RADIOACTIVE WASTE DISPOSAL PROJECTS. IDAHO CHEMICAL PROCESSING PLANT TECHNICAL PROGRESS REPORT FOR JULY-SEPTEMBER 1959

PDF Version Also Available for Download.

Description

The progress of extensive laboratory and pilot plant investigations on the fluidized bed process for the con version of radioactive liquid wastes to solids is reported. These studies are directed toward obtaining information on the dynamics of fluidized bed operation, the removal of volatile fission products and solids particles from gases, the development of equipment and operating techniques, and the various long term disposal aspects of all radioactive wastes. Laboratory studies on the removal of volatile ruthenium from a simulated calciner off-gas showed the removal efficiency of silica gel to decrease with successive wetting and drying cycles. Electrostatic precipitators were ... continued below

Physical Description

Pages: 22

Creation Information

Slansky, C. M.; Warzel, F. M. & Stevens, J. I. July 1, 1960.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The progress of extensive laboratory and pilot plant investigations on the fluidized bed process for the con version of radioactive liquid wastes to solids is reported. These studies are directed toward obtaining information on the dynamics of fluidized bed operation, the removal of volatile fission products and solids particles from gases, the development of equipment and operating techniques, and the various long term disposal aspects of all radioactive wastes. Laboratory studies on the removal of volatile ruthenium from a simulated calciner off-gas showed the removal efficiency of silica gel to decrease with successive wetting and drying cycles. Electrostatic precipitators were found to have a higher removal efficiency for solid particles (alumina) when a wetted wall rather than a dry wall type was used. Tests to determine the distribution of ruthenium in a pilot plant calciner were performed. Pilot plant data on particle growth in a fluidized bed were compared with theoretical equations. Operating experience with a NaK heat transfer system, and with liquid flow controllers is reported. The results of a series of qualitative tests to determine the likelihood of an explosive reaction should NaK leak into a fluidized bed calciner indicated that such a reaction is unlikely. A NaK leak that occurred at a welded junction was attributed to thermal overstressing of the metal and not due to corrosion. Calcium fluoride-impregnated Teflon was found to be a superior gasketing material, both chemically and mechanically, to pure Teflon. A literature survey on the chemistry of zirconium in a calcination process suggested the possibility of calcination in contact with silica and a laboratory unit is being installed to study the process. The hydraulics of a pulsed plate solids-liquid contactor and its associated equipment were determined. A preliminary investigation was started of the possibility of using metallizing techniques to surface coat solid particles and thereby reduce the leaching of fission products when contacted with ground water. Construction of a demonstrational fluidized bed calciner was approximately half completed; however, the national steel strike has slowed the construction schedule and the completion date cannot be estimated until the strike is settled. Process and equipment reviews of the facility and the results of thermal conductivity measurements on Idaho sands are reported. (auth)

Physical Description

Pages: 22

Notes

NTIS

Source

  • Other Information: Orig. Receipt Date: 31-DEC-60

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: IDO-14514
  • Grant Number: AT(10-1)-205
  • DOI: 10.2172/4156931 | External Link
  • Office of Scientific & Technical Information Report Number: 4156931
  • Archival Resource Key: ark:/67531/metadc868746

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1960

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Feb. 17, 2017, 7:07 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Slansky, C. M.; Warzel, F. M. & Stevens, J. I. RADIOACTIVE WASTE DISPOSAL PROJECTS. IDAHO CHEMICAL PROCESSING PLANT TECHNICAL PROGRESS REPORT FOR JULY-SEPTEMBER 1959, report, July 1, 1960; Idaho Falls, Idaho. (digital.library.unt.edu/ark:/67531/metadc868746/: accessed December 13, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.