TEMP-2 A ONE DIMENSIONAL TRANSIENT THERMAL STRESS CODE FOR THE IBM-704

April 1960

CONTRACT AT-11-1-GEN-14

BETTIS ATOMIC POWER LABORATORY
PITTSBURGH, PENNSYLVANIA

Operated for the
U.S. ATOMIC ENERGY COMMISSION
by WESTINGHOUSE
ELECTRIC CORPORATION
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
TEMP-2 A ONE DIMENSIONAL TRANSIENT THERMAL STRESS PROGRAM FOR THE IBM 704

L. M. Culpepper and D. Jortner

CONTRACT AT-11-1-GEN-14
April 1960

Price $0.50
Available from the Office of Technical Services,
Department of Commerce,
Washington 25, D. C.

NOTE
This document is an interim memorandum prepared primarily for internal reference and does not represent a final expression of the opinion of Westinghouse. When this memorandum is distributed externally, it is with the express understanding that Westinghouse makes no representation as to completeness, accuracy, or usability of information contained therein.

BETTIS ATOMIC POWER LABORATORY
PITTSBURGH, PENNSYLVANIA
OPERATED FOR THE U.S. ATOMIC ENERGY COMMISSION BY
WESTINGHOUSE ELECTRIC CORPORATION
STANDARD EXTERNAL DISTRIBUTION

UC-34: Physics and Mathematics, TID-4500, 15th Edition

SPECIAL EXTERNAL DISTRIBUTION

Manager, PNROO, U. S. Atomic Energy Commission
Argonne National Laboratory, W. F. Miller
Brookhaven National Laboratory, J. Chernick
Brookhaven National Laboratory, M. Rose
David Taylor Model Basin, H. Polachek
Knolls Atomic Power Laboratory, R. Ehrlich
Los Alamos Scientific Laboratory, B. Carlson
New York University, R. Richtmyer
Oak Ridge National Laboratory, V. E. Anderson
Oak Ridge National Laboratory, A. Householder
University of California Radiation Laboratory, Livermore, S. Fernbach

Total

No. Copies

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Nomenclature</td>
<td>2</td>
</tr>
<tr>
<td>III. Restrictions</td>
<td>3</td>
</tr>
<tr>
<td>IV. Solution of Heat Equation</td>
<td>4</td>
</tr>
<tr>
<td>V. Solution of Stress Equations</td>
<td>5</td>
</tr>
<tr>
<td>VI. Input Format</td>
<td>10</td>
</tr>
<tr>
<td>VII. Output Format</td>
<td>15</td>
</tr>
<tr>
<td>VIII. Input for Sample Problem</td>
<td>16</td>
</tr>
<tr>
<td>Reference</td>
<td>17</td>
</tr>
</tbody>
</table>
This report describes a computer program to solve transient thermal stress problems in one dimension. For given boundary and initial conditions this program computes the transient temperature distribution then solves for stresses. Spherical, cylindrical, and slab geometries can be treated by this program.

TEMP-2 — A ONE DIMENSIONAL TRANSIENT THERMAL STRESS PROGRAM FOR THE IBM-704

L. M. Culpepper and D. Jortner

I. INTRODUCTION

There are a number of one-space dimension thermal stress problems of practical importance in which the temperature varies with time. Three of these, which may be treated by this program, are

A. A sphere, with temperature distribution symmetrical about the center.
B. A long cylinder, with temperature distribution symmetrical about the axis.
C. A plate or slab, with temperature distribution across the thickness and surfaces free or restrained.

Bodies with non-homogeneous material composition are contemplated.

The TEMP-2 program solves the difference form of the one-dimensional transient heat-conduction equation for a body with an arbitrary initial temperature distribution and either the temperature, its normal gradient, or a combination of the two specified on the boundaries. The thermal stresses resulting from the temperature distribution are then obtained by a regionwise application of the analytical stress...
expressions of Ref (1). The solution of a 4l-point problem requires about five seconds of computer time per time step.

II. NOMENCLATURE

A region is characterized by spatially-constant elastic and thermal properties and is represented by a set of mesh points separated by a constant distance or mesh spacing. If the total number of mesh points representing the body is numbered starting with zero, then the boundaries of a region must fall on even-numbered mesh points. Each region must contain at least one interior mesh point or two mesh intervals. The symbols used are:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>modulus of elasticity</td>
<td>(F/L²)</td>
</tr>
<tr>
<td>v</td>
<td>Poisson's ratio</td>
<td>(-)</td>
</tr>
<tr>
<td>α</td>
<td>coefficient of thermal expansion</td>
<td>(1/T)</td>
</tr>
<tr>
<td>σ</td>
<td>normal stress</td>
<td>(F/L²)</td>
</tr>
<tr>
<td>ε</td>
<td>strain</td>
<td>(-)</td>
</tr>
<tr>
<td>F</td>
<td>force</td>
<td>(F)</td>
</tr>
<tr>
<td>h</td>
<td>slab thickness</td>
<td>(L)</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
<td>(T)</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
<td>(Q)</td>
</tr>
<tr>
<td>ρ</td>
<td>density (weight or lb mass)</td>
<td>(F/L³)</td>
</tr>
<tr>
<td>C</td>
<td>specific heat</td>
<td>(H/TF)</td>
</tr>
<tr>
<td>G</td>
<td>conductivity</td>
<td>(H/LTQ)</td>
</tr>
<tr>
<td>Q</td>
<td>internal heat generation</td>
<td>(H/L³Q)</td>
</tr>
<tr>
<td>N</td>
<td>number of regions</td>
<td>(-)</td>
</tr>
<tr>
<td>k</td>
<td>the index of a region which has its outer boundary at the h'th interface. At the inner boundary k = 0,</td>
<td>(-)</td>
</tr>
</tbody>
</table>
Symb. | Description | Units
--- | --- | ---
\(r_k \) | coordinate of inner boundary | (L)
\(r_n \) | coordinate of outer boundary | (L)

A time step with length \(\Delta t \) is a period of time during which the thermal and elastic properties and the temperature remain constant.

III. RESTRICTIONS

The program provides for a minimum of 7 and a maximum of 251 mesh points which may be distributed over a minimum of 3 and a maximum of 25 regions. Although the program requires that at least 3 regions be specified, these regions may be identical so that homogeneous bodies may be represented. The program also requires that a constant time increment be used and, in order to reduce the amount of time required to solve the problem, it is suggested that, if a slow transient is to be studied, the following method be used:

If, for example, an hour-long transient is to be studied, the problem could be solved using a coarse time increment of 60 seconds. If a particular part of the transient is of interest then the temperature distribution at that time could be used as the initial temperature distribution for another problem with a smaller time increment.

Since an implicit method is used to solve the transient heat conduction equation, the finite difference solution converges to the true solution in a manner...
which is independent of the relationship between Δt and Δx. The accuracy of the solution is, however, a function of the time and mesh increments, the error being $E = O(\Delta t) + O[(\Delta x)^2]$.

IV. SOLUTION OF HEAT EQUATION

The one dimensional heat-conduction equation

$$\rho C(r, T) \frac{\partial T}{\partial t}(r, t) = \nabla \cdot G(r, T) \nabla T(r, t) + Q(r, t)$$

is solved by replacing the time derivative by a backward difference quotient. The resulting equation

$$\rho C(r, T^i) \left[\frac{T^i(r) - T^{i-1}(r)}{\Delta t} \right] = \nabla \cdot G(r, T^i) \nabla T^i(r) + Q^i(r)$$

is then linearized by requiring that the coefficients ρC and G be constant within a region and functions only of the average temperature in that region at the beginning of a time step. Then

$$\rho C^i(r) \frac{T^i(r) - T^{i-1}(r)}{\Delta t} = \nabla \cdot G^i(r) \nabla T^i(r) + Q^i(r)$$

with $T^0(r)$ supplied as input is solved for each time step with boundary conditions

$$T^i(r_0) + A^i \left. \frac{dT^i}{dr}(r) \right|_{r=r_0} = B^i \quad \text{and} \quad T^i(r_n) + C^i \left. \frac{dT^i}{dr}(r) \right|_{r=r_n} = D^i .$$

Equation 1 is solved by a standard 3-point central-difference method described, for example, in Ref 2.

V. SOLUTION OF STRESS EQUATIONS

The thermal stress equations for the three types of problems considered are given below.

A. Sphere

For this case, only the normal stresses σ_r, σ_θ and σ_ϕ (the last two are
equal) exist. The shear stresses are zero due to symmetry.

The stresses are given by the expressions

$$
\sigma_r = \frac{-2a_k E_k}{(1-\nu_k)} \frac{1}{r^3} \int_{r_{k-1}}^{r} Tr^2 dr + \frac{E_k A_k}{(1-2\nu_k)} - \frac{2E_k B_k}{(1+\nu_k)} \frac{1}{r^3}
$$

(1)

$$
\sigma_\theta = \frac{\alpha_k E_k}{(1-\nu_k)} \frac{1}{r^3} \int_{r_{k-1}}^{r} Tr^2 dr + \frac{E_k A_k}{(1-2\nu_k)} + \frac{E_k B_k}{(1+\nu_k)} \frac{1}{r^3} - \frac{\alpha_k E_k T}{(1-\nu_k)}.
$$

(2)

k is the index of the regions. The values of k go from 1 to n. The radius r_k is located at the outer surface of region k.

The constants A_k and B_k (which total $2n$ in number) are determined by the fact that radial deformations and stresses are continuous at the $n-1$ internal interfaces and by the use of boundary conditions at the inner and outer radii of the sphere. The quantities α_k, E_k, and ν_k are functions of material composition and temperature which are known functions of the radius r.

Therefore, in order to obtain the A_k and B_k constants the following simultaneous equations must be solved:

a. **Internal Interfaces:**

(1) Continuity of radial deformation.

$$
\frac{(1+\nu_k)}{(1-\nu_k)} \alpha_k \frac{1}{r_k} \int_{r_{k-1}}^{r_k} Tr^2 dr + A_k r_k + B_k \frac{1}{r_k} = A_{k+1} r_{k+1} + B_{k+1} \frac{1}{r_{k+1}}
$$

(3)

This is applied at $k = 1, 2, \ldots, n-1$.

(2) Continuity of radial stress.

$$
\frac{-2a_k E_k}{(1-\nu_k)} \frac{1}{r^3} \int_{r_{k-1}}^{r_k} Tr^2 dr + \frac{E_k A_k}{(1-2\nu_k)} - \frac{2E_k B_k}{(1+\nu_k)} \frac{1}{r^3}
$$

$$
= \frac{E_k+1 A_k+1}{(1-2\nu_k+1)} - \frac{2E_k+1 B_k+1}{(1+\nu_k+1)r_k^3}
$$

(4)
This is applied at \(k = 1, 2, \ldots, n-1 \).

b. Boundary Conditions:

(1) Outer boundary - the external radial stress \(\sigma_{r_n} \) is specified.

\[
- \frac{2a_1 E_n}{1-\nu_n} \int_{r_{n-1}}^{r_n} r^2 dr + \frac{E_n A_n}{(1-2\nu_n)} - \frac{2E_n B_n}{1-\nu_n} = \sigma_{r_n}
\]

(5)

(2) Inner boundary.

(a) If sphere is hollow, \(\sigma_{r_0} \) is specified and:

\[
\frac{E_1 A_1}{1-2\nu_1} - \frac{2E_1 B_1}{1+\nu_1} \frac{1}{r_0} = \sigma_{r_0}
\]

(6)

(b) If the sphere is solid, radial deformation is zero at \(r = 0 \) and this requires that

\[
B_1 = 0
\]

Thus by using the 2n-2 internal continuity relations and the 2 boundary conditions, the 2n quantities \(A_k \) and \(B_k \) are determined.

Now the stresses may be determined from Eqs 1 and 2.

B. Long Cylinder

For this case the normal stresses \(\sigma_r, \sigma_\theta, \) and \(\sigma_z \) exist. The three shear stresses are zero due to angular and longitudinal symmetry. These stresses are given by the expressions

\[
\sigma_r = -\frac{E_k a_k}{(1-\nu_k) r^2} \int_{r_{k-1}}^{r} r^2 dr + \frac{E_k A_k}{(1+\nu_k)(1-2\nu_k)} - \frac{E_k B_k}{(1+\nu_k) r^2}
\]

(1)

\[
\sigma_\theta = \frac{E_k a_k T}{(1-\nu_k)} + \frac{E_k A_k}{(1+\nu_k) r^2} \int_{r_{k-1}}^{r} r^2 dr + \frac{E_k A_k}{(1+\nu_k)(1-2\nu_k)} + \frac{E_k B_k}{(1+\nu_k) r^2}
\]

(2)

\[
\sigma_z = \frac{E_k a_k T}{(1-\nu_k)} + \frac{2\nu_k E_k A_k}{(1+\nu_k)(1-2\nu_k)} + E_k \epsilon_z
\]

(3)
As in the spherical case, A_k and B_k are the $2n$ unknown constants of the system. E_k, α_k, and v_k are the known functions of radius as is the temperature T. One additional constant exists here, ε_z. This is the constant axial strain. (This is constant due to the one-dimensional nature of the problem.)

Therefore, in addition to the $(2n-2)$ continuity relations and the 2 radial boundary conditions, an added piece of information must be supplied which determines ε_z.

The equations used to find A_k, B_k, and ε_z are:

a. Internal interfaces:

(1) Continuity of radial deformation.

\[
\frac{(1+v_k)}{(1-v_k)} \frac{\alpha_k}{r_k} \int_{r_{k-1}}^{r_k} Trdr + \frac{B_k}{r_k} = \frac{A_{k+1} r_k}{r_k} + \frac{B_{k+1}}{r_{k-1}}
\]

(4)

This is applied at $k = 1, 2, \ldots, n-1$.

(2) Continuity of radial stress:

\[
\frac{-E_k \alpha_k}{(1-v_k)^2 r_k} \int_{r_{k-1}}^{r_k} Trdr + \frac{E_k A_k}{(1+v_k)(1-2v_k)} \frac{E_k B_k}{(1+v_k)^2 r_k^2} = \frac{E_{k+1} A_{k+1}}{(1+v_{k+1})(1-2v_{k+1})} - \frac{E_{k+1} B_{k+1}}{(1+v_{k+1})^2 r_k^2}
\]

(5)

This is applied at $k = 1, 2, \ldots, n-1$.

b. Boundary Conditions:

(1) Outer boundary — the external radial stress is specified.

\[
\frac{-E_n \alpha_n}{(1-v_n)^2 r_n} \int_{r_{n-1}}^{r_n} Trdr + \frac{E_n A_n}{(1+v_n)(1-2v_n)} \frac{E_n B_n}{(1+v_n)^2 r_n^2} = \sigma_n
\]

(6)
(2) Inner boundary.

(a) If cylinder is hollow, σ_{r0} is specified.

\[
\frac{E_1 A_1}{(1+\nu_1)(1-2\nu_1)} - \frac{E_1 B_1}{(1+\nu_1)r_0^2} = \sigma_{r0}
\]

(b) If cylinder is solid, radial deformation is zero at $r = 0$
and this requires that

\[
B_1 = 0
\]

(c) Determining ϵ_z:

To determine ϵ_z, a choice is allowed. Either the requestor

can specify ϵ_z directly as input, or the requestor can specify

the axial force, F_z, acting on the cylinder. In this case, ϵ_z
can be determined by

\[
2\pi \int_{r_0}^{r_n} r \sigma_z \, dr = F_z
\]

which results in

\[
\epsilon_z = \frac{\frac{F_z}{\pi} + 2 \sum_{k=1}^{n} \left[\frac{E_k A_k}{(1-\nu_k)} \int_{r_{k-1}}^{r_k} Trdr - \frac{E_k A_k}{(1+\nu_k)(1-2\nu_k)} \right]}{\sum_{k=1}^{n} F_k (r_k^2 - r_{k-1}^2)}
\]

Now the stresses may be determined from Eqs 1, 2, and 3.

C. Slab or Plate

For this case, the only stresses existing are σ_x, σ_y, σ_z where σ_x is a

known constant as a consequence of the equations of equilibrium and the boundary

conditions. σ_x is inserted as input to the problem.
If the restraints in the y and z directions are identical, the other stresses are

\[
\sigma_y = \sigma_z = \frac{E_k}{(1-\nu_k)} \left[\epsilon_y - \alpha_k T + \frac{\nu_k \sigma_x}{E_k} \right]
\]

(1)

In the most general form, \(\epsilon_y = \epsilon_z \) may be in the form \((L + M \frac{X}{h}) \) where \(L \) is the strain at any convenient point, say the left surface, and \(h \) is the slab thickness. However, in the interest of simplicity not all possible combinations of \(L \) and \(M \) are considered.

The cases which are considered are:

a. Specify \(L \) and \(M \).

b. Specify the force existing in the y direction and \(M \).

c. Specify complete lack of restraint, i.e., force and moment \(= 0 \).

In case a, since \(\sigma_x \) is specified, the stresses are automatically determined when \(L \) and \(M \) are specified. This case includes the completely restrained situation where \(L \) and \(M \) are equal to zero.

In case b, the only unknown constant is \(L \). This is determined from

\[
\int_{X_0}^{X_h} \sigma_y \, dx = F_y
\]

(2)

where \(F_y \) is the force in the y direction per unit length of slab.

This results in

\[
\sum_{k=1}^{n} \frac{E_k}{(1-\nu_k)} \int_{X_{k-1}}^{X_k} \left[L + \frac{M}{h} x - \alpha_k T + \frac{\nu_k \sigma_x}{E_k} \right] \, dx = F_y
\]

(3)

or
L is found from this equation.

In case c, L and M are both unknowns. They are determined from Eq 3' with \(F_y \) equal to zero and from the fact that there is also no moment due to lack of restraint. This condition is expressed by

\[
\int_0^h \sigma_y x dx = 0. \tag{4}
\]

This results in

\[
\sum_{k=1}^{n} \frac{E_k}{(1-\nu_k)} \int X_k \left[L x + \frac{M x^2}{h} - \alpha_k T x + \frac{\nu_k \sigma_x X}{E_k} \right] dx = 0 \tag{5}
\]

or

\[
L \sum_{k=1}^{n} \frac{E_k (X_k^2 - X_{k-1}^2)}{2(1-\nu_k)} + M \sum_{k=1}^{n} \frac{E_k (X_k^3 - X_{k-1}^3)}{3(1-\nu_k)} - \sum_{k=1}^{n} \alpha_k E_k \int X_k \frac{T x}{X_{k-1}} dx + \frac{\nu_k \sigma_x (X_k^2 - X_{k-1}^2)}{2(1-\nu_k)} = 0 \tag{5'}
\]

Eq 3' with \(F_y = 0 \) and Eq 5' are sufficient to determine L and M. Thus the stresses for all the cases to be considered are defined.

VI. INPUT FORMAT

A. Data Deck

Each data deck must contain a title card, data cards, end of data card, and
a blank card.

B. Title Card

This card must be punched as follows: Columns 1 and 67 are to be blank. Columns 2-9 contain the problem number. Columns 64-66 contain control information. Columns 68-72 must contain the characters TEMP2. The remaining columns may be punched in any manner and will be reproduced on each page of output.

C. Data Cards

Each of these cards must contain the characters DEC in columns 8-10 and blanks in columns 1-7 and 11. In addition, each card in the data deck must contain a card number starting in column 12. Successive pieces of data on the card must be separated by commas. The last piece of data on a card must not be followed by a comma. The first blank column after column 12 signals the end of the data on that card providing all 72 columns are not used. In the discussion below, lower case letters will indicate fixed-point numbers and upper case letters will indicate floating-point numbers. A floating-point number is distinguished by the presence of a decimal point, an "E", or both. For example, -17.03 may be represented as -17.03 or by -1703E-2 or -1703E2. For positive floating-point numbers, the + sign is not needed. In many cases, the data for each of the card series described below may be punched on 1 card. If, however, more than 1 card is needed, the succeeding cards should be numbered sequentially. All problems not fulfilling this requirement will be rejected.

D. Card Numbers

Again, each data card must be numbered and, for ease in input preparation, the card numbers are separated into the following series.
<table>
<thead>
<tr>
<th>Card Series</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>General information.</td>
</tr>
<tr>
<td>2000</td>
<td>Mesh spacing and region description.</td>
</tr>
<tr>
<td>3000</td>
<td>Time increments.</td>
</tr>
<tr>
<td>4000</td>
<td>Initial temperature distribution.</td>
</tr>
<tr>
<td>10000</td>
<td>Values of (\rho C).</td>
</tr>
<tr>
<td>20000</td>
<td>Values of thermal conductivity.</td>
</tr>
<tr>
<td>30000</td>
<td>Internal heat generation.</td>
</tr>
<tr>
<td>40000</td>
<td>Coefficient of thermal expansion.</td>
</tr>
<tr>
<td>50000</td>
<td>Modulus of elasticity.</td>
</tr>
<tr>
<td>60000</td>
<td>Poisson's ratio</td>
</tr>
<tr>
<td>70000</td>
<td>Boundary conditions</td>
</tr>
<tr>
<td>80000</td>
<td>End of data.</td>
</tr>
</tbody>
</table>

A more complete description of each type of data card follows.

A. Title Card

Columns 64–66 contain control information as follows.

Column 64 = 0 for cartesian coordinates,

= 1 for cylindrical coordinates,

= 2 for spherical coordinates.

Column 65 is used only for cylindrical geometry.

If column 65 = 0 the axial strain \(\varepsilon_z \) is specified,

= 1 the axial force \(F_z \) is specified and \(\varepsilon_z \) is calculated.

Column 66 is used only for cartesian geometry to indicate the method of calculating the strain \(\varepsilon_y = L + M \frac{X}{h} \).

If column 66 = 0 L and M are specified,

= 1 L is calculated and axial force is specified,

= 2 L and M are calculated assuming free expansion of the body.
b. Card 1001 contains j numbers depending on the choice of geometry and stress boundary conditions. The general format is DEC 1001, A₁, A₂, …, Aⱼ.

For spherical coordinates,
\[A₁ = r₀, \quad A₂ = \sigma_r(r₀); \quad A₃ = \sigma_r(rₙ) \]

For cylindrical coordinates,
\[A₁ = r₀, \quad A₂ = \sigma_r(r₀); \quad A₃ = \sigma_r(rₙ), \quad A₄ = F_z \text{ or } \epsilon_z. \]

For cartesian coordinates,
\[A₁ = r₀, \quad A₄ = \sigma_x, \quad A₅ = h. \]
\[A₂ \text{ and } A₃ = L \text{ and } M \]
\[\text{or } = F_y \text{ and } M \]
\[\text{or } = 0 \text{ and } 0 \text{ for complete lack of restraint.} \]

c. The 2000 series contains mesh spacing and region specification data in the form:

DEC 20001, \(\Delta r₁, \ m₁, \ \Delta r₂, \ m₂, \ldots, \Delta rₙ, \ mₙ \)

where \(\Delta r₁ \) is the spacing between the points 0, 1, 2, 3, …, \(m₁ \),

\(\Delta r₂ \) is the spacing between the points \(m₁, \ m₁ + 1, \ldots, \ m₂ \), etc.

\(n \), the number of regions, is determined by the number of pairs \(\Delta r₁, \ m₁ \)
and must satisfy \(3 \leq n \leq 25 \). \(mₙ \) must satisfy \(6 \leq mₙ \leq 250 \).

E. Region Data

The thermal and elastic properties of a body are described to the TEMP2 code in tabular form. The quantities \(\rho, C, G, \alpha, E \), and \(v \) are tabulated as functions of temperature while the quantity \(Q \) is tabulated as a function of time. Since the body may be composed of several materials, each table must be identified by the numbers of the regions for which the table applies. Each property of the body is described in a separate card series as follows:

Let \(h \) be a number between one and six denoting one of the properties

DEC h0100, \(j₁, j₂, \ldots, jₙ \)

DEC h0101, \(y₁, x₁, y₂, x₂, \ldots, yₙ, xₙ \)
Thus, if \(h = 5 \), the property being described is \(E \), Young's modulus. The series of cards shows that there are two materials, one material comprising regions \(j_1, j_2, \ldots, j_1 \) and the other comprising regions \(j_{i+1}, j_{i+2}, \ldots \). The table for the first material contains \(m \) entries of the property \(y \) and the independent variable \(x \), while the table for material 2 contains \(p \) entries. Each table must contain at least 2 but fewer than 50 entries and may be assigned to as many regions as described.

F. Boundary Conditions

The boundary condition at the inner boundary is

\[
T(r_0) + A_i \frac{dT(r)}{dr} \bigg|_{r_0} = B_i
\]

and at the outer

\[
T(r_n) + C_i \frac{dT(r)}{dr} \bigg|_{r_n} = D_i
\]

and are specified in the following manner:

\[
\text{DEC 70100, } A_1, B_1, C_1, D_1, t_1, A_2, B_2, C_2, D_2, t_2, \ldots, A_1, B_1, C_1, D_1, t_1
\]

\[
\text{DEC 70101, } A_{i+1}, B_{i+1}, C_{i+1}, D_{i+1}, t_{i+1}, \ldots
\]

where the \(A_i, B_i, C_i, \) and \(D_i \) are used when the time \(t \) satisfies \(t_i \leq t < t_{i+1} \).

In order to obtain a zero derivative at either boundary, set the coefficient of its derivative to \(10^{25} \).

a. **Time Increments**

\[
\text{DEC 3001, } \Delta t, n
\]

b. **Initial Temperature Distribution**

\[
\text{DEC 4001, } T_0, T_1, T_2, \ldots, T_m
\]
The initial temperature must be specified at each point.

C. **End of Data**

DEC 80000

This card followed by a blank card signals the end of the input data for a problem.

VII. OUTPUT FORMAT

Each page of output is numbered and identified by the title card. The temperature and stresses at each point are printed in columnar form together with the point number and coordinate. Each column is identified by a title. The output numbers themselves are signed 8-digit fractions with a signed 2-digit exponent. Leading zeros in the exponent are not printed. Examples are:

\[
\begin{align*}
1/2 &= 0.00000000 \\
-1/3 &= -0.33333333 \\
10/3 &= 3.33333333
\end{align*}
\]
Input for Sample Problem

- **DEC 1001**
- **DEC 2001**
- **DEC 3001**
- **DEC 4001**
- **DEC 5001**
- **DEC 6001**
- **DEC 7001**
- **DEC 8000**

<table>
<thead>
<tr>
<th>DEC</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>11100100</td>
</tr>
<tr>
<td>2001</td>
<td>10101000</td>
</tr>
<tr>
<td>3001</td>
<td>11101000</td>
</tr>
<tr>
<td>4001</td>
<td>10101000</td>
</tr>
<tr>
<td>5001</td>
<td>11100000</td>
</tr>
<tr>
<td>6001</td>
<td>10100000</td>
</tr>
<tr>
<td>7001</td>
<td>11100000</td>
</tr>
<tr>
<td>8000</td>
<td>10100000</td>
</tr>
</tbody>
</table>

- **TEMP.2**
- **TMP.35001**

Note: The values are represented in hexadecimal format.
REFERENCE