This report may not be published without the approval of the Patent Branch, AEC.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
TITLE: Preliminary Results of Step Input Transients in the KEWB "B" Core

PROGRAM AND PROJECT: Kinetic Experiment on Water Boilers (KEWB)

NOTE: Memos are working papers and may be expanded, modified, or withdrawn at any time, and are intended for internal use only. Further dissemination or distribution is not authorized, except as outlined in SOM Procedure C-712.

UNCLASSIFIED
SECURITY CLASSIFICATION
PRELIMINARY RESULTS OF STEP INPUT TRANSIENTS
IN THE KEWB "B" CORE

By

R. K. Stitt
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>4</td>
</tr>
<tr>
<td>II. Experimental Results</td>
<td>4</td>
</tr>
<tr>
<td>A. Critical Assembly</td>
<td>4</td>
</tr>
<tr>
<td>B. Step Input Transients</td>
<td>5</td>
</tr>
<tr>
<td>III. Conclusions</td>
<td>6</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The purpose of this memorandum is to present a review of the preliminary data obtained with the KEWB "B" core, which is of cylindrical design (Figure 1). The data presented here are based on a small number of tests and may be subject to change as further detailed investigations are made.

Experiments on the KEWB "A" core, a prototype 50 kilowatt spherical core, were completed in August 1959 and that core was removed from the system. The "B" core was installed, then an extensive modification of the facility and wiring system was completed. The instrumentation necessary for operation was installed and checked out by January, 1960. A review of the hazards associated with the change of cores was requested by the AEC before loading of the "B" core was undertaken. This review was submitted on February 4, 1960, and approval to load was received March 7.

The "B" core was made critical on March 11. By April 12 loading of the excess reactivity was completed, a control rod calibration had been made and transient testing was begun.

To date step input transients have been run with periods ranging from 0.53 seconds down to 0.93 milliseconds. The results are reported herein.

II. EXPERIMENTAL RESULTS

A. Critical Assembly

On March 11, 1960, the KEWB "B" core was made critical with 1450 grams 235U at a fuel solution volume of 16.3 liters. The loading was then continued until an excess reactivity of 6.2 ($\sim 5\% \Delta k$) at a fuel volume of 18.0 liters and 1772 grams 235U was attained. Mass and water coefficients of reactivity determined during loading of the excess reactivity are $0.016/gm$ 235U and $0.60/liter$ respectively. The total worth of the control rods at the final loading was determined to be 8.70 ($\sim 7\% \Delta k$).
B. Step Input Transients

A series of step input transients have been run with stable periods ranging from 0.53 seconds down to 0.93 milliseconds. Initial conditions were 70 cm Hg core pressure, 25°C core temperature and less than 1 milliwatt initial power. No damage was sustained by the core system during any of these runs. Some slight bending of the horizontal through-tube and the dust covers over the control rods occurred during the 0.93 millisecond transient. Additional support has been added to the top of the secondary enclosure to reduce this motion and the short period transients have been repeated with no bending of the auxiliary components.

Figure 2 shows peak power as a function of stable period for the runs made and compares these data to the results obtained from the "A" core 85% full sphere experiments. The maximum power achieved for the 0.93 millisecond transient run was 2,200 megawatts.

The amount of energy released in the bursts has been determined for some of these runs by integration of the power-time recordings. These data are given in Figure 3 again with the comparative data for the "A" core experiments. The total energy release in the burst for the 0.93 millisecond transient was 9.0 megawatt-seconds.

Pressure data were recorded from 7 transducers located in an array of positions from the bottom to the top of the core vessel. The two transducers which show the highest pressures are one located at the center of the bottom of the core and one located in the center of the deflection dome about 1.5 feet above the fuel solution. The data from these transducers are given in Figure 4 along with similar data taken during the "A" core under-full tests. The pressure pulses recorded at the bottom of the core are broad expansion pressure pulses due to the rapid expansion of the fuel solution. The pressures at the deflection dome are sharp pulses caused by the fuel solution striking this dome as
it is expelled upward by the transient. The maximum expansion pressure observed was 315 psi. The maximum impact at the dome was 590 psi. Even though the maximum pressure is greater at the deflection dome it is not important when considering the danger of rupturing the core vessel since it is delivered to an internal member and not the vessel walls.

As shown in Figure 4, the maximum expansion pressures in the "B" core are less than those observed in the "A" core 85% full case for the same period.

III. CONCLUSIONS

The results of the preliminary "B" core tests are substantially as expected. Two of the prime objectives of the "B" core experiments have, in part at least, been accomplished. They are: (1) obtaining a clear and complete recording of the initial expansion pressure wave, and (2) operate the reactor on a 1 millisecond period to observe the effect of core-reflector de-coupling.

REFERENCE

<table>
<thead>
<tr>
<th>Transient No.</th>
<th>Period (ms)</th>
<th>Peak Power (Mw)</th>
<th>Inertial Pressure (psi)</th>
<th>Impact Pressure (psi)</th>
<th>Energy Release (Mw-sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001 B</td>
<td>530</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1002 B</td>
<td>230</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1003 B</td>
<td>76</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1004 B</td>
<td>40</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1005 B</td>
<td>16.5</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1006 B</td>
<td>9.57</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1007 B</td>
<td>4.60</td>
<td>170</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1008 B</td>
<td>5.15</td>
<td>140</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1009 B</td>
<td>3.77</td>
<td>220</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1010 B</td>
<td>2.46</td>
<td>400</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1011 B</td>
<td>1.85</td>
<td>645</td>
<td>120</td>
<td>40</td>
<td>3.8</td>
</tr>
<tr>
<td>1012 B</td>
<td>1.59</td>
<td>880</td>
<td>160</td>
<td>100</td>
<td>4.8</td>
</tr>
<tr>
<td>1013 B</td>
<td>5.17</td>
<td>160</td>
<td>29</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>1020 B</td>
<td>1.36</td>
<td>1250</td>
<td>200</td>
<td>230</td>
<td>6.4</td>
</tr>
<tr>
<td>1021 B</td>
<td>1.15</td>
<td>1550</td>
<td>245</td>
<td>440</td>
<td>7.4</td>
</tr>
<tr>
<td>1022 B</td>
<td>0.93</td>
<td>2200</td>
<td>315</td>
<td>590</td>
<td>9.0</td>
</tr>
</tbody>
</table>
PEAK POWER vs PERIOD

FIG. 2

PEAK POWER (Mw)

10,000
1000
100
10
1
0.1
0.01
0.001
0.0001
10,000 1000 100 10

REACTOR PERIOD (millsec)

"B" CORE

"A" CORE 85% FULL
ENERGY RELEASE vs PERIOD

"B" CORE

"A" CORE 85% FULL
Fig 1 KEBB "B" Core Installation
MAXIMUM PRESSURE vs PERIOD

"A" CORE IMPACT PRESSURE
(85% FULL)

"B" CORE IMPACT PRESSURE

"A" CORE EXPANSION PRESSURE
(85% FULL)

"B" CORE EXPANSION PRESSURE

FIG 4