$$
000-2009-14
$$

Ronald Arden Sidrei
Fhysics Departienti．
Inciana thiversity
Eloomington，Inaie：as 1．74c1
wotres
 has teven raprodecte from the fost anilatio
 ditiliks．

 cofy to permilt the breadest pessith araikre：－

This report wat prepered as sp account of work日ponsored by the United StBias Govemmont．Neither the Inited Staias not Iha United States Alomic Enerty Commisalon，noc any of thei employese，nor any of their contractors，guocspress or implird，or assomies any Ifegal liablity or tespopsibiliky fort the seturacy，com－ pletenseti of uerfulness of ony information，apparilus， praduct or procest alachosed，or represents that ils use would nol intifing privately dwaed rithig．
＇shtity．

MOTICE

IEG縕 NOTIC

部
 （ix－7） 2 со9．

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereot, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Abstract

Mfferential cross sections are preaented for pion-proton elastic scattering in the angular range $-0.6 \geqslant \cos e_{c . m} \geqslant-0.98$ at 15 incident r^{*} momente from 2.18 to $5.25 \mathrm{GeV} / \mathrm{c}$ and five incident π^{*} momenta from 2.30 to $3.00 \mathrm{GeV} / \mathrm{c}$.

The $\pi^{*} p$ angular distributions rise steeply near 180° at all momenta. For laboratory momenta, $\geqslant 2.75 \mathrm{GeV} / \mathrm{c}$ they show \in minimuse at u a. -0.17 ((GeV/c) ${ }^{2}$ and a broad maximum near $u=-0.5(\mathrm{GeV} / \mathrm{c})^{2}$, where u is the square of the forir momentum transfer between the incoming pion and outgoling protori.

The structure of the $\pi^{*} p$ angular distributions undergoes a olariked charge in the momentum range studied. A pronounced aly in the crosa section st 180° thich is observed at momenta $\leqslant 2.50 \mathrm{GeV} / \mathrm{c}$ evoives into a steeply 5ang peak at 2.80 and $3.00 \mathrm{GaV} / \mathrm{c}$. A minimum in the differential cross bec. tions appears in the $3.00 \mathrm{GeV} / \mathrm{c}$ date et $\theta_{\mathrm{c} . \mathrm{m}^{\prime}}=255^{\circ}$. A shellow minimata is fndicateã for all momenca near $\theta_{c . m .}=125^{\circ}$.

Gualitatively good agreement with the expeximental resulte is obteined with a diraci channel reamance model. The $r^{+} p$ data ore coupered with a Regge madel which considexs the exchange of the Δ_{0} and $F_{d x}$ Regige trajectortes. The qualitative suceess of boti the direci ctannel resonance nodel and the Regge nocel lends support to the concept of cuality,

LIST OF FIGURES
LIST OF TAELES
I. IATRODNCTION
II. EQUFPENT AND PROCEDURES
A. Exporimontial Layout
B. Moaswrement of Film
C. Reconstraction of Events
D. Fiducial Outs and Geometrical Efficiency
III. DSTERIINATION OF DIFFERENTIAL CROSS EECTIONS
IV. CORECHIORS 10 THE DATA
A. F.fficiencies of Counters and Chanbers

- B. Attencstion of the Bean in the Taxget
C. Nuclear Interactions of the Final Stete Particles
D. Foltiple Beam Tracks
E. I-epton Content of the Bom
F. Bmpty Target Background
G. Experituental Resolution
H. Lass of Ivents from Pion Decay
H. REsums
VI. THiBRY
A. Raggeinzec: Baryon Exchenge
E. Direct Chennel Resonances

C, Doplity

1. Bean Transport Systom
2. Experisental. Layout
3. Fast Logic
b. Sperk Ohembsr Fhotograph
4. Scetter of Sparks froan Fitted

Trajectortes (sigint)

6. Detection Efficiency 't $2.18 \mathrm{GeV} / \mathrm{c}$
7. Distribution of Coplanertites at $5.00 \mathrm{GeV} / \mathrm{o}$
8. Pistribution of Dol for AII Data at $3.75 \mathrm{GeV} / \mathrm{c}$
9. Dol Distributions at $4.25 \mathrm{GeV} / \mathrm{c}$ fox
${ }^{-\cdots}-.75 \leqslant \cos \theta_{c, m} \leqslant-.725$ errd $-.975 \leqslant \cos \theta_{c} \leqslant . .950$
i1. Pressure Curve at $3.00 \mathrm{GeV} / \mathrm{c}$ for the
Boan Ceronkov Counter
10. Exporimental Resolution at $4.00 \mathrm{GcV} / \mathrm{c}$
11. Angular Distributions for Backward $\mathrm{T}^{+} \mathrm{p}$ Elastic seattering
12. $\pi^{t} p$ Differential. Cross Soctions at Fuxed u versus s
13. Angular Distributzons for Backward n+p

Elastie Scattoring (ds/c-R)
16. Angilar Distwibutions fer Bockrate $\pi^{-} p$ Elas*ic Scattering ($d \sim / d u$)
\square
u
" IV-4
'

1. $\quad \mathrm{V}-1$
"

* $\mathrm{V}-1$
following page TT-1
$1 \quad \mathbf{I T}-2$
"

4
*

4
*
${ }^{*}$
*
"
1 . XV-5
*

- IV-7
*

*. $\mathrm{V}-2$
" .. $1 \mathrm{~V}-\mathrm{Z}$

$$
\left(\operatorname{cont}_{5}\right) \quad:
$$

Figures (cont.)

17. Feynmann Diagrams for π p Backward following page VI-3
Ehastic Scattering
18. Chew-Frautschi Plots for the $\Delta \delta$
N_{α}, and N_{γ} Trajectories n 11 VI-6
19. $\log d \sigma / d u$ at Fixed u vs. $\log s$"
(1) VI-7
20. Effective Trajectory for $\pi^{+} p$ Backwari
Elastic Scattering${ }^{\prime \prime}$21. $\pi^{+} \mathrm{P} \rightarrow \mathrm{pi}^{+}$Polarization at Backuard fogles
\square*) VI-8
21. Elasticities of the $\Delta \Sigma$ Recurrencesn
VI- 10
22. Predicted $\pi^{-} p \rightarrow p \pi^{-}$Polarization at $3.00 \mathrm{GeV} / \mathrm{o}$ VI. 13
23. $\pi^{-} p$ Differential Cross Section at 180°. ต25. $\pi^{-} P \rightarrow p \pi^{-1}$ Fitted Helicity Amplitudetsat $3,00 \mathrm{cev} / \mathrm{c}$$*$4. $\dot{\mathbf{Y}} \mathbf{I}-13$
24. Jseable FMll at Each Momentura
II. Resuits of Chamber Erfieiency Check III. $\pi^{+} p$ Differential Groes Sections IV. $\pi^{-} p$ pifferential Crose sactions Y. Comparison of the Parameters of Four
fesonance Model Fits
$\sqrt{1}$. $I=3 / 2$ Pesonance Parameters
III. $I=1 / 2$ Resonanco Paramaters
following page II-5
\dagger
n
\boldsymbol{n}

- page VI-9

わ
"

* IV-2

Referencos

-
* \quad "
v VI-12

1. Introduction

We report results from an optical spark chamber experiment performed at the Argonne National Laboratory Zero Gradient Symehrotron during * 4 ty-Auguat 1968 . The purpose of the experinent was to measure angular Adstributions for pion-proton elastic scattering in the angular range $-9.6 \geqslant \cos \frac{0}{} \mathrm{c}, \mathrm{m} \mathrm{m}^{2}-0.98$ at 15 incident π^{+}momenta from 2.18 to $5.25 \mathrm{GeV} / \mathrm{c}$ and rive incldent $\pi^{-\pi}$ momenta from 2.38 to $3.00 \mathrm{GeV} / \mathrm{c}$.

At the time that this experiment was proposed, it was suggested that Lhe $\pi^{+} p$ backward anglar distribution, for momenta less than $3 \mathrm{GeV} / \mathrm{c}$, could be explained by oirect channel resonances. 1 At high energies (o >5 Gev/e) the anpular distribution, ${ }^{2}$ which is characterimed by a peak at backimad arples and a minimum near $r=-0.2(G, y / c)^{2}$, was thought to arise sron exchange of the Δ_{6} and M_{c} Repe trajectories. ${ }^{3}$ A wrong signature nc isense xero in the ${ }_{r r}$ amplitude at $u=-0.2(\mathrm{GeV} / \mathrm{c})^{2}$ produced the miaimus seen in the experimental dala

At intermediate energies, $2-5 \mathrm{GeV} / \mathrm{c}$, it was proposed that the resonance aplitude was interfering with a nucleon exchenge term ${ }^{4}$ or Regge trugectory exchange ${ }^{5}$ amplitude. In the Fegge interference model, severai isorances were postulated as recurrences of the known A_{δ}, $N_{c \gamma}$, and N_{γ} states. ${ }^{5}$ with these postulated resonances, the model was quite successful in fith ing the $x-p \rightarrow p x-180^{\circ}$ cross section, ${ }^{6}$ and it was shown that the resonance c:otribution was very smali at momenta above $3 \mathrm{GeV} / \mathrm{c}$. The dip seen in the tr? data at $2.1 \mathrm{GeV} / \mathrm{c}$ at 190° was due to interference between the resonance nis Regge emolitudes. For the $r^{+} p$ data it was suggested that the resonamed
giftude saturated the 180° differentiel cross section for momenta up in $4 \mathrm{CeV} / \mathrm{c}$. Several criticisms were made of this Regge interference fordel hovever, on the grounds that double counting resulted from the model. ${ }^{7}$ it was further showt by Dikmen ${ }^{8}$ that the $\pi^{-2} 180^{\circ}$ aross section could be described using resonances only.

It was with the bope of shedding some light on the question of the phenomenological interpretation of *p backward elastic scattering that we indertcok the detailed measurements in the experiment described above. Fxtant $"^{4} p$ dats ${ }^{9}$ in this interesting momentum region were rather sparse, and at momenta above $3 \mathrm{Gev} / \mathrm{c}$ of ratber poor statistical accuaracy. The π differential cross section had been measured with good precision (10 t alatistical error) at 180° from 1.6 to $5.3 \mathrm{GeV} / \mathrm{c}^{\circ}$ but at less backward aņies was of poorer statistical significance? ${ }^{\circ}$

The experimental equipment and procedui es are described in. chapter II of this work. The deternination of the differential cross sections is outlizned In Chaiter III and corrections to the dala are diacussed in Chapter IV. In cranter V we present the results fron this experiment. We compare the results With the Regge ${ }^{11}$ and direct channel resonance modeis ${ }^{12,13}$ in chapter $V I$.

A. Experimental Layout

This experiment was performed in the secondary bead \#1 of the Argonne is:ional Laboratory Zero Gradient Synchrotron. Fig. 1 shows a schernatic rex of the beam transport system. The pion beak used in the experfment rue produced by a beam of $12.5 \mathrm{geV} / \mathrm{c}$ protons, defined by the bending magnets Ir, snd $X B 6$, incident on the copper target TAI. ${ }^{14}$ The momentum of this rcondary beam was determined by the bending magnet XBAll and a lead collimator (-aried by A in Fig. 1). After the collimator the beam passed through *4. tonding magnets, (XBA12 and 23), and a set of quadrupoles (XQAl3 and 14) wi: th focused the secondary bean on the 12^{12} liquid hydxogen target (TG 1. sif. 1). In the region of the liquid hydrogen target the beam spot. n.raged abcut $3 / 4^{* \prime}$ in diameter. The momentum spread of the beam $\because 3.00 \mathrm{GnV} / \mathrm{c}$ vas $1 \neq$ (FWIMO). Thi uncertainty in the median momentum was
 \therefore several nomenta for the pions, protons, and deuterons in the positive .r. The times of flight were measured between the upstreamend of the - -ortura slit (A in Fig. 2) and counter B2 (see Fig. 2) a distance of $+i$ feet. The measured difference in time of fligit octween the pions * ! deuterors rorresponded to a monentum which agreed with the calculated \because to wilhis. 璜.

To disioinguish pions from protons in the beam, a cerenkov counter ! in fig. 1) was placed between the collmator and XBAle. The counter v': fijled with Freon 12, dichlorodifluorometione. The counter's index rerrection was adjusted at each beam momentwn, so that the threshole - Serity for cerenkov light was greater then the proton velocity and much " : nan th pion velocity.

The bean intensity varied from 30,000 particles (15,000 pions) per burst at 2.18 GeV/e to 150,000 particles (40,000 pions) at $5.00 \mathrm{GeV} / \mathrm{c}$.

The experimental layout is shown schernatically in Fif. 2. The beam was detected by counters Bl and 82 which are rerpectively $2^{\prime \prime} \times 2^{\prime \prime}$ and $1^{\prime \prime} \times 1^{\prime \prime}$ counters of $\frac{1}{4}$ thick scintillator. AH was an anticounter with a. $1^{\prime \prime}$ hole in it for the beam to pass through and was $\frac{1}{4 \prime \prime}$ thick. About 5% or less of the bean was intercepted by this counter in nomal operation. Anticounters Al-AS were placed at strategic locations above, below, beside, and dombstream of the target. These counters covered most of the solid angle not subtended by the detectors, and reduced the trigger -ate by an order of magnitude. Counters rl-nt detected the scattered pion and "eounters Pl and Pe detected the recoil proton. Ail counters eacept Bl, B2 and AH were made of $\frac{1}{2} \pi$ thick scintillaing plastic. A wel. -filled Cerenkov counter with a sensitive area of $24^{11} \times 28^{14}$ was places behtrd the pion counters $\pi \lambda$ and $\pi 2$, The purpose of this counter wis to suppress trifeges fror Corward scatuering evonts with a atre proton in he pion detector. A signal was required from this Cererkov counter whenever mi and/or π detected a particle.

A schematic of the fast electronics employed in the eyperiment is shown in Fig. 3. The beara (for positive pions) wes definec bry CG $\overline{\mathrm{A}} \mathrm{BL} \mathrm{BZ}$ i.e. a coincidence betreen the gas cerenkov counter (cG) and beam counters Bl and B2, with no signal from AH. CG wes a very nov sy signal as discriminato settings were low to detect the sical signalin from the phototube vifwing the Cerenkov light. Thus spurious beem son its were e hazard. These accidental coincidences were estimated by fici Af B1 B2 (see Fig. 3), there we deliberately mis-timed of signals $\mathrm{b}_{3} .50 \mathrm{~ns}$ with respret to $\bar{A} \bar{H} E l B ?$. About $2 \bar{x}$ of the bean coun - were accidrnal coincidences.

x means any combination of one or more of the pion counters $\pi=-\pi 6, p$ geans a signal ryom Pl and/or Pe, and \bar{A} reans no signal fron any of the anticounters Al - A5. If $x 1$ or ré had a signal we also required a signál from the water-filled Cerenisor counter (CWl - CW6). The signgls from six phototubes in the Cerenkov counter were added together in a rixer. The coincidence $C G \bar{A} \overline{1} B 1 B 2 \pi p \bar{A}$ was Iecorded twice using independent carcuitry (not shown). The ARD circuits shown were EGG colncidence modules followed by discriminater modules. The "Pile-up Gate" shown in Fig. 3 was ${ }_{2} 5 \mathrm{ed}$ to suppriss some of the triggers with multiple bean tracks. The inputs to the gate were $\overline{A H} B 1 B 2$ and $A H B 1$. A signal from either of these inpats was sufficient to turn off the gate for 1 . H 5 . The effect of thas ras to shut off the system for $1 \mu \mathrm{~s}$ afier each beam particle, if it did rot produce a frawer.

The inczdent beam, fomard scatternd proton, and bachward scattered pion trajectories were each measured by two optical spark chambers. The spark chambers are indicaterl \perp (Fig. 2 by cross hatching.

The polar angle coveret an the lab by the pion chambers ias $75-250^{\circ}$ for the proton chembers $1.5-24^{\circ}$. These angles correspond to a - ange of
 and $-0.7 \geq \cos \theta_{c . m} \geq-0.935$ ai $5.0 \mathrm{Gev} / \mathrm{c}$.

Each charaler had six one-half inch paps wath . 001 " thist aluaj nurn fozl planes. They were filised wath a carculating mixture bi gof Ne apl 10\% He gas. The chambers were pulsed at 9.5 k when trigge-ed by the electronics. A 150 V clecring fiela of opposite polarity to the voltage pulse was applied at all tumes.

Twenty-one sets of fiducial lights were mountod on the seven spark chambers. A set of fiducial lights consisted of a luminescent panel overlaid with a photograpicic negative, generating a pattern with on X and two rectangles.

The chambers were filmed stereoscopically and wore viewed from above by mjrrors set at 45° with respect to the horizontal. Vertical mirrors were used to reflect the images through a lens into the capera. The mirrore and the camera location are not shown in Fig. 2 . on each frame of 35 mm filin were tro viets for each of seven chambers, 21 sets of fiduciol lights, and a view of a data box. The data box displayed the date of the run, pion charge, bearn momentium, target condition (full or empty), and the roll number and frame number. Pictures of 1145 triggers were taken on each 150 foot roll of 35 ma Kodak Linagraph shellburst filn. in addition; "calibx, tion" pictures were taken at the beginning and end of ef siz roll. In these pictures the chambers were lit from below and frodo one sjde in such a way as to illuminate marks etched at $1^{\prime \prime}$ intervals in tro id'.s of the lucite frames of the chamberg.

The camera was capable of recording one picture per burst. "he avorage number of triggcrs reccided par burst was 0.6 ab $3.00 \mathrm{GeV} / \mathrm{c}$ and 0.3 at $5.00 \mathrm{GeV} / \mathrm{c}$.

The operation of the spalk chambers was monitored by a closeci circuit television camera so that irregalarities in the performance of the wambers or fiducial lights could be readily detertef during the ruming of the experisiont.
B. Measurement of Film

We took approximately 330,000 pactures at 15 incident π^{+}momenta and fave incident π^{-}momenta. The anount of useable rilan taken at each momentura is listed in table I. These pictures were scanned by an automatic film reader built at Indzane Universaty named CRUDI (Cathode Ray Ultimate Device, Indiana version). CRUDI, based on a Brookhaven Nationai Laboratory design, has been described elsewhere. ${ }^{16-15}$ CRUDT was controllea by the $\operatorname{CDC} 3400$ computer at the I.U. Research Computing Center and was able to scan and measure about 90035 ma frames an hour. The machne langu age programmang needed to control CRUDI is described in Ref. I6.

The procedure ermployed in measaring each frasae of film is described below:
2) The film was positioned on the viewing gate using a large faducial (see Fig. 4.). Thas fuducial was recognuzed by it. size, 100 by 400 counts, where one CRUDJ least count $=1.5 \times 10^{-4}$ 号, on the filln, and its opacity.
2) Hext, the four outermost fiducials on the fim were located anc their positions meesured. On every 50th frane all 42 faduc 21 rectangles were measured.
3) The scan for sparks started an $\rho 1$, the anner pion chamber i. Fig. 2. If no sparks were round in $\rho 1$, the frame was skıpyrd over. In the case of the two outer pion chambers, if more than three sparks were found in the first chamber scanned the
other chamber was not examined.
4) The remaining chambers were then scanned.

Scannıig for sparls was done dow the center of the spark chasber gep. Spariss were recognized by their opaclty (the film is a negative) with respect

	$\mathrm{P}(\mathrm{Gov} / \mathrm{c})$	Mo．of Elas．Frerts	＂Useable Fictures
＂$x+$	2.15	1，750	14，？00
	2．9n	1，7\％	1ご500
	2.35	1，946	32，900
	2.75	2，101	13，305．
	3.00	1，671	14，409
－	3.25	fif	13，400
	3.50	721	17，700
	3.75	${ }^{12}$	1\％，500
	4.00	$7{ }^{2}$	15，300
－	4.25	65%	19，103
	4.10	540	37，900
－	4.75	It？	1：ron
	5.00	$3^{n} 4$	3n， 3 \％
	5.12	180	0,000
	5.35	$\underline{20}$	13， 090
		14， 25	233.600
5－	$2 \cdot 3^{n}$	1，ก¢7	12，m
	2.90	451	5，500
	2.65	$3{ }^{3} \mathrm{O}$	6，400
，	2.10	699	1．5，753
	3.00	436	2． 2×0
		3，113	59，100

to the background level, which was meagured every 100 frames by a san in an area free of sparks. Once sparks were found in one gap of the chamber, the locations of the sparks in other gaps were predicted and scanning done In those restricted areas. This technique avoided the rather time-consuring scan down the full length of the chamber for each gap. If ≤ 3 sparks were found in a view of a chamber each gap was scanned completely.

The output from CRUDI wes written directly onto magnetic tape and consisted of three types of data records: (1) a record at the beyinning of each roll of film containing the data box information; (2) the 42 fiducial positions (repeated every 50 frames); (3) $x-y$ coordinates, width and oparity for each spark. 550 hours of computer time were required to measure the film; this included time spent debugging software and remeasuring some of the film.

c. Reconstruction of Events

The reconstruction of events proceeded as fuljows, The first task was to iransform the coordinates of the measured ijducials and sparks from the CRUDI coordinate system x_{o}, Y_{0} - which is nom-linear because of the curvature of the face of the CRT used to scan the film - onto a linear crordinate system. The transformation was of the form

$$
x=x_{0}\left(a+b x_{0}^{2}\right), y=y_{0}\left(a^{\prime}+b^{\prime} y_{0}^{2}\right)
$$

where the a's and b's were constants determined when CRUDI was calibrated. Next the set of 42 fiducials was mapped onto the four fiducials measured on evory picture. This determined the orerall magnification, rotation; and translation of the coordinate system local io each picture. The spark coordinites were then transformed onto a standa A orientation of the
ccordinate ayes. The next step was to filter the sparks. To do this, the two chambers in each arm were treated as a single l2-gap spark chamber filmed in 90° stereo. In each of the two views of the three "12-gap" chambers a least squares fit to a straight line was made. If a gep contained more than one spark, sparks furthest froio the fitted straight dine were discarded. The remaining sparks were then filtered by discarding the sparks furthest from the straight line until an accaptable X^{2} for the fit was obtained; or only tro sparks remained. The sparks in the two yiews were then peired up and transformed into the three-dimensional laboratory coordinate systan. After this proceaure, thrie vectors were formed for the bean, scattered pion, and recoil proton trayectaries, A geometrical reconstruction was then made of tho vertex os the interection. This vertex was used as a starting point in a Gauss-Nevtion iteration whict minimized the squares of the propendicular distances of the sparks from three straigtit cines which wers titted throuth them and ronstrained to intersect at vertck.

The "goodress of fit" for each eyent was caiculatea by computing Sigint, the gti ndard deviation in inches of the scatter of the sparks from the fittea vectors. Fig. 5 shots a histogron of gigint for all r^{+} data at $2.18 \mathrm{GeV} / \mathrm{c}$. The aver'ge scatter was about .0r" (1.3am) in real spece.

Dependirg on momentum, 55-70\% of the events could be reconstructed as two-body scatters. Events failed the reconstauctinn program for a number of reasons. For 8-1e of the data there were no sparls in the inner pion chamber, 1 .s. the trigger in the n counters was oue to a neutral particle or partscle: , In this case the other chambers were net scamned. for another

2ac. \%

5\% of the data no single pion track could be formed, usually breatse there were two or more good tracks in the pion chembers. Fifteen per sent. of the events failed because no track would be recoustructed from sparks in the proton chambers, either because there were no sparks ($\sim 1-2 \%$ oi ail data) or ton many (Iron forwird-going inelastic events). One to four per cent of the events failed because of multiple beas tracks. If event: failed because fiducials were mismeasured, or if the reconstructed data looked in any way suspicious, the film was remeasured. Suspicious, rolls were found by noting that the production vertex was displaced, or too dany events from the roll had Sigint too 1srge, or there were not enouph coplanar events compared with other rolls of fijm at the same momentur.

About 10 of the film was remeasured. Three rolls of film were found to be unmeasurable because two fiducials were obscured on the film:

Results for each reconstructable event were stored permatrently on magnetic tape in a 27 -word format containing bookkeping infomation, Sigint, and the coordinates of the trajectories.

Reconstruction was performed by the CDC 3600 computer of the Indisna University Research Corputing Center. About 25 minutes of complater time was required per rall of filo (1100 pictures).
D. Fioucial Cuts and Gepuetrical Efficiency

Cuts on fiducial volume were made under the assurption tinat all reconstructed events were elastic. This was done by calculatine the pion position derived from elastic scattering kinematios from the "proton" angle. Each pent was checkeri to see that, if ejastic, it coula lave reen seen by the detectors and thas the interaction vertex was in the liqutt:
byorogen of the target. For the 12 " long target we have used evernts from the center $10.8^{\prime \prime}$. Cuts were made on the counters and chanbers so bhat detector edges were moved in $\frac{1 "}{4 \prime}=\frac{1}{2}$ " from suryejed positions. No cuts were made where detectors overlapped. Data outside tne desıred fiducial volume were discarded from the final data sample.

In calculating the detection efficzency we have included the azinuthal acceptance of the apparatus, the absorption of the beam in the target, and the efficiency of the water-filled Cerenkov counter. The deteclion efficiency at $2.18 \mathrm{GeV} / \mathrm{c}$ as a function of proton lab angle is shown in fig. E, plotted For every $1 / 10$ th degree. The dip in efficiency at 12° was due to the small gap between the two outel pion chambers (see Fig. 2). 'fhe structure at smald angles was caused by cuts required by alumimum supports en the upetream ond of the tareet. Bince sono random ryont.s werr used to graerate each detupi in Fig. 6, the statistical uncertainity is 1.4 \%.

\&i.g. S.
III. DETERMCNATION OF DTFFEREATIAL CROSS SECTIONS

Since the momenta of the fingl state particles were not measured, there are tro kinematical constraints for an elastic event. The first constraint used was a requiresant of coplanayity, defined as the triple scaler product $\mathrm{C}=\hat{\mathrm{f}}$. ($\hat{\mathrm{B}} \times \hat{\mathrm{p}}$) where $\hat{\mathrm{T}}, \hat{\mathrm{B}}$ and $\hat{\mathrm{p}}$ are the unit vectors which describe the trajectories of the scatterec plon, ban particle and seattered proton respectively in real space. Since elastic scatters are coplanar, they should have a distribution in C centerd on zero, with a spread determined by the experimental resolution. Fig. 7 show the distribution of coplanarities for all x^{+}data at $5.00 \mathrm{geV} / \mathrm{c}$. The FWHM of the elastic peak is less tian . 005 .

To deternine the yield of elsatic scatters, data were binned as a fanction of $\cos { }^{A}$ c.m. , which was celculeted froin the protion lab angle. 2he quantity histogransed for each event was the difference in lab angle between the messured proton angle and the proton angle derived using elastic scettexing kinenstice and the measured pion angle. This difierence is referred to as Del. Before histograrming Del, a cut on coplanarisw (| C | s.0125) was maile in adaition to cuts on fiducial vetume, producticy. vertex, and the scetter of spasks from the ftited straight lines. Del it plotted in Fig. 8 for " $^{+}$data at $3.75 \mathrm{GeV} / \mathrm{e}$, integrated over all c.m. angles; the FwHA of the elastic peak is $<6 \mathrm{~m}$. . Note in Fig. 8 that the beckground ig quite flat ness the elastic peok, so chat background subtraction from under the peak is quite sixaightormara. Del was plotted for each c.m. angulb bin (e.e., $-.775=005$ nc.m. $\leq-.950$) and beckground was estimatiod in each plot ky i manear interpolacion from bins outaide the elastic park. The cut on Del : or the elestic peek was $\pm 20 \mathrm{mr}$. The backiground

FIg. 8.
subtraction varied frow ow - 10% at intermediste angles to 15 - 40 灰 near 180°, depenaing on the incident momentur. Fig. 9 shows typical Del plots at $4.25 \mathrm{GeV} / \mathrm{e}$ for $-.750 \leq \cos 9 \leq-.725$ and $-.975 \leq \operatorname{cose} \leq-.950$.

The differential cross section wes calculsted by

$$
\cdot \frac{\mathrm{dg}}{\mathrm{a}_{\Omega}}=\frac{\mathrm{Y}}{0}\left[\frac{10^{30}}{(\hat{\mathrm{AO}})_{0}} \times \frac{1}{\mathrm{Z}} \times \frac{1}{\Delta \Omega}\right] \mu \mathrm{Hz} .
$$

where Y is the yield of elastic events weighted by the reciprocal of the detection efficiency, φ is the net pion flux (for each momentum), Ao is Avagadro's mmber, n is the density of liquid mydrogen $=.07 \mathrm{~g} / \mathrm{cc}, \mathrm{z}$ is the useable target length $=27.6 \mathrm{~cm}$, and A_{n} is the c.m. solid angle. For inost data bing, $A_{\Omega}=d(\cos \theta)$ oip $=(.025) 2 \pi$. The total correction to the date from the effects discussed below in Section IV was 17% witn a normalization error of $\pm 7 \%$.

Fig. 9.

TV. CORRECTIONS TO THE DATA

A. Efficiency of Counters and Chambers

Each scintillation counter was constructed of a rectangular sheet of scintillating plastic which was viewed through a lucite light gufde by a single 6810A photo tube. The efficiencies of the counters were checked by placing them in the beam in coinciaence with the beam telescope B1B2 $\overline{\mathrm{AH}}$. Efficiencies averaged about 99.5% with none less than 99\%.

The efficiency of the water filied cerenkoy counter for detecting relativistic pions ranged from $96-99.5 \%$. The efficiency was mapped on a $2^{1 *^{*}}$ grid over the sensitive area of the counter by plazing it in the beam in colncidence with CE $\breve{A H}$ BlB2. The efficiency was datermined by the ratio CG $\overline{C H} \overline{A H} B 1 B 2 / C G \overline{A H} 81 B 2$.

* The characteristics of the gas-filled cerenkov courter ere discussed in section E below.

The performance of the spark chambers was studied by examining the effects on the date of reconstructing events with informsion from one chamber cmitted This procedure utilited the redundancy of the detection system. Thus, if the missing chamber was a proton chamber, the tean and pion trajectories were determined os usial, and the proton trajectory was defined by the point of intersection of the bean ard pion vectors (the production vertex), and the sparks in tine remaining rroton cnaber.
:' The sparks in the remaining chamber were filtered by making a least squares fit to the straight line determined by the sparis in thet chamber and the vertex, which was treated as a spark. spurious sparks were discarded as outifned above.

The prorpose of reconstructing events in the sbove manner was to check for angular biages and spark chamber inefficiencies．If a chamber wes inefficient or full of spurious sparks the total number of desired eventa in a given set of data increased when that chamber waa omitted in the reconstruction．An example of this beheviour can be seen in Table II where we list the number of elastic events for each mode of reconstruction in angular bins of width $\Delta \cos \theta_{c . m}=.050$ ．These data are asmple of bad date from $2.65 \mathrm{GeV} / \mathrm{c}$（ $\mathrm{r}-$ bean ）．Q2 and 02 are the finer and outer proton chambers，pl is the inner pion chamber，g2 and $p 3$ axe the outer pion chambers．The results obteined by omitting 02 and 03 show a net loss of events because the experimental resolution is much poorer shen ondy the inner pion or proton chamber is used in the reconstruction．In the other cases there is net rise of $2-50$ overall，and in the case where Q2 is omitted ue see a 25% rise in the yield at $\cos Q_{c . m}=-.875$ ．A scan of this film showed that this behavior was due to a＂hot spot＂in Q centered n₹ar $a_{P, l a b}=20^{\circ}$ where the chamber was breaking down．Fila in which tris type of malfunction was found wes discarded．About 20 rolls of fibic at $2.50,2.65$ and $5.12 \mathrm{GeV} / \mathrm{c}$ was not used for this reason． The analysis shown in Table II wes performed for sill of the π－p data and about 15% of the $n+$ data．The remaining data were scerued by hand． for the uspable film we estimate the inefficiences of the spark chambers to be $2 k$ \％

B．Attenuation of the Beam in the Target
The leam flux recorded by C G $\overline{A H}$ BIBZ is the flux ot the upstrean end of the target．In general the intensity of the besm as a function

If. Reaults of Charber Efficiency Checks.

Chamber Omitted

$-\cos \theta_{\text {c.n }}$	None	Q1	Q2	pl	p2 or p3
. 525	4	4	5	4	3
. 575	4	5	4	6	4
. 625	5	7	4	4	5
. 675	12	11	14	11	10
. 725	23	24	22	26	25
. 775	29	32	37	37	25
. 825	3 R	39	38	40	36
. 875	65	65	86	66	57
. 925	11	115	115	111	11.3
. 965	61	64	. 55.	. 52	61.
\cdots totals	352	366	370	358	336

of the distance x traversed in the ধsrget is

$$
I(x)=I o \quad e^{-x / \lambda}
$$

where λ is the pion mean free path in hydrogen. $\lambda \Rightarrow 310$ inches for the somentino range of this experiment.

To find the average intensity in the target it was observed that $x / \lambda \lll l$ so that

$$
I(x)=I 0\left(1-^{x} / h\right)
$$

the average intensity is therefore

$$
\begin{aligned}
I_{\text {av }} & =I O(1-x / 2 \lambda) \\
& =98 \% I_{0}
\end{aligned}
$$

for the $12^{\prime \prime}$ Iiguid hydrogen target. Thus zaf was subtracted from the measured beam flux to account for the attenuation of the beam in the target.

An aduxtional conection of 0.5% was made for interactions of beam particles in the last beam comater B2.
C. Nuclesr Intergctions of the Find State Ferizcles.

Each spark chamber presental . $006^{\prime \prime}$ of $A ?$ foil and 030° of mylar to incident particles. To correct for mucleaz intersctions of the final stste particies in the liquid hydrogen, mylar windows of the target and sperk chambers, 2.5 ± 20 was added to the ydeld of desired events. Two thirds of this loss occured in the liquid hudrogen.

D. Mutiple Beam Tracks

A sean of the film showed that 6-10\% of the pictures contained more than one beam track. Of the events with maltiple beam tracks, $30 \pm 15 \%$ failed the reconstruction program oi could not pess the cut on sigint, of the reconstructed events, 50 or more had the wrong re estimated that only $10-20 \%$ of these events were lost fine bean divergnce vas $\pm 15 \mathrm{mr}$ in the vertical direction . . \quad and \pm for in the horizontal direction).
A_{n} overall correction of $3 \pm 2 \%$ was mede for loss of events with bultiple beam tracks.

E. Lepton Content of the Beam

The muon content of the beam was measured directiy in this experiment by studying the beam attenuation fn lead, Lead bricks were placed in the besn between the counters $B 1$ and $B 2$ (see Fig. 2). The pion flux defined by the colncidence $O G \overline{A K}$ BLB2 was observed as a runction of the thickness of lead. (The pion flux was normalited to the counter telescope BIZ, wicin mondtored the flux at the prodiction target). The results are shom In Fig. 10 where we plot the normelizod flux as a function of the thickness (6) in inches of the lesd in the besti for severel $\pi+$ and π - momerita. The statistical errors are smaller than the symbols used to plot the date. At ine Low momenta the data lie on e strasight line out to $t=4^{\prime \prime}$ to $6^{\prime \prime}$; at bigher monenta a straight line can be drawn tirough all the data at each momentum.

To deteraine the muon content of the beam from the results shown in Pig. 10 we used the fact that the muon mean free path in lead is much larger then the values of t used in this study: $\mathrm{dE} / \mathrm{dx}=12 \mathrm{HeV} / \mathrm{cm}$ for mions in lead. Since the plons interget sirongly however, their nean free path is much shorter thar the muons. Themeasured pion mean free. path λ_{π} is indiceted et pach momentum in Fig. 10 . For comperison the natural colijsion length for pions in jead is

$$
L=A / N v_{\text {natural }}=5.5^{\prime \prime}
$$

where A is the atomic number of lead, H is Avagedro's number, and

$$
\sigma_{\text {natural }}=\pi\left(A / m_{\pi} c^{2}\right) \times A^{2 / 3}
$$

Using the approximation that $\lambda_{j}=\infty$ the bean intensity is given by

$$
I\left(t, f^{\prime}\right)=I_{\pi}+I_{L}=(1-r) I_{6} \exp \left(-t / \lambda_{\pi}\right)+f I_{0}
$$

Where f is the ratio of muon s to pions in the beam, and Io is tine intensity at $t=0^{\prime \prime}$. The results obtafned for f were that

$$
\mathrm{f}=1.0 \pm 0.5 \%
$$

at 2.28 and $2.38 \mathrm{GeV} / \mathrm{c}$ and $0 \pm 0.5 \%$ at the higher momenta.

The electron content of the beat was estimsted frod the pressure curve shown in Fig. 11 for the beam Gerenkov counter. The pion threshold at 3.00 Gev/e is ~ 17 psia as indicated in the Figare. Below the pion threshold the background et this momentum was about 5 - 8\%. This back. ground was presumed to be lergely very fost electrons singe the threshoza for muons wes 9.5 psie at this momentum. Knock-on electrons $(6$ reys $\%$ contribute Jess then $.5 \%$ of this background.

The overall efficiency for the counter was also estimated from tisis
 Fron a bean survey (of hadrons) performed at Argonne, koons were found to constitute moff the negative bean at this momentum. The kaon threshoist Is 210 Psia at $3.00 \mathrm{GeV} / \mathrm{c}$ so none were detected at 35 psia . If the kacme 3 are subtracted from the signal $\overline{A H} B l B 2$ then the africieney of the coutcor stes ebout 99%.
F., Empty Target Bockground

Empty target data were taken at several momenta. The trigger rate as a frection of the ful2 target rate varied from 15.5% at 2.38 Gev/c *a

Fhas. 11.
29.56 at $4.25 \mathrm{GeV} / \mathrm{c}$. With the torget emptied, the yield of good (elastic) events, determinea by anelyzing the date as though the target were fuli, was $0.6 \pm 0.4 \%$ of the full target-yiela. About 0.2% of this yield was ettributed to interactions with the hydrogen vepor which remained incthe target after it was emptied. The remaining events were resumably due to interactions in the side of the target vessel and supports. The correction zade to the data for this effect was to subtract 0.5 ± 0.4 from the yield of good events.

G. Experimental Resolution

From Fig. 5 above the scatter of the sparks along the fitted particle trajectories averaged 1.2 mper spark in real space. This average deviation arose from several sources:
(a) Crudi measures the location of the edges of each spark. The error in determining the locailon of the center of a spark, which wss typically measured by CRUDI to be 2.5 mm wide in real space, was eatimated to be 0.8 mm . This uncertainty inciuded the resolving power of the film (~ 0.4 mm , when magnified into real spece), the error in the CRUDI celibrstion ($2+2$ least counts or $0,2-0.4$ min in real syace) and the repeatability of the CRUDI measurements ($2-2$ least colunts).
(b) Nultiple Coulonb scattering of the proton in the aluminum fofl and mylar covers of the spark chsmbers yas about . 06 - . 12π (per gap); for the pion the average deflection per gap was about $0.2-0.7 \mathrm{mr}$, depending on the incident momentum and the plon lab angle.
(c) Sparks along a particle trajectory inclined at singles $>30^{\circ}$ With respect to the perpenicular to the spark chambers tend to follow the electric field rathes then the trajectory. The error due to this staggering effect was esiimated to be comparable to the sperk widths ($\sim 0.5 \mathrm{~mm}$ to 2.0 (tion $)$.

The net effect of the processes listed above was to introdice an error in the location of each spark which was ay from the proton chanbers, ~1.1-1. ©im for the pion chambers, and ~llari for the beam chambers. Other (small) errors were ignored in these estimates: the werping of the spark chanber frames (~ 0.1 m), taper of the spark chamber frames ($\sim 0.2 \mathrm{gm}$), and the errors in surveying the fiducials relative to the spark chambers ($\pm 0.13 \mathrm{man})$.

In calculating the total mean deflection of the pion and proton in the leb, we have included the above effects (a) - (c), the multiple couzomb scattering of the particles in air, and the multiple Coulonb scattering of the particles in the hydrogen target. From multiple scattering in air the projected mean deflection of the proton was $0.2-0.4$ rar, for the pion 0.6-2.6 mr. From scattering in the target, the mean proton daflection was $0.4 \cdot 0.8 \mathrm{mr}$ and the mean pion deflection was $0.8=2.2 \mathrm{mi}$. 2he net deflection in terms of laboratory angizs was therefore 2.0-2.1 mr for the protons and $3.9 \times 5,8 \mathrm{mr}$ for the pions, depending on the incident momentum and the angle at which the measurevents were made. The error In these celculations is about 10.15%.

In definining the experimental resolvtion we used the quantity Del, which is equal to the difference in lab augle between the measured proton angle and the protion angle derived from the measured pion angle assuming elastic scottering kinematics. Wen pel is plotted for the deta of e given monentum one obtaias a signal with a Gaussian-like distribution, centered on zero. We have defined the FWM of this distribution to be the experimental resolution. The expertisental resofution in milliredians is plotted in Fig. 12 as a nunction of Fion c.m. angle, θ c.m. for data

P15. 12.
at 4, $00 \mathrm{GeV} / \mathrm{c}$. The experimental resolution is quite constant as a function of ${ }^{\theta}$ c.m.

We define the calculated experiment resolutian to be

$$
\left\{\Delta \theta_{p}^{2}+\left(\Delta \theta_{\pi} \frac{\sin \theta_{n, 18 b}}{\sin \theta_{p, 18 b}} \quad \frac{J_{\pi}}{\sqrt{p}}\right)^{2}\right]
$$

where $\Delta \theta_{p}$ and $\Delta \theta_{\pi}$ are the mean angular deflections in the lab of the proton and pion, $J_{i c}$ is defined by
and

$$
\begin{aligned}
& J_{p}=\operatorname{lig}_{i(\cos \theta}^{\theta}(\cos \theta, \operatorname{cm}) \mid
\end{aligned}
$$

At 4.00 Gev/c Jr/Jp is typically $0.01-0.10$, so that the pion aeflection contributes little to the overall experimental resolution. Jader this assumption, the calculated resolution becomes twice the mean angular defluetion of the proton or m - 4. 5nr, independent of angle, which is in good agreement with the results shown in Fig. 12 H. Loss of Events from Pion Decay

The minimum leboratory momentum for elastically scattered pions whach could be detected by the exjerimental layout (Fig. 2) was $400 \mathrm{Mev} / \mathrm{c}$ at $\theta_{c, m}=170^{\circ}$. Of these $400 \mathrm{HeV} / \mathrm{c}$ pions, 4.4% decay between the target and the outer pion chamber. Nearly 100% of these deceys are to $\mu \nu$. The maximum opening angle of the mun is 5.6° in the lab for this pion morentum. Thus for a pion decyying neax the target, the measurad "pion" fogle was derlected by at most 5° i: the lab. This maximum deflection, When transforged into the proton las angle yields $A \theta_{p} \approx 0.8^{\circ}$. Since the cuts on coplanarity and Del were loose, loss of events due to pion 2ecay was $\ll 1 \%$. computed by

$$
\frac{\Delta d_{g} / \alpha_{n}}{d g / \alpha_{n}}=\sqrt{s+2 \mathrm{~B}} / \mathrm{s} .
$$

where $\mathrm{A} \sigma / \mathrm{d}_{\Omega}$ is the statistical error, S is tide net signal and B the background. Results for σ / du as a function of u from this experiment and other experiments in this montum rang a tre plotted :or $\pi^{+}{ }^{+} \rightarrow \mathrm{pr}^{+}$ in Fig. 13. u is the equare of the four mumenrua tran fere between the incoming pion and oulgoing proton. Data are p esented from the CERNSaclay collaboration ${ }^{21}$, the BML-Rochester collworation ${ }^{1}$, the Universid, of Michigan ${ }^{22}$ and Brabson, et al. ${ }^{23}$ Data froal this ex er:ment are presented by colid circies. Note thac the ordinate in rs . 13 is linear. At momenta $\geq 2.75 \mathrm{GeV} / \mathrm{c}$ the $x^{+}{ }^{+} \mathrm{y}$ distribuitons are renarkably similar. beling characterized by gteap, narirore bectuard pesk, d'p at $u=-.17$ (Gev/c) and a broad maximum centered arourio $\mathfrak{r} \geqslant-.6(\mathrm{ceV} / \mathrm{c})^{2}$. This same structure persists in angular distribuiions teken at monenta as high as $13 \mathrm{GeV} / \mathrm{c}^{2}$ the becktara peak dissppears at $2.03 \mathrm{teV} / \mathrm{c}$ (ReГ. I,
 morentura. Fig. 14, where we plox do/du (u = ennst.) ve. ', the squere of the total c.m. energy $E_{c . m+}$, for ε from 1-1h Gevín, shows the behavior of

Fis: 13.

the $\pi^{+} p \rightarrow p \pi^{+}$cross section as we pass tinrough the various resonance ${ }_{n}^{5}$ in the $I=3 / 2$ smplitude. The data is from this experiment and Refs. 1 and 2. Note the large bump ceniered on the $A(2420)$ at $s=6 \mathrm{GeV}^{2}$. At $\mathrm{E}=8 \mathrm{GeV}^{2}$ ($\mathrm{E}, \mathrm{m}, \quad 2.8 \mathrm{GeV}$) the cross sections also show a hint of structure.

Resulta for μ^{-p} backward elastic scattering are shown in Fig. 15; where $\mathrm{do}_{\mathrm{o}} / \mathrm{d}_{\mathrm{r}} \mathrm{vs} . \cos \theta_{\mathrm{c} . \mathrm{m} .}$ is plotted. (The solid curve in the Figure is a calculation which is described below.) Reaults from several other investigations ${ }^{1,21-2,24-5}$ are also shown. The agreement among the various experiments is generally good, although our resulte at $2.80 \mathrm{cev} / \mathrm{e}$ near $\cos ^{\theta} \theta_{c+21} *-.9$ disagree with those at $2.85 \mathrm{GeV} / \mathrm{c}$ from CEzw-Saclay.

We measured r"p crosa sections from 2.38 to $3.00 \mathrm{GeV} / \mathrm{c}$ and in this small mamentum interval-- $\mathrm{E}_{\mathrm{c}, \mathrm{m}}$. increases from 2,318 to $2,557 \mathrm{Mv}$-there ere striking changes in the structure of the angular distributsons. From $p_{\text {lab }}=1.8$ to $7.5 \mathrm{GeV} / \mathrm{c}$ the angular distributions show a minimud near $\cos \theta_{\text {c.m. }}=-7$, rise steeply to a maxinum near $\cos \theta_{\text {c.m. }}=-.92$ then turn over aharply at 180°. At $2.65 \mathrm{GeV} / \mathrm{c}$ the angular distributiol is nearly flat near 380° and at higher momenta there is steep narrow peak at 180° and a mindinum is seen at $\cos \theta=-92$. The thatlow mindrame at $\cos \theta_{\text {c.m. }}=-.7$ persists up through $p_{\text {lab }}=5 \mathrm{GeV} / \mathrm{c}$. ${ }^{23}$ The minimid indicated at $\cos A_{c, m,}=7.92$, on the other hand, is not seen at nigher momenta. ${ }^{2} \pi^{-} p$ data are rather syarse in this angular region between 3 and'6' $\mathrm{GeV} / \mathrm{c}$, however.

In Fig. 16 we plot d^{σ} / du vs, u for π^{-p} elastic anguler distibitions. for momenta from 2.38 to $3.55 \mathrm{GeV} / \mathrm{c}$. The experiments included in this compilation have elready been cited. The quanifty indicated $c ;$

Fjg. 15.

arrows in Fig. 16 is the square of the four-momentum transfer betiven the incoming and outgoing pions.

Recilte fros this experiment were published in Physical Review Letters ${ }^{26}$ and the Flysical Heview. ${ }^{13}$
, \cdot

vI. THEORY

A considerable amount of pion-mucleon scattering data has now been accumulated ${ }^{27}$ and a large muber of models wich attempt to explain this data heve been proposed. 28,29 In this paper we hive contined our attention to two models which are reesonably successiful in deacribing elastic scattering in the backward herifophere et internediate monenta (from two to five $\mathrm{GeV} / \mathrm{c}$). Before discussing these models, a fef generel remarks on notiation and construction of amplitudes are in order.

The amilitude for pion-micieon scattering mey be written

$$
A_{I}=f_{I}(\cos \theta)+\sigma \cdot n g_{I}(\cos \theta, \varphi)
$$

where I denotes the 1 aospin: 0 is the c.rb. gcatitering angle betwem the incoming and outgoing pions, φ is the ezinothal angle, σ is the P wis spin matrix, and in to the norasal to the reaction plane

$$
n=\left.\frac{k_{i} \times k_{i}}{k_{i} \times k_{n i}}\right|^{\prime},
$$

where k_{i} and k_{f}, are the initilel end final pion c.m. mogentin vectore. The rapilutudes f and g above are detinos to be the apin non-flip and biln flip emplitules respectively. Thus, $\Delta^{m}=0$ for f and $\Delta^{m}= \pm 1$ for \sqrt{g}, where \underline{m} is the component of the proton 3 pin parailel to the beaza. g raut vanish at 180° since angular lomentum cannot be txansrerred. between the incoming pion axd proton in a hesdun collison. i and g. can be writiten in terms of spherital hemonic functions as

$$
\mathbf{f}=\sum A_{Q} \mathrm{Y}_{2}^{\mathrm{o}}, \mathrm{~g}=\sum_{\ell}^{b_{\ell}} \mathrm{Y}_{\ell}^{ \pm 1}
$$

where $\mathcal{L}^{\text {is }}$ the orbital angular momentum between the pion and proton. The differential cross section is given by

$$
z_{x} \sigma / a_{n}=|f|^{2}+|g|^{2}
$$

Since $Y_{i}^{0} \sim P_{\ell}$ and $Y_{i}^{ \pm \lambda} \sim \pm \sin \theta d P_{\ell} / d(\cos \theta), f$ and g may also be written

$$
\mathbf{P}=\sum a_{l}^{\prime} P_{\ell} * g=\sum b_{l}^{\prime} P_{l}^{\prime} \sin \theta=g^{\prime} \sin \theta
$$

where $P_{*}^{\prime}=[d / d(\cos \theta)] P_{\ell}$. We then have ,

$$
\alpha_{0} / d_{n}=|\mathrm{f}|^{2}+\sin ^{2} \theta|\mathrm{E}|^{2}
$$

In terms of the isotopic spin amplitudes, we have

$$
A_{i}+{ }_{y}=A_{3} / 2
$$

and

$$
A_{x p}=1 / 3\left(2 A_{1 / 2}+A_{3 / 2}\right)
$$

for $\pi^{+} p$ and $\pi^{-p} p$ scattering. The differential cross sections are ts ere o fore

$$
\left(d_{o} / \mathrm{c}_{n}\right)_{\mathrm{x}}+_{p}=\left|\hat{E}_{3 / 2}\right|^{2}+\sin ^{2} \theta\left|\mathrm{~B}_{3 / 2}^{1}\right|^{2}
$$

and

$$
\left(a / a_{n}\right)_{r p}=\left|1 / 3\left(2 f_{1 / 2}^{\prime}+f_{3 / 2}\right)\right|^{2}+\sin ^{2} \theta\left|1 / 3\left(2 g_{1 / 2}^{\prime}+g_{3 / 2}^{\prime}\right)\right|^{2}
$$

The polarization of the outyoing proten in a

$$
\mathrm{P}=2 \mathrm{Ir} \mathrm{f}^{*} \mathrm{~g} / \mathrm{dg} / \mathrm{d}_{\Omega} .
$$

A. Reggeized Baxyon Frchenge

In the context.of the Regge language, the backmard elantic scatters:ng of pion off proton is assumed to proceed vis the virtual exchange of t Reggeized baryon between the Incideni pion and proton. ${ }^{30}$ The sinplest, Ferramann duagran for this procees is shown in $\mathrm{FHg}, 37$.

The fermion Kegge malitude for a single Regge yoie can be written in terms of a stagle u-chanmel amplitude $f_{1}(\sqrt{x}, s)$. The s-channel form of the firquitude is given by crossing bymaetry:

$$
\begin{aligned}
f_{1}(\sqrt{s}, u)= & \frac{E_{s}+\mathrm{n}}{2 \sqrt{s}}\left[(\sqrt{u}-\sqrt{s}+2 M) \frac{f_{1}(\sqrt{u}, s)}{E_{u}+M}+\right. \\
& \left.\left(\sqrt{u}+\sqrt{s}-z_{1 u}\right) \frac{f_{1}(-\sqrt{u}, s)}{\Sigma_{u}-M}\right]
\end{aligned}
$$

 in the s charnel and u channel reapectively, ix is the nucleon mess, and mis the moss of the pion. The spin non-flip end spla fitp amplitures are written

$$
f=f_{1}(\sqrt{\mathrm{a}}, \mathrm{u})-\cos \theta \mathrm{f}_{1}(\sim \sqrt{5}, \bar{u})
$$

and

$$
g=-r_{2}(-\sqrt{\varepsilon}, u) .
$$

REGGEIZEOBARYON EXCMANGE
745. 17.

The complete expression for the ampintude $f_{1}\left(\sqrt{u_{2}} s\right)$ describing the schange of a single fermion Regge pole, is quite complicated ${ }^{32}$, but for moderate values of s the arglitude can be witten (following Berger and $F O X)^{11}$
$\gamma(\sqrt{u})$ is the modified residue function. $\alpha(\sqrt{u})$ is the trajectory and is defined such that Re $\alpha(\sqrt{u})=J_{\text {Res }}$ at the mess of a known resonance $\sqrt{11}=M_{R}$. For the knom trajectories, $\operatorname{Re} \alpha(\sqrt{u})=a_{3}+b_{B}$ gives a good account of the dependence of J on M_{R} for $u>0$; for $u<0$ (j.e., nt elastic scattering) if is esonned that the some dependence holds. $\alpha(\sqrt{2})$ is taken to be real analytic for $u<0.30$, 32 The factoz $1 / \cos x \alpha$ blows up for $\alpha=\frac{2 n}{2} \frac{1}{2}, n=0,1$, . . . but $1 / \Gamma(\alpha+1 / 2)$ bas zeroes at $\alpha+1 / 2=-n$ so that $f(\sqrt{u}, s)$ remains well behoved at these points. τ, the signature of the trajectory, is alven by $\tau-(-)^{J}-1 / 2$ where $\mathrm{J}=J_{\text {Res }}$. For + positive and $\alpha=-11 / \bar{L}, f_{\mathrm{g}}$ goes to zero. This zero $: \mathrm{s}$ called a wrong signsture nonsense zexo.

For the modifled residue function, Berger and Fox ${ }^{13}$ nuve uged the general form

$$
\gamma(/ n)=a_{R}+b_{R} u^{1 / 2}+c_{R} u+d_{R} u^{3 / 2}
$$

In fits performed by karger and chine ${ }^{33}$, the parametrizctition was

$$
\gamma(\sqrt{u})=\beta\left(1+6 u^{1 / 2}\right)\left(1 / s_{0}\right)^{\alpha-3 / \epsilon}
$$

where β and s are conptants.

The isospin structure of the ro scattering amplitude in the u channel is

$$
A_{\pi^{+}}^{+}=1 / 3(A 3 / 2+2 A I / 2)
$$

and

$$
A_{\pi}{ }_{p}=A 3 / 2
$$

According to the flagge hypotheais ${ }^{32}$ all strongly interacting particles lie on Regge trajectoriee. If we approach the $I m 3 / 2$ beryon tables of the Particle Data Group ${ }^{34}$ in this spirit, we can hypothesize the exdstence of ab many es five or six $\$$ sospin $=3 / 2$ trajectories. The lowest mass states with spin J should have recurrences with spin $J+2, J+4$, etc. at higher mages. Unfortunately, the experimentes. fact is that recurrences have been seen orily for the famous Λ_{5} which has recurrences at $M_{R}=1.950,2420$, and posalbly 2850 and 3230 keV . A streight line fit (by linear regression) to the spins and masses of the Δ_{5} recurrences yields
$\operatorname{Re} \alpha(\sqrt{u})=\operatorname{Re} \alpha(u)=.125+.90 u$.

For the $I=1 / 2$ baryons, there are two possible trajectoriez, the $\mathrm{N} \boldsymbol{N}$ and the Ny. The $N X$ has an its lowest-lying atate the nucieon, and its Ifyst recurrence would be the $N(1688) 5 / 2^{+}$. For thia \{rajectory

$$
\operatorname{Re} \alpha(u)=-.38+1.0 u
$$

The ity is not such a weil-established Regge trajectory; thede is sore uncertainty at to whether its Iowest mass afste should be (i) the $M(.520)$
$3 / 2^{-}$with recurrences at 2190,2650 and 3030 NeV or (ii) whether it shouid have the $\mathbb{N}(3755) 3 / 2^{-}$as the lowest state with a known recurrence at 2190 MeV . The known $17(2650)$ and $N(3030)$ resonances in the latter case would be asaigned as recurrences of the $N(1670) 5 / 2^{-2}$ resonance (sea Ref. 35). It shouid be noted that the $N(1755) 3 / 2^{-}$is not a well. establiahed resonance, honever. ${ }^{34}$ For the two cases above, we have

$$
\begin{aligned}
\operatorname{Re} \alpha(u) & =-.6+.87 u(1) \\
& =-2.1+1.17 u(1.1) .
\end{aligned}
$$

The trajectory given by case (1) is the more favored solution; In efther case, the NCO world be the highest-lying macleon tirijuctory. Chew-Frautschi plots for the Δ_{g}, NO, and 叔 trajectories are Bhown in Fig. 38.

For $x^{+} p$ backtari elestic scattering, it is predictea chat the angular distributions on docish nated by the A_{8}, na and porsirly the N_{i} trajectories and the: whe $\bar{x}^{-} p$ scattering should be given by the A_{0} trajectory. $3,11,33$

The most direct way to decide wich trajectories exe exchanger i: backurd rpelastic scattering is to deterinine α (u) from the data. Ihe differential cross section for femion Regge exchange cen be approxin sted ,by the model independent form

$$
d \sigma / d u=F(u) s^{z x} \operatorname{erf}^{2}
$$

To fit the data with this simple expression, we write

$$
\operatorname{en} d \sigma / d u=\ln F(u)+\left(2 \alpha_{e f f} 2\right) \text { on } s
$$

F1g. 13.
and then plot in $\sigma \sigma /$ du at il xed u versus in s to deternine α at varicus values of in. \log do/diu at fixed u vs. $\log s$ is shom in Fig. 19 for $0 \geq u \geq-1.0(\mathrm{GeV} / \mathrm{c})^{2}$. The date are fron this experiment and Refs. 2 and 21. A plot of α eff veraus u is thown in Fig. 20 where ve use $x^{+} p$ data from this experiment for which $5.25 \geq P_{1 \mathrm{ab}} \geq 3.25 \mathrm{GeV} / \mathrm{c}$. For
 The effective trajectory, except posalbly in the neighborthood of $u=-.2$ $(G \mathrm{eV} / \mathrm{c})^{2}$, is in good egresment with the mar trajectory. The anplitude for $N \dot{x}$ exchange is zero for $\alpha=\sim 1 / 2$, a value etweined for the nax nex $u=-$-. . fitis zero means that the A_{6} arolitiude should be dominant ncas $\mathrm{u}=-.1$, which is the behovior ooserved in Fig. 20. The conclusion to "be drawn from this analysis is that the effective trajectory for $x^{+} p$ bseknard elastic scatiering in consistent with the u channel excherge of the Nox and Δ_{δ} trejectories at least for $|\mathrm{u}| \leq 1.0(\mathrm{GeV} / \mathrm{c})^{2}$ ard $5.25 \geq \mathrm{P}_{1 \mathrm{sb}} \geq 3.25 \mathrm{GeV} / \mathrm{c}$. Over this range of angles and momenta thev oppesis to be no need to inciude Regge cuts ${ }^{36}$ in the riplitude. These would lead to a less steep effective trujectory. For a plot of $\alpha_{\text {erit }}$ versus $\&$ for formard and intermediate angles for both $\pi^{+} p$ and π^{-p} seeitering, see Refs. 23 and 37.

We have calculated the angular ajstributions and polarization for $i^{2} \quad \pi^{+} p$ backtara elastic scattering uaing A_{8} nad na exchange. ${ }^{33}$ The paremetization employed was thet of Berger and Fox ${ }^{7 \lambda}$ who obtained for the Δ_{8}

$$
\begin{gathered}
\alpha_{\Delta}=0.09+0.9 u \\
\gamma_{A}=\left(\alpha_{A}-1 / 2\right)[35.2+56.0 u+(\sqrt{u}-N)(29.4+35.8 u)]
\end{gathered}
$$

「Lig. 19.

Fig. 20.
and for the n

$$
\begin{gathered}
\alpha_{N}=-0.34+0.88 u \\
Y_{N}=(104-184 u)+(\sqrt{u}-M)(293+106 u) .
\end{gathered}
$$

The factor ($\alpha-1 / 2$) in the $I=3 / 2$ amplitude leads to a gero in the scattering amplitude at $u=+.45(\mathrm{GeV} / \mathrm{c})^{2}$, an umphsical value of u for mpelastic scattering. Resuits from this calculation are shown by the dashed curves in Figs. 13 and 22. Tae polarization data are from Booth et ar. ${ }^{39}$ The agreement with the cross section data. is quite good for $P>2.75 \mathrm{GeV} / \mathrm{c}$. The model also agrees well with the polarization dats (Fig. 21), except near $\cos 0 \sim-.8$ zt the higher momenta. The minimum in the atrferential cross sections et $u=0 \quad-0.15(\mathrm{GeV} / \mathrm{c})^{2}$ was obtained in this model by the nonsense sero ir the No amplitude at $\alpha_{\mathrm{N}}=-2 / 2$.

- Berger and fox ${ }^{17}$ bave raiculated tre effective trajectory for rip deta available as of June, 196, The resurts are not compatible with α_{A} given nbove. The discrepancy wes attributed, in part, to normalizetion errors smone the various sxperiments used in the calculation. The observed structure in the $\bar{x} p$ data (Fig. 15) below trree GeV/e is, in any case, not obtained oy Resge pole celculations using the exchange of a single (A_{8}) trajectory. 40

8. Direct Chanrel Resonances

It has been proposed ${ }^{12}$ that the ${ }^{2} p$ backasard anguler distributions, for moderate values of s, arise from a surt of direct channel resonances. The direct channel resonance model (DCRM) assures that all resonances in the no system lie on Regge trajectories of untform slope. In order to fit the data with the DCRS it is necessary to postulate a large number of resonarces as Rege recurrences of known resonaneas. Itie widths and elasticities of the recurrences are generated from

$$
r=T_{1}+s\left(M-M_{1}\right)
$$

and

$$
\begin{equation*}
\bar{X}=X_{1} \operatorname{exg}\left[-b\left(M_{-}^{2}+M_{1}^{2}\right)\right] \tag{SolutionI}
\end{equation*}
$$

wherp Γ_{1}, X_{1}, and H_{1} are the width, elasticity, and macs of the lowest lying stat, on the traiectory and r and x are the width ana elasticity of a recurreree of mass M a and b are aditusiable parammers. Por the Ag trajpctory $\mathrm{E}=.16$ and $\mathrm{b}=.54$ describe the widun and elasticities of the recurrences fairly weil.

Crittender et al ${ }^{7}$ used the DCRM to fit backherc: different cross sedirons for $\pi^{+} p \rightarrow \mathrm{pH}^{+}$in the angular rang $120^{\circ} \leq A_{c, m} \leq 2^{9} 0^{\circ}$ for lab monerte from 2.1i? to $5.0 \mathrm{GeV} / \mathrm{c}$. Five trefrctorieg, which had as lowest mass states the

$$
A(1236) 3 / 2^{+}, A(1340) 1 / 2^{+}, A(1670) 3 / 2^{-}, A(1,90) 3 / 2^{+}
$$

and
$\Delta(1930) 1 / 2^{+}$
rosolances, were employed, with a toth) ${ }^{\prime}$ fight paranetrs (isted under fit fll im febles V and $V I$) rogirod to eratir tink wiaths and elasticities

PABIS 4 . Comparison of the Pormioters of several fios made rizit the Direct Chamel Resonme lioded

	$\stackrel{\mathrm{J}}{(\text { Ref. } 12)}$	$\begin{gathered} 2 \\ \text { (Thas Work) } \end{gathered}$	$\begin{gathered} 3 \\ \text { (Woss Mork) } \end{gathered}$	$\left(\operatorname{Rex}^{4} \cdot 13\right)$
do/dr Dasa Fitted:	$\pi \mathrm{p}$	$\pi^{+} p$	$\pi^{+} \mathrm{p}$	$\pi \pi^{-1}$
Homenta	2.18.5.00	2.33-5.00	2.36-5.00	$2.03-2.00 \mathrm{Gev} / \mathrm{c}$
$\Delta \theta_{\text {c.n. }}$	$120-130^{\circ}$	120-180 ${ }^{\circ}$	120-190	120.3190°
110. of Daja	210	174	274	258
Polasizelijon Data:	Hone	$\pi^{+} p$	$\mathrm{r}^{+} \mathrm{p}$	Wrue
1*:suth	-..	2.5-3.75	2.5-3.-5 gev/c	--"
$\Delta \theta_{\text {c.f. }}$	---	$135-180^{\circ}$	135-76 ${ }^{\circ}$	--
No. ồ reta	--*	66	66	-*
1:0. or Ádjustable Pareutecers	8	1	1.	14
$2 \mathrm{tan} x^{2}$	720	2,440	2,725	220

Thuter in $I=3 / 2$ Resoneme Parumeints

of the recurrences of these states. The agreenent of the model with the dats is quite good, especially for momente above $2.28 \mathrm{GeV} / \mathrm{c}$; the DCRM was quite successful at obtaining the dip in cross section at $u \simeq \sim 3(\mathrm{GeV} / \mathrm{c})^{2}$ seen at momenta aoave $2.39 \mathrm{GeV} / \mathrm{c}$.

It shouid be pointed out that, in epite of the success of the cross section $f^{\prime} \neq t s$, the amplifudes obtained in Ref. 12 do not give a very good account of the polarization at backward anglet. In addition, the widths obtained for some of the 4α recurrences are larger than the masses of the resonances.

More recently we have made fits to the ${ }^{+}+\mathrm{p}$ data using a version of the DCRM which requires only one free parameter. We add the ancular distributions from resonances on five trafectories as before, but for the $A(1690) 3 / 2^{+}$wa substitute a trajectory based on the A (2890) $5 / 2^{*}$. (The
 eatablished resonance than the $A(1690) 3 / 2^{+}$.) The elasticities of the recurrences are now assumed to drop more rapidly with s.

$$
\therefore x=x_{1} \exp \left\{-\beta\left(M^{2}-M_{1}^{2}\right)^{2}-v\left(M^{2}-M_{1}^{2}\right)\right\}
$$

where the parameters β and y were fixed by fitting the elasticities of the Δ_{5} recurrences. In Fig. 22 we plot the elasticities of the A_{5} recurrences es a function or's. Solution I in the Figure is the parametrization used in Refs. 12 and 13. Assuming 10% uncertainties in the elasticities of the $\Delta(1950), \Delta(2420, \Delta(2850)$ and $\Delta(3230)$, the fitted value of b for sol. I is $.57\left(X^{2}=33\right)$; for solution II we get

$$
B=40 ., \gamma=2.7
$$

with $x^{2}=5$. These some constants are used to predict the elasticities of the other foum trajectories used in the model. The widths of the resonances are fenersted by

78. 28.

$$
r=r_{1}+a\left(m-m_{1}\right)
$$

- re a is assumed to be the same constant ($a=0.16$) for all the trajectories $4 \subset$ is determined from a fit to the widths of the Δ_{s} recurrences. The zesonence ampitude employed is a non-relativistic Breit-wigner with expo:entially damped tails:

$$
A=\frac{\Gamma / 2\{(E-M)+i(\Gamma / 2)\}}{(E-M)^{2}+\Gamma^{2} / 4} \quad \exp \left\{-4(\text { (बЕाए })\left(\frac{E-M}{\Gamma}\right)^{2}\right\}
$$

where demp is a free parameter in the model--the only free parameter is this version of the DCRM. We have used this model to fit $66 \pi^{+}$polarization data from $2.50 \mathrm{GeV} / \mathrm{c}$ to $3.75 \mathrm{GeV} / \mathrm{c}$ from Ref. 39 and $7 \% \mathrm{~T}^{+} \mathrm{p}$ \& $\mathrm{p} \pi^{+}$dsta froil this experiment at lab momenta from 2.38 to $5.00 \mathrm{gev} / \mathrm{c}$. The x^{2} for the fit to these $2 \overline{4} 0$ data was 2725 for solution II, the x^{2} for the polarization afte alore was 554. The results obtained for this solution, indicated by the solid curves in Figs. 13 and 21 , are quit.e encouraging. At all momente tha simple model predicts the backward peaking of the angular distributions and the minimum at $u \simeq .2(\mathrm{GeV} / \mathrm{c})^{2}$. The model is in good agreenent with the polarization date st monenta up to $3.25 \mathrm{GeV} / \mathrm{c}$, and for cross section deta between 2.75 and $4.5 \mathrm{Gt} / \mathrm{V} / \mathrm{c}$. The predicted differential cross section is low at. $5.0 \mathrm{GeV} / \mathrm{c}$ and too bumpy at $2.75 \mathrm{GeV} / \mathrm{c}$ and below.

The demping factor obtained for this iit is damp $=038$ so that at sorergies one full width Γ away from the resormen energy the damping amounts to 148%.

Solution I for the elasticities also gives good quelitative dgrsement. with the data. For this case, datip $=.031$.

A complete lisving of the resonsnce parameters and a compariton of the paranetrigation used in this work are in Tables V and VI. The fits
using Sols. I and II are referred to in the tables as fits 2 and 3.
The DCFM of Ref. 12 has been extended to cover the case of n "p back. ward elastic scattering, for a linited range of momenta. ${ }^{13}$ Resonences from four $I=3 / 2$ and nine $I=1 / 2$ Regge trajectories were used in fitting data from 2.08 to $3.0 \mathrm{GeV} / \mathrm{c}$ in the angular range $120^{\circ} \leq_{\mathrm{c} . \mathrm{m} .} \leq 180^{\circ}$, with the results shown by the solid curves in Fig. 15. The parameters used are listed under f'it 化 in Tables V, VI and VII. a was taken to be the same ($a=0.18$ in this fit) for all trajectories. The slopes of the trajentories were taken to be the same as the A_{δ} except for the N_{γ} ' which was assigned the $N(2190) 7 / 2^{-}$as its first recurrence. The other recurrences of the $\mathrm{N}_{Y}{ }^{\prime}$ were found using the A_{5} slope. We found it possible to use $\underline{b}=.5$ for sevem of the 13 trajectories in the fit. For the other trajectories $\underset{\sim}{b}$ was varjed between $0.2 \leq 0 \leq 10$. The upper liadt on b yields elasticities $\leq 10^{-6}$, hence a trajectory with b this large has essentially no meaningful retur eences. $\underline{b}=10$ was attained for the $A B$ and $N B$ trajectories. To improve the agrement of the model with the data, Γ_{1} and X_{1} were adjusted for the several resorances marked with an asterisk in the Tables. A good fit (with x^{2} larger by about 100 than that shom in Fie, 15) could be made to the data without changing
 $7 / 5^{+}$and $N(2030) 3 / 2^{-}$resonances ere added one obtaing a y^{2} smaller by 124 than that in the fit described in Ref. 15. (133 data were used in the fit, with $x^{2}=510$ for the fit shom here.) The curve shom in Fig. 15 for data at angles $\leqslant 220^{\circ}$ was an extrapolation from the fit; the DCRM gives : good account of the date out to around 90°. In fitting the $\pi^{-} p$ data a stundsud non-relativisu:\% Breit-lyigner amplitude

$$
A=\Gamma(M-E) /(\Gamma / 2) \cdots \eta^{-1}
$$

Table VII. Values of the $I=\frac{1}{2}$ resonance parameters used in fitting backward $\pi^{2} \mathrm{p}$ elastic scattering from 2.1 to $3 \mathrm{GeV} / \mathrm{c}$ with direct channel resonances. The $I=\frac{1}{2}$ resonances listed here ere the lowest mass states for the trajectories used in the fit. (See text for definition of these parameters.) quantities marked with an asterisk were adjusted in the fit. The values in parentheses are from the 1969 Particle Data Group tables (Rer. 34).

$N^{\prime}{ }^{\prime}$	1470	$1 / 2^{+}$	260 (260)	.70* (57)	. 16	. 75^{*}
N_{7}	1.518	$3 / 2^{-}$	115 (115)	$.36 *(.52)$. 18	. 50
\mathbb{F}_{β}	1550	$1 / 2^{-}$	100 (80)	$.35(.34)$. 28	10.1
N^{\prime}	1680	$5 / 2^{-}$	245 (145)	. 45 (.43)	.18	- 10
N_{α}	1688	$5 / 2^{+}$	130 (125)	. 60 (.61)	.18	. 30
$\mathrm{N}^{\prime \prime}$	1710	$\lambda / 2^{*}$	400*(280)	.65 (.66)	. 18	1.08
H^{\prime}	1755	$3 / 2^{*}$	150 (?)	*35* () ${ }^{\text {a }}$. 18	. $36 *$
$\mathrm{N}^{\prime}{ }^{\prime}$	1785	$1 / 2^{+}$	300*(405)	0* (.34)	.13	. 30
${ }^{N}$	1860	$3 / 2^{+}$	$500^{*}(335)$	$.16^{x}(.27)$.18	.4.5*

was used instead of the truncated amplitude ermployed in Ref. 12 or the damped amplithde used in the one parmeter $\pi^{+} p$ fits above. The tails of the resonances are apparently not important over the small energy range covered.
 is showm in Fig. 23. There are currently no data available dit backurd angles with which the predictions can be compared. It is interestirg to note that the predicted polarization is the negative of the π^{+}polarization measured in this momentum region (see Fig. 21).

Predicted differential eross sections at 180° are shom inf Fig. 24 and can be comperea to results from the counter experiment perfoned by Kormanyos et af ${ }^{6}$ The agreernent of DCRM with the data is quite good for $3.2>\mathrm{F}_{\text {lab }}>1$.A $\mathrm{GeV} / \mathrm{c}$ and quite poor near $3.5 \mathrm{GeV} / \mathrm{c}$. Since data ar 1 Ro 0° was used only for $P_{\text {lab }} \leqslant 3.0$. the failure of the model outside this region is perheps not too meaningiui. The sharp minimum in cross section it $\mathrm{p}=2 \mathrm{i}$ $\mathrm{GeV} / \mathrm{c}$ at 190° (uhich corresponde to $-\mathrm{t}=3.2(\mathrm{GeV} / \mathrm{c})^{2}$) arose from the interference amons the $N_{\alpha}(2000) 9 / 2^{+}, N_{\beta}^{\prime \prime}(2200) 9 / 2^{-}$, and $N_{v}{ }^{\prime}(3390) 7 / 2^{-}$ resonances, pramarily. A gocd account of tave 180° mp cross section 15 provided by the resonances model of F. Dikuen ${ }^{8}$ using resonences 5 ;om only the $\Delta \infty$, Nof, and NY trajentor ϵ°. The parameters of eech resonence vere varied independently by Dikper and the dip was due to interference between the $N_{v}(2190) 7 / 2^{*}$ and a postulated $N_{\alpha}(2200) 9 / 2^{*}$ resonance. The angular distributions preducted by this model for angles away from 1 fo 0° do not ngree well with the dats, however. ${ }^{8}$
 shown in Fig. 25. f^{++}end f^{+-}axe the helicity non-filp and helirity fip

48: 23.
8.

appitudes respectively. The experimental dip at $\cos A \simeq-7$ is produced in the DCRM by zeroes in $\operatorname{Im} f_{++}$and $\operatorname{Im} f_{+-}$while the dip at cos $9 \simeq-.92$ is obtained from a zero in lie f_{+-}. For a discussion of a possible model for relating the stmucture in the pion-proton elastic scattering angular distribution to zeroes in Bessel functions see, e.g., the recent preprint by Chu end Hendry, ${ }^{41}$

c. Duality

We have shown that the $\pi^{+} p$ backward elastic scattering anguler distributions and polarization can be described by either exchange of Feggeized baryon trajectories or by sums of the angular distributions of direct channel resonances. From a study of finite energy sum rules (FESR), Dolen, Horn, and Schmid ${ }^{7}$ have suggested that the Regge aropiztude (for backvard scattering) is given by the smoothed-out resonance contribution. This consequence of the FESR is usurlily called "weak" dualiiy. The consistency between the results of the DCNM, which et energien above? $\mathrm{GeV} / \mathrm{c}$ is sumaing the angular dependences of many resonances, and the kegge model of Berger ard Fox ${ }^{l l}$ lends support to the validity of weak duality.

RETERCNCES

1. A. S. Carroli, J. Tlacher, A. Iundiby, R. R. Phallps, G. L. Wang, F. Lobkoricz, A. C. Malissines, Y. Nagaehtma, and S. Tewksbury, Phys. Rev. Lottara 20, 607 (1988).
2. See, ©, g., J. Orear, D. P. Owen, F. C. Petarson, A. L. Road, D. G. Ryan, D. H. White, A, Ashmore, G. J. S. Damerall, W. R. Frisken, and R. Rubinsteln, Phys, Rev. Lottors 21, 389 (1968).
3. C. Chiu and J. Staok, Phys, Rev. 153, 1575 (1967).
4. R. M. Heinz and M. H. Ross, Phys. Rev. Letters 14, 1091 (1965).
5. V. Berger and D. Cline, Piys, Rev. 153, 1792 (1957).
6. The dats wert neagured by s. W. Karmenyos, A_{2} D. Kriech, J. R. O'Fallon, K. Ruddick, and L. G. Ratnor, Phys. Rev. Lettors 16, 709 (1966).
7. R. Dolon, D. Horn and C. Schatid, Phys. Rev. 166, 1768 (1968); C. H. Chiv and A. Y. Stirling, Phys, Letters 2SR, 236 (1968) and Nuow Curento 56d, 805 (1968).
8. Difmen used the fien resonances an in Raf. 4, bit with a sifightiy differont parametsiantion of the wiluhs and elastionitien.

9. Ref. $1 ;$ also C. T. Corfin, N. Dikmen, L. Etiling由r, D. Meyө: A. Sallys, K. Teralliger, and D, 1hilians, Phys. Fov. 159, 1169 (1967); J. Ennalga, J. BEidet. C. Bonnel, J。 Duflo, L. Goldrahl, F. Plousn, W. F. Baker' P. J. Garison, V. Chabeud, and A. Lundby, Nuch. Phys. 88, 31 (1968) and Fhys. Isttort 22 ,

- 605 (1966) and Nuol. Phys. 29,249 ((969); H. Brody, R. Leh̆ump, R_{o} Hopshell, J. Miedorer, W, Selove M. Shochec, atad R, Van Barg, Phys, Rev. Letters 16,828 (1966).

10. See, e.g., Foils. 1 and 9.
11. Whe have ured the racent roxt of E. Lecger and G. Fox, Phys. Rev. 188, 2120 (1969).
12. R. R. Crittondon, R. M, Kainz, D. F. Liohtenborg, and Go Predaski, Phys, Rav. D1, 169 (1970).
13. 3. R. Crittorden, K, F. Galletray, R. H. Hejinz, H. A. Noil, and R. A, Sidvoll, Phri, Rov, D (June, i970), to be published.
1. For $\pi^{ \pm}$and $k \pm$ produecion cross socirons $800 R_{0} A_{0}$ Lundy T. B. Hovay, D. D. Yovato rifteh, ant V. I. Tellegdi, Pkys. Rev. Lottors ily, 504 (15555).
2. Edgerton, Gernashausen and Grier, Inc., 35 Congross Street, Salem, Hassachusetis 02971.
3. T. Carider, J. G. Cottirghens A. V. Feltmen, A. S. Grecsman, I. B. Loipurier, J. G. Marinuzeq, and G. G. Schronder, Rev. Sch. Instr. 登, 3425 (1967)。
4. K. A. Potecki, doctoral iissertation, Indiana University (unprablished).
5. W, F, Prickett, doctoral dilesortation, Indiani Undversity (unpublished):
6. The aopsptablex $x^{2}=N-2+2 \sqrt{2(N-2)}$ where in is the numbor of aparke, $\mathrm{N} \geqslant 3$.
7. D. funt, Argonno National Idiboratory, paivaie comxuniontion,
8. Baker, et. 8l., Ref. 9.
9. Corfin, ot al., Ref. 9.
10. B. B. Brebean, R. R. Critterder, A. M. Heinia, R. C. Kamrerud, H. A. Neal, K. W. Patk, and R. A. Sidvellg Tadiand University preprint (1970).
11. R. Anthony, C. T. Coffin, Es Meanly, J_{0} RAce, M. Staintong and K. Torndiliger, Phys. सev. Loth,
12. M1, Follinger, D. P. Owen, F. C. Peterson, L, S. Sohroeder, K, C. Chase, E. Coleman, and T. G. Phoadens. Phys. Rev. Leteors 23. 600 (1969).

 Ping. Rev, Latters 23: 186 (5969).

27, Sew, e.g., the 1969 coapilation by G. Giacabilli, P. Pini, and S. Stagnis, CHRN/HERA report \$69-1.
28. Forn'a racent rovicu of Regge nodel results sef G.E. Hite, Rev. Mod, Physios 41, 669 (1969).
29. For e revisin of work on the Venselano axdel see the Indiana University propaint (190́9) by E. Predaz2i.
30. Seo Raf. 3.
31. V. Singh. Phys. Rev. 129, 4889 (1963).
32. C. E. Jones and J. A. Poinar, "Basie Theory and Applications of Regge Poles", UCPL report $\$ 10677$ (1963).
33. V. Barger and D. Cline, Phys. Rev. Loitens 19, 1504 (1967).
34. Particle Data Groupp Fev. Nod. Phys. 41, 109 (1969)p and Rev. Mod. Phys. 42, 87 (1970).
35. 0. W. Greanberg, Undwareity dî Maryland Techmical Eaport 70-017 (August, 1969). This is a rapporteur's revien from the july 1869 Luad Conference on Elementafy Particles.
36. F. Henyey, G. L. Kane, J. Pumplin, and M. H. Ross, Phys, Rev. 182 , 1579 (1969); R. L. Kellog, G. L. Kana, and F. Honyeg, University of Miehagan preprint (1970).
37. G. Höhlory, J. Bazoke, H, Schąle, and P. Sondegger, Phys. Lotters 20, 79 (1966). See also the reoent comptiation of G. Fox and C. Cuige, UCRI repart 20001.
38. The Pegge oalculations uare done by P. Thomínson, Indians Univeraity.
39. N. Booth, University of Chiengo, previato communication.
40. E. Paschos, Fhys. Rav, Letequy 21, 1855 (1928).
41. S-y. Chu and A. Hendry, Indiane university preprint (1970).
$2.18 \mathrm{GeV} / \mathrm{c}^{+} \mathrm{p} \rightarrow \mathrm{pr}^{+}$

${ }^{-\cos \theta_{\mathrm{cm}}}$	-t.	u	Number of Buents	$d_{\sigma} / d_{n}\left(\frac{\mathrm{Lb}}{(\mathrm{bter} .)}\right.$	$\mathrm{d}_{\mathrm{o}} / \mathrm{du}\left(\frac{\mathrm{ub}}{\left.(\mathrm{Gev} / \mathrm{c})^{2}\right)}\right.$
. 513	2.532	-. 668	144	89.4 ± 7.5	335 ± 28
. 538	2.573	-. 626	2.80	86.0 ± 6.4	323:-24
. 563	2.615	-. 584	338	64.7.5.5.5	243 ± 21
. 588	2.657	$-.542$	121	54.8 ± 5.0	2C5. 19
. 633	2.699	-. 500	123	56.4 ± 5.1	2x: 29
. 638	2.741	-. 4.459	96	43.4.24.4	263-17
. 663	2.783	$-.417$	86	39.2 ± 4.2	247*16
. 698	2.824	-. 375	94	- 42.8 .4 .4	161:17
. 713	2.866	-. 333	68	30.5 ± 3.7	124×24
. 738	2.903	-. 291	55	24.8 ± 3.3	$93 \div 12$
. .763	2.950	-. 249	57	24.9 ± 3.3	93- 2.2
. 788	2.992	-. 208	53	[3.343.2	$8 \%{ }^{\text {¢ }} 12$
. 813	3.034	-. 166	50	32.6 ± 4.5	$119+47$
. 838	3.076	-. 2124	26	27.3 ± 3.4	65 ± 3
. 863	3.117	-. 082	41	55.7土2.5	59'9
. 889	3.259	-. 040	33	22.5×2.5	84; 9
. 913	3.201	+. 002	89	21.9 ± 2.3	82. 49
. 938	3.243	+.044	10.	$26.9 \pm$ 2.7	20] 10
.963	3.285	+.086	145	38.7 ± 3.2	14.5.12

${ }^{-20 s} \theta^{c m}$	-t	12	Number or Events	$\mathrm{d} / \mathrm{d}_{\Omega}$	d_{σ} / du
. 513	2.669	-.727	79	52.8 ± 5.9	188 21
.538	2.713	-. 673	325	62.8 ± 5.6	224土20
.563	2.757	-.629	125	60.7 ± 5.4	216+19
. 588	2.802	-. 585	103	51.9 ± 5.0	185418
. 613	2.846	-.54	100		171. 27
. 638	2.890	-. 497	78	37.6.14.3	134 ± 15
.663	2.934	-. 453	58	27.7 ± 3.6	$99+13$
. 688	2.978	-. 409	68	32.944 .0	$11711{ }^{1}$
.733	3.022	$-.365$	69	33.124.0	11884 14
.738	3.006	-. 320	69	$33.3+4.0$	119.4 ${ }_{4}$
. 763	3.210	-.275	69	$32.9+4.0$	117914.
.788	3.154	-.23?	62	28.3 ± 3.6	Jolfi3
. 813	3.199	$\cdots .188$	140	24.2 ± 3.8	66 +174
. 838	3.243	-. 244	44	32.544 .9	116 ± 17
. 863	3.287	$\cdots+108$	65	31.8 ± 3.9	113+117
. 888	3.332	. .056	90	27.3 t2.9	$97: 10$
. 913	3.375	-.012	123	$33.0+3.0$	12* +1
.938	3.419	+.03\%	164	$46.0+3.6$	164:23
.263	3.403	$+.07 \overline{7}$	195	$55.1 \cdot 3.9$	196, 11
. 978	3.489	+.10:	177	73.8 ± 10.8	203:30

$2.38 \pi^{+}$
Number

$2.75 \pi^{+}$
. $\cos \theta_{\mathrm{cm}}$
.538
.563
.588
.613
.638
.663
.688
.713
.738
.763
.788
.813
.838
.863
.888
.913
$-t$
u
Number

of	
Events	d_{σ} / d_{Ω}
$d_{\sigma} / d u$	

34
50
74
90
99
83
104
68
101
100
100
113
$-.235$
$-.180$
$-. .25$
$-.070$
. .025
$+.640$
4.073

1. 34 .

47
50
86
254
227
342
138
30.7 ± 5.3
88 ± 15
$31.8=4.5$ $91 \pm 3^{\circ}$
38.544 .5
110 ± 13
46.0 ± 4.8
132 214
50.7 ± 5.1.
145:415
42.7 ± 4.7
122 ± 23
53.5 ± 5.2
153 ± 15
44.8背. $8 \quad 126 \leq 14$
$51.6 \div 5.2 \quad 148 \pm 15$
$51.0 \pm 5.1 \quad 346 \pm 3.5$
$51.1+5.1 \quad 146535$
$55.7 \pm 5.3^{\circ} \quad 159+15$
29.1.t. 2 85土?
$35.0 \pm 5.0 \quad 100 \pm 14$
$37.8 \pm 4.3 \quad 100 \pm 32$
$47.0 \pm 3.5 \quad 234 \pm 10$
66.5.4. $4 \quad 190 \pm 12$
101.945.5 291.215
$147.0+12.6 \quad 420 \pm 35$
$3.00 \pi^{4}$

$-\operatorname{cose}_{\text {cm }}$	-t	u	Number of Events	d_{0} / d_{Ω}	do/du
. 538	3.728	-1.008	15	17.2.4.4 4	44×11
. 563	3.788	$\cdots .947$	37		64 ± 11
. 588	3.849	-. 887	63	30.1 ± 3.8	78+70
. 613	3.910	-. 82%	69	26.6 ± 3.2	$69+3$
. 638	3.970	-.706	83	32.743 .5	$82+9$
. 663	4.031	-. 705	104	39.9 ± 3.9	103530
. 688	4.091	-.62, 1	100	$38.3+3.9$	$99+10$
. 713	4.152	-. 581	77	29.1×3.3	75さy
. 738	4.213	-. 523	96	36.6\#3.7	95*0
. 763	4.273	-. 462	74	$28.2+3.3$	$73+9$
. 788 .	4.334	-. 402	69	26.1:43.2	68:3
. 813	4.394	-.34]	'96	32.4×3.3	84.9
. 838	4.455	-. 281	52	20.6:7.9	5348
. 863	4.516	-. 220	37	19.3+3.2	50:6
. 888	4.576	-. 159	36	$14.3+2.4$	374
. 933	4.637	-. 099	78	18.352.1	47 ± 5
. 938	4.698	..038	210	44.913 .1	216.5
. 983	4.758	+.023	267	59.9 $9 \ldots .0^{x}$	155 57)
. 979	1.797	+.063	203	67.7 ± 0.5	

*Beckiground subtraction 210%.

$-\cos \theta^{\text {cmi }}$	－t	u	Number of Events	d_{0} / a_{Ω}	a／du
． 638	5.105	－1．037	15	9.0 .12 .3	18．244．6
． 663	5.383	－． 959	20	8.8 ± 2.0	17：744．0
． 688	5.261	－．881	26	$8.5 \pm$－ 7	17．1＊3．4
． 723	5.339	－． 803	38	10.6 ± 2.7	21.4 ± 3.4
． 738	5.427	－． 725	54	12.2 域．7	24.6 ± 3.4
． 763	5.485	－．647	52	10．942．5	22.0 ± 3.0
．783	5.573	－． 569	81	14.7 ± 1.6	29．6さ3．2
． 813	5.651	－．491	54	9．5土t． 3	19．2„2．6
． 838	5.788	－． 413	60	10.3 ± 1.3	20.8 ± 2.6
． 863	5.80%	－． 335	64	13.2 ± 2.6	26.4 ± 3.2
． $888{ }_{-}$	5．88\％	－． 257	21	5．9＋2．6 ${ }^{\text {＊}}$	32．9：3．2
－ .923	5.96%	－． 180	26	$4.8 \pm 1.2^{*}$	9：7さ2．4
． 938	6.040	－． 102 ＊	57	$6.7 \pm \pm 1.0^{*}$	13．5＋2．0
． 963	6.213	－． 024	152	18．4＊1．8 ${ }^{\text {＊}}$	37．2＊3．6
． 960	6.271	＋． 029	92	$27.1 \pm 3.7^{*}$	54．6．57． 5
－					
＊Back，	subte act	210%			

$$
\begin{aligned}
& \begin{array}{c}
{ }^{2} 0 \theta_{\mathrm{cm}} \\
.639 \\
.663 \\
.688 \\
.713 \\
.738 \\
.763 \\
.788 \\
.813 \\
.838 \\
.863 \\
.888 \\
.938 \\
.983
\end{array}
\end{aligned}
$$

$$
4.25 \pi^{+}
$$

Humber

*Ba"kground subsraction 220 范.
$4.50 \pi^{+}$
$-\cos \theta \operatorname{cro}$
.667
. 688
.713
.738
.763
. 788
.813
.838
.863
.888

$.913^{\circ}$	7.294	$-.2: 4$
.938	7.396	-.259
.963	7.485	-.044
.981	7.551	+.065

.981
*Background a dot iection $=1 \sigma_{i}$.

Number
of Events

6
14
11
34
42
39
50
40
-57
41
26
18
86
76
$\mathrm{d}_{\mathrm{o}} / \mathrm{d}_{\mathrm{n}}$
$-\mathrm{d}_{\sigma} / \mathrm{du}$
8.2 ± 3.3
10.9 ± 3.0
6.4 .2 .0
14.5×2.5
22.4.12.0
10.04 .7
12.7 ± 2.8
$10.0 \div 1.7$
14.342 .0
13.7×2.1
9.242 .1
$\begin{array}{rr}-2.0 \pm .9^{*} & 3.3 \pm 2.5 \\ 8.7 \pm 1.3^{*} & 14.3 \pm ? .1\end{array}$
$16.3 \pm 2.8^{*}$
26.8 ± 1.6

$$
4.75 \pi^{+} .
$$

Nuraber

$-\cos \theta_{c m}$	-t	u	of Events	$\mathrm{d}_{\sigma} / \mathrm{d}_{\Omega}$	$\mathrm{d}_{6} / \mathrm{du}$
$\therefore 688$	6.828	-1.189	6	3.34.1. 3	5.7 ± 2.0
. 713	6.929	-1.088	23	5.3 ± 1.5	8.2 ± 2.3
. 738	7.031	-. 987	16	4.2 ± 1.0	6.4 ± 1.6
. 763	7.132	-.886	22	4.3t.9	6.7 ± 3.4
. 788	7.233	-. 784	45	7.3 ± 2.1	11.3 21.7
.813	7.334	-. 683	35	5,4.2.0*	8.4.4.6
:838	7.435	-. 582	55	8.3.3.2	12.9+1.7
. 863	7.536	-. 481	36	8.2.t1.2	12.7土1.7
. 888	7.637	-. 380	33	5.942 .0	9.242 .6
-913	7.739	-. 279	15	$3.5 \pm 2.1{ }^{*}$	5.4 ± 1.7
.938.	7.8100	-. 177	180	$4.842 .00^{*}$	7.5x 6
. 963	7.941	-.076	75	$7.5 \pm$ 年 +3 *	17.6 ± 8.0
.930	8.019	$+.002$	73	$15.8 \pm 2.9^{*}$	24.50. 5

* Hackgrour a subtraction zlo *.

$$
5.00 \pi^{+}
$$

Nuruber
of
Events

$$
\alpha_{C} / d_{n}
$$

$-\cos \theta_{\text {em }}$	-t	u	of Event
. 713	7.328	-1.258	2
.738	7.435	-1.051	24
.763	7.5142	-.944	20
.788	7.649	-. 837	30
. 813	7.756	- .730	31
. 838	7.863	-. 623	42
.863	7.970	-. 516	45
. 888	, 8.077	-. 1809	1:0
. 913	8.184	-. 302	34
.938	8.291	-. 195	19
. 963.	8.398	-. 038	61
,980-	8:472	-014	66

2
14
20
30
31
42
45
: $: 0$

34

19
61

66
*Background subtraction 210 p .

$$
d o / d u
$$

			$5.12 \pi^{+}$		
$-\cos ^{\boldsymbol{\theta}} \mathrm{e}, \mathrm{m}$	-t ${ }^{\text {- }}$	u	Number of Events	$\mathrm{a}^{\sigma} / \mathrm{d}_{\Omega}$	$\mathrm{d} \sigma / \mathrm{du}$
. 713	7.519	-1.192	2	2.9 ± 1.3	2.7 ± 1.9
. 738	7.629	-1.082	7	$3.7 * 1.4$	5.3 ± 2.0.
. 763	7.739	-. 972	8	3.0 ± 1.2	4.3 ± 1.6
. 788	7.849	- . 863	13	4.0 ± 1.3	5.7 ± 1.6
. 813	7.958	-. 753	22	6.0 ± 1.3	$8,6 \pm 1.9$
. 838	8.068	-. 643	20	5.2 ± 1.2	7.4 ± 2.7
. 863	8.178	-. 533	16	4.1 ± 1.0	5.9 ± 1.4
. 888	8.288	- . 424	21	6.6 ± 2.4	9.4 ± 2.0
. 913	8.397	- . 314	9	3.3 ± 1.1	4.7 ± 2.6
. 938	8.507	-.204	10	3.2 ± 1.3	4.6 ± 2.58
. 963 -	8. 617	-.094	34	6.0 ± 1.7	$8.6 \div 2.4 \lambda$
. 980	8.693	-. 018	18	7.0 ± 2.7	10.0 \% 3.0%

*Backeround subiraction $\geq 10 \%$.

$-\cos \theta c . m$	$5.25 \pi^{+}$				
	-t	u	Number of等vents	$\mathrm{d} \sigma / \mathrm{d} \Omega$	$\underline{\sigma} / \mathrm{du}$
. 723	7.727	-1.228	3	$3.4 \pm .8$	2.0 ± 1.1
. 738	7.840	-1.116	8	2.7 ± 1.0	$3.8 \div 1.4$
. 763	7.952	-3.003	20	$2.5 \pm .8$	3.5 ± 1.1
. 788	8.065	-. 890	16	$3.0 \pm .8$	4.2 ± 3.1
.81.3	8.178	-. 777	22.	$3.4 \pm .7$	$4.7 \div 1.0$
.838	8.291	-. 664	2.7	3.1土 . 8	4.3 ± 1.2
. 863	8.404	-. 552	34	6.2 ± 1.0	8.6 ± 1.6
. 888	8.516	- . 439	29	5.1 ± 1.1	7.0 ± 1.5
. 913	8.629	-. 326	28	4.3 ± 1.0	6.0 ± 1.4
. 938	8.742	-. 233	23	$3.0: 19$	4.2 ± 1.3^{x}
. 963 *	8.855	- .300	54	4.8 ± 1.2	$6.7 \pm 1.7 *$
. 980	8.933	-. 022	53	13.7 ± 2.6	19.6 $\pm 3.6^{x}$

*Background subtracition $\geq 10 \%$.

0
$2.38 \pi^{\prime \prime}$

$-\cos \theta_{\mathrm{cta}}$	-t	u	of Eyents	α_{C} / d_{Ω}	$\mathrm{do} / \mathrm{du}$
. 525	2.997	-.802	6	7.7 ± 3.1	25:10
. 575	3.096	-. 703	7	5.1⒈9	26.6
. 625	3.194	-. 604	9	4.6 ± 1.5	15.5
. 675	3.293	-. 505	10	4.0 ± 1.3	13 ± 4
. 725	3.391	-. 403	16	$6.6 \pm \pm .6$	21 +5
.763	3.464	-. 335	17	14.4 ± 3.5	46 ± 12
.788	3.513	-. 265	25	20:6,4. 1	66:13
. 813	3.563	-. 236	23	20.2 +4.2	66_{1213}
. 838	3.612	-. 187	20	22.7.55.2	73 ± 16
. 863	3.661	-. 3.38	31	30.5 ± 5.5	93 ± 18
. 888	3.710	-. 089	88	$45.5 \leq 4.9$	- 145.16
. 913	3.759	-. 040	77	37.6 ± 4.3	1202il
:938	3.808	4.010	70	34.434. 1	110 ± 13
. 963	3.857	+.059	52	26.3 ± 3.6	84×12

$2.65{ }^{\circ}{ }^{\prime \prime}$					
$-\cos \theta \mathrm{cm}$	-t	u	Number of Events	$\mathrm{d}_{0} / \mathrm{d}_{\Omega}$	d / du
. 550	3.260	-. 820	4	3.6 ± 1.8	11+6
. 600	3.365	-.7.75	4	2.242.1	7×4
. 650	3.470	-.610	24	5.5 ¢1.5	2644
. 700	3.575	-. 505	20	3.5 ± 1.2	1024
. 750	3.680	-. 400	19	6.5 ± 1.5	19*4
.788	3.759	-.321	25	37.3 ± 3.5	52 $\div 0$
. 813	3.811	-. 268	23	15.2×3.2	45土20
. 838	3.864	-. 216	22	19.244.2	57 ± 1.2
. 863	3.927	-. 163	33	30.8 ± 5.4	93+16
. 888	3.969	-. 21.1	48	27.0×3.9	$81 \div 12$
. 913	4.022	-. 058	55	23.283 .1	$69 \pm{ }^{\circ}$
. 938	4.074	-.00s	71	29.1×3.5	87 ± 10
. 963	4.127	+.04ir	52	21.5 ± 3.6	64 ± 41

$-\cos \theta_{\text {crin }}$	－t	u		$\mathrm{d}_{\mathrm{J}} / \mathrm{d}_{\Omega}\left(\frac{\mathrm{bl}}{\text { ster }}\right.$ ，$)$	$\mathrm{do} / \mathrm{du}\left(\frac{\mathrm{Lb}}{\left.(\mathrm{GeV} / \mathrm{c})^{2}\right)}\right.$
． 552	3.475	－． 885	14	5.9 ± 1.6	3．6．jt
． 600	3.585	－9．776	27	7．4：1． 4	22． 4
． 650	3.697	－ .664	27	4．5\＃．9	1.2 ± 2
． 698	3.781	$-.580$	21	5.7×1.2	26 ± 3
． 713	3.837	－． 5^{11}	26	7.0 ± 1.4	20．4
． 738	3.893	－． 4.63	34	9.1 ± 2.6	26.4
.763	． 3.949	－． 412	54	24．6土2．0	41.6
． 788	4.005	－． 350	38	10．2土1．7	29.5
． 813	4.061	－． 300	45	20．792．7	33 ± 5
． 838	4.117	－．244	34	10．9土1．9	32 ± 5
.863	4.173	－． 183	33	17.8 ± 2.1	－ 33 ± 6
． $888{ }^{-}$	4.229	－． 232	63	14．7土1．9	4145
． 913	4.285	－．07\％	59	$9.6 \pm 1.4^{*}$	27 ± 4
． 938	4.341	－．020	94	$24.5 \pm 2.7^{*}$	41 ± 5
． 963	4.397	＋．036	101	$16.4 \pm 2.0^{*}$	46

＊Backeround subiracti；x_{1}－

$-\cos \theta_{\mathrm{cm}}$	－t	u	$\begin{aligned} & \text { Nuyber } \\ & \text { of } \\ & \text { Events } \end{aligned}$	$\mathrm{a}_{\sigma} / \mathrm{a}_{\mathrm{n}}$	$\mathrm{d} \sigma / \mathrm{d} v$
． 600	3.879	－．857	24	$6.0+2.2$	15.6 ± 3.1
． 650	4.000	－． 733	28	$4.3 \pm .8$	21．242．1
． 700	4.121	－． 614	35	$3.9 \pm .7$	10．0土2． 7
． 738	4.213	－． 523	25	5.1 ± 1.0	13.8 ± 2.6
． 763	4.273	－． 462	37	7.8 ± 3.3	20.3 ± 3.4
． 738	4.334	－． 402	38	$8.1+1.3$	$21.0+3.4$
． 813	4.394	－．341	27	5．3－1．0	13．7＊2．6
． 838	4.455	－． 281	50	， $10.8 \pm \pm .5$	28．0．43．9
． 863	4.516	－． 220	29	8.4 ± 1.6	21．8：4．1
． 888	4.576	－． 159	24	5．7：1．2	14．8土边
． 913 －	4.637	－． 099	33	$4.6 \pm 1.2)^{*}$	12．4．2．9
． 938	4.698	－． 0.038	39	$4.7 \pm 1.1{ }^{*}$	12．9
． 963	4.758	＋．023	71	$8.9 \pm 1.4^{*}$	23．1）

[^0]
[^0]: ＊Background subiraction ≥ 10 or

