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Analysis and Approximations for Crossing two nearby Spin Resonances

V. H. Ranjbar
Brookhaven National Lab, Upton NY 11973

(Dated: January 7, 2014)

Solutions to the T-BMT spin equation have to date been confined to the single resonance crossing.
However in reality most cases of interest concern the overlapping of several resonances. To date
there has been several serious studies of this problem however a good analytical solution or even
approximation has eluded the community. We show that the T-BMT equation can be transformed
into a Hill’s like equation. In this representation it can be shown that while the single resonance
crossing represents the solution to the Parabolic Cylinder equation the overlapping case becomes
a parametric type of resonance. We present possible approximations for both the non-accelerating
case and accelerating case.

PACS numbers:

I. INTRODUCTION

The T-BMT equation has been much studied in various
branches of physics. In the accelerator physics commu-
nity it is used to model the spin dynamics which particles
undergo in a beam-line. A well developed theoretical ap-
paratus has been developed to handle the various spin
depolarizing resonances. This is mostly based on our un-
derstanding of solutions to the single resonance model via
Foissart-Stora formula [1] for accelerating particles and
harmonic oscillator for the stationary case.

However in most cases the presence of nearby spin res-
onances cast doubt on the veracity of our understanding
so an approach to handle the interference of nearby spin
resonances has been long sought after. To date there
have been several efforts made to understand the effect
of nearby resonances. An approach base on classification
of resonance proximity and strength was developed by
S.Y. Lee [2] and S. Tepikian a number years ago. How-
ever this effort couldn’t explain the case when resonances
were nearly overlapping and accelerating. Later S. Mane
[3] developed and approximation based on the first order
Magnus expansion and applying a modified resonance
strength add-hock to the Froissart-Stora formula with
some limited success.

In this paper we present an approach which cast the
problem into a form accelerator physics are fairly com-
fortable with and permit a clearer understanding of the
dynamics driving the spin evolution during multiple res-
onance crossings.

II. T-BMT IN SPINNOR FORM

The dynamics of the spin vector of a charged particle
is determined by the interaction of the magnetic moment
with the surrounding magnetic field. In the particle’s rest
frame this is described simply by,

d~S

dt
= ~µ × ~B. (1)

Here ~S is the spin vector of a particle and ~µ is the mag-

netic moment. If we transform to the laboratory frame
then Eq. (1) becomes the Thomas-BMT (Bargmann,
Michel, and Telegdi ) Equation,

d~S

dt
=

e

γm
~S ×

(

(1 + Gγ) ~B⊥ + (1 + G) ~B‖ + (Gγ +
γ

γ + 1
)
~E × ~β

c

)

.(2)

~S is the spin vector of a particle in the rest frame, and
~B⊥ and ~B‖ are defined in the laboratory rest frame with

respect to the particle’s velocity. G = g−2
2 is the anoma-

lous magnetic moment coefficient, and γmc2 is the energy
of the particle. Neglecting the electric field, we can trans-
form this equation by expanding about a reference orbit
described by the Frenet-Serret coordinate system shown
in Fig. (1). Thus we have

dx̂

ds
=

ŝ

ρ
,

dŝ

ds
= − x̂

ρ
, and

dẑ

ds
= 0, (3)

where ρ is the local radius of curvature for the reference
orbit. Particle motion can be parameterized in this co-
ordinate system as,

S

V

z

x

ro

Reference Orbit

Particle Position

FIG. 1: The curvilinear coordinate system for a particle mo-
tion in a circular accelerator. x̂ , ŝ and ẑ are the transverse
radial, the longitudinal, and the transverse vertical unit base
vectors, and ~r0(s) is the reference orbit.
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~r = ~ro(s) + xx̂ + zẑ. (4)

Here ~ro(s) is the reference orbit and ŝ = d~ro/ds. The
velocity becomes

~v =
d~r

dt

=
ds

dt

(

x′x̂ +

(

1 +
x

ρ

)

ŝ + z′ẑ

)

≈ v(x′x̂ + ŝ + z′ẑ), (5)

~v′ = v

((

x′′ − 1

ρ

)

x̂ +
x′

ρ
ŝ + z′′ẑ

)

. (6)

All primes ′ represent derivatives with respect to s. The
transverse magnetic field can now be expressed as,

~B⊥ =
1

v2
(~v × ~B) × ~v

= Bρ

(

1 − x

ρ

)[(

x′′ − 1

ρ

)

ẑ +
z′

ρ
ŝ − z′′x̂

]

. (7)

Where we have made use of ds
dt ≈ v(1−x/ρ) and ~v× ~B =

γmc
e

d~v
dt . We should also note that B⊥ρ = γmcv/e is the

magnetic rigidity of the particle. To first order, ~B‖ can
be found to be,

~B‖ ≈ (Bs + Bzz
′)ŝ. (8)

Using the dipole guiding field Bz = −B⊥ρ/ρ, the Bs field
can be derived from Maxwell’s equations obtaining,

∂Bs

∂z
=

∂Bz

∂s
= − (Bρ)

(

1

ρ

)′
, (9)

Bs = −Bρz

(

1

ρ

)′
. (10)

Neglecting higher order terms,

~B‖ ≈ −Bρ

(

z

ρ

)′
ŝ. (11)

Then using d
dt = v

ρ+x
d
dθ the Thomas-BMT equation be-

comes

d~S

dθ
= ~S × ~F , (12)

where ~F = F1x̂ + F2ŝ + F3ẑ and the elements are

F1 = −ρz′′(1 + Gγ)

F2 = (1 + Gγ)z′ − ρ(1 + G)

(

z

ρ

)′

F3 = −(1 + Gγ) + (1 + Gγ)ρx′′. (13)

Using dx̂
dθ = ŝ, and dŝ

dθ = −x̂ Eq. (12) becomes

dS1

dθ
= (1 + F3)S2 − F2S3,

dS2

dθ
= −(1 + F3)S1 + F1S3,

dS3

dθ
= F2S1 − F1S2. (14)

Expressed in the rotating frame Eq (12) then becomes

d~S

dθ
= ~n × ~S. (15)

Where ~n = −[F1x̂ + F2ŝ + (1 + F3)ẑ]. Since we are
concerned only with spin 1/2 particles we can employ
the well developed spinor formalism. Using the Pauli
matrices

σx =

(

0 1
1 0

)

, σs =

(

0 −i
i 0

)

, and σz =

(

1 0
0 −1

)

,

(16)
the polarization can be given by

~S = Ψ†~σΨ. (17)

Substituting Eq. (17) into the left side of Eq. (15) yields

d~S

dθ
=

dΨ†

dθ
~σΨ + Ψ†~σ

dΨ

dθ
. (18)

Using [~σ ·~n, ~σ] = 2i(~n× σ) , the right hand side becomes

~n × ~S = − i

2
(Ψ†~σ)~σ · ~nΨ +

i

2
Ψ†~σ · n(~σΨ). (19)

Finally equating both sides gives

dΨ

dθ
= − i

2
(~σ · ~n)Ψ = − i

2

(

f3 −ξ
ξ∗ −f3

)

Ψ. (20)

Where ξ(θ) = F1 − iF2 and f3 = (1 + F3). Although the
spinor wave function Ψ is similar in form to the quantum

mechanical state function, in this case ~S is a classical
vector. As in the quantum mechanical case, however,
this two component spinor is defined,

Ψ =

(

u
d

)

. (21)

Here u and d are complex numbers representing the up
and down components. The components of the spin vec-
tor become

S1 = u∗d + ud∗

S2 = −i(u∗d − ud∗)

S3 = |u|2 − |d|2. (22)

Because H = (~σ · ~n) is hermitian,

|~S| = |u|2 + |d|2 = Ψ†Ψ (23)

and the magnitude of the spin vector remains constant.
The normalization condition for the spinor wave function
is chosen to be Ψ†Ψ = 1.
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III. RECASTING TO LINEAR 2ND ORDER

DIFFERENTIAL EQUATION

Moving to the Interaction frame using the following
transformation:

Ψ(θ) = e−
i

2

R

θ

0
f3(t)dtσ̂zΨI(θ)

ξ̂(θ) = ξ(θ)ei
R

θ

0
f3(t)dtσ̂z (24)

This yields two first order coupled differential equa-
tions:

dΨ+
I

dθ
=

i

2
ξ̂Ψ−

I

dΨ−
I

dθ
=

i

2
ξ̂∗Ψ+

I (25)

These equations can be cast into a standard 2nd order
homogeneous linear Differential equation with variable
coefficients.

d2Ψ+
I

dθ2
−

(

if3(θ) +
ξ′(θ)

ξ(θ)

)

dΨ+
I

dθ
+

ξ(θ)ξ(θ)∗

4
Ψ+

I = 0(26)

IV. TRANSFORMATION TO HILLS’ LIKE

DIFFERENTIAL EQUATION

It is possible to eliminate the 1st order derivative in
Eq. (26) to obtain a Hill’s like differential equation,
using the following definition:

β(θ) = −
(

if3(θ) +
ξ′(θ)

ξ(θ)

)

Ω2(θ) =
β′(θ)

2
+

β(θ)2

4
− ξ(θ)ξ(θ)∗

4

D(θ) =
1

2

∫ t

dτβ(τ)

q(θ) = eD(θ)Ψ+
I (θ)

d2q

dθ2
= Ω2(θ)q (27)

Evaluating Ω2(θ) we get:

Ω2(θ) = − if ′
3

2
− f2

3

4
+ i

f3

2

(

ξ′(θ)

ξ(θ)

)

+

3

4

(

ξ′(θ)

ξ(θ)

)2

− 1

2

(

ξ′′(θ)

ξ(θ)

)

− ξ(θ)ξ(θ)∗

4
(28)

Considering the form of Eq. (28) we can see that Ω2(θ)
will have oscillating terms from the transverse motion
due to z. In fact the standard approach is to expand
F1 − iF2 into a fourier series:

ξ(θ) = F1 − iF2 =
∑

K

εKe−iKθ (29)

where the Fourier coefficient or resonance strength εK is
given by,

εK = − 1

2π

∮
[

(1 + Gγ)(ρz′′ + iz′) − iρ(1 + G)(
z

ρ
)′

]

eiKθdθ

(30)
and K is the resonance spin tune. Also usually to first
order the (1 + Gγ)ρx′′ term is ignored. In the case when
Gγ is constant the equation reduces to a normal Hills
equation with a constant piece defined by Gγ and the
oscillating piece given by the Fourier expansion. In this
case we have parametric resonances when ever the con-
stant or polynomial f3 terms equal the frequency of the ξ
terms. For a single resonance the oscillating pieces com-

ing from ξ′(θ)
ξ(θ) and ξ(θ)ξ(θ)∗

4 cancel and the whole of Ω(θ)

is constant and becomes a simple harmonic oscillator. In
the case Gγ(θ) is not constant but we still have only a sin-
gle resonance term in ξ(θ) then Ω2(θ) again all oscillating
terms cancel as before but we acquire a polynomial in θ.
If the acceleration is linear then it is a 2nd order poly-
nomial. This of course could be solved either using Eq.
(26) (the standard Froissart-Stora method) with hyper-
geometic solutions or in the current form Eq. (27) solu-
tions are Parabolic Cylinder Functions. In the case when
you have both accelerating Gγ and multiple frequency
terms in ξ then Ω2(θ) has both polynomial and oscillating
terms which make the solution much more challenging.

However following [4] who considered a similar system
with linear terms and multiple frequency terms, we can
break up Ω2 into regions where the polynomial terms
dominate and where the parametric resonance dominates
and attempt a piece wise approximation which captures
the important dynamics of this system.

A. Approximation for Ω2

Since the 1
ξ(θ) term presents most problem, we will ex-

pand the denominator to first order to obtain a adequate
approximation for this term. Normally in the RHIC lat-
tice we deal with the overlap of a strong intrinsic res-
onance with a smaller nearby intrinsic or imperfection
resonance. Considering for now only two resonances one
strong and the other weak we expand to first order in the
small parameter ǫ = a2/a1 where a1 is the absolute value
of the stronger resonances εK1

and a2 the weaker.

1

ξ(θ)
=

1

a1e−i(K1θ+φ1) + a2e−i(K2θ+φ2)

≈ ei(K1θ+φ1)

a1
(1 − (ǫei∆φ)eiδθ) (31)

Here φ1,2 are the phases of the εK1,K2
, ∆φ = φ1 − φ2

and δ = K1 − K2 and expanded to first order in ǫ. Now
we can generate a new approximate β(θ),

β(θ) ≈ −
(

if3(θ) − iK1 + iδǫeiδθ
)

(32)
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Keeping only first order terms in ǫ our approximate
Ω(θ)2 becomes,

Ω2(θ) ≈ W 2
0 + C1θ + C2θ

2 + C3e
iδθ + C4θe

iδθ + C5e
−iδθ

W 2
0 = −i

α

2
− κ2

0

4
+

K1κ0

2
− K2

1

4
− a2

1

4
− a2

2

4

C1 = α
K1 − κ0

2

C2 = −α2

4

C3 = (−a2
1

4
+

δ2

2
+

δ(K1 − κ0)

2
)ǫp

C4 = −αδ

2
ǫp

C5 = −a2
1

4
ǫm

ǫp = ǫei∆φ

ǫm = ǫe−i∆φ (33)

Here we have developed a general Ω2 considering when
Gγ is ramping constantly and we can define f3(θ) = κ0 +
αθ. With the initial Gγ0 = κ0

V. DERIVATION OF APPROXIMATE

SOLUTION NON ACCELERATING CASE

In case that Gγ is constant ( α = 0 ), C1 = C2 = C4 =
0 and Ω2 reduces to,

Ω2(θ) ≈ W 2
0 + C3e

iδθ + C5e
−iδθ (34)

In this case the second to terms become important when
W 2

0 = δ2/4 in which case you have a 2:1 parametric reso-
nance out side of this region we have a normal harmonic
oscillator with frequency W0. If C5 ≈ 0 or C3 ≈ 0 then
solutions are Mathieu functions. Otherwise a solution
can be developed using Hills approach by expanding q in
a Fourier series and matching terms. However a decent
approximation is possible using a multi scale method if
we assume C3 > C5 and C3 < 1. In this case we can intro-
duce two new time parameters, η = C3θ and θ = t we also
introduce ǫ0 = C5/C3 to obtain (in some cases C5 > C3,
in which case C5 is factored out and ǫ0 = C3/C5) ,

∂2q

∂t2
+ 2C3

∂2q

∂t∂η
− (W 2

0 + C3(e
iδt + ǫ0e

−iδt))q = 0 (35)

Expanding q = q0 + C3q1 and collecting C3 terms of the
same order we get,

∂2q0

∂t2
− W 2

0 q0 = 0

∂2q1

∂t2
− W 2

0 q1 = −2
∂2q0

∂t∂η
+ (eiδt + ǫ0e

−iδt)q0 (36)

near the parametric resonance W 2
0 ≈ −δ2/4 in which

case,

q0(t) = A(η)eiδt/2 + B(η)e−iδt/2

(37)

Canceling the secular terms in the q1 equation leads to a
pair of coupled first order equations for A and B coeffi-
cients:

iδ
dA

dη
= −B

iδ
dB

dη
= ǫ0A (38)

the solutions are,

A = e
√

ǫ0η/δ

B = −i
√

ǫ0e
√

ǫ0η/δ (39)

So an approximation for q when we are at parametric
resonance becomes,

q(θ) = A1e
√

ǫ0C3θ/δ(eiδθ/2 − i
√

ǫ0e
−iδθ/2) +

A2e
−√

ǫ0C3θ/δ(eiδθ/2 + i
√

ǫ0e
−iδθ/2) (40)

Here A1,2 are determined by the boundary conditions.
For the case when C5 > C3 it becomes:

q(θ) = A1e
√

ǫ0C5θ/δ(e−iδθ/2 − i
√

ǫ0e
iδθ/2) +

A2e
−√

ǫ0C5θ/δ(e−iδθ/2 + i
√

ǫ0e
iδθ/2) (41)

and ǫ0 = C3/C5. This approximation becomes valid
when we are in the neighborhood of a resonance tongue,

W 2
0 ≈ δ2/4 ± |Ca|/2; (42)

Where Ca = C3 is C3 > C5 or Ca = C5 if C3 < C5.
Outside of this region we can approximate with a simple
Harmonic oscillator of frequency W 2

0 .

VI. DERIVATION OF APPROXIMATE

SOLUTION FOR ACCELERATING CASE

In this case as with the previous case we see that out-
side of the parametric resonant tongue region we can ig-
nore the oscillatory pieces of Ω2. The approximate Ω2

for this region becomes,

Ω2
c(θ) ≈ W 2

0 + C1θ + C2θ
2 (43)

For this Ω2
c solutions exist in the form of so called

Parabolic Cylinder functions Dµ(x). The solution is:

qc(θ) ≈ A1Dµ−
(y(θ)) + A2Dµ+

(iy(θ))

µ± =
±(C2

1 − 4C2W
2
0 ) − 4C

3/2
2

8C
3/2
2

y(θ) =
C1√
2C

3/4
2

+
√

2C
1/4
2 θ (44)
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with A1,2 constants due to boundary conditions. For this
case the location of the parametric resonance is θ = θr

θr± =
−C1 ±

√

C2
1 − C2δ2 − 4C2W 2

0

2C2
(45)

If both θr± roots are positive then there are two para-
metric resonances and the region around each tongue is
defined as θ1± and θ2±,

θ1± ≈ −C1 ±
√

C2
1 − 2C2|Ca| − C2δ2 − 4C2W 2

0

2C2

θ2± ≈ −C1 ±
√

C2
1 + 2C2|Ca| − C2δ2 − 4C2W 2

0

2C2
(46)

Defining Cr = C3 + C4θr, Ca = Cr if |Cr| > |C5| else
Ca = C5. So for the case when |Cr| > |C5| Eq. (40)
becomes,

q(θ) = A1e
√

ǫ0Crθ/δ(eiδθ/2 − i
√

ǫ0e
−iδθ/2) +

A2e
−√

ǫ0Crθ/δ(eiδθ/2 + i
√

ǫ0e
−iδθ/2) (47)

with ǫ0 = C5/Cr and when |Cr| < |C5| we recover Eq.
41 with now ǫ0 = Cr/C5.

VII. CONSTRUCTING A FULL SOLUTION

Matching the boundary conditions for Ψ+
I (θ0) = Bc1

and Ψ+′
I (θ0) = Bc2 becomes q(θ0) = eD(θ0)Bc1 and

q′(θ0) = β(θ0)e
D(θ0)

2 Bc2. Generally the constants for a
solution to a second order differential equation can be de-
termined from the inverted Wronskian (W−1(θ)) at the
θ = θ0 location of the boundary conditions.

(

q(θ0)
q′(θ0)

)

=

(

q1(θ0) q2(θ0)
q′1(θ0) q′2(θ0)

)(

Bc1

Bc2

)

~Q(θ0) = ~W (θ0) ~Bc

~W−1(θ0) ~Q(θ0) = ~Bc (48)

Here q1,2 are the particular solutions and Bc1,2 the
boundary conditions specific for q(θ0), q

′(θ0). Matching
the boundaries between each region we can construct a
piecewise solution using Eq. (44, 47, 41). We split up the
solution into three regions Region I: 0 < θ < θ−, Region
II: θ− < θ < θ+ and Region III: θ > θ+.

Beginning in Region I we use the Parabolic Cylinder
solution of Eq. (44) and match to the initial bound-
ary conditions at Ψ+(0) = Ψ+

I (0) = 1 and Ψ+′(0) =

Ψ+′
I (0) = 0. This becomes q(0) = eD(0) and q′(0) = 0.

Then using the Wronskian approach shown in Eq. (48),

the constants (A1, A2) become ~A = ~W−1
c (0) ~Q(0). Here

Wc(θ) is made up of the two Parabolic Cylinder particu-
lar solutions shown in Eq. (44).

In Region II we use the Hills’ like approximation equa-
tions of Eq. (47) or (41) depending on whether the neg-
ative or positive frequency amplitude is larger. Here

we have to match Region I equations at the bound-

ary θ−. So the constants in this region become ~A =
~W−1

p (θ−) ~Qc(θ−). Here ~Wp(θ) is the Wronskian made up
from particular solutions given in Eq. (47) or (41) and
~Qc denotes the solutions in region I.

Finally in region III the solution goes back to the
Parabolic Cyclinder form matching from region II at θ+

to get the constants ~A = ~W−1
c (θ+) ~Qp(θ+).

VIII. COMPARISON OF THE APPROXIMATE

SOLUTION AGAINST NUMERICALLY

INTEGRATED SOLUTIONS

For the RHIC machine there are several particular
manners in which two resonances may interfere. We con-
sider cases where the resonances are less than or equal
to one unit of Gγ away. This would include neighbor-
ing intrinsic resonances or imperfection resonances. We
can classify cases based on the location of the paramet-
ric resonances relative to the primary spin resonance and
the absolute strength of the primary resonance which can
effect the threshold and overall effect of the parametric
resonances. In Fig. (2)-(4) we can see the approximation
and direct numerical solution for the case when the pri-
mary resonance is more than strong enough for a spin
flip and it see’s a second single parametric resonance.

100 000 200 000 300 000 400 000 500 000 600 000

-1.5

-1.0

-0.5

0.5

1.0

1.5

FIG. 2: Plot of Im(q) versus θ with κ0 = 414.0 , K1 = 414.673
and K2 = 415.673, a1 = 0.45 , a2 = 0.01 and ∆φ = 0 and
α = 3.18 × 10−6. Blue trace is direct numerical integration,
Purple trace piece wise approximation

In Fig. (5) we show the case when there is no paramet-

ric resonance since Ω2
c never equals δ2

4 . In this case the
Parabolic cylindrical Solution works fine by itself. This
only breaks down when the size of the a2 becomes large
enough for the truncated ǫ2 terms to contribute and bring
in higher frequency terms. We can then see the onset of
parametric resonances when Ω2

c = δ2.

In Fig. (6) we show the case when both roots are
greater than κ0 our starting Gγ value, for θr±. In this
case the first parametric resonance occurs before the on-
set of the primary resonances followed by a second para-
metric resonance.
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100 000 200 000 300 000 400 000 500 000 600 000
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FIG. 3: Plot of Re(q) versus θ with κ0 = 414.0 , K1 = 414.673
and K2 = 415.673, a1 = 0.45 , a2 = 0.01 and ∆φ = 0 and
α = 3.18 × 10−6. Blue trace is direct numerical integration,
Purple trace piece wise approximation

100 000 200 000 300 000 400 000 500 000 600 000

-1.0

-0.5

0.5

1.0

FIG. 4: Sy versus θ with κ0 = 414.0 , K1 = 414.673 and
K2 = 415.673, a1 = 0.45 , a2 = 0.01 and ∆φ = 0 and α =
3.18×10−6. Blue trace is direct numerical integration, Purple
trace piece wise approximation

IX. INTEGRATING OVER DISTRIBUTION OF

PARTICLES WITH DIFFERENT INITIAL

BETATRON PHASES

This Hills form for the differential equation also has
the added benefit that it is fairly easy to integrate out
the effect of a distribution of particles with different ini-
tial betatron phases given by φ1 or φ2 since inside the
differential equation for q the kernel is function of only

10 000 20 000 30 000 40 000 50 000 60 000

-1.0

-0.5

0.5

1.0

FIG. 5: Sy versus θ with κ0 = 414.0 , K1 = 414.673 and K2 =
415.0, a1 = 0.6 , a2 = 0.01 and ∆φ = 0 and α = 3.18× 10−5.
Blue trace is direct numerical integration, Purple trace piece
wise approximation

10 000 20 000 30 000 40 000 50 000 60 000

-1.0

-0.5

0.5

1.0

FIG. 6: Showing the case with a second non-negative root
causing two parametric resonances: One before normal res-
onance the other after. Sy versus θ with κ0 = 414.0 ,
K1 = 414.327 and K2 = 415.0, a1 = 0.6 , a2 = 0.01 and
∆φ = π/4 and α = 3.18× 10−5. Blue trace is direct numeri-
cal integration (no approximation is shown).

the difference ∆φ and the individual phases are in D(θ)
only. So we can integrate out φ2 as follows,

∫

Ψ+
I dφ2 =

∫

eD(θ,φ2)q(θ)dφ2

∫

Ψ+
I dφ2 = q(θ)

∫

eD(θ,φ2)dφ2 (49)

For the case of two resonances this can be performed
analytically with D(θ) becoming:

D(θ, φ2) =
1

2

∫ θ

dτβ(τ)

D(θ, φ2) = − i

2

(

1

2
θ (2κ0 − 2K1 − 2K2 + αθ)−

i ln(a2e
i(∆φ+φ2+K1θ) + a1e

i(φ2+K2θ)
)

(50)

and then Integrating,

∫

eD(θ,φ2)dφ2 =
2ie−

i

4 θ(2κ0−2K1−2K2+αθ)

√

a2ei(∆φ+φ2+K1θ) + a1ei(φ2+K2θ)
(51)

X. ISSUES MODELING PARAMETRIC

RESONANCE CROSSINGS

While this approach can identify the location and rel-
ative strength of the parametric resonances. Modeling
the actual crossing is still problematic. This is because
the current approximation doesn’t capture the gradual
blow up in q amplitude during the acceleration across
the resonance and the phase can often be incorrect when
it is matched to the out-going parabolic cylinder solution.
This can result in under or over-estimating the blow up
(See Fig. (7) - (8 )

More work still needs to be done to develop a reliable
estimate for the blowup. We can either approach this
problem empirically and develop response by scanning
through different cases and phases or use approximations
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FIG. 7: Parametric Resonances crossing: Plot of Im(q) ver-
sus θ with κ0 = 414.0 , K1 = 414.673 and K2 = 415.673,
a1 = 0.45 , a2 = 0.01 and ∆φ = 0 and α = 3.18 × 10−6.
Yellow trace is direct numerical integration, Purple trace sta-
tionary Parametric approximation, blue numerical stationary
parametric solution
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FIG. 8: Zoom of end (top) and begining (bottom) of Para-
metric Resonances crossing: Plot of Im(q) versus θ with
κ0 = 414.0 , K1 = 414.673 and K2 = 415.673, a1 = 0.45
, a2 = 0.01 and ∆φ = 0 and α = 3.18 × 10−6. Yellow trace
is direct numerical integration, Purple trace stationary Para-
metric approximation, blue numerical stationary parametric
solution

developed for FFAG parametric resonance crossings [5]
and recast Hills’ form into a Hamiltonian form and then
go to action angles.

XI. ESTIMATE OF BLOW-UP USING ACTION

ANGLE

We can cast Eq. (27) in a Hamiltonian formalism:

H =
q′2

2
− Ω2(θ)q2

2
(52)

If we define:

Q2(θ) = −W 2
0 − C1θ − C2θ

2 (53)

The Hamiltonian becomes:

H =
q′2

2
+

Q2(θ)q2

2
− q2

2

(

C3e
iδθ + C4θe

iδθ + C5e
−iδθ

)

(54)

Now casting this in terms of action angles (J and Ψ):

q =
√

2J/Q cos Ψ

q′ =
√

2JQ sin Ψ

H = QJ − J

Q
cos2 Ψ

(

C3e
iδθ + C4θe

iδθ + C5e
−iδθ

)

(55)

Then finding equations of motion:

Ψ′ =
∂H

∂J
≈ Q(θ)

Ψ(θ) ≈
∫

√

−W 2
0 − C1θ − C2θ2

Ψ(θ) ≈ 1

8C
3/2
2

(

2
√

C2(C1 + 2C2θ)Q(θ) + i(C2
1 − 4C2W

2
0 )

ln

(

− i(C1 + 2C2θ)√
C2

+ 2Q(θ)

))

J ′ =
∂H

∂Ψ

J ′ =
J

Q
sin(2Ψ)

(

C3e
iδθ + C4θe

iδθ + C5e
−iδθ

)

(56)

The equation for the action can be approximated across
the parametric resonance crossing by expanding Ψ
around the location of the parametric resonance θr and
fixing Q(θ) = Q(θr). And expansion out to second order
for Ψ captures its evolution across the resonance ade-
quately and can be integrated analytically.

XII. APENDIX: TRANSFORMATION TO

RICCATI 1ST ORDER DIFFERENTIAL

EQUATION

For fun we can transform this into a general 1st order
Riccati nonlinear differential equation, using the follow-
ing transformation,

y = −Ψ+′
I 2

Ψ+
I ξ

(57)

to get,

y′ = y2 ξ

2
+ if3y − ξ∗

2
(58)

While there are some non-linear approximate approaches
to handle the Riccati Equation [6] the results will still
require taking the integral in Eq. (57) to get back to Psi
which will need to be performed numerically.
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