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QUANTITATIVE AND COMPUTERIZED ERROR ANALYSIS

Erwin H. Bareiss & Keith L. Derstine

Northwestern University and Argonne National Laboratory

Abstract

A method is described how a.quantitative measure for the robust-

ness of a given transport theory code for coarse network calcu-

lations can be obtained.  A code, that performs this task auto-

matically and at only nominal cost, is described.  This code

generates also user oriented benchmark problems which exhibit

the analytic behavior at interfaces.

.
Introduction

The problem which we address here is concerned with ascertain-

ing the reliability of neutron transport calculations by high-speed

computers.  Today's general approach is to check one computer code

against another, often for mathematically not identical problem set-

tings.  The best way of checking approximate numerical calculations

is to compare the results against mathematically exact solutions.

Unfortunately, in transport theory such solutions are, in general,

not available, or if available, they are very expensive to obtain.

There·is however the possibility to create benchmark problems to

given meaningful exact solutions.
R

What we have started is a new discipline in Numerical Analysis,

namely Quantitative and Computerized Error Analysis.  Clearly, this

,
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discipline can be (and is) applied to other operator equations than

the transport equation.  Traditionally, a new numerical technique

was conceived, implemented in a computer code, and then distributed.

An alternative approach is to make a systematic analysis of the

mathematical properties  of the solution  and  the new technique,  and

then test the theoretical predictions on inexpensive well designed

small numerical benchmark problems.  The basic difference between

classical or qualitative error analysis and the quantitative error

analysis is that in quantitative error analysis we aim at obtaining

realistic error bounds for coarse mesh calculations and performance

predictions before a code is implemented.  What we do, can be des-

cribed by mathematical expressions,  but the formulas  are very lengthy,
...

complicated dnd difficult to evaluate.  For all practical purposes

analytic coarse mesh error analysis would be much to expensive and

too time consuming,  Our computer approach yields not only new in-

sight, but simultaneously provides numerical results that give a

quantitative assessment of the approximation method under investigat-

ion.  It is a new type of analysis that combines modern and classical

analysis with computer technology and computer graphics.  A very high

efficiency is possible because we exploit the use of dimensional

analysis and invariant theory.  This is important, since the operators

we deal with are linear. Indeed we have used a great many of the

properties which E. InBnU presented in his lecture on "A Scale Group

for the Linear Boltzmann Equation and its Representation."  We are

very pleased to have now available a systematic and complete tabulat-
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ion of all scaling, translation, rotation and other group proper-

ties of the transport equation.

To give a more concrete understanding of our research, we shall

briefly outline the major parts of our project and then describe an

actual code, BEAPAC-lT, which is running at Argonne National Labora-

tory and at Northwestern University.  We will also show how to use

this code and present some samples of the output  options.  The

present code is designed for the one-dimensional transport equation

and supplements well the theoretical results presented at the Fourth

National Conference on Transport Theory, since they were concerned

mainly with one-dimensional problems, and BEAPAC-lT makes use of

them.  A code for problems in two space-dimensions 'is now being im-
..

plemented , both for the transport and diffusion equations.

The entire code, when the project is finished, will consist of

three parts with the following functions.

A.  Cell Calculations (including 2-Cell Calculations)

B.  Global Analysis

C.  Computational Complexity

A.  The code for part A is again subdivided in three major parts.

a)  Creation of Benchmark Problems

b)  Numerical Solution of the Benchmark Problems by

Approximate Methods

c)  Calculation of the Error.  The user will specify the

appropriate error norm.

D
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Part A can also be characterized by.calling.its function Basic

Quantitative Error Analysis. It is designed to evaluate the de-

sired error norms for calculations over a coarse network or with

large finite elements.  To our knowledge there exists no other sys-

tematic approach to deal with the coarse mesh error analysis.  As

will become evident, such an analysis is practical only by automat-

ion and use of the computer.

B.  The codes for part B will conduct a global analysis for

multiregion, multigroup calculation.  The algorithms will be subject

to:

a)  Global Error Analysis

b)  Stability Analysis

c)  Convergence Analysis

-                We note that the classical concept of consistency analysis does not              i

appear explicitly.  The codes will supply absolute error bounds.

However the main goal is to provide Probabilistic Error Estimates.

Research in all areas is under way.  The tools employed are borrowed

from functional analysis, perturbation-, matrix-, operator-, and

probability theory and statistics.

C.  The codes for part C are concerned with computational com-

. plexity.  By this we understand:

a)  Performance Prediction

b)  Code Evaluation

c)  Data Management Analysis
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Basically, part C is cost accounting.·  It will be based on the total

operations count (inclusive iterations count), error estimates, and

memory requirements. It will also provide a ratio of the actual

operations count of the implemented transport code to the theoretical

minimum operations count as determined from the mathematically de-

fined algorithm.  If this ratio is much greater than one, the entire

program (computer code as well as theoretical background) should be

investigated for potential significant reductions in computer time.

Description of BEAPAC-lT

Since it is very often easier to understand new concepts by con-

sidering a set of examples, we describe here an actual code, BEAPAC-lT,

show how it can be used by citing concrete examples, and state the

underlying motivation for the particular implementation.

BEAPAC-lT stands for Benchmark Error Analysis Package for 1-

dimensional Transport theory calculations.  It is an implementation

of part A outlined above.  Figure 1 shows the masterflow chart.  We

shall discuss the function of the different boxes, but for a more de-

tailed description we refer to the Appendix.

The first tenets for the implementation of BEAPAC-lT are to give

the user Freedom to set his own·Standards and Flexibility in Applicat-

ions.  BEAPAC-lT is therefore an open-ended (expandable) collection

of subroutines.  If the user wishes a special feature not provided

in the package, he can write his own subroutine and add it by ob-
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Figure 1:  BEAPAC-lT MASTER FLOW DLAGRAM
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serving very simple interface requirements.  The user chooses his

own performance criteria for his particular problem by calling

available options.

Although the linear neutron transport is mathematically unique-

ly defined, there are several forms of the transport equation which

are mathematically equivalent.  At this time, the user has the opt-

ion to base his tests on the following stationary operator equations:

Stochastic Transport Equation (Standard form)

Symmetrized Transport Equation (Canonical

form, Vladimirov equation)

Integral Transport Equation

The guiding principle of the project is to store on tape for easy

access and in computable form the theoretical knowledge of numerical

analysis which is pertinent to the quantitative (numerical) solution

of neutron transport problems, algorithms for approximate solutions

and special functions with instructions for their proper use.  The

output is in tabular form and in visual displays, meaningful

to the engineers and scientists who are not specialists in numerical

analysis.  A systematic analysis of a code requires detailed atten-

tion, knowledge, and time.  As we will demonstrate, a computer can do

this tedious work fast and cheaply.

Creation of Benchmark Problems

To specify benchmark problems is in general not a too dif-

·ficult job for an engineer.  However to design a meaningful

, benchmark problem for which the exact answer is known, proved

D
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rather difficult.  It is necessary to have knowledge of the

analytic behavior of the solution at interfaces, boundaries,

and corners (for multi-dimensional calculations).

Historically, the solution of differential equations was

based on "Hard Analysis."  The problem was considered solved

when the general solution of the operator equation was known.

For example, the solution of the Bessel equation is a linear

comb ination   of the appropriate Bessel functions   of the first

and second kind. In other words, these two functions span the

solution spade. Modern analysis often is satisfied with "Soft

Analysis."  The solution is imbedded in a given Sobolev space.

This approach is good for asymptotic error analysis, for

proving existence -, convergence-and consistency theorems.

//

However, this approach is not sufficient for "coarse network

calculations.  We have shown early in our research by pilot

calculations that some "low" order algorithms gave better re-

sults than "high" order methods.  An explanation of this fact

will be given at the end of this paper.
.

At this time BEAPAC-lT can generate exact benchmark pro-

blems for the homogeneous transport equation using the follow-

ing exact solutions

C VO + X/V + X/V
(1)  w    -_     .e-  0= *  e-'

1 \6          2   v     + 11 ' +Vo0-

+1

(2)   Tt    =   A (v) *ve-x/vdv
-1

D



- 9-

#<0
(3)  90

-

 X-B +U e-X/11.+A293 +A393 + "'                   1120

where

(4)  Tn = E , .n-k Ek(x) +.... +e-X/11[11'n-llog(1%0- 1) +...]k=o»

Equations (1) are the regular elementary functions introduced

by Case, and are known as asymptotic solutions of the transport

equations.  Equation (2) represents the transient solutions in

the notation of Case.  They span the solution space of our

operator equation.  Analytic expressions for (2) are stored

for a set of A(v) which are piecewise polynomial functions in v.

Equation  (3)  is an exact solution for a vacuum boundary at  x=0

-                     (c=1) as given by Abu-Shumays and Bareiss.  Thus, to cr
eate a

benchmark problem for a slab with a vacuum boundary, we can cal-

culate Y(a,u) for all values of B at the slab width a (or cell

width a) which are necessary.to solve the problem by a given

approximation method.  Note, 9(x,B) can be calculated for any

desired location in {OS xsa, -161161} as accurately as desired.

For practical purposes, we call this an exact solution.

The user may want to simulate an interface condition with

an irregular flux shape.  This is possible by taking a linear

combination of the equations  (1)  and (2). Figure 2 represents

such a flux shape, where

(5)  9*(x,4)   =  alfv +a29-v 4-a39tl +a4 Tt2
00

al=.75, a2=0' aj=.75, a4=1.5

D
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Figure 2
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and Y   and Y are specified bytl      t2

· (6)  tky) = f? #<0 Av) = f
° AL<0

L i  -V       112 0 cv(1-v) Al• 20

This solution contains the jump as well as the logarithmic be-

havior at B=o.

BEAPAC-lT contains  also a subroutine "MODE ANALYZER. "

Assume a transport theory calculation has been made, and the                !

numerical solution looks suspicious, say like Figure 1.  Does

the code give a wrong numerical answer, or do we have actually

such an unexpected flux shape? 'We use.the Mode Analyzer to ob-

tain a discrete least square approximation to the computed Y

in the form

vktl

(7)  'F(x,11) N a+'11' 6+a- 9-  +r 1 A(v)*ve-x/vdv                            1vo k=l vk
Here, A(v) is a piecewise linear function, i.e.

N

A(v)   =/3  aksk(v)
k=1

where the Sk(v) are chapeau functions (linear splines).  The

integrals in (7) have been evaluated analytically, and contain              I

logarithmic terms.  Thus (7) is

(8)         9(x,11  )    At S. a (1=1(X,11))

where

aT = (a ,a-,al'a2      an 

vk+1

9'  = (YV , Y-v '...'  k- k(v) Ove-x/vdv'...)0 0

,
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are vectors.  If the computed 9(x,B) is known at an ordered

set of discrete. points '

{ Pi  =   (xk. 'ALL . )1
1    1

then the set {9(Pi)} forms a vector 1 and 2 is defined as the

discrete least squares approximation to the matrix equation

(9)  Qi = L
i

The row elements of Q are defined from (8) by the relation

9(Pi) = fl. (Pi)a· To obtain 1, we simply apply the Householder

factorization to (9).  Now a benchmark problem can be generated

as above with the exact solution.

(10) 98(X,B) E 1 1 1 =  1(x,11)

If the transport code cannot reproduce this solution-with suffi-

cient accuracy, we have positive evidence of its unreliability.

(We are in the process of implementing (7) with cubic splines

and piecewise higher order polynomials to reduce the dimension

of a.  If numerical experience indicates sufficient cost savings,.-

the linear splines for A(v) will be supplemented with higher

order approximations.)

Boxes 1 through 5 of the masterflow chart can now easily be

explained.. If the vector i and the corresponding base functions

are specified by the input data, boxes 2 and 3 are by-passed, be-

cause  the Mode Analyzer is not required. To obtain Figure 2,

boxes 2 and 3 were by-passed.  However to generate the necessary

.
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data for the "three-dimensional" display of Figure 2 of the

benchmark problem solution, box 4 is needed to calculate

sufficiently many values 9 (xic'ut ) to assure the desired "smooth"

appearance  of 9(x,11). Figure  2  is of intermediate smoothness,

which we .consider "good enough" for practical purposes.

Evaluation of Numerical Methods                      
                        '

We are now ready to test a numerical method to solve the

transport equation with the solution TB' say that of Figure 2.

BEAPAC.lT contains a. set of subroutines for the numerical so-

lution of the transport equation by methods which are widely

used. They are all in a standard form. The numerical methods

are reduced to the problem of solving a linear matrix equation

of the form

A v=b
„--

Hence, a particular subroutine contains instructions to calcu-

late the elements of the matrix A and the vector k.  The process

is as follows.  First, the desired network in the (x,B) -domain

is set up (box 6).  Then the necessary boundary values are cal-

culated (box 8).  With the information from boxes 6 to 8,  the

elements of A and b are calculated, and the linear equation is

solved accurately by a direct method, usually by Gaussian elimi-

nation with iterative improvement. In most cases, the elements

of v represent the discrete directional fluxes, and are denoted-

D
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by Yc(xk'Vt).  If this is not so, a further calculation is

necessary to arrive at Yc.

The following numerical methods are available as sub-

routines.

Derived from the Stochastic Equation:

First, third and fifth order Hermite-Birkhoff approximat-

ion in space, Gaussian quadrature in angle.  The matrix A of

the 'first order method is identical to the latest version of

the S -method.
N

Galerkin method in space with chapeau functions as basis,

and discrete ordinates in space (including Gaussian quadrature).

Derived from the Symmetrized Equation:

First order difference equation in space, discrete ordi-

nates in angle.

Piece-wise bilinear Finite Element Method in phase space.

Derived from the Integral Equation:

Nystrom Method.

The user can also interface an existing code for the numeri-

cal solution of the transport equation with BEAPAC-lT.  This is

equivalent to by-passing boxes 8 and 9 and is indicated in Figure

1  by the decision box  "T    on  file. "
C

The next step is to calculate the errors by the formula

'F E    =    Y B   -  1 1'c

D
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where VE is the pointwise difference between the exact solution

98 and the approximate solution Yc.  The user can specify a

number of options for error norms which he wants to display

graphically or print in tabular form.

To illustrate two options, we solved the benchmark problem

specified by Figure 2 by the Galerkin-discrete ordinate method

mentioned above. Figure 3 shows the absolute error  VE (xk,FL)

at the nodes of the network for which the calculations were

done. Table 1 shows the maximum absolute error

1IYEll = max  YE (xk'111) 1
k,1

for a run of twenty different mesh configurations and gives

additional information. The number 4 in the I column indicates

that the calculation was carried out with 4 intervals per mean              i

free path in the x-direction.  The number 4 in the J row indi-

cates that 4- double-Gauss abscissae were used. The entry at

(4,4) is  3.81E-2.  This means the absolute maximum error is

0.038, the signed extreme error is +.0381. The next three en-

tries below mean that the exact solution where the extreme error

occured is 0.227 (rounded to 3 decimals) and the location is

x=.25; p-.211, i.e.

78(.25, -.211) = .227
The total computing cost for generating the benchmark problem,

                       solve the stochastic transport equation 20 times for the dif-

D
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Figure 3
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Table 1

RENCHMARK ERROR ANALYSIS PACKAGE FOR lD 11 EUTRUN TRANSPORT METHODS 1/23/75-1..2,-7.6.1_ BC STUDY X(0,11 MIJ(.1,13_(Ca .6462,COMB.,STD)_GLK RC(I,I)

8*  7.10  1.2.7.6.1  DC STUDY X(O, 1) Mu(-1,1) (Cg .6462,COMB ,STO-)--_944 BCCI'-I-)
MAX. ABS. VECTOR FLU* ERROR AND LOCATION (OBL)

I  z      N O.     OF     X vES H INTERVALS JI NO. OF MO POINTS""
p

J,      2           4           8.         16
I· ,

....................le.............................0,0 H
\1

  ERROR   1  , -7.2UE:02 1.190-01 -- --2.87£-01 3.54E-01                               '
EXACT 0.249 0.166 0.131 · 0.124
X   Lri.c    .-  -_., O.0 1.000 1.000 1.000
U LOC , -0.5(16 -"  --0.211-------0.069.------024)20

ERROR-...2. . .-4,018-02-   5.68E-02_  -1.42E-01-  _2.ORE-01
EXACT 0,249 0.365 0.229 0.214
X LOC 0.0 0.500 0.500 0.500

..U..LOC     ......  s   -C•500    .- _...... 0..211-__.__.__0.0-69 -- 0.020

ERROR 4 . •,3.69E-02 3.81 E-02 5.97E-02 1.525-01
EXACT -_..  . -.0.249     -_--0.227 -2 --_..0.342.._ __ ..C.294
X LOC , 0.0 0.250 0.250 0.250
U LOC , -0.500 -0.211 0.069 0•020

ERROR  8 -3.61 E-02 3.15 E-02 1.25E-02 1.09 E-01
EXACT 0.249 0.195 0.526 0.357
X _111(_.-___._, 1.0.0   .._ _-   0.'375 - .

0.125 , 0•125
U LOC . -0.500 -0.211   - 0.069 ---- --0.020

ERRAR -16  . -3.64E-02 3.l l E-0 2         __   3.6 8 8-0 3       _ _4.2 0 E-0 2
EXACT 0.228 0.210 0.344 0.433
X L!!C 0.063 0.313 0.063 0.063
11 LOC . -0.500 -0.2ll -0.069 0.020
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ferent mesh. configurations by the Galerkin method, search  for

the extreme error and print Table 1 is 7¢ for using low priority

on Argonne's IBM 370-193.  The cost is 14¢ using high priority.

The total computing cost to generate and print Table 1, 20 error

plots like Figure 3, and 1 exact solution like Figure 2 is 85¢

for high priority accounting; 40¢ for a low priority job.

These cost figures show that computerized error analysis

is feasible.  It is possible to have a series of benchmark pro-

blems solved  for  a  set of different numerical methods, tabulated,

and the tables evaluated again by an additional small computer

subroutine.  We have actually done this to determine optimal

mesh configurations and corresponding error performance for the

methods incorporated in BEAPAC-lT at Northwestern University.
f

WE DO NOT PLACE JUDGEMENT ON THE MERITS OF CODES. But we

will publish experimental data.  It is important, that the ex-

periments can be duplicated.  The user of transport codes, with

the help of BEAPAC-lT should form his own opinion with respect

to his own problems.  Without a code sdch as BEAPAC, a systematic

comparison of methods is out of reach for the engineer.

Two space dimensions

A two-dimensional version of BEAPAC-lT is now being imple-

mented.  The output will be very similar to the tables and graphs

in a very recent paper by Madsen. It is interesting to note that

the Central Difference Scheme he describes coincides with one of

/
D
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four different schemes which we .used to demonstrate the pro-

cedure of computerized error analysis in a semi-automated

proto-type code when we started this research project.  Since

we shall include, as in BEAPAC-lT, two-cell (i.e. 2-region)

benchmark problems, the code can do what was generally accepted

practice in introducing new transport codes.  But it will do

more, namely base the evaluation on exact solutions of bench-               '

mark problems.  It will also be able to evaluate numerical

methods to solve the neutron diffusion equation.

I shall very briefly mention a representative type of dif-

ficulty·which we encountered in preparation for the thebretical

foundation of the benchmark problems. In order to investigate

the analytical behavior of the mathematical solution of the

neutron diffusion equation near corners and its importance to

coarse mesh calculations, we solved the two-region wedge pro-

blem of a circular disc with Neumann boundary conditions and

regionwise constant parameters.  Details and calculations of

what follows were reported by Bareiss and Vickery. In dimension-

less form, the problem reduces to solve the following system.

2 '

(le'<a)-V  Ul + clul  =  S
2

-V u+C U=O (a<lei<rt)2    22

d bul = bu (8 = a)
ul = u2' 59 53

fil = O (8 -o),   2 = 0 (8 =TT).   111·   .Di2 = 0  (r -1)
W                   W                   br     br

D
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where (r,8) are polar coordinates, 20 is the vertex angle, and

Cl, (2' d, S are constant parameters.

If cl = c2 =0' the solution is given by

00

(1 1)    u    =  E   a..Yi(e)   J        (11.  .r). .- 1J vi  111,J-0

where

9   =     C o s  v i   (Tr-Ot)     c o S
v i e (u=ul;    o s g e g 01)

cos vict Cos vi (TT-e) (u=u2 ;    Ot f e w 'IT)

The vi are the solutions of

(12)  d  tan  vot  =  - tan 9(Tr-01)

and the B.. are the zeros of the first derivatives of the
11

Bessel functions J  (x).  For this case, it is easy to calcu-
vi

late u for r =o as accurately as desired.

If  c.1 0(2 t o'  we  were  not  able to calculate  u  for  r=o  by

the expansion method to more then one or two significant digits

with the limit of computation cost we had imposed.  The reason

is that the ansatz (11) for this problem is wrong from a compu-

tational point of view.  An investigation shows that

00 00 CO

(13) u=  73 2 3 29 V i t (11ktr)
1 =o  k=o  i=o           k

if all vk'42 j (j-1,2,...).  The vk's are again solutions of (12).

Each  time vk = 21, we must add terms of the  form

vk + 2 j             m
r              (in  r)

to (13).  If vk is close to 21, the numerical process is extremely

D



V
-21-

unstable.  This is a very unsatisfactory situation, since a

small change of a in (12) can change the analytic character

of (13) completely.  We are trying out  several  other ap-

proaches for the analytical representation of u, one of which

we hope will be mathematically satisfactory, and show uniform

computability. This function will then be a base function for

the generation of benchmark problems.                                        1

Since we know that u can behave in the radial direction

as                  v            2
a +r '(a  ta  r t...)0       10   11

+r l (a20 +a21 -I32 +...) + ...

the asymptotic theory requires only that the set of base funct-
\)

ions for the approximation space contains r ', the smallest

eigenvalue of (12).  For coarse mesh calculations this is not

sufficient.  In problems of practical interest, there exists

only a finite number of vk such that

vk   0 vimod (m) (i<k)

v i+m
(m is an integer).  Thus the r must be included in the base

functions of the approximation space for coarse mesh calculat-

ions. To show the' effect of neglecting to do so, we refer to

Figure 4, which shows the error F of least squares approximations

of x' by cubic polynomials, for u in the range from 3/4 to 4,

and  over an interval  h=1.     If the interval differs from unity,
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Figure 4

1:0=3/4
2:cy=7/8
3:ot=1.5
4:9-2.5
59=3.5
6:ot=4
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then the error Eh(x,a) is related to the error F(u,o;x) of

Figure 4 by the relation

Eh(x,a) = h'F(a,o;x)

Thus,  if  h<< 1,   then the error  for  a = 4 (curve  6) is negli-

gible with respect  to the error cy = 3/4 (curve  1).   We  see also

that the error of curve 1 is extremely large at the origin.

This explains why u in the wedge problem for the diffusion

equation is difficult to calculate at the origin r=o, Figure

4 shows also that a collocation method can yield good results

when we place collocation points close to those 4 points where

the error F(a,o,x) = O.
The purpose of these last remarks is to show that Quanti-

tative Error Analysis·opens a.challenging new field of research             m

with important implications for successful large -scale compu-

tation.

D
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APPENDIX

Description of Master Flow Chart BEAPAC-lT  (Figure 1)

BEAPAC-lT is a stand-alone modular system designed for quantitative

error performance analysis of numerical methods applied to the one di-

mensional neutron transport equation in slab geometry.

I:s (x) Bl  .   , .  ,        ,
(Ala)    LY  = 112!1(x'11)  + I't (X)9(X,11)

-

| d 1 1 9(x,11    )   =   0
bx                         2   J-1

(Alb)    T (x,B)  =  SB (x,B)     for  x on boundary.

There are three major components to the system.  In the first compo-

nent a one or two cell benchmark problem is defined and the neutron flux

solution 98(x,p,) is generated.  A flux vector LB is obtained by evaluat-

ing   98(x,11) over ordered set of space-angle mesh points.
1

The solutions YB(x,B) are linear combinations of the Case eigenso-

lutions of (la).  The general form of 7(x,B) expansion is

1

(A2)       9(x,11)   =  a+1'\1 (X,11)  +  a   Y_ 6(X,p.) +    -1 A(v)'1'v (x,B)dv
0

We choose  for 'F  a linear combination as  in  (2),  but A(v)  is a piecewise
D

polynomial for a particular discretization of the v variable, vn

(n=O,t.1,1:2,...,1:N). Given this exact solution to the infinite slab„

source boundary conditions SB for the finite slab problem are evaluated

from 98 at the slab boundaries.

The second component contains a variety of numerical procedures for

computing the approximate solution Ic to (1) from

D
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14=0 (lc)

4 = 4 forxon boundary (ld)

Usually, a.systematic (x,B) mesh refinement is successively applied to

the basic cell configuration.  Thus a series of Ic vectors are generated

for a given problem specification.

The third component takes LB and Ic (exact and computed flux vectors)

and  calculates the error vector  I.  and associated error norms 1141' 0    The

flux vectors, error norms and related data are displayed graphically and

tabularly.

Next, we describe the Master Flow Diagram, Figure 1.  The various

functions performed are described in the subsequent paragraphs whose

numbers correspond to the flow diagram scheme.

Master Flow Diagram· Description

1.   The BCD input data are read from punched cards.  Included are the

following general options:

a.  General control information

- job title
- dynamic storage size
--edit flags
- interface file existence flags

b.  Benchmark problem specifications

- operator type
- computation cell geometry parameters
- mode parameters
- boundary conditions
- a systematic set of space-angle mesh points

D
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c.  Computational methods

- spatial and angular options approximations
- ·single or double precision Gauss elimination
- Householder factorization (including over determined systems)

d.  Error norms and display options

- Norm types
- Norm domain classifications
- Norm tabulations

. - 2D- and 3D- plots on Calcomp plotter

The input is checked for consistency.  Dynamic storage requirements

are computed and if the user specified container space is exceeded,

the job will be terminated.  Specifications for the computational

cells consist of coordinates and cross sections. The code permits

irregular mesh refinement in each cell.  One and two cell problems

are permitted.

2. This block calculates the matrix elements of Q for the reference

configuration (xk' Ft)ref for a computational cell. The columns of

Q are the components of a base function (such as a mode) evaluated

at all points (xk' *1  re f for a desired benchmar.k' solution y .
B

This 98 is obtained from an input flux distribution VF(x, B) evalu-

ated at the reference configuration to give I. ·  Thus we seek to
N

obtain F   = Qa = T; an  , where a is determined as the discrete least
-B         -                   n                    -

n=1   -

squares solution of

Qi =LF

by Householder reduction in block 3.

Equation (A2) contains two types of modes, the asymptotic and

transient modes.  The asymptotic modes are of the form

D
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Actx/VO

,6(X,») - " (X,»).- (2 ' «-»

where v  is determined by0

v +1
1 - 2c volog v' - 1

0

21
S

and C=-

The transient modes are generated by subdividing the integration

interval of v into a small number of subintervals Avn where A(v) is

approximated piecewise by low order polynomials,

N'

A(v)    6    E  a   e (v) (n=0,11,...,iN)nn
-                                                 n=-N

fPn(v) v E & vn                                   f

e n (v)   =   l
0         v 6 Avn

Thus we have

 n+N-1-1 (x,p,) =   en(v)'Fv(x,11 )dv

(Avn 

The set of all values q (x  B ) form the vector q The
nt Ntl        k' 4 -n+ Ntl   '

matrix Q consists of the column vectors gk

Q  =  [t ,Eli '11,"' '12N+11

+-
The corresponding vector i has the components a ,a ,al'..., a2N+1.

D                                                                     I
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.A two-cell calculation permits the examination of error per-

formance at interfaces. The benchmark solution W is generatedBl

in the first cell as before.  The flux shape in the second cell

must conform to the flux shape of the first cell at the interface.

Hence, we may specify any flux shape w which satisfies this
-82

condition.  We'are thus able to analyze the error performance for

a variety of flux shapes in cell 2. ,The flux shapes chosen are

based on theoretically obtained results for the analytical be-

havior of the solution.  A complication arises in the second cell

when we choose a flux shape which satisfies the interface condition

but does not satisfy (1) in cell 2.  Here we calculate a distrib-

uted source term, S(x,P), such that L Y = S(X,AL).2 B2

3.   This block calculates the vector f which satisfies, in the least

... squares sense the possibly overdetermined matrix equation

Qa = 4

by the Householder factorization (see block 2).  I*' can be a user

supplied flux distribution vector.

4. This block calculates Q, the matrix of base function values,  si-

milar to block 2.  However, the geometry configuration is now a

fine mesh display configuration, so chosen to obtain a high reso-

lution 3D- plot on the Calcomp plotter. Given the matrix Q and

the combining coefficients of vector 1, we evaluate the flux solut-

ion 98(x,B) for the given display coordinates configuration

D
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( i'Bm display.

 (d ).=  (d)1

5. This block retrieves 16 and or IF and displays them in a 3D pro-

jection map.  Continuous line segment plotting is applied with

hidden lines optionally removed.  The observation position may

be adjusted to any point in the positive octant of the three di-

mensional cube of viewing space.

6.   This block performs the space or angle mesh refinement for the

current mesh option.  Spatial refinement is usually accomplished

by succ6ssively halving the mesh interval size.  Angular refinement

is dependent on the type of discretization.. For single or double

Gaussian guadrature, the number of angular nodes are successive-

ly doubled.  For trapezoidal integration the size of the angu-

lar intervals are successively halved. Thus we obtain the space

co-ordinates

xi  (i = 1,2,...,I)

and direction cosipes and integration weights

B      ,      w         (m=   1,2,...,M)m m

or the mesh configuration (xi' Bm)C

D
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7.   This·block evaluates the corresponding benchmark solution LB = Qi

at the mesh configuration (x.. B )·.  The base functions are the
1   m C-

same as in block 4.  Specially constructed linear combinations of

eigenmodes may be selected to simulate flux and flux derivative

discontinuities.

8.   In this block the appropriate source vector   is determined at

the  boundaries  of  the slab, using 4  for the speci fied boundary

conditions.

, Boundary conditions available for the standard operator are:

1. Vacuum 7 (b,AL)  = 0  i' n< O

2. Reflective 7(b,B)  = 9(b, -p) %>0

-                   3.  Inhomogeneous Dirichlet P·i . n< 0
(Incident)

   9 (b,X)  =  S'(b,W)          <
.·

4.  Inhomogeneous Dirichlet  i. n> 0
(Emergent)

5.  Inhomogeneous Neumann
(Incident) r &11· n< 0

} =(Xe
,  j    =  S(b.,1 )    ibx                                .n> 06.  Inhomogeneous Neumann X=b  1

(Emergent)

7. Inhomogeneous Reflective 1(b,11)-19(b,-!1)=S(b,B) 11>O

where i is the unit vector in the positive x-direction
-

a is the unit outward normal at the slab boundaries

| i ·nl  =l.-

1 = <xl  left hand boundary
xI  right hand boundary

  '                                       Thus we have the following cases  for ·§·B

D
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ff   i  .n<0
1,2.   4 -0

 m,  a

B i , n<0
3,4.           4    -   1 8 1                             {    m.-      -

(b 'a) A  i·n> 0m- .I

5,6.   SB -  YB|
-gl 1-1 1- - (b-b'=Ax)

\   1    (11   i  ·  n<0

,    (b,11)     81(b',11)/ Ax LF  i ' n> 0m- -

7.   S =9 1 -9
-B -B

|(b,B)       -]3 t (b,11 )
*>0

Boundary conditions for the symmetrized operator are:

1.  Homogeneous Neumann condition(left boundary)

T (b,B)   =   SB(xI'B ) ·

The symmetrized problem deals only with OSFS 1 since
++

9 .(X,!1) = T (X,-&1).

Thus we have the following cases for SB(b,B)
..

1.    41          -0(0,11 )

2. 41 -B
+

(x I '11) (XI,11)

9.    Given (s. u)   S and macroscopic cross sections Fs, Et we1' '  m  C'  -B'

generate and solve the matrix equation for

LY  = 0
(x,B)  E   (xi'Bm C

BIc = 4 on boundary

We classify the approximation methods by origin  of operator type.
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Standard Equation  ·(discrete ordinates in angle)

1.  1st order Hermite Birkhoff Method (Sn method)
2.  3rd order Hermite Birkhoff Method

3.  5th order Hermite Birkhoff Method' *

4. Galerkin Weighting Method

Symmetrized Equation

1.   1st order Finite Difference Method (discrete ordinates in angle)

2. Piecewise bilinear Finite Element Method in phase space

Integral Equation

1.  Nystrom Method

The solution to the matrix equation is usually obtained using block

tridiagonal elimination for the standard equation and by Choleski

reduction in the symmetrized case.  For additional information two

options are available.  The first provides for a single or double

precision solution of the linear system.  The second provides the

r. alternative of Householder least squares solution of the linear

system.  These options provide round off information and stability

information.

10. This block computes specified flux errors, error norms, and related

information.  Two pointwise error options are available

a.  algebraic flux errors
YE    =    4-4
.-

WB- 'FC
b.  relative flux error .T= .-                        -

E
-              9-B

..
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Norms based on.I£ are:

a.  1IYEI'co : maximum absolute 'FE with associated mesh location,
algebraic sign and flux values.

4                  b.      1 :  average absolute *E11'ElI

N      N = number of calculated fluxes

The norms may be computed for a variety of domains.

1. Global :  all calculated flux nodes

2.  Boundary :  boundary and interface flux nodes

3.  Interior :  interior flux nodes (non boundary)

(GLOBAL = BOUNDARY U LNTERIOR)

For multicell problems the domain may be restricted to indi-

vidual cells.                '

The corresponding scalar flux may be optionally tabulated for

each angular flux vector.

A refinement of the pointwise error scheme is anticipated.

h·

The idea is to employ natural interpolation at a specified

set of nodes independent of the mesh discretization. Th e     ob -

jective is to maintain a fixed number of nodes at which the

flux error is computed.  The interpolation uses the Nystrom

method in conjunction with the Integral Transport equation.

Edits and 3D to 2D projection plots of the I·B' Ic and 4 are
optional. Summary edits of the associated error norms are optimal.

11. Upon completion of all mesh options,-summary tabulations of each

error norm and norm domain are generated.  A typical tabulation has

. . the spatial refinements increasing  down a column,while angular  re-

finements increase along a row.
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