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,» ABSTRACT

6
'                    The many-body problem for finite systems is discussed from a point

of view which is largely that of the intermediate-coupling and configu-
ration-mixing shell models. Emphasis is placed  upon the determination
of excitation spectra for two simple systems, the single hole system and
the single particle system.  It is shawn how the spectra for these are
obtained by passing fram pure independent model to quasi-particle model
and thence to representations of the real states.  The configuration
mixing of the description is generated by allowing for the existence of
density correlations in the many-body system.  Such correlations manifest
themselves as the oscillations of the nuclear surface.  Single particle
(hole) excitations are altered by the presence of these collective motions.
Other, non-collective, configurations serving to modify the single particle
spectrum are also discussed.
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THE SPECTRUM OF EXCITATIONS FOR REAL NUCLEI

1.  Introduction.

This paper is largely descriptive.  Its purpose is to give as com-

plete an account of the many-body problem, in its application to finite

systems, as is currently possible.  The emphasis is upon those aspects

already familiar from the intermediate coupling and configuration-mixing

shell model; a Green' s function formalism   is used throughout.      This

method of the test-particle, as it is sometimes called, emphasizes the

spectrum associated with single particles and holes.  It is after all

CA,
the central problem of the "shell model" to define in some way a complete

'4                                       set of excitations  in the presence of interactions.    We will refer  to

the independent excitations as quasi-particles.  In order to be precise,

we shall need to define and clarify our usage of certain terms. A shell

model basis set will be that set of one-particle functions which is de-

fined in an energy-independent, state-independent, one-body potential

U .  No such potential exists, in nature, for the problem under discus-

sion.  The many-body wave function of the shell model is a Slater deter-

minant in the basis set noted.

We may go beyond this concept of the shell model.  It is possible

and traditional to extend the model in two simple ways.  1)  We may

introduce the mixing of configurations of shell model, many-body, wave

functions.  2)  Slater determinants of more sophisticated one-particle

.#, functions, e.g., quasi-particles, may be used to represent the many-

e.
particle system.  Then, the configuration mixing is studied in this

'6.
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more general situation.  Approach 2) has not received a great deal of

attention.  The early impetus in this direction owes to Brueckner and

his   collaboratorsl,2).     Our only criticism  of this effort   is   that   it   does

not go sufficiently far.  It does not contain specific aspects which we

believe to be relevant to the specification of finite systems.  We shall

undertake to make these statements precise at the appropriate points in

our discussion.  The nuclear many-body problem is unmistakably hard.

It is not, however, clear to us that the study of finite systems is

necessarily elucidated by an analysis of nuclear matter.  Indeed, the
/

4               two systems are so disparate in, for example, their thermodynamic behav-

'7
. ior, that they are most likely unrelated.  Further, we do not view the

relating of the values of dynamical quantities computed in the infinite

system to those for the finite system as specifically useful.  It is

submitted that a more natural procedure is available.  The direction

which the approach takes is based upon our traditional ideas of the con-

figuration-mixing shell model.  Some elaborations are of course indicated.

The approach is formally based upon the expansion of the Martin-Schwinger ),

(M-S), Green's functions in terms of those defined by Brueckner. More-

over, the Hartree-Fock (H-F) method, as developed by Thouless4), will be

seen to play a dominant role in our discussions. While the development

of our treatment is quite formal, the results are easily translated into

numerical form.  A program of numerical evaluation (nuclear properties

., and single-particle spectra), based upon the notions of this paper, is

currently in progress.  Hopefully, the results will throw light upon
V
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those aspects which we emphasize here.

It is intrinsic in the shell model, as usually conceived, that a

diagonalization of the residual force be carried out.  Such a force

arises as a reflection of the difference existing between the model and

the actual Hamiltonian.  This same underlying feature will be present in

the extended shell model of this discussion.  In order to effect as large

a diagonalization of the given (physical) two-particle force as possible,

we have to choose a good quasi-particle representation.  This first step

.
is to be devoid of considerations arising from perturbation theory.

B                Experience has taught us that it is proper to look for a quasi-particle
4

representation.  Several such representations are discussed in section II.

The definition of these representations follows from their association

with corresponding one-body, energy operators.  Such operators are
:

diagonal   in the basis   of the ·representation.

At this point, we have to treat the residual force.  This is done

partially by non-perturbative methods and otherwise by treating the

force as small.  There is associated with the representation basis, a

non-abstract space.  This is the space of occupied or unexcited states.

The one-body, energy operators will not be diagonal with respect to

those configurations of N particles containing a hole in unexcited states

and a particle in excited states.  These configurations are the next

most complicated, when compared with the ground state configuration,

having N particles in unexcited states.  The residual force is to be

*                partially diagonalized over the space of hole-particle, (h,p), states.
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This step is also non-perturbative.  It introduces a set of collective

states. Such states are discussed in section III.

It is shown there that the positions-in-energy of the states are

associated with the poles of the two-particle prgpagator G2t.  In addi-

tion, we shall find that the spectrum of (h, p)-excitations is always

corrected by its coupling to that of (2h,2p) excitations. A state-

energy expansion is introduced for G2 in order to achieve these general

results.

The foregoing statements express the fact that we will take as
.

trial function for the N-particle system, an appropriate linear com-

v                 bination of ground state and (h,p) configurations.  One direct conse-

quence of this assumption is that the quasi-particle spectrum is now

shifted.  This effect comes about, in part, awing to the coupling of

quasi-particle and collective states.  Evidently, there can be distor-

tions of the spectrum which arise through couplings to states of non-

collective, (h,p)-character.  The perturbed quasi-particle spectrum is

discussed in section IV.  Some attention is also given there to the per-

turbation treatment of the residual force.

We attempt to make some specification of the residual force in

section V.  It is appreciated that in any consistent use of the new

Tamm-Dancoff method5  this is formally unnecessary. Nevertheless, we

t The poles actually appear in the function L, defined as L.= G2 - GG.
('.

5



9

will parametrize the theory whenever the residual force can be treated

as a perturbation.  This approximation, introduced for simplicity, can

be checked numerically.  Here, one has to determine from the evaluation

of the state-, and energy-dependent difference of given and average

interactions, the quality of the approximation of a state-, and energy-

independent parametric, potential form.

The pairing interaction is also a part of the residual force.  It

is one of those contributions, however, which must not be treated from

the point of view of standard perturbation theory.  At the same time, it

is still possible to introduce a sort of perturbation theory for this

2
effect.  The details are sketched in section VI.  A more complete dis-

cussion based upon the Nambu6 ) representation will be published else-

where.

Section VII contains a summary of the principle results and a re-

capitulation of the methods used.  There, also is an enumeration of the

data chosen by us for subsequent numerical summary and evaluation.

2.  Quasi-Particle Representation

We shall discuss two of the possible quasi-particle representations

in this section. Our aim here is not so much to rederive well-knawn

results but rather to describe some procedures for handling these in the

many-body problem.  These procedures are to be ultimately used in a com-

putational scheme.

First, it is desired to compute the ground state properties of an

V

6
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N-particle system.  To do this we must have the corresponding many-

particle wave function, 0 , eigenfunction of
the energy operator H, with

eigenvalue E .  In the Heisenberg representation we may write

H(t) =Ho +V=    dk V *t. 91'(x)

+     d£ dA' *t(x)*t(x') v(x,x') 9(x) *(x') ;           (1)

x = (&,t), v(x,x') = 5(t - t') v| 2 - &'|) .
*

The field operators are expanded in terms of some one-particle basis
V

set u asj

*t(x) = Fat (t) u  (x), *(x) =  aj, (t) uj, (x) .Z.,j

The basis functions are solutions of the one-particle equation

I€  -T  -U  ( j)1 uj (2)
=0 (1,)

j     jo     J

and the a , a  are respectively creation and annihilation operators for

the state j.  One determines the potential U ,

U = <dk *t (x) U (;) 4(x),
0 J

in terms of the given two-body potential v.  This is done by writing H

as

H= (Ho +Uo) + (V - Uo)
.

7
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and forming the variational expression,

(8 Mo|H|00) =0'

for the ground state energy. All of this has been done in a very nice

way by Thouless, so we will only quote the results.  One finds that

i ty

Uo(j) = 7 (v - v     )                             (2)
L-,i

ij,ij ij,ji

 ,                 and that

:

fd& 4(p2/29) uj(£) +fd& „1 vpuj(&) -4.:& «'· ul(&)v:J(&,21)uj(11)
E  =                                                                     i  (3)j

f d£ :   .1   (2,)   uj (x,)

where

vI  C ) =   d l'   u   (2' )   v   (1 2   -  2' )   uk   ( ' )      ,
-rk

and

kj ,
1+t

vX   (1,&l,  = u:  (21)  v (12 - &1| )       2 kj uk(;)  ;

t   = T- (j) T (k)
kj    3      3

We have written all of this explicitly because we wish to solve

8
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eq. (2), representing the H-F approximation of eq. (1).  Let us first,

however, make the customary, preliminary remarks.  It is necessary to

read for £1 the set of variables (& G t): the notation is standard.1, '

There is no exchange for non-identical particles.  This is assured by

the presence of the operator tjk.  It is our intention to circumvent the

difficulty produced by the presence of a hard core in the given, two-

body potential v.  This can be done if we take v to be the potential

of the modified boundary condition model,   (BCM),7). That model supposes

that at some radius r , the logarithmic derivatives F(ZjST) are specified
.

for every open channel of the relative, two-body system.  Outside of the

."

radius r , there is a specified potential tail.  For the choice of one-,

plus, two-pion exchange potential tail (O.P.E.P. plus T.P.E.P.), and a

matching radius of 2 pion Compton wavelengths, r  = 0.7 f, the model has

enjoyed tonsiderable success.  It summarizes the available two-nucleon data

with far fewer parameters (- 1/3 less) than the Brueckner-Gannel-Thaler

potential, (BGT).  There is also an absence of difficulty in explaining

the high-energy behavior of the 152' singlet-D phase shift, which diffi-

culty is characteristic of BGT.  Finally, the choice of potential tail
8

is fully supported by the work of Cottingham and Vinh Mau ). These

authors, starting from the causal matrix, obtain as the equivalent,

static nucleon potential, the O.P.E.P. plus T.P.E.P. tail.  This repre-

sentation is known to be suspect for interparticle separations of 0.5 f

or less.

In our many-body computations, we will take the pair suppression

9
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parameter of ref. 7 to be unity and the ladder parameter to be zero.

(1)This specifies our potential tail, which we denote as v .  The effect

of the boundary condition is taken into account through the introduction

of  a  pseudo-potentia.19)t.     It is required  that we choose this operator

so as to guarantee hermitian, time-reversal-, and, parity-invariant,

two-particle matrix elements.  Even so, considerable ambiguities arise

in the choice of a pseudo-potential. We have tentatively settled upon

the radial form for the internuclear force given as

v    =L CK- 6(r .r)+I/8(r-r-)- 6(r -r+ ) 11 ) ;      ( 4)BCM  M ir o ar  0   0 drJ
. 0                                                             1 jim

ro- = ro - 0-, ro+ = ro + 0+  .

The   left -hand derivative dL/dx appears    in the above   form.       No   one    of   the

derivatives  is  to act upon the spherical volume element e Finally,  we

may write the given force as

v= v(1) + v
BCM  ;

(1)
v   = v(O.P.E.P.) + v(T.P.E.P.), |xl - x2| > r           (5)0

" 0 , |£1 - £2| <ro .

t This was pointed  out   to   us  by S. Kahanna.

10



This potential form is eminently suited to the computation of matrix

elements such as those appearing in (3).

In order to solve eq. (3) we shall have to make a guess for the u .

This is facilitated by going over to a method of combined variation and

iteration. The substance   of the approximation  is to expand *the members

of the quasi-particle basis set over the set of shell model functions *s.'

A convenient shell model basis is provided by the wave functions of the

isotropic, harmonic oscillator.  Thus we write

m

*s(2) = Rn.:(r) Yim( ) x1 2 6.) X /2 (C)   .                  (6)

Again, the notation is altogether standard.  The quasi-particle expansion

is given by

uj(&) =   c    9 (2)   .                                                  (7)0.-O js s

Now, evidently, we are going to treat the c as variational parameters
jS

in the expression of eq. (3).  The procedure is to take successively

larger numbers of "principal orbitals"   n (the principal quantum  number)

until convergence, if at all possible, obtains.  There are some additional

technical details involved in the solution of (3) but these will become

evident in any practical evaluation.  One advantage associated with the

use of the *s defined by (6), is the decomposition of product pairs into

factors.  These factors separately involve the center of mass and the

relative coordinate of position.  This decomposition is formally expressed
.

11
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in terms of the familiar Moshinsky-Brodylo  transformation brackets.

The Ws of (3) are not the only possible shell model basis set.  We have

suggestedll  that one may use the two-parameter set

r-1     -  1     1/2  1 j- m-

*sck) = 2,            fEJj (aj,  Bj;   r)   Y     (&)  x1 2(a)X /2(C).     (8)Zm
m m  ' p_

S

Here, the radial functions f have been determined in a non-local
n£j

potential of the Yamaguchi form.  The parameters (a., B ) are fixed by
J    j

-               the binding energy of a particle in the orbital and the mean square

radius  of the orbita].12). The advantage afforded  by the functions  of
t.

(8) is that they decay exponentially.  The radial functions are somewhat

more complicated than those of the oscillator.  Additionally, one is naw

forced to give up the Moshinsky-transformation when using the functions

of (8).  For the sake of completeness, we note that the integral repre-

sentation pertaining to (8) is

1/2

f.«,(a,Bir)  -f  _>Q,  6  +  3 )
2    2 jl(pr) p2dp  .    (9)

a +P

13)The form factor in momentum is a product of Yamaguchi and Mitra  / form

factors.  In the latter, Ql(z) is a Legendre function of 2nd kind.

Finally, we should give some additional detail regarding the solu-

tion of (3)•  The procedure is the following.  1)  Expand the states

u (j 0
k) according to (7). This means that j = (dj) or (4) while

s = (n '1.j') or (n'f). There are M-1 states k and we want these to be

12



known at every stage of iteration.  2)  Write for these states, k, the

shell model functions of (6) or (8).  3)  Carry out the variation with

respect to the cjs to obtain € ' and ujl.  4)  Compute vl, namely v 1 and

<v  j ].0  5)  Assume a new set of c.  (j = 1,...,M) and repeat step 3)
Js

1    2   6)to obtain €. , u. . Continue until convergent.
J     J

We have now determined the H-F quasi-particle basis for bound, un-

excited, or occupied, states.  In the finite system there will be bound

and continuum excited states.  To discuss these, we must go from the

ground state, N-particle system to the (N + 1)-system.  That is, we add

one particle to the ground state N-systemo  The motion of that particle,

in each state (nlj) or & = (klk)' is determined by solving (1').  The

average  of H-F field  is that airing  to  the N "quiescent" particles  in

occupied states.  This procedure will yield distorted-wave states

(t)

Uj = uk
for the continuum situation.  The representation of (8), and

one similar to it for the continuum, is used exclusively in this part of

the computation.  An iteration procedure hs readily available to solve·

the integro-differential equation (recall that we have exchange) of (1').

This is not discussed here.  The H-F quasi-particle basis has been deter-

mined for the physical problem.  Evidently, we shall be able to compute

binding energies and radii for closed shell systems.  These systems pro-

vide the physical vacuum for the special (N + 1)-configurations discussed

above.

All of this labor has not taken us very faro  The H-F basis is an

approximation to the physical situation and omits much of the physics.

13



It is nevertheless a useful first step to obtain that basis.  We knaw,

for example, that a description involving only passive, unexcited

particles119 will never give us the quasi-particle, finite-lifetime

effects which we observe experimentally.  These are, however, included

if we can establish or determine the BHF-basis. And, evidently, to ob-

tain this basis, which is biorthogonall5), reflecting a non-hermitian,

one-body problem, we shall proceed from the H-F basis.  The H-F basis

provides then a useful set of trial functions for the new problem of

-               self-consistency.

The BHF basis is obtained by studying the spectrum of excitations

of the N i l systems.  This information is carried by the one-particle

Green's function, G.  We shall proceed to the G of Brueckner theory by

starting with that defined by Martin and Schwinger.  The development

which makes this possible  has been given elsewhere•16) .    However,  the

relevant equations will be reproduced here.  The significance of the

expansion and the motivation for it is easily discussed.  Brueckner,

recognizing that the phase space for particles is much greater than that

for holes, uses a scattering operator t defined in terms of particle

propagators G+.  Corrections to the self-energy Z which corresponds to

this t will be important for those states near the Fermi level <f(N).

This was also recognized by Brueckner.  Such states, being weakly influ-

enced by the exclusion principle, are filled and depleted a great part

of the time.  We thus speak of the probability of depletion of an occupied

state s < €f.  In like manner, the excited states s > Ef' for quasi-

14
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particles, will be filled with some probability even when we discuss the

ground state N system. The t-operator of M-S, say, t has hole-particle

symmetry as does the corresponding  .  When we are far away from E f we

shall not need this symmetry.  In the vicinity of Ef it is quite impor-

tant.  It then makes sense to expand Z in terms of Z in order to recover

the symmetry between holes and particles.  The corrections arising to Z

may be thought of as density-fluctuation contributions.  In fact, one

chooses to generate them fram the density-density correlation function

L, within the scheme of conserving approximations to G2 (= L + GG),

discussed by Baym and Kadanoff·17).

The one-particle propagator G, defined as

G(1, l') = -i<T W (1) 9+ (1') >  , (1 -  t) , (10)

the expectation of the time-ordered product of Heisenberg operators over

the N-particle ground state, satisfies the equation

G -1 (1, i ') G(I',2) -1-i v (1, 2) G2(1 2, 2 24)
. (11)

This is in the matrix notation of ref. 17.  The given potential is the

4-dimensional generalization of (5).  The unperturbed propagator G  is

defined by

              12  

Go-1 (1, 2) =  i 3E--- 34-  6(1 - 2)  .                 (12)

The ladder approximation,

15
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v(1,2) G(1 2,1'2') = t(1 2,i' ')  (I:,l') G(2-',2') - G(I',2') G( ',l')   (13)

provides an equation for t, namely,

t(1 2,1'2') = v(1 2,1'2' - 2'1') + i v(1 2) G(1,3).G(2,4) t(3 5,1'2') ,   (14)

when we assume the Bethe-Salpeter equation for G2'

G2(1 2,1'2') = G(1,1') G(2,2') - G(1,2') G(2,1')

+ G(1,3-) G(2,R) r (5 4, 5 6) G(5,1') G(6,2') ; (15)

and introduce the approximation that the vertex r is functionally inde-

pendent of G.

r(1 2, 1'2') =i v(1 2)  6(1,1') 8(2,2') - 5(1,2') 6(2,1') 

E i v (1 2, 1'2' - 2'1') (16)

The irreducible self-energy Z is defined as

I (1,I) G(I, l') = -i v(1,2) G2(1,&,1'5+) , (17)

and from the above discussion it follows that we also have

E (1,1') = -i t(1 2,3,1,) G(1,3+) . (18)

Equation (18) is the M-S expression for the nucleon self-energy, previously

called Z.  Now when the Brueckner operator

+ +
t=v a+i v G  G  t; (va=v(12,1'2' -2'1')  , (19)

16
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is used, the self-energy of (18) becomes the power series (in the Brueckner

operator) shawn in figs. 1, 2 and 3. We will always draw Goldstone dia-

grams.  Thus, the reader may attach external lines to our diagrams to

obtain the appropriate self-energy for particles and holes. Furthermore,

only the operator defined by (19) will play a role in our discussions.

We wish naw to pass to the BHF-basis, as we have called it, and to

deal with the problem of self-consistent determination of that basiso

This first of all implies that we shall employ a state-energy represen-

tation for all of the operators of the theory.  The state representation

in terms of our.biorthogonal basis 8s is, for G,

G(1,1') =     ds(£1) >G s (tl - tl') < 4s (&1')  1   .     (20)

This involves both continuum and discrete states. We are assuming

spatial homogeneity and that the processes under consideration are

stationary when we write eq. (20); thus G(1,1') = G(1 - 1'). The bound-
-

ary conditions are implicit in the functions 46 and 8 . These willS

reflect the characteristic finiteness of the nuclear system.  The fre-

· 18
quency or energy spectrum is introduced by means of Langer's represen-

tation,

00              111)(tl-tl' 
GS(tl - tl') = -i e(tl - tle)   di As  (co - 11)  e

11

11                                        inct.-t, ')

+ i e (tl' - tl)  < do Bs (0 - P) e    1  1   .  (21)
-00

17
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This representation, as written, is only appropriate to the infinite

system. The continuous energy variable w is symmetrically defined about

a chemical potential B.  Symmetry between holes and particles is thereby

implied.  The functions As and Bs are respectively the spectral functions

for particles and holes.  The characteristic asymmetry of the finite

system manifests itself through the existence of two quantities B, namely,

B(N  +  1)  = Eo(N)   -  Eo(N  +  1)  and  %(N  -  1)  = Eo(N  -  1)  -  E (N).    Even  in

a large but finite system these quantities are unequal.  It is also true

that the hole-particle asymmetry is reflected in the definition of the

spectral functions.

The spectral functions have the Lorentz form.  We have, for example

1
A ((0- B)=-2 Is m

a) - Ts(a)) - IB 1 - Es((D)

rs (CD)
,   (22)=

IN - Ts(co) - |B+| - Re Es(CD)  12
+ rs2(co)/4

with a similar statement holding for Bs.  Actually, the negative of (22)

with B_ substituted for B  gives Bs.  The quantities B  and B- are the

binding energies of the last particle in the (N + 1)-, and N-systems,

respectively.  In order to define the spectral functions, we introduce

the well of fig. 4, which is typical of a finite system.  Next, we

proceed to define the spectral functions on a finite set of points for

18



continuum and bound states. These definitions will be consistent with

the existence of I,2-functions, in the Fourier transform sense, on the

infinite internal   ( -   00  5  0  5  00).     Let us proceed  to do this.      In  the

limit of zero width, (22) goes over to

As((D - P) = 2f6(a) - a) ) fS S'

-                  --1

fs   =   1   -      Re      Is (CD)                                      i                                                      (2 3)
a)  = CO

S

cDs - Ts((DS) - 18+1 -R e  I_(CD ) =0  .b S

Referring to fig. 4, we note that s is the discrete index, either (ngj)

or (n,8) for all of the states of negative total energy (Do  We can then

write the following.t

Bs(a).  -   P)   =   2*6(0   -  ms)    fs    ;   ms   =  wl""   mN       '

(- |B(N)| - Ef(N) S es 5 - |B(N)|  ;

= 0(ws < -  |B(N)|  - Ef(N)    0

t
The spectral functions are given for the ground state configuration.

An excited configuration, say, that of one excited particle, i, will

have Bs  - fs  and As  - fS.
i i i l

19



As(CD   -   11)    =   2*5 (co   -  a s)    fs;   us   = 0N+1',0 '0 4 'f s=1-f s,

(-  |B(N)|  < m   < 0) • (24)
S

There are precisely N hole-states of the (N-1)-system which can be

generated from the N-particle ground state.  We can, however, sustain

(M-N) bound, excited states  of  the (N+1) -system within the interval

|B(N) |.   For the positive energy states,  s is a mixed, continuous and

discrete label, i.e., (1  k). However, recall that the scattering of

a particle from an average field of short range shows resonances.  It

is then meaningful to write

AS(a) - B) = 0((Ds > a Ax)   i

(25)

rs(N)/2
=                                                                                            i      CNs    =   54+1""092*       '

(a) - ws)2 + rs2((D)/4

(0 < us 5 54Ax)   0

The discrete states (us = m(nk Ek) are the positions of the scattering

resonances of the particle in the average field; rs(ms) is the associated

width of the resonance. The quantity a)s is just a number, e.g., 1 MeV.

We have insisted upon appending a subscript 'k' to the principal quantum

number and orbital angular momentum.  This is because we wish to indicate

that there is a problem of self-consistency associated with the deter-

mination  of  ms   for continuum states.
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The definitions of (24) and (25)  permit us to use the transform

of (21).  We have cut off the spectrum for the (N-1)-system from below

and that for the (N+1)-dystem from above.  This corresponds to the

physical situation  for  the (N-1) -system. The upper cutoff  must  be  em-

ployed if we are to have a finite mathematical representation.  It is

implied by (24) that the bound, excited (N+1)-states do not have a width.

This is not true and the statement is an approximation. We shall have

to compute the widths by means of perturbation theory.  The Green's

function method provides an average description.  The references to

states of the (Nil)-systems must be understood in this sense.  Averages

are taken over the actual (physical) states of these systems.

We are not very far along in describing the problem of self-consistency

which will yield the BHF-basis.      It   must   be  kept   in  mind  that   the  a)8   of

(24) and (25) are not knowno Nevertheless, sufficient formal methods are

naw available to us.  The self-energy operates Z, eq. (18), and the

scattering operator t, eq. (19), are put into the state-energy represen-

tation.  To do this, it is necessary to consider that E is a homogeneous

function of its arguments, Z(1,1') = I(1-1').  The operator t is taken

as the retarded part of a more general function.  The reader will recall

that < 1 2|t|1'2' > depends upon just two times, say, t2 and t2" There

are delta functions in the definition of t which set tl equal to t2 and

  The statements of (24) and (25) constitute a heuristic prescription,

the basis for which is supported by the work of the Appendix.  There,
we obtain G (t) as a stationary, time series.

P
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tl' equal to t2'.  Again, we demand homogeneity in the time-dependence.

As t2 can exceed t2'' or be less than t2'' we can formally generate both

the retarded (t2 5 t2') and advanced (t2 > t2') parts of to  The retarded

part of t describes the scattering of pairs of particles.  Hole scattering

contributions do not exist for the definition of (19).  The appropriate

results, which are consistent with the foregoing statements, appear below.

Es (Co) =     I< SP|t|SP > - < spltips >] fp
pS«P(N) -

(26)

-   < spelta|£ '8 >    1     < 8 8, It |p's·> f f f
4  2        0>-0>14   a'P'  Of2

2 4 a p'  £4  Z2    i
ff '84

ta|Plp2 > = tlpl 2   - t'P2Pl >  0

<s,p'Ita(CO)ISP'> =< s'p'Iva((D)|Sp> + 1f < s'p'Ivlmlm2>
m122

1
+-1«_ n,2 Ital sp  > 0 (27)

CD <1) -(D +iO
ml m2

Equation (26) results from the assumption that we will compute the

self-energy from the diagrams of fig. 1.  This includes the sum of BHF

and rearrangement energies.  No designations have beeen made for the

states   (82P'84) ,     We  do  this   now.      It   is   to be understood that  2'Z4 5 €f(N)
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and p > ff(N), holds, independently of whether s is less than or greater

than Ef(N).  Equation (27) is to be understood as applying when

(s,P)   5 ef(N) holds and either   (s'p')   5  Ef (N)   or   (s'p')  > Ef(N) holds.

The notation (s p) 2 ef is meant to imply that one or both of the vari-

ables in parenthesis satisfies the given inequality.  For the states m 

and m  we can mitigate against violations of the exclusion principle by

replacing |mlm2 > by |det|m  2| > in the potential matrix element. These

states satisfy the condition (m m2) > Lf(N).  The restrictions on the

states are consistent with those of the discussion of Bethe19),  our

expressions have an unsymmetrical appearance, the probability-of-

occupation factors f  of (26) being absent in (27).  This is tantamountj

to the approximation that intermediate states In 'm2 quite far from the

Fermi level are principally involved in the determination of t.  In the

case of Z we would say that the presence of the factors f. shows that we3

are always computing the interaction energy in a system of interacting

particles.  Typically, the binding energy |B(N)| will be of the order of

8 MeV or more in the closed shell systems which we discuss.  The observed

spectra of quasi-particles, namely that of single holes in the (N-1)

system and single particles in the (N+1)-system, persist up to excitations

of perhaps 3-5 MeV.  At higher energies, more complex types of excita-

tions appear.  The quasi-particle representation of (23) and (24) then

ceases to be valido  For this reason, the sum rule

L      din  As(a)  -  B+)  e((D  -  11+)  BS((1)  -  11-)·  8(ti_  - co)  =  1

23



.

is certainly exhausted in the interval t|B(N)| about Ef(N).  In view of

this, we write

-
<f(N) |B(N)|

1        do, Bs((1) - 11-) +   da)  As (a)   -   P+)          =   1       .5  
-- B(N)| 61'(N)              _

It  is  proposed  then  that the negative energy states  of  the (Nkl) -systems

be treated together.  The self-consistency of the continuum (N+1)-states

is discussed as a separate matter and will only be approximate.  A similar

situation arose in our discussion of the H-F basis.  The spectral func-

tion for the optical potential states is that given by (25).  While we

may sametimes refer to a particle in such states as a quasi-particle,

this cannot be the case.  In reality the optical states are packets of

energy w and width r((D). The quasi-particle states, those  of  (24),  are

characterized by the factors f  and f .  As these factors are not always3 3
1 or 0, we have the interpretation that a quasi-particle is a linear

combination of shell model hole and particle states.

The self-consistency involves the eqs. (26) and (27), and an

eigenvalue statement such as is given in (23).  The approximation is

made that the occupation factors f  are unity.  Again, restricting our

attention to quasi-particle states, we proceed as follows.  1)  Make a

guess for the energies in (26)·and (27).  The H-F energies <i associated

 ..                with the ui provide a starting point.  2)  Compute the matrix elements

of t, diagonal and non-diagonal, from (27),in the u.-basis.  Use the
1
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principal value of (27).  3)  Determine the self-energy for each of the

quasi-particle states from (26).  4)  Determine if the eigenvalue state-

ment of (23) is satisfied for each state s and its assumed (D•  5)  If m

does not equal 08' readjust the Li and repeat steps 2) - 5) until m

equals es.  6)  If a) = cos is still not possible, start from 1) and vary

all   o f   the   ui ' s
by making   the   root mean sguare radius     4< R ,2 larger

or smaller.  The ui are functions which one has tabulated and plotted.

A linear variation of the r.m.s. radius is straightforward for both

bound and scattering states. 7) Repeat 2) -5) with the new ui'S (E ;1  's)

until a) = as is satisfied, for each state.

The  eigenfunctions and energies  are then  (cos,  'Os = ils) ' These

functions constitute the.hermitian approximation to the BHF quasi-particle

basis. The self-energies   Es (es)    are   known for those states within  the

interval 2|B(N)| about Ef(N).  It is then possible to construct the

factors fs and fs, for these states, by numerical differentiation.  A

more reliable procedure involves the direct differention of (26).  This

is straightforward if t(e) is not too strongly energy-dependent within

the region of interest. The deeply bound states, cos < -|B(N)|, are
pure hole excitations  of  the (N-1) -system.    We  have  yet to discuss  the

quasi-particle damping which is associated with the excitations of the

(N+1) -system.    This  will  be  done  in a later section.

We  turn  now  to the optical model states. Without disturbing  the

previously obtained basis, one computes the hermitian interaction energy

of (26), written now as Re Z (0).  The anti-hermitian part I (0) is com-
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puted in the approximation of fig. 5.  As yet we have no wave functions

(t)'..
to complete our discussion of the basis.  The H-F basis functions u & Cr)

comprise a complete set.  We define the quantity

Uo(r, r,) =  I   lu( )  (r) >   Ek  (a)) < uC    (;')|              (28)
&

as the complex non-local potential   for the particle in continuum states.

It is of course true that w = Tk + |B(N) |, where T  is the asymptotic

kinetic energy of the incident particle.  One can then solve the equation

(LD - T) 4(&) (;) = .i .dF' 6    ( r ') U  ( r, r')               (29)

in order to obtain the basis functions for energy 0.  As is the case

with all statements made "in principle", it is not suggested that one

perform the computation of (29).  What is intended has to do with the

demonstration that the H-F basis functions provide a means of determining

(+)the BHF basis.  We use the set u -  in (28) instead of plane waves simply
2

because the former more nearly pertain to the physical situation under

discussiong

3.  Collective States

We shall obtain the collective states of the N-spectrum.  These have

significance for the ultimate determination of the (Ntl)-states. Collec-

tive oscillations are described by us as density fluctuations.  Mainly,
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1

our concern is with those motions of particle-hole structure.  These

states will occur at finite frequencieso  This is in contrast to the

zero-frequency collective state, that leading to uniform dilatation of

Fermi sphere, which characterizes pairing.

It has been explained that hole scattering corrections to Brueckner

theory are of some importance.  These play a dominant role in the vicin-

ity of the Fermi level.  It is especially relevant to discuss these

corrections in finite systems.  For these systems we seldom get pure

quasi-particle behavior, even at law excitations, once the medium weight

(A  -   60)    nuclei are reached.

-                    Hole corrections to particle-particle interactions take their simplest

form in the symmetric (ph)-scattering graphs.  These may be included in

the formalism already given without the occurence of double countings.

The one-body, non-hermitian operators, defining the quasi-particle basis,

are not diagonal with respect to configurations having a hole in unexcited

states and a particle in excited states.  We restrict ourselves to con-

figurations having just N-particles.    The  aim  then  is to incorporate  the

zero-point oscillations and the correlations associated with these into

our description of what has been called the non-degenerate, N-particle,

ground state,   |0 >.    The new state  |9(N)  >, upon which the quasi-particle
t

operators a and a act, will be an admixture of excited and groundj j
states.

The excited configurations with a particle and a hole present are

most simply discussed in terms of the operator L(1 2, 1'2').  This is
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the operator for the density correlatiohs.  In partidular, we have the

defining statements

L(1 2, 1'2') = G2 (1 2, 1'2') - G(1,1')
G(2,2'), (30)

++    +
<n(1),n(2)>Q=-2iIm L(1 2,1 2) ;n= $9 , (31)

which suggest the interpretations just given.  In addition to the possi-

bility of having the independent propagation of (p,h)-pair (fig. 6), we

can have correlations within the pair.  This is described by saying that

the particle and hole can scatter themselves into a bound state.  Both

the scattering and the bound state configurations are contained in the

propagator L. We shall extract the bound states from the solution of

the integral equation for L, given in ref. 17.  Our treatment is very

similar to that of Gottfried and Picman20  and a preliminary discussion

has appeared elsewhere21) 0

The integral equation for L, defined as the negative of the functional

derivative, [6G(1,1';U)/6U(2',2) 1u=o'
Ubeing a scalar external field,

is found to be

L(1 2,1'2') = - G(1,2') G(2,1') +   G(1,5-) G(ii,ls) E (3 5,  R  ) L(  2,5 2').   (322

The vertex operator E, is obtained for the ladder approximation, as

E (  12, 1'2') = [6Z)1,2)/6G(2',1') JU=O

= - i<1 21tll'2' >+ < 1 31tl2'11> G(R,5) G( ,3-) < 2 51tll'6>  .
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One proceeds by putting (32) into the state-energy representation, the

basis for which has already been discussed.  The first step of the pro-

cedure yields

L(atl' Bt2; Btl'' vt2') = -5   6   G (t  -t- ' ) GB(t2 - tl')av B g a 1 2

+  Ga(tl-T3) 51(t4-tl') < m£5'crt31El,€4'k€6 > L(k€6'Bt2; mE5,vt2').   (33)

One is to apply the Fourier transformation to this expression.  The two

contributions to the vertex are

5(t-5 - 5) <na ; t-3'tl wk; t-4> 6(t-4 - £6)

+ < mp ; t-5't' M ; E-4 > Gp(£3 - t-) G (£4 - t-6) < pa ; £31tlak ; £6 > 03   0
ap

And, the propagator is to be specialized as

L(a tl' 0 t2; B tl'' v t2') =
L (t  -t ' ·t  -t ') . (34)
aviBIL   1    2'  2    1

This says that a hole in state B at time tl' propagates to t2' state B,

while a particle  in  v,  at  time  t2 ', propagates  to tl' state  a.    The

Fourier transform of (33), with restrictions to be discussed shortly,

takes the form
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L        (E.,E2) = -6   6   + (2,)2  <do < ma|t(a))|Bk>
L  (a)   -   E )    )av,PK 1 av OK Kv,Bm

lanJ

-(2·)3 [EL-) ]-2 I < mp"CE-Ek) ) IM,
kmp(Y

• < palt(Eii)'ak > L      (E(-)  )
v,pm  12

-5 5 +    ( 2'1 )2   I  (a On-Ei ))-1   <   m a|t| pk  >   Lkv, Bm
av P61

km

3  F„(-) 1 -2 r-1
21   <  mp It( -  Ell)) 1 1,6  >- (2'r)- L»12    lanpa

• <palt(Ef;))|ok> L .  (35)
1CV, Bm

The expressions on the right-hand side of (35) have been arranged

so   as to depend   only   upon the energy difference   El   -   E2  -  E .2   .      This

is the energy of the (p,h)-pair (v,B).  Then, L no longer depends
av,BB

separately upon the variables El and E2.  The first term of (35) is the

expected convolution in energy.  It describes the transition of particle-

hole pairs (v,B) into those (k,m).  The latter are at the relative exci-

L.(-)tation energies  (cohm  -  *:'12    ) .    It is possible  to have excited configu-
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rations of two particles, (ak), and two holes, (Intl), in the N-particle

system.  These configurations are coupled to those in which a single

(h,p)-pair, (p,a), is excited.  This is the situation described by the

second term of (35).  The more general energy dependence of this term

has been restricted so as to yield the homogeneous variable E The(-)
12 '

formal over-simplification introduced is that of having 2-particle,

(-)   ,   (-)2-hole excitations at E    -l-E    ) =2 E 2 , or twice the excitation12       12

energy of the (p,h)-pair (v,B).

Eq. (35) is to be regarded as a set of algebraic equations for an

 (k)
abstract particle-hole vector X , k = (v, B), whose components are

X   ,s= (a,B); (s,k =1, 2,...). The product of delta functions in(k)
S

(35) is written as that 6sk for the abstract, particle-hole space.  Then,

we write the algebraic statement

X(k) - 'sk +  I ·:. *(k) .
(36)

This has the solution

(k) _   -1   -sj        -1   -skX               M  5s   - det
M(k) jk = det M(k)  M    ;

M(k)  =   [1  -  al

0
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1111-a _

a2 -83 ...1

222
-al 1-a2 -5                ;

333-a -a 1.-aj "'12

a ,   =   (2*)2   (            -  F(-))-1     <m'altltik'  >a)&1, -'12

-     (21r)3     IE C  - )  1-2             <   mip |t  | 11(Y   >    <   pa|t| ak '    >    ;     11  '     =     (k  'm')12
po

Collective states appear  at the
zeros   of  det  M-(k)   =  0.     This   is   an

eigenvalue problem for the unknown energies E - (k).  The quadratic12

dependence  of the coefficients  as, upon these energies  has its origin
p

in the (2p,2h) correction terms.  Otherwise, the eigenvalue problem is

that first described by Brown and his collaborators.  The correction

terms are associated with ground state correlations and are trouble-

some to compute.  They are the more important the farther the E
(-)
12

states move away from the unperturbed quasi-particle values e , and

taward zero energy.  The ground state correlations have been discussed

by  Brown   et   al.,   and  also by Kerman and Klein22),   and  Lewis-Walecka5).

We would note that the formalism presented here does contain the correl-

ation effects in a way which is unrelated to perturbation theory.  This
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will mean that low-lying collective states, e. g., 3-, which move down

+++
by large amounts and those such as 1,2,3  built upon (p,h)-states

58of low excitation, within a sub-shell, e. go, Ni  , can be properly

determined.

The (p,h)-collective states are established by the residual, two-

nucleon interaction.  The actual (observed in free scattering) inter-

action is used to build the quasi-particle spectrum.  This spectrum is

sufficient to determine the positions of the unperturbed (p, h)-states.

The residual force is non-singular and not too energy-dependent for

states at the Fermi sea, once saturation has been achieved.  The tremen-

dous success of the descriptions of the residual force in terms of, for

example, Rosenfeld and Soper mixtures, is indeed meaningful, in the

conventional shell model theory, that without configuration mixing.  The

latter is an essential part of what is termed the intermediate coupling

shell model.  The intermediate coupling shell model has been extensively

utilized by Gillete).  On the other hand, the residual force is the

difference between the 2-body operator corresponding to the given force

and the 1-body operator of the average field.  The non-diagonal (p,h)-

transitions in the secular matrix for the collective state can only be

induced by the given force.  The unperturbed (p,h)-energies are, to

good approximation, given by the average field, either H-F or BHF.  Thus,

the average field drops out of. transition matrix elements, as it should.

The collective state is established from both average and given inter-

actions.     But, the force parametrization of conventional shell model
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theory is inappropriate.  One encounters precisely this situation in

applications of the configuration mixing shell model.  It is to be seen

that the theory presented here does imply the configuration-mixing shell

model.

 (k)It is, finally, indicated that once the basis vectors X have

been determined the L-propagator for the bound states (collective states)

can be written, in state-energy representation, as

(k) > < X(k)1
(k),

L   Cl 2,1'2';wk) =  1
Sr  |Xs                  s             ,.,        -  EC -) (k) ; (37)
L.,     (1)(k) - (Ds , -(k) -  12
S

r1 (k)
L(1 2,1'2') =    L    (1 2,1'2';a )   0

k

There also exist scattering contributions to the propagator

r  |*a > < Val       fL'(1 2,1'2';co) =   ;   dm L'(1 2,1'2';a)) = L'(1 2,1'2').
CD - (1)a

However, we have no interest in these as their spectrum is just the

same as that which is implied by the (N+1) and (N-1) representations.

4.  Single particle Spectrum

We shall discuss some very simple excitation spectra and how these

may be computed. Our results apply mainly to the (N+1)-spectrum as it
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is influenced by states of the N-system.  One example, that of the 2-

particle bound state, is specifically relevant to the coupling of the

(N+2)-, and N-states.  The selection of topics and their order of dis-

cussion is samewhat arbitrary.  First, a non-perturbative coupling of

quasi-particles to vibrations is discussed.  This is an old problem

which was treated quite early on by Kisslinger and Sorensen241  our

remarks are therefore cursory.  Second, we examine the second order

perturbation theory for coupling of quasi-particle and vibration.  The

difference between the first and second examples has to do with relative

quasi-particle purity of the excitation spectrum.  The second example

-                                                     has been discussed from another point   of  view by Schrieffer25).      The

final and third discussion summarizes some of the aspects arising in

26)
the analysis of quasi-particle couplings to non-collective (p,h)-states  /

and (2p,lh)-states27). As our interest is primarily with single particle

spectra, we do not deal with the possible many-particle spectra.

28\
Mottelson  /has, however, given such a discussion in some detail.

We distinguish here between the quasi-particle spectrum and the

single-particle spectrum, namely, that for a real particle.  It is

necessary to approximate to the latter in some reasonable way.  At law

excitations in the (N+1)-system, the spectrum may very well look like

that for a quasi-particle.  At somewhat higher energies, excitations of

the core become important.  The.most obvious way to generate the single-

particle spectrum in this regime is to couple the quasi-particle and

core states.  This must be done in the strong-coupling limit.  A
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diagonalization of the particle-core interaction over the basis noted is

carried out.  The result of the diagonalization is to give a single-

particle spectrum which cannot be characterized as being that for a

quasi-particle.  The diagonalization has also taken into account that an

extra nucleon has been added to a real system, one undergoing vacuum

+
fluctuations.  In general, the low-lying core state is the 2  vibration.

However, in many isotopes, e.g., those of Ni, the odd parity 3- vibra-

tion must also be taken into account.

The calculation proceeds along the lines of the Tamm-Dancoff approx-

imation.     One, of course, is instructed  to form states  of  good  JII,   etc.

In view of the nature of this approximation, the quasi-particle basis

states are employed at their unperturbed energies.  Since the calculation

fixes the single particle spectrum, no attempt is made to compute the

shifts of the quasi-particle spectrum.  In fact, for a sufficiently strong

interaction between quasi-particle and vibration, the resulting single-

particle spectrum will achieve the Paschen-Back limit.

These points are mentioned owing to the fact that some attempts to

compute quasi-particle energy shifts have been made in the past.  These

have usually been done in the weak-coupling limit, and involve difficult

questions concerning the self-consistency of the quasi-particle basis

energies.  An overall question in the discussion of the quasi-particle

coupling to a vibration is that of the coupling potential.  Again, as

with our earlier discussions, the interaction is that remaining after

subtraction of the self-consistent field fram the given two-body inter-
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action.  We have noted that in Brueckner theory this statement gets

translated into t -<t > -<t'> .
ij      i O J  o

An example of the weak coupling of a quasi-particle to a vibration

will be considered.  Here one wants to obtain the quasi-particle energy

shift.  Fortunately, one can see where the self-consistency is likely to

go wrong, if we use the Green's function methods.  This is to be done.

In addition, the answer to the problem is known from other considerations29).

We attempt to compute the self-energy Z awing to a nucleon being in a

bound state of (p, h)-type.  The bound state propagation is described by

L' of eq. (3), which we call L . The first assumption is summarized by

writing

Gol G - 1 - i v G2 -'1 - ivI  .

This removes the independent particle-pair propagation in G2.  The next

assumption considers that it is possible to define the scattering oper-

ator, t, as

vLB=-t GGIX

with, moreover,

t=v+i t G G v.

The   exchange  part   G  G Ix of independent particle propagation,   G  G,   is  that

identified as the propagation of independent particle and hole pair.  Naw

writing
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t= [1+itGG] v

so that

[1.+itGG]v L =-[1+itGG]tGGIx,

we obtain

t L =-EGGIX '

If we assume that

IB= -GGIX+LBEGG

holds, then

t G Glx = -E G G+t I   E G G  .

For the self-energy, defined as

EG=-i v I  '

there follows

E=-i[EG-tL EG]. (38)

Suppose now that we retain the lowest-order bound-state term

(2)

EB=it t G. (39)
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This self-energy may be characterized as the second-order, weak-coupling

contribution owing to the fact the nucleon is sometimes in a correlated

state.  The nucleon is supposed to have the additional self-energy

I' = - itG + tGGtG E-i E G, which is that defining the BHF quasi-

particle basis.  On the face of things, the approximate self-energy

E, + E(2) describes the combined bound state and independent motion of

a nucleon.  However, it need scarcely be pointed out that I, defined as

above, with t being a given, instead of derived, operator, is, only

artifically consistent with the results of section II.  The self-energy

defined'previously as E G= ivG2 has, in addition to the terms appearing

in (38), contributions which may be identified as mass renormalizations

of hole lines.  Even if these are ignored the two self-energy expressions

are not to be formally equated.  We have only found a formal device for

reproducing the quasi-particle contribution to the self-energy, in the

presence of correlated nucleon motions.  The motivation for this sort of

description is provided by one's view of the physical situation.  The

mathematical operation is that of projecting on to a transpose space all

of the operators, and relations between these, defined in sec. II.  We

note that the weak-coupling result,

I = - i CEG -t I.  t G], (40)

fails to correct the quasi-particle motion for the presence of the

correlations.  This feature defines the approximation.

(2)
In discussing E    of eq. (40) we encounter an interesting feature.
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The contribution will become large for states in the quasi-particle

spectrum whose energy separation is just equal to the excitation of the

(2)
collective state. There is not, however, a pole in the Z8  -term when

the frequency condition is satisfied.  We will explain what occurs

shortly.  The behavior noted is similar to that of the continuum, two-

30)
particle bound state discussed by Fonda  /.  At the positions of these

states, the S-matrix will not exhibit poles.  We describe the phenomenon

under discussion  as a "2-particle bound state". The frequency condition

involved just two states of the quasi-particle spectrum.  The nomenclature

is not misleading even though one of the states is virtual•  In the

(N+1)-system, the correlation betweeh the two such states could produce

significant energy shifts in the energy of a real (as against virtual),

bound quasi-particle.  The scattering configurations of the (N+1)-system

will be similarly influenced, for sufficiently low energies.  Here, the

correlation of states, induced by the virtual phonon for a nuclear sur-

face oscillation, will modify the real part of the average, one-body

potential. Additionally,    it is expected  that the imaginAry  part   of   that

potential will also change.  The correlation increases the average life-

time of the one-body, wave-packet state. The effect is to change the

energy dependence of the imaginary part of the optical potential in the

vicinity of zero energy.

The two-particle bound state persists when we consider two real

quasi-particles, states of the (N+2)-system and also two virtual quasi-

particles, again in the (N*2)-system.  These conclusions are supported
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by the analysis of Schrieffer.  In the (Ni2) systems the two-particle

bound state gives an extended description of pairing.  Two quasi-particles

in different orbitals correlate over large distances by the exchange of

a virtual phonon.  The manifestation of the bound state is likely to be

stronger in the (N+1)-, and (N-2)-systems than in the (N+2)-system.

This is predicated upon assumptions regarding the extent to which the

core nucleons will be excited.

As is customary, we go over to the state-energy representation in

(2)order to discuss I   .  It is probably helpful to note that the operator

multiplication in eq. (30) is that specified by the diagram of fig. 7.

We have, according to this diagram,

I: 2) (li,4') =i< 1'2'|t|I 2> I. (2'3-, 3' ) <3 Rlt'394' > G(I,Ii)

The propagator is expressed as

IB(2'3;3'2) = 6(t2' - tj') 8(t2 - tj)      11Fs(x2xj) > Ls(t2' - t2)
S

<   gs (s2'xj)  1 0 (41)

The  frequencies  of the bound states,  Ws'   are  ms ' Furthermore, these

states may be expressed as.

Ws(x2'x2') =Tc  lek(x2') > < king'Cl Z > < 3£ (x3')|   '    (41)£_, sr
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in terms of the biorthogonal BHF basis set, where time-reversal, K8, is

denoted by J.  The remaining, undesignated quantities are: c  -expansionsr

amplitude or direction cosine for the projection of the bound state

vector along the axes of the abstract (p,h)-basis system; s - (q, K),

-q 5 /c S q;r= (k Z.), k= (n  fl jl; ml)' I= (n2 ' £2 '  2 ' i- 22'  i
and

<kIn K     = -  1   j2, 1

q

<i$(k,2)

_ml- 22'1 K

is the product of vector coupling coefficient and the phase utilized in

the definition of the (p,h)-basis states.  Finally, if

r                -in)(t    -t     ')

Ls(tl - tl') = i i   do>
€

1      1         LS (CD)          ,

the spectral function is

8-((D)
Ls((10 = a)D- a)    '

S

where the weight Bs(CDS)  will. in general be approximated as unity by  us.

The scattering operators in (39) are no longer assumed to have the homo-

geneous time dependence of our earlier discussions.  This is to say that

the spectral forms for these operators will, in general, be off of the

-                 energy shell.  Our final result, incorporating all of the foregoing, is
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(2)

EB  = Iki  (E) = i Icsg < kin;13 > c*  < rloq'Cl3 > 4 (em)SP

(42)

<   klk;    E    -   us I t I m j;    Em      <   rm;     emit I fkl;    E   >       ;

where g= (k f) , c*  = (-1)/C c  , p= (r 3); pm(cm) is the density-in-
sp           sp

energy of quasi-particle states of type m, at the energy E .

The expression of eq. (42) yields the width
rk (E) for

the process

under discussion.  The particle in state kl at the energy E experiences

a complex self-energy, Re Zkl(E) + i Im Zkl(E) ; - 2 Im Zkl(E + iO ) =

Pkl(E).  Eq. (42) pertains to the scattering configurations of the (N+1).

system.  Therefore, the state label kl and the energy E corresponding to

that state are to be understood as continuous variables. The contribu-

tion to the optical potential supplied by (39) would be determined by

computing Re
*k,

(E) . One can show in general that

00

P F rx(x)
Re  E  (z) = - dx ;  (z =E+i y;x= E'). (43)

s         2*          x-z

-00

It is then possible to compute the real part of I being given its dis-

continuity across the real axis.  This evaluation is left for the

reader.  The principal value is implied in (43).  It is also clear from

this  form  that  Re  Z ].(E)  will  not
have poles.
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Eq. (42) suggests the interpretation that the particle in the wave

packet state (kl'E) is coupled to the bound, quasi-particle state (m,Em)

through the vibration (q, K; w ).  Inspection of the matrix elements

shows that the optical-state particle excites the target with which it

interacts.  A schematic representation of the excitation process is

indicated in fig. 8. As the optical particle must scatter back into the

entrance channel from the intermediate state in order that Zkl(E) be
calculable, we are confronted by the need to introduce approximations.

If   << E is satisfied then eqs. (42) and (43) give a good approximation

to  a physical process (elastic scattering).    By es << E we shall mean

co  5 0.3 E.  Even so, the separate matrix elements of (42) involve off-
S

energy-shell operators.  The resulting self-energy may indeed be quite

small owing to this aspect.  On the other hand, the singling out of an

Em, satisfying em =E- ms' together with our inequality, produces on-

shell matrix elements.  The corresponding self-energy is significantly

larger.     We  rely  here  upon the "rapid" drop-off of matrix elements  as

one goes off of the energy shell.  This is a rather tenuous proposition.

However, the nature of two-particle bound state has been disclosed.

This is as far as we need to go.

Some brief remarks can be made concerning the coupling of the con-

tinuum (N+1) -spectrum for quasi-particles into non-collective states.

The coupling to (p, h)-states has been studied by Shakin and Lemmer who

15
-                investigate neutron scattering from N .  The presence of the inter-

mediate (p, h)-states leads to resonances in the neutron scattering
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cross section.  In the energy range 0 < En 5 10 MeV, the resonance widths

vary between 0.6 to 800 keV.  The mean spacing of the states is roughly

1 , MeV-1.  The reader is referred to the cited reference for additional

details.  Some consideration has also been given to the couplings to

(2p,lh)-states.  The effect of such states is also seen as resonances in

the total neutron scattering cross sections.  The experimental evidence

is beautifully summarized by the  data of Glasgow and Foster 1) 0    For

2 5 E n 5 6 MeV, and 20 S A S 208, the resonances appear.  The widths are

typically of the order of 100 keV and the mean spacings are 2-4 • MeV-1.

Both the resonances arising fr6m (p,h)-intermediate states and those

from (2p,lh)-intermediate states are described as "the resonances of

intermediate structure".

5.  Residual Forces

We want to make some general remarks concerning the appearance of

residual forces and their treatment.  The problem arises only if we

decide to parametrize the effect of these forces in terms of some

selected functional form.  Traditional shell model computations have

followed this approach.  The reason for this has been to make a compli-

cated problem tractable.

The many-body descriptions of the fermion systems seek to produce

a self-binding system, at the given density and energy. We will con-

sider finite systems as has been done throughout these discussions.  The

self-binding is produced by the delicate balance between the attractive

forces, principally that in the lS  state, and the kinetic energy.  The
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finite size of the system is carried by the representation basis.  This

basis has been generated in this analysis from the diagrams of fig. 1.

The procedure has been to generate the Brueckner operator, t, from the

given force v.  Let us now designate this t as the given force.  Now the

diagrams of fig. 1 generate the average potential < t  >  a U6(j,e )

which defines the basis.  At each vertex in the diagrams, the given force,

t, acts.  For all other diagrams, we describe the vertex operator by t'

=t- <t> , the residual interaction.0

The average potential is a set of nubbers, UQ (j,€ ), for any many-

body computation.  We were given a coordinate representation for v.

.

Corresponding to this v there is a functional, coordinate-representation

for the given force, t.  On the other hand, the residual force, t', is

the   state-, and energy-dependent   set of numbers   t ' (j, €    )  .      As   long   asj

we are doing numerical computations on fast computers, as part of a

systematic program of evaluation,   the  t' -interaction  is   just as easily

handled as that t.  The problem of what to do with the residual force

never arises.  It is only when the evaluations involving t''are not part

of  such an established program,  and we utilize a functional  form  for  t',

that difficulties arise.  In general, it sill not be easy to find simple,

tractable forms which replace to good approximation the non-local,

velocity-dependent, interaction implied by the mAny-body theory.  Very

often, if we work within a given shell, e.g. p-, or (sd)-, the form

*

parametrization can be achieved.  Thus we encounter force mixtures of

Rosenfeld and Soper types, for example.
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In an earlier section, while discussing (p,h)-states, we noted that

the transition matrix elements of t' really reduced to those of t.  One

was then forced to remark that only the given force, t, was relevant to

the specific computation.  The use of an equivalent functional form,

which we will naw describe as the effective force, for t', the residual

force, simplifies the computation of transition matrix elements.  The

effective force is to be evaluated within excited configurations, or

within configurations other than the chosen configuration.  This is its

role.  The follawing considerations serve to illustrate this.

We stated earlier that a trial function, 9(N), would be used for
.

the N-system consisting of the usual Slater determinant in occupied

states, plus additional determinants of (h,p)-type.  The physical vacuum

9(N) is then expressed as

+
9(N) =c#   F

0    0  + Lucml ak al 00 3 ( 44)

the c's being expansion coefficients and 0 (N) the true vacuum.  The

operators  (a,a )  for the quasi-particles satisfy anticommutation rules.

In particular, we also have the relations for these operators, symbolizing

dressed particles,

ak Y(N) 0 0, (k, > kf; k S kf)  .

We then introduce the customary definitions,
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< ak, (k > kf
)   akt, (k > kf)

t   1
ak= ;  ak - <            ,        (45)

  bkt, (k 5 kf) < bk , (k S kf)

of the quasi-particle operators in terms of those for bare or shell model

states.  For the latter operators, the following relations hold

ak 00 = 0, (k > kf) ;  bk 00 = 0, (k S kf)

The vacuum state is rewritten as

t. t
9(N) =c  0 +

 cm' am '1 *   .                       (46)00      0

The states of the (Nil)-systems have the representations

t

0      +  ckl bl  00 , (k>k)f
9(N-1) E ack 9(N) =   ;     ( 47)

I co bkt 0   + rcml am  blt bkt 00  , (k 5 4 )0    L.'

and

leo  akt  '0     +  reml  am,  blt  akt  '0     1   (k  >  kf)
9(N+1) E a t 9(N) = <

10 +Fc at#
, (k S kf)Z.,mk m o

These lowest states of the (N+1) systems are linear combinations of hole
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and (2h, lp)-states, particle and (2p,lh)-states.

The chosen configuration, that described by (46), determines the

configurations  of  the (N+1) -system within which the evaluations  of  the

many-particle matrix elements occur.  In particular, we shall not attempt

to determine the excited configurations of (47) and (48) in any self-

consistent way.  Such configurations are computed from perturbation

theory.  We deal with the states 9(N-1) first.  The diagrams of fig. 1

are given again in fig. 9, and labelled so as to pertain to these states.

The interaction operators of this diagram must be described.

32\
We adopt the operator point of view developed by Watson / whereby

the one-, and three-quasi-particle configurations are projected out by

operators Pl and P3.  The average values of the given force, t, computed

in these configurations are tl and t3.  The interaction operator is then

written as

t= (1-P)t+P t=I+P t=I+ Pltl + P3tj 0 ( 49)

The Watson, I-operator is the residual force, t', of this discussion.

The quasi-particle basis is defined in terms of the one-body operators

deriving fram the averages

I ek     -Tk     -U k     C €k)   1      ''k    =    0 ; (50)

u ( € ) =  I< ks|tllks > -I< 1galt3|pf > 1        < pilt31km >        (51)k k e (Plm;.2 )
s                          p.gm
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= <t l>k- <t  i t  >  e   (s 5 4;P,m S kf' E >kf)    3 e 3 k
3

The expression for the average field is determined by the vanishing of

the sum of diagrams in fig. 9.  We have previously discussed the self-

consistent determination of the states k S kf.  Note that in (51), e3

is the excitation of the.3 quasi-particle configurations relative to

that for a single quasi-particle.

Next, we examine the states of the (N+1)-system.  It is considered

that no more hole graphs are to be accounted for in the self-consistency.

The five graphs of fig. 1, 2, and 3 are repeated in figs. 10, 11, 12,

t
and 13 with, however, a different grouping. Excited configurations,

9*(N+1), of the (N+1)-system are produced by the conventional operation

upon (48).  These consist of linear combinations of (lp)-, (2p,lh)-, and

(3p,2h)-states. Again, we should only like to account for these config-

urations in an approximate way.  The graphs of figs. ll. and 13 are dis-

carded, on this basis, in the self-consistent determinations.  That of

fig. 12, (a), could indeed belong to 9(N+1).  It is of 3rd-order and

should be a perturbation on the interaction energy. We shall also dis-

card this graph in the self-consistency.  If we were to retain any 3rd-

order process, it would be that represented by fig. 12, (a).  However,

in order to take full account of (p,h)-correlations, we would sum the

t The arrangement of graphs is governed by the configuration assignments.
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.

ladder of repeated (p,h)-interactions.  This would define the J-vertex

of Shair33), fig. 14.  Let us follow this procedure, observing that the

new   operator   has the average   J    in   the    ( 2p, lh) -states.      We   can   now   form

the representation for the self-consistent potential as in fig. 15•  The

3rd-order term, involving J,

+
J=t+itG G J, (52)

the  operator  for (p,h) -interactions, is still in general smaller  than

the 1st-order term. Particle self-consistency would then be determined

by the graph of fig. 10.  That the graph should vanish, yields the self-

consistent potential defined on occupied states.  The role of the (2p,lh)-

states is to determine the anti-hermitian part of t as indicated by

fig. 5•

The omission of the (3p,2h)-graph of fig. 11 is known to lead to a

violation of the equilibrium thermodynamics of the infinite system34).

.The corresponding restriction does·not apply to the finite system, in

any event.  The determinations we have made, leading to different state-

ment of self-consistency in the (Nfl)-systems, are reflections of the

relations.in (47) and (48).

The question of residual forces can be raised again.  Referring to

our diagrams, the choice of residual interaction, either (t-tl) or

(t-t3)' follows from the definition I=t- pltl - pjtj.  The one-body

operators tl and t3 describe the interaction of the quasi-particle,

namely, the excitation k of the (Ntl) systems, with the background of

occupied states, and with the excited configurations of two particles
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and a hole (two holes and one particle).  In computing the scattering of

(h,p)-pairs, say, (£,ml) and 22'm2)' as in fig. 16 (a), we obtain in the

matrix element

< £2mllt'm2£1 - Elm2 > - 51112"ll < f.2|t3|£1   - 512gl< ml|t3|m2    0

For the hole states, t3 projects off the (2h,lp)-background interactions.

The (2p,lh)-background is to be projected off for particles.  However,

we have seen that these states play a rather definite role in determining

particle lifetimes.  There is as noted earlier no t3-projection operator

for particle states.  We can maintain the formal structure of the matrix

elements by replacing t3 by t5 for particle states.  This has additional

implications.  An excited state of the (N+1)-system was noted as having

(lp)-, (2p,lh),- and (3p, 2h)-contributions.  It is immediately clear that

unless we add one particle, at the Fermi level, to a quiescent N-particle

system, the excited (N+1)-system is always under discussion.  Having

already accounted for the (lp)-and (2p, lh)- contributions, we need then

to incorporate the remaining contribution, fig. 11.  This is done by
+ +

defining an interaction operator I=t- Pltl - 5-t3- -P 5 t 5 with the

additional. projections (t) on quasi-particle and quasi-hole states.  The

self-consistency for particles is determined by the operator U (ek) of

+
(51) with t3 E t3- replaced by t5 .  Order arguments are then used to

eliminate all diagrams except those of fig. 16.  These together with

-                that of fig. 5 determine the (N+1)-excitations. We could have arrived

at these results in a direct way.  However, the chain of argument is
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instructive.  The (3P,2p)-configurations actually involve (2h,lp)-

intermediate states, thus tj = 5-tj- + p3+t3 = 5-tj- + p5+t5 o  What
has been indicated is the very basic asymmetry in the discussion of holes

and particles.

The (p,h)-matrix element which we introduced above is now written

as

< 82ml1tlm 81  - flm2 >  -  6mlm2 < 82't3 |12    -  5% 8    <ml|t5|22      o12

This is just the matrix element < femll I Im l - f.lm2 > of the residual

interaction.  Evidently, the non-diagonal elements of I are equal to

those of t, the given interaction, in this case.  The situation is no

different for a conventional H-F computation with the diagram of fig.

16  (b). One simply replaces t3 and t5 by UHF.

When we employ effective forces to rewrite

t=(1-Po)t+P t0

as

t=t' +P  t0 '

with a functional form t' replacing what was I, a great deal of the

descriptive simplicity is lost.

It  is  supposed that the function t' is equal to the actual force t,

but evaluated in the medium.  The qualification states that the presence

of other particles is important for the pair-interaction under scrutiny.
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This  renormalization  of the interaction  can be quite important.    One

would find this to be the case in computing two-body interactions at the

middle of a shell.  One can say this in another way.  There are appreciable

components of long-range multipoles which contribute to the average field,

P  t.  The situation is well-known in, for example, the discussion of0

vibrations about the deformed shape.  If we discuss vibrations about the

spherical shape, there can still be important polarization effects.  Two

particles, being part of a vibration, may chiefly interact through virtual

emission and absorption of a phonon.

There is, as noted, some reason to believe that the dynamical

polarization effects may well be important.  Chiefly, we expect these

to manifest themselves in the (N+2) systems.  It is assumed that the

N-system has a spectrum of comparatively  law-frequency, vibrational

states.  This spectrum is established with little or no renormalization

of the given force.  One relies upon coherent momentum transfers, of

nearly equal and small amounts, to build the collective states.  This is

physically the meaning  of the formal summation  of  the "ring diagrams".

As long, then, as we work in the N-system, almost any functional approx-

imation, t', to the near-zero-momentum transfer components of t is likely

to be adequate.

Now one can argue indefinitely that the hard core, or high-momentum

components of the force, drive the diagrams of figs. 11 and 13 (b).  This

has no relevance for the finite system.  Again, the renormalization en-

countered in going from v to t can never be important at low momentum

transfers.
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The given force is still evaluated as a diagonal operator, symbolized

by P  t.  However, the parameters in t' are not well-determined.  The

recourse to empirical data as a means of fixing the matrix elements of

P  t does not necessarily work as satisfactorily for t'.  In using t'

we will of course compute transition matirx elements.  At the same time,

we have the rule that these matrix elements are formally equal to those

of the given force.  The practical difficulty is largely with the differ-

ence in the momentum spectra of t' and t.  In most applications we choose

a t' which reproduces  t  over  a part  of its momentum-transfer spectrum.

Forces, t', with predominately low momentum components are used to

summarize the scattering data up to perhaps 20 MeV.  Alternatively, they

do this in a quite approximate way and give the level spectra for some

class of nuclei, e.g., p-shell systems.  It is also possible to use

forces t' with appreciable high momentum components which summarize the

two-body scattering data up to 100 and sometimes up to 310 MeV.  Most of

the nuclear phenomena we are trying to describe, in an intermediate-coupling

or  a configuration-mixing shell model calculation, are insensitive  to  the

existence of the very high momentum components of the force.  We believe

then that we are not forced to reproduce t beyond perhaps 45 MeV, or at

the most 100 MeV.

Owing to the absence of suitable H-F and BHF calculations for finite

systems we never establish a quasi-particle basis.  Instead, one assumes

a shell model basis with the states being fixed by empirical data.  The

shell model basis, to date, is that of the isotropic, harmonic oscillator.
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Despite the overwhelming success of this description, one is still trou-

bled in any computation.  The higher oscillator levels, A, A=2 n+ £ -2,

are characterized as having wave functions with too much kinetic energy.

This, in effect, simulates the behavior of a very hard force.

Often, a two-body force,  t' Z A  5  (91  -  2)' of zero-range  is  em-

ployed in the computations.  This force fills the entire momentum spec-

trum with uniform weight.  It is conventionally argued that t' represents

the fluctuations about the average field P t.  The effective force, given

above, is supposed to be a reasonable approximation to the short range,

fluctuating field.  In many situations, however, t' contains additional

t
long range correlations to which the nucleon motions are quite sensitive.

One uses the given effective force, in most cases, owing to its simplic-

ity. The volume strength parameter, (A/11*), should be approximately

430 MeV • f , corresponding to the observations in the two-body system.

The shell model computations, diagonalizing the effective force,

are very often sensitive to the functional form chosen for t'.  This

sensitivity seems to be dependent upon the type of nuclear state being

computed.  Discussions of this effect are abundant in the literature.

Before the advent and adoption of hard core potentials, the shell

model had the burden of explaining saturation.  This was manifest in

the use of exchange mixtures satisfying the saturation conditions, in

t
This point has been especially stressed by Mottelson.
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full or partially.  Brueckner has demonstrated that nuclear matter is

stable against collapse about the point of normal density, as given by

the empirical mass formula.  In the computations pertaining to finite

systems one can take the view that the model operator defining the BHF

basis is not required to saturate. This aspect is not altogether clear35 )

Independently of whether this is so, we are entitled to feel uncomfort-

able if the result of an empirical search for a best effective force,

simulating t', produces an exchange mixture implying saturation.

Most of the effective forces in use utilize the relative coordinate

dependence  v(r)  =  v  (11/r)  exp  (-r/B). The range is taken  to  be  that
0

given by one pion exchange, roughly B = 1.4 f.  This emphasizes again

the long range nature of the force, its absence of high momentum com-

ponents.  The hard core is believed to be about 0.35 f.  This is seen,

with any' probability, in collisions of about   85  MeV  in the relative system.

We are talking about potentials, here, whose momentum components are ex-

hausted by the time one reaches 35 MeV of momentum transfer in the rel-

ative systemo

It is customary to neglect the tensor force in the description of

the effective force.  The necessity of having such a contribution is

well-known in connection with the average field giving the binding of

nuclear species.  There is also the possibility that the correct two-

body tensor force will generate the average, one-body spin-orbit field.

This was investigated extensively by Kisslinger·36   within the framework

of Brueckner theory.  Relative to the computation of certain transition
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matrix elements, the tensor force has been required for the description

of the 13-decay in light elements37).

Finally, we note that the effective force may have matrix elements

which are energy-, and, momentum-transfer-dependent. The many-body

theories extant would prefer this.  The sort of force implied would have

high momentum components.  A partial list of some commonly used effective

forces is given in Table 1, and some of their properties are noted.  The

reader must note that none of the forces listed can establish the single

particle basis or spectrum which is summarized by the nuclear shell model.

The forces are effective interactions, then, in this specific sense.

6.  Pairing Force

Up to this point, no account has been given of the pairing inter-

action.  The shell model summaries of nuclear properties indicate the

importance of this interaction for systems having Z 2 28 39).  We shall

give a relatively brief discussion of how the pairing is to be taken

into account in the presence of the self-consistency of the previous

discussions.

Our point of view, here, is the same as that of the earlier sections.

Pairing is described through the introduction of the so-called gap-

function, F, into the one-particle propagator40). The result is to

geheralize this propagator to a matrix function.  Again, we observe that

the addition of a particle or a hole to the N-particle system does not

take place at the equilibrium density p (N) of that system.  It is
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however assumed that, the relevant density, p, departs by a small amount

from p .  The density fluctuations are governed by the quantity (p - p )2,

the average being performed over the chosen configurations of the N-

system.  Density fluctuations are introduced by computing the system-

response to a scalar, external field, this being ultimately set equal to

zero.  The information concerning the fluctuations is contained in the

2
correlation function, L.  The external field induces t -terms in the

equation of motion for L.  These terms describe the re-establishment of

equilibrium through the mechanism of collisions.  Single particle (quasi-

particle) self-energies, I, are modified by their coupling to the density

fluctuations.  The new self-energies depend upon the Brueckner scattering

operator, t, to 4th-order.  This result follaws from a perturbation ex-

pansion of the Martin-Schwinger operator in terms of that of Brueckner.

It is believed that the pairing force is a short range, fluctuating

residual interaction, in the sense of the shell model discussion of the

previous section.  In view of this, we can represent the interaction as

a delta function in coordinate space.  Many other alternative possibil-

41)
ities exist  /.  For the present, we shall confine our remarks to in-

finite systems and the spectral functions associated with these.  The

discussion of the pairing in finite systems and the corresponding spectral

functions, represented as stationary time series, is deferred to a sub-

sequent publication.  The transition from infinite to finite system is

only a matter of detail.

We replace the Heisenberg operators of our earlier discussions by
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two-component spinors.  These are defined as

*t

9=
and              , t     =  B 't          at,,]

. (52)

all'*t

The operator a annihilates two particles of opposite spin (total angular

momentum) projection.  The projection is symbolized by the arrows in

(52).  The operator a,

a=c
 < d9  111 *(Et )   11't (St )    ;    c   -   constant,                                                   (53)

keeps the mean number of pairs constant in the N and (Nal)-systems.

Our motivation for the representation of (52) and the dependent relations,

9(1,1')=-i< T [g(1) lt(1')] >O

- *t(1) *tt(1')    a $*t(1) *tt(1,)

=-i < >0 ;

at4t(1) 4*(1')   at a.$*t(1) *t(1,)-

G(1,1') F(1,1')

9(1,1') =                                                 (54)

F(1',1) -G(1',1)

is quite .straightfaward.  It has been tacitly assumed that the N-particle,
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physical vacuum is non-degenerate.  This is not the case.  There exist

a set of gauge and spin transformations upon 9 which leave the many-body

Hamiltonian unchanged, (see ref. 6).  In general, the existence of such

invariances, independent of the existence of inter-particle interactions,

will lead to the presence of a zero-mass bosonle).  Here, this boson is

manifest as the zero-frequency, pairing state.  Eq. (54) tells us that

a particle in the many-body system not only undergoes independent prop-

agation, G, but also has a finite probability for being in a projection-

correlated state, F.

The equation of motion for G is derived in the conventional manner.

One must first consider that obtaining for T.  To do this, it is necessary

to   introduce the
matrix   set   (1,   ·rl'   T2'   13 ) ' The equal-time,   anti-

t
commutator of 9 and 9 generates the unit matrix 1.  It is common know-

ledge that the general 2 x 2 matrix may be expressed in terms of (1,t).

The matrix equation of motion decomposed over this basis is found to be

<  (2)
9 1(1,5) 9(3,1,) = 6(1 - 1') + 15(1)   tr   v (1 - 2)T (2)92(1 2,1'2t),   (55)

-           2-
 1    (1)

 1(1,1,) =   i 3  + 2M-  5     5(1 - 1')   .

As we have no special interest in the gauge-invariant formulation of

the problem, the discussion proceeds as before.  The 2-particle propaga-

tor is considered as satisfying the Bethe-Salpeter equation.  The laddar

approximation generates the matrix scattering operator.  The density
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correlation function is defined as a variational derivative with respect

to a scalar external field.  This procedure also generates the equation

of motion for the correlation function.  Leaving aside the matrix repre-

sentation for the moment, we carry out a set of manipulations which can

then be directly generalized to the matrix functions.  One has

IG=i v =tGG;E=tG ,

and

EG=iv(GG+L)=tGG  .

We introduce the operation

(1 +i t G G)  I= (1+i t G G) v(GG+L)

to obtain

(1+itGG) I=t(GG+L) 0

The next step is to consider the perturbation expansion generated by

t = At, E = Agl +.A2E2 + ..., L = L<0) + AL(1) + X2L(2) + ...   .  Of

course, we also have G=G +G EG = G(0) +A G  X  G(0) + ... = G(0)+ AG(1)
00 0 1

+ ... , but it is not required that we carry this explicitly.  The per-

turbation expansion leads to the self-energies
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El G=t G G+t L(0)

E2 G= - it G G El G + t L
(1)

E G=-itGG E G+t L(2)

3                   2

These expressions, together with

L= -GG+GGEL ,

E=t+it G Gt

define a perturbation expansion which is reminiscent of that which appears

in section II.  There, however, we did not expand the correlation function,

L.  Indeed, in order to discuss the bound states of L, including that awing

to pairing, the expansion on L is not permissible.  As the only question

at issue is one of counting, we may formally sum the L-contributions, when

there is a bound state present, and rearrange the perturbation expansion

as
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I  G=t G G+t L
1

E G= -i t G G  E  G
2                    1

0

We argue then that the bound states of L appear in the "first-order" of

the perturbation expansion. The remaining terms of I, i.e., IN contain

the higher order, weak-coupling ocrrections to El.  It is easily seen

that the computation of El G accounts for those terms, up to t3, which

were enumerated in section II.

In keeping with the discussion just given, we write the following

matrix equations

 9=TQQ+TE , (56)

1

£=-99+QQTZ , (57)

T=vl+iv9QT , (58)

(1=9 +9 r 9 (59)
0  0 Z_,

1

The correlation equation, (57), has been approximated.  This approximation,

2
neglecting the T -terms, ignores the hole-hole and particle-particle
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correction to Z.  These terms are not necessarily small corrections to

the pairing interaction, but their omission will not invalidate the

discussion of the lowest-order pairing situation.  It is required that

eqs. (56) - (59) be solved self-consistently.  The eqs. of (58) are

solved by first carrying.out the projections in t-space, by means of

suitable trace-operations.  At the same time, we must introduce the

spectral representation

9(cD,€)  =  (03  -  *113  -  a .rl)-1

where a is the undetermined gap parameter.  The spectral representation

of T generat0s that for £, (57).  Both representations determine that of

621, (56), and finally that of 9, (59).  The gap parameter appears as an

eigenvalue in the sum-rule expression for the spectral representation of

the gap-function F.  It is completely obvious that in solving the self-

consistent set of equations we will approximate G by that of the BHF-

basis.  The formal manipu1ations are straightforward, but tedious.  We

will find that the quasi-particle energies, 8, are defined now as

(te  - #(N)]2 + 82 1/2, and, as well, an integral equation for a. These

results are all well-knawn.  Our only purpose in re-iterating such

statements, is to indicate that the pairing interaction may be taken into

account in the presence of the previously obtained, many-body self-

consistency.

In any determination of the pairing, we will be guided by the em-

pirical classifications furnished by the shell model.  We shall be
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restricted to (j-j)-coupling.  It is possible to summarize any representa-

tions (state-energy) of dynamical quantities in terms of their invariances

under the operations of the symplectic group.  In this connection, it

will be helpful to recall that the quantum numbers referring to reduced

isotopic spin and seniority have special relevance for the interaction

of identical particles in the same j-shell.

7.  Summary and Conclusions

A discussion of the many-body problem has been given from the point

-                of view of the configuration-mixing and intermediate-coupling shell

models.  It has been emphasized that the configuration-mixing density

correlations can be taken account of in a formally consistent manner.

These correlations determine the many-body configurations within which

we carry out our evaluations.  They moreover specifically influence the

nature of the quasi-particle spectrum which one can obtain.

All of our remarks have been, and are, restricted to systems having

spherical symmetry.  The quasi-particle basis which pertains to such

systems has been described by us as that of Brueckner-Hartree-Fock (BHF).

We were able to show that the non-hermitian, one-body, energy-operator,

which defines the basis, led to quite different interpretations of the

physical configurations appearing in the excitation spectra for the

(N+1)-, and (N-1)-systems.  The absence of a simple symmetry operation,

43 1
such as that of particle-hole conjugation  /, to relate the excited (N-1)-

configurations to those of the (N+1)-system is completely evident·
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The presence of density correlations in the physical system was

shawn to lead to collective states, the oscillations of the nuclear

surface.  Our discussion was entirely restricted to the collective states

of particle-hole character.  The study of more complex states, those of

t
higher quasi-particle number , would not have been consistent with our

configuration assignments.  It was found that the (p,h)-matrix elements,

determining the positions of the collective states, were to be corrected

by matrix elements involving the states of two particles and two holes.

The existence of such matrix elements reflected the symmetric description

of particles and holes for states near the Fermi level.

The quasi-particle spectrum was replaced by a real spectrum.  We

have described the latter as that for a single particle.  The single

particle spectrum includes the couplings between quasi-particles and

collective states.  Several of the renormalizations which are brought

about in this way were described.  A combination of perturbation theory

and matrix-diagonalization procedures was used in obtaining the descrip-

tions.

Some attention was given the problem of residual forces and the

description of these.  The enumeration of such forces is dependent upon

how we choose and restrict our configurations.  Our discussion was pat-

terned after those of the projection method introduced by Watson.

+
t The law frequency 2  state is one of higher quasi-particle number, i.e.,

4, in our nomenclature.
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We attempted to outline haw one is to incorporate the description

of pairing into the computations.  In effect one seeks to generalize the

BHF basis so that it is defined in the pairing field.  It was necessary

to use the Nambu, spinor representation of the Heisenberg operators in

order to begin the generalization.  The many-body self-consistency becomes

rather complicated.  It is summarized by four, simultaneous matrix equa-

tions in the operator functions of the theory.

The differences between the Green's function descriptions for finite

systems and infinite systems have been stressed.  These are summarized

largely in the basis sets and spectral representations which apply in

the two situations.  There can also be considerable differences in the

modes of description.  These however are dictated by the physics in every

casee

A large part of the current experimental effort is oriented toward

measurement of the properties of nuclear excited states.  The formal

apparatus of the Green's functions is especially suited to the descrip-

tions of such states, if they are not too complicated.  Our emphasis has

been  placed  upon  the single particle states.  .  Such  are  to  be   seen  in  the

law-resolution   (d,p) -data 4 for example.  At least in the region of
44-46 )

the Ni-isotopes, we have reason to expect some level shifts of the.neutron

spectra, owing to the collective  couplings, especially to the 2  and 3-.

The 7-spectra from fast neutron capture also shaw fluctuations in this

region47).  It may well be that this selection-rule-restricted process

has some appreciable contribution caming fram the 2-particle bound state,

as we have described it.
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Fluctuations in the apparent density of states in the single particle

spectrum can arise from quasi-particle couplings to both collective and

non-collective states.  As to which of these is the more important will

depend upon the particular class of experiments.  As a general guide we

always ask ourselves where the strength for the particular impurity-

excitation lies in energy.  The total, elastic and inelastic 7-cross

sections bear upon this question.  Fluctuations of the photon transition

strength function have been seen in high-energy, bremsstrahlung mono-

chromator measurements employing small band-widths48). Similar to the

situation obtaining in (n,7), the strong operation of selection rules

ought to be vastly helpful in restricting the possible formal descrip-

tions.

The analysis of n-015-scattering by Lemmer and Shakin26), for

neutron energies up to 10 MeV, describe the quasi-particle couplings to

non-collective states of (p,h)-character.  Such states are also employed

in the discussion of the fluctuations in S-wave strength functions given

by Block and Feshbach49).  The 3-300 kev data50), especially that per-

taining to the behavior of P-wave strength function, has some interesting

fluctuations in the vicinity of A = 60.  We have examined this aspect

from the point of view of collective couplings.  However, no numerical

results are available at this time.

Quasi-particle couplings to (2p, lh)-states have been discussed

theoretically27). The impetus   for  this  work was provided  by the total

neutron cross section  data of Foster and Glasgow3-10,  and the reaction
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28          25                                             51)data, n + Si   -* a + Mg  , 12.5 5 En S MeV, obtained by the CISE group  ).

Numerical determinations are in progress for the two situations.

In explaining, or attempting to explain, those features of physical

data which make manifest the continuum intermediate-coupling and config-

uration-mixing shell model descriptions, certain problems arise.  What

we look for in the data are certain correlation structures, built upon

energy-angle dependences of the cross sections.  These structures of the

system must be distinguished from the statistical fluctuations51  in the

level densities of the true states of the system.  This is not altogether

simple to do.  While some general rules might be given the experimental-

ist, the subject is somewhat young and still under development.  Subsequent

experience with the models will enable us to state what are, very likely,

the most profitable ways in which to collect and analyze the data.
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'E)

TABLE 1

Effective Forces

Force Character Remarks

Yamaguchi (&'  v |A)=AEv (k,k')pl (Ak';lk,);vf (k,k')=vl (k)-1 (k')
Factorization occurs in momentum space of the relative 2-

vf (k)=11 (s,k)(0£2+k2)-21 -1,Tl -tensor  of  rank f body system. Parameters 1,01 are determined by fit to
A A .formed from total spin S=al + 02 and relative scattering and bound state data.  The corresponding scatter-

., 1.
momentum k; 1 and B  are parameters. ing  operator   (kit lk) is factorable, and energy-, momentum-

transfer-dependent . Owing  to the Moshinsky transformation,

(2'lt|2)   can  be  used with oscillator functions.

Rosenfeld
wl'T2   , 1- The exchange mixture satisfies the full saturation condi-

3     vi Iri-r| )  (003 + 0.7 31·32); one chooses
tions.  It assumes singlet-to-triplet ratio of deutron.as a rule either v(r)=v0(11/r) exp(-r/11), or

*.1

VI                                             v(r)  -4   6( 42) 0

Soper v(|rl-r2|)(0.865 + 00135 31082)0
This exchange mixture is a fit to p-shell data, that in

Li-isotopes.

Hulthen and . 1+P

Sugawarat       v].(r)Pal+v3 03-  -2 M ; vi=voi(Fir)-lexp(-Fir); The parameters are adjusted to fit the low energy (n,p)

v 1=46.87 Mev, v 3=52•13 Mev, wl = 0.8547 f-1.    data.0 0

*3 = 0.7261 f-1.

Intermediate C 8.1 + Rosenfeld 2-body force;  Yukawa form. The parameter C is fixed upon diagonalization of the energy

Coupling matrix.  The term C G•2 is a one-body force.

(typical)

t
See ref. 38.
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0 -

Figo 1.  Goldstone-type graphs determining matrix elements of one-body

interaction operator in the quasi-particle basis.  Horizontal

lines are Brueckner t-operators.  External lines are attached

to heavy dots.
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Fig. 2.  Third-order, single particle  self-energy, with mass renormali-

zation 6m on hole lines.  This graph contributes to the polar-

ization operator.
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Fig•  3.  Third-order, single particle self-energies which contribute

to the mass operatoro
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1''
- 1 8(N)

E -0

EN / €(N)
F

Eo

Fig.  4.  Idealized, single-particle well generated by the ground state

system of N particles.  The last nucleon of that system is

bound by an amount 8(N).  A nucleon added to this system in

continuum states has asymptotic total energy Tk. We define.

c -6  as € (N)•No f
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rkA

Im   P A m   1    -r-1

kkA       j

Fig.  5•  The lifetime r of a single-particle state, k, as determined

in the small-width approximation.
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A          V

h          W

Fig.  60  Direct minus exchange scattering of independent, particle-

hole pairs.
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1

'       Sm
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\/\,

Fig.  7·  The self-energy Z(2) (1*,4') which yields the two-particle

bound state.  This graph is one of Baym-Kadanoff type.
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 E  -w s)           i:

m 2
€
E

 1                12

Fig.  8.  Excitation sequence describing the formation of a two-particle

bound state.  Wavy lines connect interacting particles which

then make the transitions shown by arrows.  The frequency of

the collective state, correlating the states k, and m, is w .
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V
t-t3

¥                 /1
1-1(1 h)        t-,1     0                                   ,            t W

9 (2h, lp)N -1

v   t-t3

Fig.  9.  Hole self-energies, i.e., those of the (N-1)-system which

define the quasi-particle basis.  Configuration labels 9 are

indicated.  The operators tl and t3 are projected on to 1 and

3 quasi-particle states, thus (t-tl)' (t-t3) are residual

interactions.  The lowest configurations appear here.
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A

9     (1 P)Id +1          t-t,
A

Fig.  10.  Particle self-energy, first-order, belonging to lawest, (N+1)-

configuration.

..                               
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I=t

A

9* (3p,2h)
N+1

A
I=t

Fig.  11.  Second order, particle, self-energy coming from the excited

(next-lowest), (N+1)-configuration. The Watson, I-operator

is defined in the texte
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h   t-t3

(} 9..,(2'·'h)    m,  /2A

8 t-t

I

.        (2 p,1 h)                    1   j,1

N+I               mi
At-t3

(a)                            (b)

Fig.  12.  (a)  Same as fig. 10, except for order; (b) The elementary

particle-hole scattering generated by (a).
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t-'3'               \F (lp,2h)
N+1

t,flp)                                                                       N.1  1
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Fig.  13•  Particle, self-energies of 3rd-order mixing the lowest and next

lowest, (N+1)-configurations.
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Fig.  14.  Sequence of interactions which defines the Shaw-operator, J.

This is the operator for hole-particle interactions.
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Fig.  150  Single particle energies of the lowest, (N+1)-configuration.
1.

90
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t-ts

9     0      .  <   WN + 3P,2h)
N +1

t- tl

t-ts

Fig.  16.  Particle self energies which define the quasi-particle basis.

The next-lowest (N+1)-configuration is the chosen configuration

in the sense of Bethe.
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Appendix

It is necessary to have a spectral representation of the Green's

function G, which is appropriate to the discussion of finite systems.

The necessary generalization consists of the incorporation of a station-

ary time series in the usual definition of the spectral function.

For purposes of orientation we consider the finite, one-body well

associated with the ground state, E (N), N-body system as that shown in

figo lA.  When we add or remove a particle from this system, the excited

state energies are given by

E(N+1) - Eo(N) = Ex(N+1) -  %(N+1) ;  *(N+1) = Eo(N) - Eo(N+1) ;

Eo(N) - E(N-1) = P'(N-1) - €x'(N-1); P'(N-1) = Eo(N-1) - Eo(N) o

The excitation energies in the (N=l)-systems are shawn in fig. 2A.  Note

that *(N+1) =  B(N+1)| and %'(N-1) = |B(N)  hold, where B is the binding

of the last nucleon.

The Green's function is defined in the time-domain as

G(t-t )=(-i)T <a(t )at(t ) >Q=(-i)T <6       a €
1 2 T 02,i€tl -iH(t -t )  .  -iENt

a e
p 1 2 plp2      p    p o

-i(H-E )(tl-t2)    t
=(-i) e (tl-t2) < ap € a >

PO

t    i(H-E )(tl-t2)
+ ie(t2-tl) <ap€ a> o (lA)

«                                                                                                                                      p    O
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We require the Fourier transform

00

G (CD) = -1€ G (t); a -* ot, t = tl-t2 ' (2A)i f -iTt- la It
P      2* /

-00

which defines the spectral function.

The  transform  of (lA) leads  to

Gp(In)   =  I l   <  slatlo  »   12  8(E:  - 4+1 - a))

-I l <s'iap 0   1 2 5(E 71 -E   + 0,)

=   A     (a) )     +    G      m ) • (3A)
P       P(

We introduce the retarded function

G-(t) = ie(-t)  8 (ax' - B') € (a ; =  - Nyr C 'a) (4A)i, t
P            L p N

where C' is an, as yet, arbitrary, irrational number.  This expression

has a transform which leads to the B  of (3A), if we make the identification
P

,2
| < s' a 10 >l  = 8 ((D' - 11'); 0' = €  .(N-1) . (5A)

P          P S S   XS'

We write, then,
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c  (co) = IBP (5; - B') 5(c» - al;) (6A)

The representation for the advanced function is taken to be

G  (t) = -ie(t)   G ((1) -11) € +   d€ A' (€ - P) e (7A)
e <    iet

P      (LP N         P
11

with (  - P) = - NACK. The corresponding transform is

G:   (a))    =    I>p (a,N   -   B)   6 (a,   -   5:)    +  A.;    (a)   -   1')

00

=  Up((DN - Il) 5 (c» - cry  + Er
.1

x-<D-ie ')   1  f dx A (x-1,) (8A)

Il

The function G- ((D) is defined on the real axis as the limit from below,
P

+
G-   (CD   -   io   )•      It is analytic   in the lower-half, complex, energy plane.
P

The complex variable representation for the function is

G- (z) = _1_ irctnirz 8  (z - Ii'); z = co - iy (9A)
p       2Ki         p

as is knawn from the general theorems concerning the summability of

series.

The advanced function  of   ( 80 has a branch  cut. The discontinuity

across the cut is just the spectral function A'.  We observe that the
P
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advanced function will be analytic in the lower half-plane.  The analytic

continuation of (8A) is

00

A '(x-ti)     

G (z) = -1-  irctn*z G (z) +  dx   P                            (1OA)2*i                      x-z   
11

It is required that the inverse transforms of (9A) and (10A), namely,

f izt
(1]A)  e    G  (z) dzP

C

return us to (3A).  In (3A) we have not taken the usual infinite state

limit in order to obtain a continuum representation.  The relevant con-

tours for the evaluation, (t < 0;t > 0), of (11A) are shown in fig. 3A.

The reader can verify that the representations of (4A) and (7A),

Gp(es-B) =1< slatiO >12, A.; = A , do indeed reproduce the mixed,

spectral representation of (3A).  The single remaining detail is a common

one. In expressions   such  as   (GA), the density-in-energy  of the actual

compound states (s,s') is to be identified with the energy-conserving

delta function.  Our results are then summarized by writing

G  C'») =  lip(5; - 61') P,» (a'N•)

00

G  ((1)) =  Gp((uN - 11) p (al, ) + -1-   <  dx  A(x-B)
p           (0 0 2;r i

J
x-(D-i€

11
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.

The relevant point which arises, here, has to do with the execution of

the integration of (11A)o  The insertion of factors p (z) in the ex-

pression of (9A) and (10A), i.e„ 8(z) = 8 (z) p (z) and G (z) = G (z)p (z),
takes care of what would otherwise appear to be an ambiguity.

The undefined, irrational numbers & and C' of (4A) and (TA) permit

us to adjust the formal spectra into a rough correspondence with the

physical spectrao  We will know the number of states N = N  in a practical

computation.  Then, C and C' are adjusted to fit the end-points of the

corresponding spectra.

..
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(,

IB(N)1   € (N)
F

Fig.  lA.  Typical finite, one-body well generated by N-system.  The

binding of the last nucleon is B(N).
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74.

j.

i   I   •  l i l l i l i l l i 1,1 l i l l i l l                            +        I

0                                              0
/4(N+1) €    (N +1) -A

-€;(N-1)I

(a)                                       (b)

Figo  2Ao  Excitation spectra for (a) the (N+1)-system and, (b) the

(N-1)-system.  The interval a is that separating the Fermi-

*                         and lsl/2-levels.
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9. Fig.  3A.  The integration contours cL and cR for the inversion of (11A).
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