€00-2280-21

" C}a VFE '7’5_4}5’ JL -/

‘Progress Report C00-2280-21 May 1975

QUANTITATIVE AND COMPUTERIZED ERROR ANALYS]'.S'J
. By
Erwin H. Bareiss and Keith L. Derstine

_fNofthwestern University and
- Argonne National Laboratory

€5-75-5 ) ES-75-5

NOTICE
This report was prepared as an account of work
sponsored by the United States Government. Neither
the United States nor the United States Energy
| Research and Development Administration, nor any of
1 their employees,” nor any of their contractors,
| subcontractors, or their employees, makes any
.| warranty, express or implied, or assumes any legal
| | liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights.

PREPARED FOR THE U. S. ENERGY RESEARCH AND DEVELOPMENT -
4 ‘ " ADMINISTRATION UNDER CONTRACT AT(11-1)-2280.

DISTRIBUTION OF THIS DOCUMENT UNLIMITED

4




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



QUANTITATIVE AND COMPUTERIZED ERROR ANALYSIS

Erwin H.‘Béreiss & Keith L. Derstine

Northwestern University and Argonne National Laboratory

Abstraét
A methodxis.describéd how a quantitative measure for the_robust-‘
ness of a givep'transport theory éode for coarse.network calcu-
lations can be obtained. A che,.phat per forms thié task auto-
matically and at only néminél cost, -is described.. This code
generétes'also user oriented béncﬁmaék problems which exhibit

the analytic behavior at interfaces.

Introduction
Tﬁebprobiem'whiéh'We address here is concerned with éscertaink‘
~ing the feliability of neutron trénsﬁorg'calculations by high-épeed
vcomputers. Today's general épproach is‘to check one computer code
against another, often for mathematicélly not identicél‘problem sét—
tings. - The Eest way of checking approximate nﬁmerical éalculations
is.to compare the results again;t mathematicaliy exact solutions.
Unfortunately, in transport thgory such solutions are, in general,
~not available, or if available, they are very expensive to obﬁain.
There - is however the possibility to create benchmark problems to
given meaningful exact solutions.
What we have started is a new diécipline in Numérical Analysis,

namely Quantitative and Computerized Error Analysis. Clearly, this
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discipline can be (and ié) applied to other.operator.equatiéhs than. -
the transport eduation. Traditiondlly, a new numericai technique

was conceived, implemented in a‘computer code, and then distributed.
An éltérnative approach is to make. a Systematic analysis of the
mathematical properties of the'solutibn and the new teéhnique,‘and
then test the théoretical predictions on inexﬁensive well designed
small numericél-benchmark problems. 'The basic difference between
classical orvqualifative-error analYéis»and the qﬁantitative errof
analysis is ﬁhat,in quantiﬁative error .analysis we aim at obtaining
realistic error boﬁnds fofAcoarse mesh calculations and’performance.
prgdictions before a code ié-implemented. What‘webdo, can be deés~-
éribed by mathematical expressions, but the formuiaé are very:lengthy;
complicated:and difficult to evaluate. For all practical purposes
analytic coarse mesh error analysis would be much to expensive ahd
too time consuming;‘ Our ;ompu;erlapproach yieids.not only new‘in-
sighé,.but simultaneously pro§ides nqmerical results'fhat give a
quantifétive»assessment of the approximation method under investigat-
ion. ‘It is a new type of.analysis that combines modern and classical
analysis with computer technology and computer graphics. A very high
efficiency is possible because we exploit the use of dimensional
analysis and invariant theory. Th;s is important, since the operators
we deal with are linear. Indeed we have uséd a great many of the
properties which E. Indnll presented in gis lecture on "A Scale Grdup
for the Linear Boltzmann Equétion and. its Reﬁresentétion.” We are

very pleaéed to have now available a systematic and complete tabulat-



iop of all scaling, translation, ro;ation and other group proper-
ties of the transport equation.

‘To give a more concrete understanding of our research; we shall
briefly outlinme the major parts of oﬁr'project'and then describe an
actual code, BEAPAC-1T, which is ;unning at Argonne Naﬁional,Labora-
tory and at Nbrthwestern University.v Wé will also show how to use
fhis code and preéent soﬁe sémplésvéfvthe output"optibns. _Thev
present code is designed for ﬁhe one-diménsibnal transport eduation :
and supplements‘weli the theore;ical results presented at the F;urth
National Cénference on'Transport Theory, since they were cdncernedv
mainly with one-dimensional prdblems, and BEAPAC-lI makes usé of
them; A cbde.for problgms in two space—dimensions‘is now béing im-
plemented, Eoth fof the transport and diffusion equations.

The entire'cbde, when the project is finished, wilivconsist of |
_three pafts with the following functions.

A. Ce11‘Calculatith»(includingIZ—Ceil Caiculationsj

B. Glébal‘Analysis

C. Computational Complexity

A. The code for part A is again subdivided in three major parts.
a) Creation of Benchmark Problems ‘ |
- b) Numerical Solﬁtion of the‘Benchmark.Pfoblems by
Approximate Methods |
¢) Calculation of the Error. The.user will specify ﬁhe

appropriate error norm.



Part A can also be characterized by calling its .function Basic

Quantitétive Error Analysis. It is designed to evaluéte thé de -~
sifed ergor norms for calculations over a coarse network of‘ﬁithb
large finitevelements. To our knowlédge-there éxists no oﬁher sys-
tematic approaéh_to deal with the coérse mesh error analysis. As
will become evident, such anvanalyéis isvpractical only by automat-

.'ion and use of the computer.

B. The codes for part B will conduct a global analysis for
multiregion, multigroup calculation.  The algorithms will be subject

to:’
a) Global Error Analysis
b) Stability Analysis

c) Convergence Analysis
We note that the classical concept bfvcohsistency analysis does not
appear explicitly; The codes will supply absolute error bounds.
HoweVéf tﬁe main goal is to provide Erbbabilistic Error Estimates.
Research in all areas is under way. The tooLs employed are borrowed
from functional analysis, perturbation-, matrix-, operator-, ‘and

probability theory and statistics.

C. The codes for part C are concerned with computational com-

plexity. By this we understand:
' a) Performance Prediction
b) Code Evaluation

¢) Data Management Analysis
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Basically, pértIC is cost'aqcountiggL It will be based on-the'total'
operétions count (incLusive iterationé count), error-estimatés,_and
memory requireﬁents. It will also provide;a-ratio of the actual
operations count‘pf the implemented transport code tovthe theoretical
minimuﬁ operations count as determined from the matheméticélly de-
fined algofithm.v If this ratio is much greater than one, the entire .-

program (computer .code as well .as theoretical background) should be

investigated for potential significant reductions in computer time.

Description of BEAPAC-1T

Since.it is very often easier to understand new concepté by con-
sidering a set of examples, we describe here an actual code, BEAPAC-1T,
show how it can be usgd by citing concrete examples, and stafe.the
underlying motivation for the particular implementation.

BEAPAC-IT‘stands for Benchmark Error Analysis.Package.for 1-
dimensional Transport theory calculations. It is an‘implementation )
éf_part A outlined above.  Figure 1 shows the masterflow chart. . We
shall discuss the functiom of the differentgboxes, but for a more de-
tailed description we refer to the Appendix.

The first tenets for the implementation of BEAPAC-1T are to give
the user Freedom to set his own-Stgndards and Flexibility in Applicat-
ions. BEAPAC-L1T is therefore an open-ended (expandable) colle;tion
of subroutings.. If the user wishes a speéial feature not prbvided

in the package, he can write his own subroutine and add it by ob-
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Figure 1: BEAPAC-1T MASTER FLOW DIAGRAM
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serving very simple interface requirements. The user chooses his

own ﬁerformance critéria for his particular problem by calling
‘available options. |

Although'thevlinear neutron franspoft is mathematically‘unique-
ly défined, there are several forms of thé transpoft equatiéﬁ which
are mathematicaily equivalent. At thié time, the user has the opt-

ion to base hlS tests on the follow1ng stationary operator equatlonS'
Stochastlc Transport Equation (Standard- form)
Symmetrized Transport Equation’ (Canonlcal'
- form, Vladimirov equation)
Integral Transport Equation

The guiding principle: of the project is to store on tape for easy
access and in'computable form the theoretical'kndwledgé of numerical
anaiysis which is pertihent.to the quantitative.(ndmerical) soiution
‘of neutron tfanqurt.prgbiems, algorithms fér approximate solutions
 and special functions with insﬁructions for their proper use. The
output is in tabular form and in viéual displays, meaningful

.fo the engineers and scientists who are not specialists inlnuméricél
analysis. A_systeﬁatic analysis of a code requires detailed-atten-
tion, knowledge, and time. As we will demonsfrate, a computer can do

this tedious work fast and cheaply.

Creation of Benchmark Problems 3 ,
To specify benchmark problems is in general not a too dif-
.ficult job for an engineer. However to design a meaningful

benchmark problem for which the exact answer is known, proved



rather difficult. It is necessary to have knowledge of the

analytic behavior of the solution at interfaces, boundaries,
and corners (for multi-dimensional calculations).

Historically, the solution of differential equations was

based on "Hard Analysis.” The problem was considered solved

when the general solution of the operator equation was knoWn.
For example, the'soldtidﬁ of the Besse} eqdatiqp is a Iinegr
combihafion‘of the appropriafe Bessel functions of the first
aﬁd second kind. In other.words; these two functions span the
éoiutionZSPaCe. Modern énalysis often is satisfied with "'Soft
Analysis." iﬁe’solution is_iﬁbedded in é given Sobolev spade;
This approach-is good for asymptotic error analysis, for
proving existenée -, convérgence-and consistenéy theorems.
However, this approach is not sufficient for ”coarsé network"

calculations. We have shown early in our research by pilot

calculations that some "low' order algorithms gave better re-
sults than '"high" order methods. An explanation‘of thié fact
will be given.at the end of this paper.

At this time BEAPA&iiT can generate exact benchmark pro-

blems for the homogeneous transport equation using the follow-

ing exact solutions
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Equé;ioﬁs (1) are the regular elémentary functions introduced
by Case, and are known as asymptotic solutions of the transpbrt
equatioﬁs. Equation (2) repre;enfs the tradsient solutions in
thé notation of Case. They spaﬁ the_Solution space of our
operator equatioﬁ. Analytic expréssidns for (2) are stored
for a set of A(v) which are pieéeﬁise polynomial functions in v.
Eqdatioﬁ (3) ié an exact solution for a ?acuum boundary at x=0
(c=1j as given by Abu-Shumays and Bareiss.  Thus; to create a
benchmark probleﬁ for a slab with a vacuum boundary,'we‘can cal-
culate Y(é,u) for all values of yu at the slaB'width a (or cell
'widtﬁ a) which are ﬁeéesséry.to solve the problem by a given
‘approximation method. Note, W(X;u).can be cai¢ulated for any
desired location in {og_ x<a, —lgp_<_l} as aécurately a‘s c.les.ired'.
For practical purposes, we call this an exact solution.

The userlméy want to simulate an interface condifion with
an ifregular flu# shape. This is possible by taking a linear
combination of the.equations:(l) and (2). Figure 2 représents_

such a flux shape, where






and ytl and YtZ

are specified by

] _ [o t u<o;v 2 _ dr <o
'_(6)_ AG) {1-\)' p>o Av) —{\)_(1-\)) w20

This solution contains the jump as weli ae the logarithmic be~
hévior‘at p=o.

BEAPAC- 1T contains also a subroutine "MODE ANALYZER "
'Asseme a transport theory calculation has been made, and the
veumerical solution looks suspicious; say like Figure 1. Does
the code give a ﬁrong numerica1-answer?orbdo we heve actuélly
| such an.unexﬁected flux shape? “We use. the Mode‘Analyzer.to ob-
tain a discrete 1east'equare'approximatien te“the computed ¥

in the form

S gkt
() v(xp)~a'y +al ¥ +Z ‘[ AP e _X/\’d
- % o T k=LY

Here, A(v) is-a piecewise linear function, i.e.

A(\,)‘ —5‘, a Sk(\))
k= 1

where the S (v) are chapeau functions (linear splines). . The
integrals in (7) ‘have ‘been evaluated analytlcally, and contaln

logarithmic terms. Thus (7) is

®) ¥(xu)~g'a | (g Gen))
where | |
é? = (a+,a- 9 ,an)
Vil
g = (wo, v_o j 5, (V) e May, ...




are vectors. . Lf the computed Y(x,u) is known at an ordered

set of discrete. points’
{Pi = (Xk ’U&_)}

then the’ Set‘{Y(P )} forms a vector W and a is defined as the
discrete least squares approxxmatlon to the matrix equation
(9) Qa =Y |

The row eiements of Q are defined from (8) by the relationA
Y(P;) = ﬂﬁ(Pi)i: To obtain a, we simply'apply.thé Householder
‘factorization to (9). Now a benchmark ptoblém can be-generated

as above with the exact solution.

(IO)IYB_(x,u')‘EiT?L; - I S SL(X,LL)'
If the transport code cannot reproduce this solution.-with suffi-
cient accuracy, we have p051t1§e evidence of its unrellablllty
(We are in the process of implement1ng;(7) with cubic spllnes
and pleceWLSé hlgher order polynomlals to reduce the dimension
of g:' If numerlcal experience 1nd1cates sufficient cost savings,
the linear splines for A(v) will be supplemented with higher
order approximations.) |

'Boxes'l through 5 of the masterflow chart can now easily be
explained.. If the vector a and the corresponding base functions
are specified by the input data, boxes 2 and 3 are by-passed, be-

cause the Mode Analyzer is not required, To obtain Figure 2,

boxes 2 and 3 were by-passed. However to generate the necessary

Ny



data for the '"three-dimensional!' display of Figure 2 of the

benchmark problem solution, box 4 is needed to calculate
sufficiently many values ?(xk,%;) to assure the desired "smooth"
appearance of Y(x,u). Figure 2 is of intermediate smoothhess,,

which we consider 'good enough' for practical purpoées.

.Evaiuation of Numericai‘Méthods

We are now ready to test a numerical method to solve the
transport equation with the solution‘YB, say that éf Figure 2;
BEAPAC-1T contains a set of subroutines for the numerical so-
lution of the transporﬁ-equation by methods which are widely -
'lused. They are all in a standard form. The numefigal methods -
are reduced to the problem ¢f solving a linear matri#'equation

-

of the form

Ay=b
Hence, a particular subrbutine contains ihstructioﬁs to calcu-
late the elements of the matrix A.and'the‘vecto:vg. The process
is as follows. First, the désired'network in the (X,u) -domain
is set up (box 6). Then the necessary boundary values are cal-
culafed (box 8). Witﬁ'the information ffém boxes 6 tb 8, . the
elements of A and b are calculated, and the linear equation is
solvéd accﬁrately by a direct method, #sually by Gaussian elimi-

nation with iterative improvement. In most cases, the elements

of v represent the discrete directional fluxes, and are denoted
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k’wﬁ)' 1f this is not so, a further calculation fis

by
y ¥
necessary to arri?e at WC.

The following numerical methods are available as sub-

routines.

Derived from the Stochastic Equation:

First, third and fifth order Hermite-Birkhoff approximat-
_ion in space, Gaussian quadrature in angle;,'Thevmatrix A of
‘the first order method is identical to the latest version of
the SN—method. _

Galerkin method in space with chapeau functions as basis,

and discrete ordinates in space (including Gaussian quadrature).

 Derived from the Symmetrized Equation:
First order difference equation in space, discrete ordi-
nates in angle.

Piece-wise bilinear Finite Element Method in phase space.

Derived from the Integral Equation:

Nystrom Method.

The user can also intgrfaée an existing code for the.numeri—.
cal solution of the transport equétion with BEAPAC-1T. This is
equivaleﬁt to byfpassing boxes 8 and 9 and is indicated in Figure
1 by the decisicn box ”YC on file."

The next step is to calculate the errors by the formula



-15-

- where ?E is the pointwise difference between the exact_solution

ﬂ,‘YB gnd the apProximgte solution ?c; Thelqser can specify a
- number of options for error norms WEich.he wants'ﬁo display
'vgpaphically or print in;tabular form.

To illustrate two optibﬁs; we solved the benchmark problem
specified by Figure 2 by the Galerkinvdiscrete ordinate method
ﬁentionéd.above. Figure 3 shows the absolute error YE(Xk’HL) 
: at the nodes of the network for which the calculations were -
.done. Table 1_$hows the maxiﬁum absolute error

lregll = Ef:;-lwﬁ@};,%jl
for axruh of twenty. different mesh configurations and gives
additibnél information; The number 4 in.the I column.indicates
that the calculation was carried out ﬁith 4 inter?#ls péf meén
free path in the x-direction. The number 4 in tﬁe J-row indi-

cates that 4 double-Gauss abscissae were used. The entry at

(4,4) is 3.81E-2. This means the absolute maximum error is

'0.038, the signed extreme error is +,0381. The next three en-

tries below mean that the exact solution where the extreme error

occured is 0.227 (rounded to 3 decimals) and the location is

x=.25;u==-.211, i.e.

v (.25, -.211) = .227
The total computing cost for generating the benchmark problem,

solve the stochastic transport equation 20 times for the dif-
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ferent mesh.coﬁfiguratiénsby.;hevGalerkin'metth,’searéhgfor
“the extreme error aﬁd.print'Table 1 is 7¢ for using low priority
on»Argonnefs IﬁM 370%195.' The cost is 14¢ using high pfiority.
The total computing cost to generatévandvprint TableAi; 20 error
plots like Figure $,_and 1 exact solution like Figure 2 is 85§:
for hiéh priérity éc;ounting; 40¢ for a low priority job. ..

These cost figdres show that cbmputefized error analysis
is feaéible. It is possible toihave a séries of benchmark gro-'
blemé solved for a.set of different‘numerical methods, tabﬁlated,
and'the-;ables evalﬁéted again by\anvaddiﬁional‘small‘computer
subioutine.; We have;actﬁaliy done this to determine. optimal
~mesh configurations and cbrrespéhding error perfo;manée for the
methodé incorporated in BEAPAC-1T at Northwestern University;

WE DO NOT PLACE JUDGEMENT ON THE MERITS OF CODES. But we
will publish experimental da?a. It is important, that the ex-
periments can be duplicated. The user of trahsport codes, witﬂ‘
the help of BEAPAC-1T should fofm hié own opinion with respeét
to his own problems. Without a.cbde such as BEAPAC, a systematic

comparison of methods is out of reach for the engineer. .

Two space dimensions

A two-dimensional version of BEAPAC-1T is now being imple-
mented. The output will be very similar to the tables and graphs
in a very recent paper by Madsen. It is interesting to note that

the Central'Différence Scheme he describes coincides with one of
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' four different schemes which we used to demonstrate the pro-.

. cedure of computerized error analysis in a semi-automated

proto-type code when we
we shail_includé, as in
benchmark problems, the

practice in introducing

started this research project. Since
BEAPAC-1T, two-cell (i.e. 2-region)
code can do what was generally accepted

new transport codes. But it will do

‘more, naﬁely base the eValﬁa;ion on exact solutions of bench-
mark problems. It will.also”be able to evaluate numerical
methods to solﬁe the‘neutron diffusion equation.

I shall very briefly mention a_representative type of dif-
figulty‘which we encountéred in prepération for the thebfetical
foundation of the‘benchmark_pfoblems. In order to inveétigate
the anéiytical behavior of the mathemacical.solution of the
neutron diffusion equation near corners»and»its importanceito
coarse mesh calgulations, we‘solvea the twb—region wédge\pro%
bleh of a circular disc¢c with Neumann boundary'conditions'and.
régionwise constant ﬁarameters,'.Details apd calculations of
what follows were reported by Bareiss and Vickery. In dimension-

less form, the problem reduces to solve the following system.

9
-7 u; +equy =8 (lel<a)
-7 0, +eyu, = 0 (a< |e!<n) _
= ..._l'.l. = .@E— =
up = Uy, d ba_1 5 5 =
bu = = 9—2— = = Q—Ll = Qll- = =
ge-l =0 (8=0), = o ‘(9 ), brl | bfz 0 (r=1)
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where (r,5) are polar coordinates, 2 is the vertex angle, and

c1s Coo d, S are constant parameters. .

If ¢, =¢

PS¢y =0 the solution is given by

A1) u =2 ;¥ 3 Gyyr)

i,j=o i
where
 ‘¥. =. cos v (m-a) cosvyB . _ B (u=u1; 050 <)
L Yeos Vi@ COS vy Gr-8) ' (u=u2; o<h <)

The \’i. are the solutions of

(12) d tan va = - tanv(m-)
and the B g are the zeros of.t'h.e_vfirst'derivatives of the
Bessel fl.mctionsv J\) (x). Fof this casé, it is easy to calcu-
i v

.late u for r =o as 'acc'uratvely as desired.

JIf ¢y #02 #0, we were not éb..lé tovc':a'lvc.:ulat‘e u for r=o by
.the expansion ‘me.t:hod»to moré then one or two significant digits
:wi.th the limit of computation éo_sf we had imposed. The re.ason
is that the ansatbz (11) for this'problem is wrong from a compu-

tational point of view. An investigation shows that
(13) u = 2 2 Z ¥ I, Gy, T)

£=0 k=0 i=0 "k
if all vk¢2j (j =1,2,...). The \)k's are again solutions of (12).

Each time \,k=2j, we must add terms of the form

\)k+2j m
r (@nr)

to (13). If Vi is close to 2j, the numerical process is extremely
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unstable. This is a very unsatisfactory situation, since a

small change of o in (12) cén change the analytic character

of (13) completely. We are fryiﬁg out éeveral other aéf
proaches for the analytical represéntation of u, one of whiéﬁ
we hope will be-mathematidaliy satisfa;tory, and show uniform
computability. This function will' then be a base functién fof
the generation of benchma;k_problems.

Since we know that u can behave in the radial direction

the asymptotic theory requires only that the set of base funct-
T v _ v '
ions for the approximation space contains r O, the smallest

eigenvalue of (12). For coarse mesh calculations this is not

sufficient. ' In problems of practical interest, there exists:

6nly a finite number of Vi such that

\)k‘i \)imod (m) (i<k)

v,
. -Hn . .
(m is an integer). Thus the r L7M ust be included in the base

functions of the approximation space for coarse mesh-calculét—
iong. To show the effect of neglecting to dp so, we refer to
Figure 4, which shows the error F qf least squares approximations
of xa.by cubig polynomials, for ¢« in the range from 3/4 to 4,

and over an interval h=1. 1If the interval differs froﬁ-unity;
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Figure 4

0.1% 0.3C 0.43 0.6U 0T 0.80 1.05 1.20
X-FEXIS

Error function F(@,0;x) for cubic least squares

' X . o
approximation of x




Thus, if h<< 1, then the error for ¢ =4 (curve 6) is negli-
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then the error.Eh(x,a).is related to the error F(w,o0;x) of

Figure 4 by the relation

'Eh(x,a) = hdF(a;o;x)

gible with respect.to the error o =3/4 (;urve 1); We see aléd
that the error of curve 1 is extremely large at the origin.
This éxplains why u in the wedge problem for Fhe diffuéion
équatidﬁ is difficult to calculate at the ofigin f;=oi Figure
4 shows also that a-collocation_metﬁod can yield good resulgé
wheﬁ we place collocation poin;s close to tﬁose 4 points Qhere
the errér F(e¢,0,x) = o.

| The purpose of these last remarks is to show that Quanﬁi-
taﬁive Error Analysis'opeﬁs a challenging new field of research
with important implications for successfui large -scale compu-

tation.

o
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-APPENDIX-

Description of Master Flow Chart BEAPAC-1T (Figure 1)

BEAPAC-1T is a stand-alone modular system designed for quantitative
error performance analysis of numerical methods applied to the ome di- '
mensional neutron transport equation in slab geometry.

.st(x)

(Ala) Ly = 9%("’“) + 2, ()Y ) - :

jlaui‘i’(x,u') =0
-1

(Alb) ¥(x,p) = SB(x,u) for x on boundary.

There aﬁe three ma jor components to the<system. Inﬂthe first compo-
nent a omne dr two cell benchmark probiém is defiﬁea énd the neutron flux
solution Yﬁ(x,p) is generated. A fxux vecfor KB is obtained by.evaluat—
inngﬁ(x,u) over - ordered set of sPace-angle mesh points.

The solutionszB(x,u) are linear c§mbinations of the Case eigenso-

lutions of (la). The general form of VY(x,u) expansion'is
| | + . ) 1
A2)  ¥Gop) =aty. Gep) +al ¥ Goud+ [ AG)Y Gowday
\)0 [o} -VO' - \Y

We choose for VB'a linear -combination as in (2), but A(v) is a pieCewise

polynomial for a particular discretization of the v variéble,'vn
' (n=0,+1 ,+2,...,FN). Given this exact solution to the infinite slab,,

source boundary conditions S, for the finite slab problem are evaluated

B

from YB at the slab boundaries.

The second component contains a variety of numerical procedures for

computing the approximate solution XC to (1) from



(lc)

§B. for x on boundary . 7 (14)

L

Usually, a.Systematic (x,u) mesh refinement is successively applied to
the basic cell configuration. Thus a series of XC vectors are generated

for a given problem specification.

‘The third component takes g_ and Y -C (exact and computed flux vectors)
cand calculates the error vector gﬁ‘and assoc1ated error norms H The

fluﬁ vectors, error norms and related data are displayed graphlcally and
fabularlyf

Next, we describe the Master Flow Diagram, Figure 1. The various
functions pérformed are described -in the suésequént‘paragraphs ﬁhose

numbers correspond to the flow diagram scheme.

Master Flow Diagram Description

1. The BCD input data are read from punched cards. Included are the
following general options:

a. General control information
- job title
- dynamic storage size
--edit flags
- interface file existence flags

b. Benchmark problem spec1f1cat10ns

]

operator type

computation cell geometry parameters

mode parameters

boundary conditions

a systematic set of space- angle mesh points




.¢. Computational mechodé

- spatial ‘and angular options approximations’
- single or double precision Gauss elimination
- Householder factorization (lncludlno over determined systems)

d. Error norms and display" optlons

Norm types

Norm domain classxflcatlons

Norm tabulations

2D- and 3D- plots on Calcomp plotter

‘The input is checked for consistency. Dynamic storage requirements

are computed and if the user specified container space ié_exceeded,
the job will be terminated. 'Spécifications for -the computationél

cells consist of COordiﬁages and cross sections. The code‘pérmifs
ifregular mesh refineméﬁt iﬁ each cell. One and two cell ﬁréblems

are permitted.

This block calculates the matrix elements_of Q for the reference
configurétion (Xk’ H;)ref for a computationai cell. The columns of
Q are the components of a base function (such as a mode) evaluated
at all.pOLnts (Xk’ “&)ref for a d§51red benchmark' solution WB.

This‘w is obtained from an input flux distribution WF(x,_u) evalu-

B
ated at the reference configuration to give KF' Thus we seek. to
N .
obtain EB = Qg =f?fanqn; where a is determined as the discrete least

n=1 -

squares solution of

by Householder reduction in block 3.
Equation (A2) contains two types of modes, the asymptotic and

transient modes. The asymptotic modes are of the form




Cag(xu) = ¥olxu) =3 —
where‘\)o is determined by
1=£ . v +1
Zvoog\) -1
o
T
and - ' C = owem
Z>t’.

The transient modes are generated by subdividing the integration

interval of vy into a small number of -subintervals Avn where A(v) is.

approximated piecewise by low order polynomials,

N
A(v) énzz;nen<v>
' o ep (V) v €AV
Bn(v) ={ n n
0 v ¢ AV,

Thus we have

Ge) = | 8 ()Y Gowday
av,)

QG+ N+1

(n=0,+1,...,+N)

h ‘
The set of all values qn+qw+1(xk,g&) form the vector 9N The

matrix Q consists of the column vectors Sk

— + -
Q= [45:959 >+ Son!

. . : +
~ The corresponding vector a has the components ao,ao,al,...

P8 ONHL
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A two-cell calculation ﬁermit;_the exémination.of error. per-
férmaﬁcg at interface§.‘ Thevbeqchmark solution wﬁlfis generated
in the first celi‘as beforéi' The flux shape‘in the'se§oﬁd cell
must conform té the flﬁx shape of the first cell at the iﬁferface,
Hence, Qe may specify any flux shape gBZ whiéhvsatisfies this

‘condition."We‘are thus able to analyze the error performance for

a variety of flux shapes in cell 2.  The flux shapes chosen are
basedbon-theoreticaiiy.obtained results for the analytical be-
havior of the sblution; A complicafibn arises in the second cell
whénvwe choose a_flux shape Which satisfieé the interface condition
but.does not sétisfy (1) in céll 2. ﬁere we calculate a distrib-

uted source term, S(x,s), such that LQWBZ = S(x,u).

3. This block calculates the vector E;Whiéh_satisfies, in the least

squares sense the possibly overdetermined matrix equation

= WV
Qa = ip

by the Househblder factorization (see block 2). EF can be a user

supplied flux distribution vector.

4. This block qalculatés Q, the matrix of basevfunction"values, si-
milar to block 2. However, the geometry configuration is now a
fine mesh display cohfiguration{ so choseé to obtain a high reso-
lution 3D- plot on the Calcomp plotter. . Given the maﬁrix Q ana.
the combining coeffiéients of vector 2¥ we evaluate the flux solut-

ion YB(x,u) for the given display coordinates configuration
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) s
m’display.

¢ ® - @,

This block retrieves ZB and or~g€ and displays them in a 3D pro-

jectioﬁ.map..-Continuous line segment plotting is applied with.

‘be adjusted to any point in the positive octant of the three di-

mensional cube of viewing space.

‘This block performs the space or angle mesh refinement for the

current mesh option;».Spatial refinement is usually accomplished
by successively halving the mesh interval'size;' Angular refinement

is dependent on the type of discretization.. For single or double

‘Gaussian guadrature, the number of angular nodes are successive-

1y doubled. For trapezoidal integration the sizeé of the angu=-
lar intervals are successively halved. Thus we obtain the space

co-ordinates

X, (1 =1,2,...,1)

and direction cosipes and integration weights

b ¥ m=1,2,...,00

m

h h . .
or the mes co§f1gurat10n (Xi’ um)c
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This block evaluates the corfesponding benchmark solution,EB = Qa
at the mesh configuration (xi, um)c. The base functions are the
same as' in block 4. -Specially constructed linear combinations of -

eigenmodes may be selected to simulate flux and flux derivative

discontinuities.

In this block the appropriate source vector §B is determined at.
the boundaries of the slab, using I for the specified boundary’

conditions.

Boundary conditions available for the standard operator are:

1. Vacuum ' \f'(b,u)_ =0 S p_l_g_<0
2. Reflective h Y(b,u) = ¥(,p) = >0
3. Inhomogeneous Dirichlet i n<0
(Incident) » o BET L
- }row =sow |
4, Inhomogeneous Dirichlet _ pi-n>0
(Emergent)
5. Inhomogeneous Neumann ‘
(Incident) , o pi.n<O
b\,rf X‘I ¢
} -——-l‘éx 2o | = 5(b,u) { |
6. Inhomogeneous Neumann _ X=b ' pi-n>0
(Emergent) ‘

7. Inhomogeneous Reflective V¥ (b,u)-¥(b,-n)=S(b,u) wn>0

where i is the unit vector in the positive x-direction

n is the unit outward normal at the slab boundaries

[i- =1

=)

b o= {ﬁi left hand boundary

x; right hand boundary

Thus we have the following cases for §£




1,2, s, =0 {“‘m-i-"ﬁ<0
- L 7B >0
- Um':
L R p,‘i'}i<0
3.4 S5 T &) {m‘:, |
) et 270
) - 1 (i
- 5,6. §B=<“’.B| —avBl >A—'{’Lm-£ B<0 (pobreax)
- (b,w) (b'u) °¥ uw 1°n>0
7o S5y -yl
B .B(b,u) B‘(b.,u) h>0

- ‘Boundary conditions for the symmetrized operator are:

1. Homogeneous Neumann condition(left boundary)
o+ +

The symmefrized'problem_deals only with O<u <1 since v
_ W+ +,
. . ' _ ¥Yo(x,u) =¥ (x,4).

Thus we have the following cases for S;(b,u) ' : 1

1. _s_gl =0
(o,u)
2. st = vl

B (XI',LL) -B(XI,LL)

9. Given (si,um)c, §B’ and macroscopic cross sections fé, Z% we

generate and solve the matrix equation for

BiC = EB on bgundary

We classify the approximation methods by origin of operator type.
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- Stendard Eguation '(discrete ordinates in angle)

1. 1st order Hermite Birkhoff Method (S method)
2. 3rd order Hermlte Birkhoff Method )

3. 5th.order Hermlte Birkhoff Method.

4. Galerkin Weighting Method

Symmetrized Equation'

.

1. 1st order Finite Difference Method (discrete ordinetes.in,angle)

2. Piecewise bilinear Finite Element Method in phase space

Integral Equation

1. Nystrom Method

The solution to the matrix equation is useally obtained using block
tridiagonal.elimination fer‘the etandard equation and by Choleski
reductlon in the symmetrized case. For additional information two
options are available. The first provides for a 51ngle or double
precisioﬁ solution of the linear system. The second provides the
alternative. of Householder least squares selution of the linear

system. These options provide round off information and stability

information.

This block computes specified flux errors, error norms, and related

information. Two pointwise error options are available

. i v = -
a. algebraic flux errors g XB KC

Y -Ye
b. relative flux error- ) YE T e e S
- 13

!
1
i
!
1
J
1
4
|
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. Norms: based on ¥_ are:

<F

éﬂé : maximum absolute ¥_ with associated mesh location,
‘ " algebraic sign and flux values.

AL ,
b. ﬂ—--E-~l : average absolute V

N N = number of‘calculated'fluxes

The norms may be computed for a variety of domains.

1. Global E all calculated flux nodes
2. Boundary : boundary and interface flux nodes
3. Interior : - interior flux hodes (non boundary)

(GLOBAL = BOUNDARY U INTERIOR)
For multicell probiems the domain may be restricted to indi-
vidual cells.
The correééonding scal#r flﬁx may be optionally tabulétea for
each angql;r fluk vector.
| A fefinement of the pointwise error scheme is antipipated.
The idea is to employ natural interpolation at a specifiéd
set of nodes independent of the mesh discretization. _The ob-
jective is to maintain a fixed nﬁmber of npdes at which the
flux error is computed. The interpolation ﬁées the Nystrom
-method in'conjunction with the Integral Transport equation.

[

Edits and 3D to 2D projection plpts of the XB’ XC and EE are

optional. Summary edits of the associated error norms are optimal.

Upon completion of all mesh options, - summary tabulations of each
error norm and norm domain are generated. A typical tabulation has
the spatial refinements increasing downa column while angular re-

finements increase along a row.



