formula have been determined, it
will be a straightforward problem to incorporate the information into
the amplitude for y +w = 27, The determination of the pion-pion para-
meters is still in progress, "9 but we outline here, for further use,
the form of the solution of our problem that corresponds to the pole
approximation of Chew and ‘Mandelstam, We shall illustrate the method
with the one-pole, pion-pion amplitude, for which parameters have been
‘given by Frazer and Fulco.
We thus propose to replace the left-hand cut of the amplitude
M by poles with appropriate positions and residues. This philosophy
of replac1ng cuts by poles has been successful in many c1rcumstances
and can perhaps be best understood by, loukmg into the conncction w1th
the effective-range formulas of low-energy nuclear physics. It is
well -known that the effective-range formula gives a useful description
of low-energy -nucleon-nucleon.scattering. If the formula is written in

the form
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i . .., r 2 . 1,-1 :
e 'Sln 6=(z q -1q -;), ’ : . (2],.)
\

O

‘where g is the .cent.er-of-'mass momentum, a is the scattering length,
and r the effective range, we see that the 's-wave effective-range .

fqrrhula impliés t‘havt the amplitudes has two poles in the complex q

plane'at,”
B | 1 2 1/2
G =izl -3¢
L r
and
.1 : 2 1/2
=i |7 - rZ_ar) ;

Usually, one of these polés‘ ql’, is in thé physical sheet (—iq1> 0) and
" the other one is either in the unphysical sheet (-iq2 0) or becomes a
bound state pole.  The effective-range formula (22) can be now equiva-
lently characterized by.a. single pole- q )’ the interaction pole', and its

residue

and may be called the ''one-pole formula'. This felation between poles
_and effective-range formuiaé has been kno_wn for some time, but was
not emphé.sized and interpreted until receﬁtly by Chew and Wong after
the Mandelstam representation was proposed. 10 In fact, the interaction

S

- pole lying in the negative real axis of the g 'plane can be considered to
be the replacement of left-hand sing'ul.arities implied by the Mandelstam
representation. | _ '

In general, we would obtain a "multiple -pole formula' by
replacing the left-hand branch cuts by a series of poles. The |
""n-pole formula' thus obtained should contain 2n parameter—-—the

. residues and positions 6f the poles. For our y+ m — 2w problem,
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replacing the left cut by poles co‘rrespoglds to apprpxi'mating .Ml(sl)

for s, <0 by a finite number of delta functions here and enables one

to traisfor‘m the integral Eq. (19) into an algebraic and trivially soluble
equation. " But the question now arise"s- how to determine the residues and
positions of the poles, which correspond to the strength and range of the |
various contributing interactions. Recall that a parameter A must enter
into our final solution, so we might as well introduce it Athrough the
residues of one of the polesl. The rest of the parameters may be deter-
mined from the crossing relation Eq (6).

As in the w-m problem, we have a point of maximum symmetry.
: 1=sz=s3=].,or sl=lla'.n.d V
z, = cos 91 = - Nf3'i, where M is real. By differentiating the general

This occurs at the unphysical point s

crossing relation (6) or the Mandelstam représentation with respect to
these variables, we can derive an infinite number of conditions on the
'dér‘ivatives of the a.r'nplitvude' M at the symmetry point (reféerred to
hereafter as -SP). Three of these condi»tioh's. which may be useful for our

further discussions, are

M (sl zl) 51 -1 < constant,‘ ' , (22a)
BM(s1 zl) o :
8 s, =0 i C- (22b)
SpP"
'a'nd
2. : ,
E;M(s,lzl) _ & . .
8s. 92z, | R . . ‘ (22¢)
' SP

In addition, from thg Mandelstam representation we can also find the

following relation:

2. :
0 M(s1 zl)_' . 5
5 | = constant x(1.- z)- - - (23)

851
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N

Equation (24) together with the crossing conditions (22a) to 22c), imply

M(s1 s, s3) = M1 (1) = A
L6 SP
or M, (1) =0 , . o © (24a)
for £ >3, and
aM, (s,) . :
+L _, =0 (24b)
51 51 ‘ .
for all 2,
82M£ (Sl) : :
- =0 , : (24c) -
5s > - | s.=1. : ‘ : :
1 1
for ¢ >5 and
82M3(sl) ) 5° Ml(l)v
ooz | spEl T % Tz (244)
s . 1 9s : 4

These relations are exact, but oﬁly’ Eqgs. (24a), (24b), and
(24d) are of direc}/u'se in determining the pole parameters for the p-wave,-
The additional relations needed depend on Eq. (15) which is only approxi-
mate. To obtain these formulas, let us write Eq. (15) in the following

form: )

’ ' o ©
1 T.m'Ml(x) dx L
M(sl zl)g = eva— +; Im Ml(x)

1.

1 N 1
x-s,(s), z;) . x-s5{s), z,)

dx. (25)
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- Evidently, the first intégrail is the cbntr'ib‘utio‘n from the right—hénd cut

_and the second integral that from the left. This equation, although not

exact, satisfies all the exact cross;ing relatibns'(ZZa) to (Z'ZC) and (23).

The importance of Eq. (25) lies in the fact that at the symmetry

Doty

re.left cuts is simply related to fhat from the

right. Defining

w .
‘R 1 Im Ml(x) dx
"M (sl Zl) = = .
: T X - 8,
4 . .
and '
g : 1 1 '
: Im M, (x) + _ dx,
MP(s, z) = 2 1 x - s,(s7,2)) x - s3(sy,2,)
171 T . : }
4

with the obvious meaning for the notations, we see from Eq. (25) that

at the symmetry point we have

ML = ZMR

and
BDML ) 8L'.MR
as 2 ° 8s. %
ST L 1

" Using these 1'e1at§',ons' and Egs. (24a) to (Z4d),: and remembering

MY =M, (),
M° = MR (),
2 . L 8% M, (1) 8% M, (1)
MZ My 3
= - 24 ,
ds 2 8 s 3 9s 2
1 1 1
and
2. R
2R _ 2T M ()
ds 2 8s 2
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we obtain

aM, (1) . B T(1) -
—_— = L _ 4 (26Db)
8s. 9s. A
1 4
and
2... R
8°m. T (1) 8 M, (1)
1 1 L
= (26¢)
9 2 - B 8s 2
51 1
There are relations of thls kind for all derivatives at S = 1, but these

three will serve our purpose if we consider only one- or two pole
formulas. In general, the more poles we put in to replace the left cut,
‘the more accurate the p-wave solutxon we would obtain and the more
derivative conditions we need. '

. 'We are now in a pos1t1on to derive pole formulas for our

.problem. The '"one- pole" case will be considered first. Let us write

o0

4. : . ' ) -
_Ml(s"l) e.—161(s 1.) sing, (s ) ds'

_ A 1
M (s;) = - 5]

where A" is real, and -a is real and positive. This assumption evidently

corresponds to setting
Im M (s)) ==A" 7 & (s +a)
for 3 '\< 0, so that from Eq. (19) we have the p-wave solution

- NB Dy (-a) ,
Mys) = gFropspy . - - @
where o :
A = A1) D ()
D, (-a) 7
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since we have defined A = M1 (1). If th_.g\:\ Frazer-Fulco ore-pole Dl(sl)
function is used for a resonance at 3 =0 we find a =2 5.7 from the
crossing relation (26a). Since the calculation of the two-pole pion-pion
parameters is still iﬁ progress, we are not able to give '"good" two-pole
y+ ™ = 27 results here, but we derive the two-pole formula for future
reference. Writing o =

Im Ml(s + b)

1)

e [6(sl+a) + /\1 msl

~for s, 0, where N' and /\l are r-e.al,‘ aﬁd a and' b are real and

1
positive, we find

| | A ‘ -D.1 (-a) . 1Dy (-p) 28
Mylsp) = A (5,731 D, ) " s Dy (sy) | e
where -
. ; ) i { -1
D, (-a) - D, (-Db)
| — l 1
A= /\Dl(l) T7a * /\1 (T+0b)

The parameters a, b, and /\1 -may be determined from the crossing
relatious (26a) tu (26c¢). it turns vut that no a, b, and A can sdtisfy all
three crossing conditions (26a) to (26c) if the Frazer-Fulco one-pole
form is used. HoWéver, if we fix the position-of one of the two pole's
between zero and '-4.92 (O‘g\‘-a\< 4.93) and ignofe the second-derivative
condition, we find that the first two conditions of Eqs. (26) do have
' _ solutions for a; b and - /\'1 . The results of this calculation show that
the p-wave amplitude in the physical region is not sensitive to the
positions of the poles, as can be seen from Table I. The tahle also
lists the values of b, /\1, and /M for different values of a'.;j The fact
that a and b must be between 0 and -4.93 indicates that relatively
small contributions to the p-wave amplitude come from the far -away -
left-hand singularities. - | |

Note finally thét in the physical region, the difference between
our one-pole and two-pole solutions is not gr’eat. Thﬁs we may be con-
fident of the accuracy of our two-pole results once the parameters of the

two-pole ww scattei‘ing formula are known. ..



Table 1
Table of parameters and p-wave amplitudes for various values of a.

A N M, (s;)/\ ,
a-_ b. T 1 sl=4 51=8 '.s1=12 'sl=20' - 'sl—)oo
a o 0.453  0.35 - 0.241 6.2
5.7 L 4.47 . | 0.96 _ : | '
| . . D,(8) D(12) :D;(20) 3D (s)
b . 452 | ‘ 0.455 - 0.345 0.239 = 5.82
4.93 0o 452 . -0.021 . 0.98. 5187 b UD) . D20) D15
- 3 8! 12118
b, t 0.46. . 0.35 -~ 0.236 5.78
4.0 13 5.2 -0.152 0.994 515, BE) D0 =550
: 1 1 1 17148
b3 o 2 .25 1153 -0.169 0.995 0.458 0.35 0.235 - 5.73 'l-\,
| ‘ .Dl(?) D,(1Z) D,(20) 5,D,(s)) N
c . ~ . 0.465 0.355  0.241 5.85
2.62 , . 585 -1.54 1.0l 5,8 BIT) . B.20) 35.050)

2 One-pole solation see Eq (27)

b Two-pole solution see Eqg. (285

A single pole and a dipole placed at -a. In this case, Ml(sl) is given by

: A
A ] [ 1
M.(s: = |—= b o—
1'% [Dl(sl)J [sl+a (sl+a)2
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F. A Method of Determination’ of A\

Re_c,ently,; Chew and. Low héve p"f.o“posé‘d a "general fnethod for
' analyzing the scattering of paft'icle A by pérticlé B, l'eiading to three
or more final particles, m order to obtain fche ‘cross section for the

: interaction of A with a particle which is {ri_xjtually' contained in B. 1%’
This method is useful for unstable particles such as pions and neutrons
from which free targets cannot be made, and hence can be applied to
determine the unknown p'axi'ar_ne_t‘er N of phqtgpion production from pions.

Lét us consider the reactions y +p = pt Tr+ + m and

vy+p— 11+:'IT+ + 'ﬁ‘o. {(Fig. 3). We counjeclure Lhe existeu&;e‘of a4 poule in
the momentum-transfer variable A,Z = (plzl - pz)2 at -1. The residue

of the pole in A% s found from the general formula given by Chew and

Low:

: 2 2 2 ' 2 2, w2 1

. 2,42 87a(W5, A 1y, £5 AT (wWE-l T

Lim ( A%+1) cW. 20 Ly L 2 WL Tw,
aW A" , K -

A%l ~
S (29)

where fzg 0.08 and 820/ 8_W28 AZ ~is the differential cross section
for y+p—=p+ - + 7 in the variables AZ and the total energy of the

t\';vo‘o"utgoing pions W in their baryceﬁtric system, K. 1is the photon

L

energy in the rest frame of the target proton, and O‘T(W) is the total

‘cross section for photopion production from pions which is given by
T 1 wo-1 W 3/2 2

M, (w?)

provided we ne‘gl'ect‘ all higher partial-wave contributions.

. + - 0o . -
The cross section for m, # and w 1is the same.
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MU-20474

f
Fig. 3. Diagramofy+p = {(w, + w, +p.
: + 0
T +7 +n

This figure shows the pole of interest. -
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-III. NEUTRAL-PION DECAY

One application of the y+ m = m+ m process is to calculate
the decay rate 6f neutral pions. Goldberger and Treiman were the first
to anal}}ze Tro decay by usmg dlsper sion rela.tlons,. but they considered
nucleon-antinucleon pairs as the most.important intermediate states and
neglected multi-pion states. 13 It seems to the author that this may not
be a good approximation, since it involves only c‘ontributions from fér-
away singularities but not from near ones. Here we adopt a different
_approa.ch and consider the contr1but1on of the least massive state. This
- can be done if we extend a photon variable q into the complex plaﬁe
instead of the meson variable p2 used by Goldb'érger and Treiman.

' Following the standard method, one has (see Fig. 4)

<C] (1) K(v) P (3)> ‘\/d4 x oKX <q'(i£) Jv(x) p(3) > €v.
ZK .
° | (31)
Because of translation ihvariance, Eq. (31) becomes
‘ izm* % (p-q-k) F, (-q%; -k%; -p%) ev"
{a () kv) T p(3) = T
(24,1y5,) |
wh‘erc' we have
. _ 1/2 1 , A
F = (4pya,) (q(u)l 3,00 | p(3)), o (32)

and p is the pion ‘four—momentumn The indices p and v refer to the
polarization state of the photons of momenta g and k, respeclively.
The number '"3" inside the matrix eilement represents a neutral meson
in the initial state; J is the source of the electromagnetic field and

satisfies

2
1A =T .
g a8, 3, -
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-Kle)  P

’*.Q(é')' .

MU-20475

Fig. 4. Neutral pion decay, with only the 27 intermediate state

considered. Wavy lines are photons; broken lines, pions. -
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. From general invariance érguments, the F function can be
written in the form:
2 2 2 2 2

— TIT' 2. .«
F(—q ) -k s ~P )" eaﬁpv qa kﬁepevf(-q :'k y P )° (33)

We can write this form because F must satisfy three conditions:

(a) K.e =0 (b) g.€'=0and(c) €. ¢ =0. The gauge-invariant
photons require the first two conditions. The last condition is due to
the fact that the meson is a pseudoescalar spinlecec particle, and the
polarizations of two photons decay"ing from it must be perpendicular to
each other. ' '

We assume that, with both PZ' .amdk2 on the masé-shell. the
scalar fu;xction f(;qz) is analytic in the whole complex q2 plane
except-for' a branch cut on the real axis from -4to -», Using these
analytic properties, we can write the dispersion relation for f(—(jz):

0

20,2
2, 1 Im {{o7) do ' ,
fra) =g 77 (34)

4 ¢ -4

Using the unitary condition, we can express the absorptive |

part of F in formula (32) as
. 2 — 4 [ I
A (%) = me Z‘Pof’ 8*(a-p_) (olJ“(0)|n, P ¥, PnIJV(O)'p(3)>.

Since our appfoach is to assume that the function is detecrmined
by nearby sin'gularities, no intermediate states except the least massive
state—~-the 2m state—-will be considered here. Actually, we should not
neglect the 37 contributions, especially if they produce a resonance or
even form a bound state at roughly the same energy as the two-pion

14, *
resonance.

\

“The author wishes to thank Professor R. J. Eden of Cambridge

University for indicating this point to him.
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- At present, ‘howevex;,..we are not able to handle this part. By considering .
the 2w intermediate state on-ly, we have

‘1, o
A(q)—zﬂd_j———-——a(q-pl.-pz)

(2m)
Xz <
1 spin

o|s.(0)| Py, P (J))(plm, P,

J(0)lp(3)) (35)

The first factor of the integrand, i.e. the matrix element describing the
disappearance of a pion paif with the creation of a photon, may be
written as '

&..8,, -6,. &

i 1j 2j 21 ZjA
(0) P (1), P, (Jj) AP P (p,-p, ) (
' 1 2 > (4p10 20)1/2 1 2’L | Sz

x Pl ep?) - (36)

\0

where FWT(S.) is the hermitian conjugate of Fn(s)’ the pion form factor
and is given by ' '

_ _ i
Fr 8= 5 sy

where the. D, function is given by formula (20). The second factor in

1 .
Eq. (35) is just the matrix element for photopion production from pions:
: N i € (p,)_ (p,)o K
. . _ i 3ij "afbv T 1l'a ‘2B "8
p (i), p,{Jj) I (0)|p(3) = (- ) M
( e v ) N2 (8 Py Pyg Pl 1/2
where : .
M=M]|-(p, +p,)% - )2 ° e
- - pl ) pz [ Pl - pz \
‘ Subst1tut1ng Eq (36) and (37) into (35), lettmg q =p, t P, and
Q= (p1 2)' carrying the isotopic- spm sum, and integrating over

at g q' and d” Q, we have

e °
r

2 .
A("] ): 48w

’ 2 3/2
g K, e ¢! ('q - 4) /
a

T, 02 0. 2
(-q7) M (-q7).
B Av.(_qZ)» 1/2 1

Eaﬁpv
(38)
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Notice that the integfatibn over .d4Q iprogj'ects Gdt"the b} wave of M only.
This is also evident from the fact that the'phofon has si)in on‘e. Comparing
Egs., (33) and (38), we obtain .- ’

[~ o]

. e 2 3/2 - : .
4

4'81';‘2 oo - qz)

and the p"1_oﬁ dééay fa'fe 1s given by

1 2
ryws f (0) .

w =

_ " The nhmeriéal eva.lu‘a:f‘:“i'o'n of f(0) is carried out by using
Simps_on's rule in steps of Q.Ol for t from 0 to 1, where t= 4/02.
. We use Eq,‘ (28b) for Mll and find that the decay rate of the ‘ITO is

given by '
7.0 x 10716
T2

A

where N is expreésed in the unit of e(ezb = 1/137). . For AN ==+1.3,"
T .is approximately .4 X:10~ 16 sec, the upper limit from TI'O lifetime
. : - .

sec,

éxpér,iments peljforme_d.by Harris, Orear, and Taylor.

- Dr. J. S. Ball, of Lawrence Ra-diationvLaboraAtory, has app]:ied the
~Mandelstam repr'eseritation to the y+N —= 11+ N problem and finds

“that |/\| is léss than 1.3 in-order to make his calculated cross-section
compatible with experimental data. The author wishes to thank Dr. Ball

‘for information about his results before publication.
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IV. CONCLUSION

From the assumption that the matrix element for photopion

production from pions has the Mandelstam represen‘tation we have

been able to formulate a set of 1ntegra1 equatlons for the part1a1 wave
amplltudes In our approximation, this set of equa.t1ons has been
reduced to a ‘single homogeneous mtegral equation for the p-wave ampli-
tude, whose solution depends on an unknown parameter A , and to
formulas for the higher partial waves in terms of the p wave.

U sing the pole-approximation technique of Chew and Mandelstam,
we have been able to solve the p-wave integral equation and have given the
explicit form of the two-pole formula in terms of A and three other para-
meters. These parameters can be calculated in a straightforward manner
from crossing relations, once the parameters of the two-pole w-m formula
are known. v

We have proposed a method to determine A by extrapolation of
the cross section fo‘r vy+p—~p + 'n'+ +wm andy+p-—=-n+ 'n'+ + Tro. However,
this experiment is very difficult and can only determine the parameter /\
up to its absolute value. We have estimated the order of magnitude of A
here by considering the decay of neutral pions, assuming that the ytw—=2mw
process should play a prominant role., Our calculation is based on the
assumption that only the least-massive intermediate states contribute to
the dispersion integral, but there is no good reason to exPeétthe 3w

contribution to be negligible. A better estimate of A may come from

. photopion production on nucleons, where Ball has shown that y+ﬂ42w makes
‘an important and characteristic contribution. Other problems in which A

.appears include the calculation of 3w ‘contributions to the nucleon isotopic

16 .
scalar form factors. Up to now, however, no one has succeeded in

treating the matrix element QNT\I. l 3w), which is.also needed here.
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APPENDIX
The sign function ¢(x) used in Eq. (17) is defined as

e(x) =

: fOI‘ X

‘The sign function arises because of the complicated s

1 dependence of the

denominator in Eq. (17). Since we have

: 1
21 Im: ' 5174 172

Zsz+sl-3+(sl-—1 ( 5 ] 2
_ 1

25 +s +in-3+(s+in-1) sy+in-4)1/2

27S T oTisTin- \si+1n. - 1
1 A
) ’s)-in-4 1/2
Zsz+sl—;n-3+(sl—1n—l)(s—l_i—n— z,
2 ' .
' -6-252(51 -2s,-2) s -4 1/2

= - 2Tie 51(51'1)(51'4.) X6<252+sl-3+(sl-1) 5, zl),

s1-4> 1/2

. . 1 1, .
from the 11m1tvs of s, {4 andz [3—51—(51—1) < < Z.l] for $H <O},
one sees that the argument of the sign function always lies between the

iimits 'x1 and X, where we have
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-2 (2s + 1(2s, - 5)
X ﬂsl—IXSl -4)

and

2
sl-Zsl-Z

X, =1 - :
2 51[151'4_,'_11‘72

1\<0 These two functmns X and X, vanish for
1

" thé unique value s, = ? They are both positive for -« < 8 <-5

in the range - <s

1

and both negative for -- 7<8, & 0 so that we may simply write

€ (s ) in the left-hand cut dlscontmulty
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