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Abstract

In this article, we discuss an approach for network forensics using a class of nonstationary
Poisson processes with embedded dynamic linear models. As a modeling strategy, the Poisson
DLM (PoDLM) provides a very flexible framework for specifying structured effects that may
influence the evolution of the underlying Poisson rate parameter, including diurnal and weekly
usage patterns. We develop a novel particle learning algorithm for online smoothing and predic-
tion for the PoDLM, and demonstrate the suitability of the approach to real-time deployment
settings via a new application to computer network traffic monitoring.
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1 Introduction

The development of suitable analytics for real-time analysis and monitoring of computer network
traffic remains a challenging and open problem in applied statistics. Nonstationary Poisson process
models have been applied in this problem area with some success [4, 6, 5, 7], however most previous
work in this area has been focused on retrospective analysis techniques, and is therefore poorly
suited for real-time deployment.

In this paper, we develop a flexible statistical framework for the analysis of count-valued time
series. This framework is based on characterizing the evolution of the rate parameter of a non-
stationary Poisson process with a Gaussian dynamic linear model (DLM) [9], thereby embedding
the DLM within the Poisson process. There are several significant advantages to this approach.
One advantage is that the underlying DLM can be specified so as to account for known sources
of variation influencing the evolution of the rate parameter. In the context of computer network
traffic, such sources of variation include multiscale cyclical effects (e.g. daytime and nighttime
effects, weekday and weekend effects), effects due to the subset subset of applications currently in
use on the machine, and others. Another key advantage is that the Poisson DLM (PoDLM) will
inherit many of the same efficient updating recursions of the underlying DLM. As we will show,
this enables extremely efficient sequential inference for the PoDLM, making it ideally suited for
real-time deployment.

The remainder of this article is organized as follows. In Section 2 we provide the full hierarchical
model specification for the PoDLM. In Section 3, we derive a new particle learning approach for
performing online inference for the PoDLM. Section 4 describes an application of our modeling
approach to a new computer network traffic data set. Finally, Section 5 summarizes our results
and indicates directions for future research.

2 Model specification

In this section we describe a class of nonstationary Poisson processes derived by modeling the
evolution of the log Poisson rate as a Gaussian dynamic linear model (DLM), thus effectively
embedding the DLM within the Poisson process. We will refer to this approach as the PoDLM.
This approach is an extension of methods described previously by Cargnoni et al [2] and Taddy [8],
and builds upon the dynamic linear model framework described by West and Harrison [9].

The full model specification is as follows:

ye|\e ~ Poisson(y|\¢) (1)
log(At) = m (2)
Ml Fy, 0~ N(ne F{0;, V') (3)

0t|Gt70t71 ~ N(0t|Gt9t717Wt) ( )

In this formulation, Equations 3 and 4 represent the standard Gaussian DLM observation and
evolution equations. Thus in the PoDLM, the log rate of the Poisson process evolves according
to the DLM structure specified through {Fi, Gy, V,W;}. For readers unfamiliar with the DLM
framework, a brief overview is as follows. The DLM is a discrete time state space model, where



the unobserved state vector 8; evolves from time ¢ — 1 to ¢ according to a possibly time-dependent
evolution matrix Gy, plus a Gaussian noise term. This noise term is controlled by the “system”
covariance matrix W;. The log Poisson rate is then modeled as a linear combination of elements of
this state vector, with possible time-dependent design vectors F}, plus a Gaussian noise term. This
second noise term is controlled by the “observational” variance parameters V.

Following standard results from West and Harrison [9], we can choose a DLM structure that
decomposes the evolution of 7 into a first-order polynomial effect, and cyclical, or seasonal effects,
according to the desired periodicity. A key novelty of this approach is the representation of the
seasonal effects using a Fourier representation of the cyclical trend. This is accomplished for a
cyclical trend of length p by choosing F; and G; as follows. If p is an odd-length cycle, then in
block notation we have:

1 1 0 0 0
FE5 0 Jz(l,w) 0 0

{F7 G} — FEs , 0 0 Jo(1,2w) ... 0 (5)
FEs 0 0 0 oo Jo(1, hw)

where Fo = [1 0}, w=27/p, h = (p — 1)/2 (the number of harmonics), and

To(1,w) = ( cos(w)  sin(w) )

—sin(w) cos(w)

Similarly, for an even-length cycle, F; and G; are defined as

1 1 0 0 0 0
E2 0 JQ(l,OJ) 0 0 0
EQ 0 0 J2(1,2OJ) 0 0
{F’ G} - : ’ : : : : : (6)
E, 0 0 0 v Jo(Lhw—w) 0
1 0 0 0 0 -1

where now h = p/2. One benefit of the Fourier representation lies in the ease with which parameter
identifiability constraints can be enforced. An additional benefit lies in the ability to perform
significance testing on individual harmonics in order to pare down the full Fourier representation
to just those components with statistically meaningful predictive power. This pruning process can
lead to increased computational efficiency by producing a model with far fewer parameters than
the full representation.

Note that it is possible to further extend this basic model structure to represent different
configurations of cyclical or design effects by augmenting the F' and G parameters appropriately.
This may necessitate time-specific F} in order to represent different design effects associated with
different time points; this poses no problem for the derivation of the particle learning approach
below.

Finally, we assume that the “observational” variance V is unknown, with prior distribution
V1 ~ Gamma(V ~|ng/2,dy/2). We define the “system” variance using a discount factor approach
where W; = (1 — 6)2/6V for § € (0,1). The model is completed by specifying a prior mean for .



3 Sequential inference via particle learning

The goal of inference for the PoODLM is to produce estimates of the “hidden” state parameters,
namely {60;} and the log Poisson rates {n;}. As is common for Bayesian models such as this,
inference is accomplished by producing samples from the posterior distributions of these parameters
at each time step for the entire observation period. These distributions represent the uncertainty
about the parameter value, conditional on all data observed up to the given time point. This sort
of sequential or recursive inference process is ideal for this study because it allows one-step-ahead
prediction of the yet-unobserved y;. The next section will showcase this capability as a useful
mechanism for anomaly detection.

An attractive feature of Gaussian DLMs is the availability of closed form, recursive updating
equations for conducting sequential, on-line inference. Thus, conditional on the 7 parameters, the
PoDLM will benefit from the same efficient updating strategy as the standard Gaussian DLM.
Following the particle learning approach developed by Carvalho et al [3], and adapted for a simpler
version of the Poisson DLM described by Taddy [8], we define a resample-propagate sequential Monte
Carlo algorithm for producing draws from the joint posterior distribution of model parameters at
time t as follows.

Fundamental to the particle learning approach is the notion of “sufficient statistics” for the
posterior distribution at time ¢, denoted z;. The term is in quotations because we will use a loose
interpretation in which “sufficient statistics” refers to both the standard sample moments as well as
any auxiliary variables required for posterior sampling. In this sense z; can be thought of as concise
way of representing the target distribution from which we would like to produce samples. Of course
this vector z; is itself a random variable, and therefore the aim of the particle learning algorithm
is to maintain a set of samples from the current posterior distribution of p(z|y?) (the superscript
denotes the collection of all subscripted values up to the superscripts, i.e. ¢ = {y1,%2, -, Yt—1,yt})-
The distribution p(z|y’) will be approximated in the usual way as p(z|y!) ~ % PO 6 @ (2). In
other words, the distribution is represented using an N sample Monte Carlo approximation where
each particle is characterized by a distinct z,fl).

For the PoDLM, we have z; = {n, s;}, where 7, is defined as above and treated as an auxiliary
variable, and s; denotes the sufficient statistics pertaining to the embedded Gaussian DLM (i.e.
those sufficient statistics for the current distribution of 6; and V). Thus, assuming we have a set
of samples/particles representing p(z|y’), our goal is to produce samples/particles representing
p(ze+1|yt™h). Following the strategy described in [3], we have:

Pz ly'™) = plngr, sesaly'™) (7)
= /p(m+1,8t+1\2t,ytH)p(zt’ytH)dzt (8)
= /p(8t+1\77t+1,St)p(ﬁtﬂ\stayt+1)p(zt|yt+1)dzt 9)

In Equation 9, we make use of the conditional independences between s;y1 and yryq given ny41,
and between 7,1 and gy’ given s;. Thus given a particle representation of p(z|y'™!), we would be
able to produce samples from the target distribution by

1. Sampling a value of .1 from p(ne41|se, Yri1)-



2. Updating the [recursively defined] sufficient statistics s;+1 given the newly sampled 7,41 and
the previous s;.

In order to produce a particle representation of p(z|y'*!), we follow Carvalho et al [3] and observe
that

t+1)

p(2ely o< p(yirilz0)p(zly’) (10)

where
p(yer1lze) = / PYe1|ne1)p(Meg1|2e)dng (11)

Equation 10 implies that given a uniformly weighted particle approximation to p(z|y'), we can
produce a uniformly weighted sample from p(z|y‘*!) by resampling with replacement from the
original particles, with weights proportional to Equation 11.

The primary difficulty in both the propagate and resample steps lie in evaluating the integral
specified in Equation 11. This integral appears in the propagate step in that

p(Mer1lse, yer1) = PWert|mer1)P(Ner1lse) /P(Yer1]se)- (12)

In the case of the Poisson DLM, Equation 11 is the convolution of a Poisson density (p(y|n) with
a log-normal density (p(n|z)). This integral was studied previously by Aitchison and Ho [1] in the
context of deriving a Poisson-log normal distribution. Although analytic solution of the integral
is not available, since generation of samples from the Gaussian density p(n:4+1]z¢) is so trivial, a
Monte Carlo approximation of the integral is easily obtained.

Furthermore, suppose {niﬁzl} are the samples produced from p(m+1|2:) and used to evaluate

the resampling weight ¢ ~ % > p(yt+1”'7t(321)- These samples can be reused in order to accomplish
the propagate step by resampling a new 741 from this population with weights proportional to
(4)
p(yt+1|77t+ )-
Propagation rules for the remaining DLM sufficient statistics (s;) follow from standard results
in West and Harrison [9].
In summary, the particle learning algorithm for the PoDLM is as follows:

(4) (

1. For each particle ztil, evaluate the unnormalized resampling weights as wti) = % Z;V Pois(y:|e™)
for some N samples from N (ngi) | ft(i), Qgi)) (the DLM predictive distribution of »; for particle
2. Resample particle indices by sampling with replacement using weights proportional to {wti)}.

3. For each resampled particle, sample ngi) by sampling from the N predictive samples used in

1. with weights proportional to Pois(y;|e"7).

4. Propagate the remaining sufficient statistics according to the DLM recursions.
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Figure 1: Total number of network connections generated per hour. Note the obvious periodicities
in count incidence.

4 Application to network traffic modeling

In this section we demonstrate the Poisson DLM methodology in the context of modeling the rate
of network traffic creation originating from a single host in a computer network monitored by host-
based sensors. The purpose of this sort of analysis is to characterize the host-specific network usage
patterns in order to identify situations where the amount of traffic originating from an individual
machine differs significantly from historical patterns. Identification of such incidents plays a role
in both malware discovery and network quality assurance.

Figure 1 shows the sequence of hourly network connection counts generated by one machine in
a corporate network over the course of a 3,616 hour (=~ 144 day) monitoring period. This host
was selected for demonstration purposes from among approximately 70 monitored machines due
to the consistency with which its sensor reported count data. Although every effort was made to
ensure reliable data collection, data collected via host-based sensors is intrinsically intermittent due
to effects ranging from sensor software issues to the machine’s owner powering down the machine
during nights and weekends. As will be discussed below, a key feature of the PoODLM approach is
its robustness to this type of intermittently missing/unobserved data.

In designing the structure of the embedded DLM, we must consider the possible sources of
variation in the observable process. Firstly, it is reasonable to assume the presence of diurnal effects,
owing to the differential usage patterns between workday and evening. Figure 2 demonstrates this
by portraying separate time series for each time-of-day for the target host. The key observation
here is the increased variability in connection count during the 8am-6pm window, as compared to
the interval 6pm-8am. This suggests the need for at least a workday effect, if not a 24-hour cyclical
effect.

Along the same lines, it is reasonable to assume a decrease in variability during weekends in
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Figure 2: Hourly totals for separated by time-of-day. Note the consistency in the hourly time series
for non-work hours (18:00-08:00) as well as for work hours (08:00-18:00). This suggests the need
for seasonal effects on at least a 24-hour cycle.
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Figure 3: Total number of network connections generated per day.

contrast to weekdays. Figure 3 and 4 separate the day-specific connection counts for the target
host. Although Figure 3 contains some evidence of the periodic drops in daily connection counts,
Figure 4 does not provide much evidence that these periodic decreases are due to decreased weekend
activity.

This leads us to define a simple embedded DLM characterized by a first order polynomial effect,
and a 24-hour cyclical effect. The cyclical effect is represented in terms of its Fourier harmonics,
and so the model conforms to the basic structure defined in Equation 6. The model is completed
by specifying § = 0.95, mo = 0 (the prior mean for 6y, and ng = 2, dy = 2. The particle learning
algorithm defined above is then applied to the host connection count time series, using N = 200
particles.

Figure 5 shows the separation of the underlying Poisson process log rate time series into distinct
effects. Each of the panels in Figure 5 represents the mean of the particular effect at each time point,
averaged over each particle in the particle filter. The top panel shows the first order polynomial
effect. There is evidently some amount of periodic signal that has not been captured by the cyclical
effect manifesting itself in this first order effect. The middle and bottom panels represent the first
2 (of 12) harmonic effects. It is clear that the first harmonic dominates the others in terms of
magnitude, and therefore the diurnal pattern in the underlying Poisson process would likely be well
modeled by a single harmonic.

Figure 6 summarizes the predictive ability of the model. Before processing each observation, we
evaluated the central 90% region of the one-step-ahead forecast for the observation. This provides
one basis for anomaly detection, via identification of arrivals that fall above or below this predicted
region. Figure 6 suggests that this metric may be overly stringent, as indicated by the large
number of observations that fall outside this interval. This is likely due to properties of the Poisson
distribution, in particular the association (equality really) between the mean of the distribution
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cyclical trends on the weekly scale.
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Figure 5: Trend decomposition of the Poisson process log rate parameter. The first panel shows
the first order polynomial effect; the second and third panels show the first two Fourier harmonic
effects. The large magnitude of the first harmonic effect indicates that the primary diurnal pattern
is captured primarily by the effects appear to be captured primarily by the this effect.
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Figure 6: Predictive ability of the model. The first panel shows the observed connection count
time series overlaid with indicators signifying that the observation exceeded the 95%-ile of the
predictive distribution (red) or fell below the 5%-ile. The second panel shows the total prediction
error, and the third panel shows the predicted 90% interval for the underlying Poisson process [log]
rate parameter.
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Figure 7: Log cloud “ perplexity” for the target host.

and the variance.

For this reason, a better measure of anomaly in this setting can be derived by considering, infor-
mally, the level of surprise expressed by the particle cloud upon consideration of a new observation.
This measure bears similarities to the usual “perplexity” score considered in text analysis. There,
perplexity usually represents average log predictive density, averaged over multiple observations in
a held out test sample. In our setting, a measure of perplexity is the average log predictive density,
averaged over particles:

1Y i
log py = 57 > log p(yel=s)
=1

This measure has better properties with regard to the degree of dispersion of the underlying Poisson
distributions.

Figure 7 shows the log perplexity score for each arrival over the course of the observation pe-
riod. Viewed this way, there is a single significant incidents, and the incident occurring around
hour 2,500. Note that this spike in perplexity is coincident with a cluster of observations exceeding
the predictive interval (Figure 6). Inspection of this second perplexity event revealed a significant
and unprecedented spike in network activity in several Windows system processes, primarily at-
tributable to a process called RCGUI.EXE, which presumably provides some type of remote desktop
functionality. Figures 8 and 9 provide insight to the properties of the particle filter perplexity
metric for a larger number of hosts. To produce Figures 8 and 9, we fitted the PoDLM specified
above to network connection count time series for each of the top 25 most consistently reporting
hosts in the sensor network. Figure 8 shows the one-step-ahead forecasting mismatches (analogous
to Figure 6), and Figure 9 shows the particle filter perplexity time series (analogous to Figure 7).
Evidently a perplexity-based anomaly detection would identify vastly fewer target events than a
forecasting-based approach.
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Moreover, inspection of the top three highest-perplexity events in this data were all associated
with reasonable, though ultimately benign, incidents. These top three events occurred in Host
1 (around hour 1,000), Host 15 (around hour 1,000), and Host 18 (around hour 2,500). Host
18 is the target host considered above. The event involving Host 1 was due to a single firefox
process increasing its number of outbound network connections by an order of magnitude relative
to the previous usage on that machine. The event involving Host 15 was associated with the first
interactive use of that machine by a human user (the previous data collected from the host was
entirely system-level /background processes). Although these particular incidents were themselves
innocuous, they are characteristic of the sort of events that are commonly associated with malware
and other illicit network usage.

5 Discussion

In this paper we have developed and demonstrated a novel statistical methodology for the analysis
of count-valued time series. Our approach is based on modeling the evolutionary dynamics of a
nonstationary Poisson process using an embedded Gaussian dynamic linear model. This approach
facilitates the development of structured evolutionary models containing a wide range of possible
effects, including polynomial, cyclical, and autoregressive effects. We enable full online inference on
the underlying DLM model parameters through an efficient particle learning algorithm. The particle
learning approach also provides a natural measure of anomaly via the particle filter perplexity score.

In anomaly detection situations, the primary difficulty of analysis lies in identifying a modest
number of candidate anomalies. An analysis technique that produces an excessive number of
anomalies is unlikely to find practical use due to the fact that the human analyst charged with
verifying/investigating the events would be quickly overwhelmed. In our network traffic monitoring
application, we were able to substantially reduce the number of identified events through the use
of the particle filter perplexity score. In the approximately 4 months of data collection represented
here, a perplexity-based anomaly detection scheme would identify only several significant events,
whereas a forecasting-based approach would identify hundreds.

The modeling structure presented and used here represents only an initial strategy for realistic
modeling of the forces driving the patterns of network usage. Possible extensions to our approach
would include the addition of a weekday/weekend effect, process-based effects, and autoregressive
effects (e.g. based on the value of the observable in the previous hour). These models will be
considered and compared to the results presented here as this work continues.
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