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investigated; Another method is given which allows a
truncation of the resulting infinite matrix without
| causing numerical instabilities. Its application to
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It is shown that the cause for numérical instability ié
based on approximating a continuous eigenvalué spectrum

S by a discrete spectrum.
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I. INTRODUCTION

One poésibility of investigating nonlinear effects in plasma
physics is thévnumerical simulation of plasmas.l Numerical methods
have been uséd to an ever increasing extent recently;  One numerical
approach is;“following the trajectories of particlés directly.2

Another appﬁoach produces solutions of the Vlasov equation,

¥, .0, . of _ '
3 tL xtq E(x,t) v = © 3 (1)

supplemented by Poisson's equation,

- 3E

'gg = Ygng(1 - I f£dv)

3

As is well known” a direct numerical solution of the Vlasov
equation ih'x—v-space, particularly with periodic boundary conditions,
breaks down after a short timé;  Therefore the independent variable
v has to be transformed.

Theré‘are essentially two transformation methods with which
solutions éfvthe'Vlasov‘equation have been obtained: The Hermite
expansion)+ and the Characteristic Function'method.5 Both methods
have ad&anﬁages and shortéomings and the relation betweén them has
not been investigated so far.

It is'fhe purpose of this paper to clarifyvfhe close connection
between tﬁém and to report several new methédsfwhiéh resuited in
increased ﬁumérical stability and in an appreciable savings of computer
timel. In;Séc, IT and III weAdescribe the Hermite expansion and the
Characteristic Function method. In Sec. IV we deséribe a new transform

method, theipower transform. In Sec. V a new methodAof truncating the

resulting infinite system is described and in Sec. VI the truncation is



analyzed in terms of the eigenvalue spectrum of a simplified system.

In Sec. VII the method of damping the coefficients of the matrix is

presented, which can also be used for numerical stabilization.

II. THE HERMITE EXPANSION

In thefHermite Expansion the velocity dependence of the dis-

tribution function is represented by Hermite polynomials

[+

£(x,v,8) = ) b (x,t) He (v) exp(- & +*

v=0
+ ® @
=)L
nN= -« V:O
where
z =

n,v

% A
Z is the conjugate complex of Zn .

Zn,v(t) exp(il&)nx)'%— Hev(v) exp( - % vz) , (2)

sV

We are using here the notation of The Handbook of Mathematical

Functions.6- Nv_is a normalization factor which is arbitrary in principle.

The orthogonality relation is

+ 0

k/d fHev(v) Heu(v) exp(—‘% vz) av = J/2x v! 8 - ‘ ' (3)

-0 .

Y

It is seeﬁ from Eq. (2) that Zn " is a linear combination of the first p

2

momenﬁs_of‘thé distribution function for mode number n. ‘Thus only dis-

tribution functions for which all moments exist can be represented by

*Eq. (2). Even if all moments of f exist, expansion (2) may not exist.

It follows from the theory of orthogonal functions that the expansion (2)

converges in the mean only if



T+ @ . >
[ g 2
It is evident thet this condition is much more stringent(then the
existence of allﬁmoments. |

When the:series (2) is inserted.into the Vlasov eqdetion and
the coefficients:for each mode and Hermite function are collected,
one obtains thegfollowing infinite system of differehtiel'equations.

Ny

z + iik”n[ - Z + (v +1) = z_ - J
n,v "o LN _; mv-l N )Nv+l n, v+1
Nv 4o R
+ E z - =0 (%)
Nv-l L n-m m,v-1 .

and Possion's:equation becomes

fﬂik.nE L (£) = - 2 -@

n;o o
' The system (h) excels by its ease of computation. Tt is a
system of ordlnary dlfferentlal equations of first’ order 'It has
therefore been used by several 1nvestigators. As computers handle
only fihite;sjstems it has_to be truncated in the index n and v.
TrﬁncatiohAlnlh does not caﬁse any difficulties.
In order to compute Z for the'next time'steo,AZn,v+1_ has_

J
to be known..‘Choosing Zn v =0, v> Vm results in'what appears to
)

be a kind of-numerical instability after some time. Oné is thhs

forced‘to use a large number of coefflclents (V ~ O(lOOO)) in order
to obtaln the correct macroscoplc quantltles for tlmes of the order
-t ~ 100 wp :;. We will return to this point later ‘and discuss now

‘-the method of the Characterlstlc Functlon.



III. THE CHARACTERISTIC FUNCTION METHOD .

In this method , we employ for reasons described .elsewhere,l

a Fourier transform in velocity space and write

+o
N .\_1 X
f(x,\.r,t): = ) fn(v,t) exp(lko nx )
a a = -
+ @ Y- .
= ‘\ﬂ ‘ - 4 QX
[ rt) exat- 1vy) i me) . (5)
‘N=-® - ‘

The Fourier transformation of a distribution function is well known
in statistics and called the Characteristic Function. Inserting Eq. (5)

into the Vlasov and Poisson equations we obtain the system

©
o F, (y,t) aFn(y,t). +=<., . |
3T | +nko 35— +mL.=_mlEnyFn-m(y’t)=o ,
o -1 -1 L
1B (t) = -k ~m F(ot) , (6)

where
*
F_n(y:t) = Fn(;}'}t) .
The formal solution can be written as

Fn(s,t), = Fn(s - nt,o0)

+o t :
+ Z m-} /? d'r[s +n('r-t)] . Fm<6,~t) F _m(S+§(t -7),7T)
m==® Yo ' ) '

(7)

Fquation (7) can-easily be written as a finite difference scheme, if n
is small, i.e., if we are interested in cases, where only a few modes
suffice for an adequate description. If one wants to keep many modes,

it is advantageous not to deéompose the distribution function into Fourier



modes but tolstéy in configuration space. This approaéh will be
treated in a forthcoming paper by J. Nuehrenberg.

Similaritg the truncation of the Hermite systém at vm, we can
follow the séiﬁtion of Eqs. (6) and (7) only in a finite interval in
the transformed velocity variable y. But contraryvfo the Hermite
transformation_this causes no‘difficulties or numefiqal instabilities,
if one assumes F(y) to vanish outside -y, <V <-+‘§; .

The two methods described appear to be two véry different

approaches. Yet there is a vary intimate connection.

IV. THE POWER TRANSFORM

As is well known; the m-th derivative of a characteristic func-
tion Fn(y;t)'With respect to y for y = O is proportional to the m-th .
moment of the distribution function

-

f‘ V' £ (v,t) av = (-1)" % F (y,t)} . (8)

< VA y=-0

We are interested in the first few moments and so we write Fn(y,t)

as an expansion in powers of y,

- . o
- Fn(}’)t) = Z_'
' v=0

o (t) &, v exn(- 24%) L (©)

The coeffiéient'gv is still arbitrary. For the actual computations
it has been chosen g = 2"/2 I'(v/2 + 1)/T(v + 1). With this choice

the av tendgd to be of the same order of magnitude. The exponential



factor has been added to enforce convergence of the seriés if it is
truncated.
When series (9) is inserted into Eq. (6) and eQual povwers of y

are collected, one obtains a system which is very similar to Eq. (4):

. o8y g & +1 7
an,vA->9’koL 3 8, vl " (v + 1) e, an,v4J.J
+
-k 18 -1 Z; m-l a a - =0 . . (10)
° g, mo n-my,y-1
m= - '

We show now that the a , are equal to the Zn y in Eq. (4) except
b .

J

for a complex factor: According to Egs. (2), (5), and (9) we can

write fn(v,t).in two different ways

@ L,2 = +® _ly?. iyv
T, g -l T2 W dy v, 27 T
L Zn;v'Nv Heo(v) © L %nyv & /h 2 Y €
v=0 - _ V=20 R
The integral éan be written as
vd AT gy 1.2
i — gfexp(-g'y -iyv)
dv .
) -®
and the integfation can easily be performed. Using the Rodriguez
formulae for Hermite polynomials we find
zn,va/ en (-1) (W, g,) Sy - . (;1)

This estéblishes the close relation between Hermite ﬁransform and
the Charagtéristic Function.
For symmetric initial conditions, as mostly used by Armstrong

the a
. n

n,y

are all real whereas the Z
) o :

are alternately real and imag-

inary.



V. CUT-OFF PROCEDURE

When we iqteérate system (10) numerically, we meet the same
difficulty of tfupcating the system with respect to the discrete
v-coordinate. - This;remark applies to both nonlinear apdllinear
cases. There ié hd reason to assume any kind of regularify betwéen
subsequent an’v}..ﬁowever if the linear Vlasov equaﬁion‘is rep-

resented in the form (10) and integrated, we obtain a very regular

pattern for the amplitudes a V‘(v =0, 1, 2 ...) for large v.

’
An example is given in Fig. 1. The coefficients appear to be a
discrete blo%lof an otherwise continuous function in v.

It is thérefore natufal to guess the (vm + 1) coefficient
by a polynomial extrapolation and thus close the system (10).
This method worked very well for the linear Vlasov'equation.
Polynomials‘of order 0, 1, 2, 3 and 4 were used, and the system
(10) was trﬁﬁcated for v equal to 200, 100, 50, down to v, = 10.
We checked the real and imaginary part of w for the. case of a sfable
standing wavé;ﬁfo being a Maxwellian. The real part of w was strictly
invariant fo? all conditions. The imaginary part of w, representing
Landau daméinglshowed a relative deviation of 257/7:= 0.8% when v
was as low as 10. For t = 100 wpe-l,‘this is equivalent to a devia-
tion of 12%.Qf the amplitude of the electric field. Thus we havé shown
that contrafy"tobthe belief of Grant and Feix7 thé difficulty of cutoff
can be avoided for the lineér Vlasov equation.

The gﬁe$£ion arises how this cutof?f procedurg works in the non-

linear caée."We found that it depends very much on the case treated.

If the amplitude of the electric fields are qhite small the results



" _When we write

will be similar fo the linear limit. If the electric fields become
so large that the homogeneous velocity distribution is changed appre-
ciably, the_pfﬁncation by extrapolation still stabilizes the system.

The coefficientS'an v do however no longer lie on a continuous curve

2

but show some scattering which increases with increasing nonlinearity.

.Thus some inadéuracy is introduced by the truncation.  ~ It has been

shown however; that up to times t = 60 w e_l the inaccuracies thus
introduced are negligible when %n = 80 or larger.
We now consider the nature of the truncation instability and

its stabilization.

VI. EIGENVALUE THEORY

It is evidently the second term in Eq. (1) which prohibits
the closure of system (10). Therefore the simplest equation in
which we cén study the problem of closure is given.by

CL

x T V" °

or in terms of the characteristic function, confining ourselves to one mode only

oF oF _
at+nkoay‘o . | (12)

The solution is clearly
F(y;t) =F(y - n kot)o)

2.
y

@ .
sy

N\ . LV
) b (t)h, ¥ e
v . .

N

. Fy,t) (13)

the b, aré:pfoportional to the‘ain , in the expansion (9) and the system

)

resulting frbm-EqS-(lZ) and (13) is
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h, bvfnkoLhwl(wl)le -h, _, b, _J: o . (1k4)
We want to detefmine the eigenvalue spectrum and eigenéolutions of
this system'and try the ansatz:

b (t) =&, exp(iwt)
which results 'in

kv -1

%%; '§I+A[k:7;vi_l Evel " —E;__ gv.-l] =0 | (15)
If we now chSOse |
| S h/h ., =i(v+l) or
h, = ho/iv vt )
we{find théf.

w

'E‘V+l=—nko 5, (16)

- v gV-l

This is jusf the recurrence felation for the Hermite polynomials and

SO we can write
w
gV = HeV(n k >
: o}

For the infinite system (14) the eigenvalue spectrum is continuous and

we may write the solution of Eq. (14) as

w0 ) e e o

L‘_m
where the ?yiinder function ¢, is given by

b, = e (v) exp(- 3 v%)

'bv'is thus ‘the Fourier tfansform.ofthe.function ng and under quite

weak conditions on g, we have



11

lim b (t) = 0
t-—m& v

If the'syétém (14) is truncated by the condition

by, ,(8) =0 W=0,1, 2 ... (18)

we find

The truncated system has now a dicrete spectrum of eigenvalues.

There are N eigenvalues and they are given by the zeros of the N-th

Hermite polynomial, w = n k0 a ﬂ p=1,2,3...N.  The solution of
of the truncéted system is now given by
b0 =] aw) i) e T (19)
: v _Z_, g " n kO
4 p=1

and the N vgl#es g(wu) specify exactly the N valﬁes bV(O); it is
evident that b;(t) in Eq. (19) is an almost periodic function of
time, contrary to the bv(t) in Eq. (17). We realize that the apparent
numerical}instabilities which Armstrong and other investigators have
seen, aré;ndf‘so much numerical instabilities in the usual sense,
but due to the attempt of representing a continuous eigenspectrum
by a diséréte,finite spectrum. |

If thé wu in Eq. (19) are densely spaced, it is to“pe expected
that they.form a good approximation to Eq. (17) for small times. vForv
arbitfarily'large times the approximaetion is bouna to fail.

One Eén remedy the situation by adding a small imaginary part to
ﬂE'eigenvaiﬁes wﬁ.' Then the solution (17) is well approximatéd by

Eq. (19) for small times. by the truncated system. For large times



12 -

the imaginary part 6f wu damps the solution sufficiently:to avoid
recurrence. One way of achieving this goal is to replace the trunca-
tion condition (18) by something else, e.g. an extrapolation. We then

obtain
N
) . o (20)

by .=

_\M
N +1 () ap,b

e

N-p
k=0

It has been repOr;ed above, that this method works ver& well for the

linearized Vlasov equation. The explicit calculation of the resulting eigen-

values becoméé‘qUite involved, however, even for the simplest extrapolation

formula. We‘therefore give only the result for a zero order extrapolation
“%n,N+1 T By

for:the truncated system (10) without the sum term. If the number N of

coefficients-év is large, we find

N

x5 (21)

wmJu /JN L=0, *1, 2 ...

We have reétricted ourselves to small u, such that lul < JN .

Re“w

Im w

We canialso prescribe explicitly the imaginary part by writing

’ w - IN)
. HeN+l<——n—k—o-> =0 - . (22)

Expanding'thié into a Taylor series and using the differential relation

for Hermite.polynomials we obtain
' N+1

-+ o - o
ey 4 1(%0% - L (n_lk%) (NZl) HeN+1-;4<'ano> T (25)
o 2=1 |

This is exactly equivalent to Eq. (22) because the Taylor series is

: finite. From.Eq. (23) we conclude that



: N+1
. - 4
R € Y .
hN+].bN+JKt)"_ L7 Gk ) Pry1-g(B) By, gy - (W)
o 4=1 :

This formula shows the same structure as Eq. (20): bN l is a linear
function of thevhN- v and the sign of the coefficients is alternating.
* Computer calculations using Eq. (24) with 1.5 < A < 2.5 also showed

satisfactory results without any numerical instabilities.

VII. DAMPED MATRIX

The methods of truncation discussed so far did not change the
system of differential equations (lO) If we change it in such a
way that the a, Vwith v close to N are heavily damped,'their amplitude
2

can never become large and a truncation is equivalent to a reasonable

guess of a.- This corresponds to a smoothing of the distribution

o, N 4
function if the ripples in v exceed a certain steepness. The coeffi--
cients a8y ‘which have small v are only Indirectly affected by the damping
yV 4
of the an v whlch have large %. The selective damping can for example
s 4

accomplished by adding a term

-ev oa o (25)

to'the right hand side of Eq. (10). € is of the.ordef N-zr‘and
r=1,2,53.
. _ o A 8
The same approach has been chosen independently by Armstrong.

He has shown that the term (25) corresponds to the collision operator

C(V) [av (& + V)]zr L

‘on the riéhﬁ hand side of the Vlasov equation (l);iiIt is clearly



1k

seen that itiémoothes preferentially the steep ripples of the dis-

tribution function f in velocity space.
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FIGURE CAPTION

'Plot~§f the real amplitudes a of system (10) for time

t =20 w e_l for the following initial condition:

£(x,v,t = 0) = L eXp(— % v2>[l + 0.1 cos-% x], This
cdfreSponds to a stable standing wave with wave length
A =3ﬁnihd (hd = Debye length). The system (10) has been

chénged so that it represents the linearized'Vlasov

equation. The amplitudes for v > 8 form.a very regular

pattérn. ® represents results when the mékimum v was 10.

b'4 rgpresents results when the maximum v.was :20, 50, 100.

The extrapolation used was of fourth order.
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