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John S .  Land, Morton Smutz a.nd 

George Burnet 

ABSTRACT 

A study of the purification of a Bi-Sn sys tem by zone refining 

was the objective of this investigation. , The method involved the 

passage of a molten zone through a charge of mater ial .  The de ter -  

mination of a distribution coefficient by comparing experimental data 

to computed values was of pr imary  interest .  

.e. -8- 

This report  i s  based on an  M. E. thesis  submitted by John Stephan Land, J r . ,  
August 1967, to Iowa State University, Ames, Iowa. 



INTRODUC T I  ON 

The concept of Zone melting was i n i t i a l l y  introduced by Pf'ann (6) 

i n  1952. The range of possible uses f o r  zone melting seems almost l i m i t -  

l e ss .  The general  term zone melting denotes a family of methods f o r  

control l ing the  d i s t r ibu t ion  of soluble impurit ies or solutes  i n  c rys ta l -  

l i n e  materials .  

Zone re f in ing  can be used t o  pur i fy  materials  ranging from law melting 

organic compounds t o  high melting metals. One pa r t i cu l a r l y  successful  

commercial appl icat ion has been the pur i f i ca t ion  of germanium fo r  diodes 

and t r ans i s t o r s .  

A second zone melting operakion, zone leveling,  can e f f e c t  the 

controlled addi t ion of a desired solute  t o  a c rys ta l .  By zone level ing,  

i t  may be possible t o  d i s t r i bu t e  a solute  uniformly throughollt a  slug.  

Zone melting i s  f inding increased use a s  a method of growing s ing le  

c rys ta l s ,  pa r t i cu l a r l y  by the f l oa t i ng  zone technique. It can a l s o  do 

such diverse jobs as  joining two so l ids  together, preparing multicomponent 

eu tec t ic  a l loys ,  helping t o  analyze fo r  t race  impurit ies,  and determining 

pvr L i ~ r i s  of pllase diagyamsl. 

The purpose of t h i s  work was the  appl icat ion of the  zone re f in ing  

process t o  a B i  s lug containing Sn solute  and the  'determination of a 

d i s t r i bu t i on  coef f ic ien t  fo r  pa r t i cu l a r  operating conditions. 



GENERAL THEORY 

The zrjlle re f in ing  process involves the  passage of a molten zone 

through a  charge containing a  so lu te  and, i f  the concentration of t h e  

qolute i n  the so l i d  d i f f e r s  from that of the l i qu id ,  e f f e c t s  a r e d i s t r i -  
' 

bution of the solute .  I f  the metal contains a s ingle  solute ,  it may be 

possible by using many zone re f in ing  passes t o  deposit  a l l  of the so lu t e  

a t  one end of the charge leaving the opposite end f r e e  of so lu te .  

One parameter con t ro l l ing  the movement of the so lu te  i s  the d i s t r i -  

bution coef f i c ien t .  The d i s t r i b u t i o n  coef f i c ien t  of a  so lu te ,  k, i s  defined 

a s  the r a t i o  of the so lu te  concentration i n  the  s o l i d  t o  the so lu te  concen- 

t r a t i o n  in the l iqu id .  Solutes with d i s t r i bu t i on  coef f i c ien t s  l e s s  than 

one tend t o  concentrate i n  the f i n a l  zone length,  while so lu tes  with d i s -  

t r i bu t i on  coef f i c ien t s  g rea te r  than one w i l l  tend t o  concentrate i n  the  

i n i t i a l  zone length. If k i s  one, pu r i f i c a t i on  by zone re f in ing  w i l l  not  

occur. In t h i s  paper, i t  w i l l  be assumed t h a t  k i s  l e s s  than one. 

Other f a c to r s  t h a t  influence the  pur i f i ca t ion  a r e :  1 - the d i f fus ion  

r a t e s  of the solute  i n  the s o l i d  and l i qu id  phases, 2 - the  degree of s t i r -  

r i ng  i n  the  l i qu id  zone, 3 - the i r r e g u l a r i t y  of the s o l i d i m i n g  in te r face ,  

and 4 - t h e  concentration gradient  i n  the l i qu id  near the in te r face .  

The s ing le  pass zone re f in ing  of a charge with a uniform solute  con- 

centra t ion Co may r e s u l t  i n  a n  initial t r an s i t i on  region of low so lu te  

concentration, a region of. uniform concentration, and an end region of one 

zone length  which has a high solute  concentration. A s  the molten zone 

advances along the charge, a layer  of s o l i d  f reezes  out a t  the  r e a r  of 



the zone and a layer of melt i s  formed a t  the f ron t  of the zone. On the 

i n i t i a l  pass, the f i r s t  sol id  t o  freeze has a solute concentration of kco 

which i s  l e s s  than C and therefore the l iqu id  zone i s  enriched i n  solute.  
0' 

As the zone progresses, the l iqu id  continues t o  increase i n  solute  concen- 

t r a t i on  u n t i l  i t  reaches a concentration of co /k  (1f k i s  small, t h i s  

concentration may never be reached, and a region of uniform concentration 

w i l l  not be present.) When t h i s  condition i s  a t ta ined,  the concentration 

of the so l id  layers entering and leaving the molten zone a r e  the sme ,  and 

hence no fur ther  pur i f icat ion i s  accomplished. When the zone reaches the 

end of the charge, the remaining l iqu id  so l id i f i e s  by normal freezing. 
1 

Figure 1 shows a plot  of how the concentration of solute  a f t e r  a s ing le  

pass might be expected t o  vary with the distance the zone has traversed 

along the charge (7). 

The equation, derived by Read ( 6 ) ,  for  the concentratibn i n  the sol id ,  

C,  a f t e r  one pass a t  any distance,  x, i n  the direct ion of zone ref ining,  

. except i n  the l a s t  zone, i s :  

-kx/!J . c/co = 1 - (1  k )  e ( 1  1 
where C i s  the i n i t i a l  concentration, k i s  the d i s t r ibu t ion  coeff ic ient  and 

0 

!J i s  the zone length. The assumptions made i n  deriving t h i s  equation are:  

1 - the d i s t r ibu t ion  coeff ic ient .and the zone length a r e  constant, 2 - the 

i n i t i a l  solute concentration i s  uniform, 3 - diffusion i n  the  so l id  i s '  

negl igible ,  4 - diffusion i n  the l iqu id  zone i s  complete (i.e.,  the solute  

bormal  freezing i s  the term applied t o  the freezing of a length of 
molten metal from one end. 



1 
DISTANCE TRAVERSED BY MOLTEN ZONE, x - L 

Figure 1. Approximate concentrat ion of so lu te  a f t e r  a s i n g l e  zone r e f i n i n g  pass 
through a charge of uniform concentrat ion.  (schematic) 



concentration i n  the  l i qu id  a t  any time i s  uniform), and 5 - s o l u b i l i t y  

of the  so lu te  i n  the l i q u i d  zone i s  no t  exceeded. 

Next consider a second pass through a f i r s t - p a s s  d i s t r i bu t i on  l i k e  

t ha t  of Figure 1. A s  the molten zone passes through the i n i t i a l  t r an s i -  

t ion. region,  it accumulates so lu te  and leaves behind .it a lower and some- 

what longer i n i t i a l  region. When the f r o n t  of the zone reaches the 

beginning of the normal f reezing region, the solute  concentrat ion of the 

l i qu id  melt w i l l  increase sharply. Thus, the pile-up a t  the  end of the 

. c h s g e  i s  r e f l e c t ed  back one zone length  during the second pass,  and back 

one add i t iona l  zone length,  with diminishing i n t ens i t y ,  f o r  each succeeding 

pass. Additional passes therefore  lower the i n i t i a l  t r a n s i t i o n  region, 

r a i s e  the end region, and decrease the length  of the intermediate region. 

Ultimately a l l  three  regions blend i n t o  a r e l a t i v e l y  smooth curve. 

The so lu te  concentration p ro f i l e  a f t e r  multipass zone r e f i n ing  i s  more 

d i f f i c u l t  t o  describe mathematically. The bas ic  d i f f e r e n t i a l  equation, 

derived independently by Reiss (8) and Lord (4) i s  : 

R r; dcn(x) = [cn-,(x + A) - cn(x)I  (2 

where cn(x) denotes the so lu t e  concentration f reezing out of the zone a t  

d is tance  x i n  the n t h  pass and C (x + A) represents the concentrat ion n- 1 

05tained in  the previous pass a t  a dis tance  x + A from the  s t a r t i n g  end. 

Equation 2 can be applied t o  a l l  of the s lug except the l a s t  zone length. 

The assumptions of Equation 1, excluding the condit ion of a uniform i n i t i a l  

so lu te  concentration, were again used i n  the  der ivat ion of t h i s  equation. 

Equation 2 can be solved r ead i l y  by a high speed computer. 



EXPERIMENTAL PROCEDURE 

The zone melter u n i t  was designed by Richard Wornson, Harvey Jensen, 

and Eciwin Olson a t  Ames Laboratory. A photograph of the apparatus i s  

shown i n  Figure 2. It i s  designed t o  handle samples up t o  approximately 

15 inches i n  length and 1 inch i n  diameter. The molten zone i s  produced 

by a res is tance heater  mounted on a movable carr iage which i s  driven by a 

threaded rod. 

Three B i  slugs having approximately 150, 500 and 750 ppm Sn were cas t  

by melting appropriate'amounts of B i  and Sn and allowing the  solut ion t o  

mix fo r  about 30 minutes, hopefully obtaining a uniform dispersion of the 

Sn. The melt was then poured i n t o  a graphite crucible and s o l i d i f i e d  

rapidly.  

The i n i t i a l  Sn concentration a s  a function of distance along the cas t  

slug was determined by analyzing the l a the  turnings (0.020 i n )  taken from 

the surface of the  slug. The turnings from each two inch i n t e r v a l  of 

length,were col lected,  dissolved i n  n i t r i c  acid,  combined with an appro- 

p r i a t e  amount of spectrographic graphite,  and evaporated t o  dryness before 

analysis .  The ana lys i s  involved a r i  emissiull spec t rographic  

technique (5) .  

The,slug was then placed i n  a pyrex crucible  a s  i l l u s t r a t e d  i n  

Figure 3. Nine chromel-alumel thermocouples located approximately 1/16 

inch away from the  s lug monitored the temperature. The molten zone length 

was determined by measuring the di f ference between the time a t  which a 

thermocouple would f i r s t  reach 271 OC, the  melting point  of Bi, and the  

time when the  same thermocouple would again reach the mel-ting temperature 
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of B i  a f t e r  passing through a maximum temperature when the f i i nace  moved 

d i r e c t l y  over the  thermocouple. The di f ference i n  the times, mul t ip l ied  

by the furnace speed, gave the dis tance  t h a t  the mater ia l  was molten. This 

method of determining the zone length  assumes t h a t  the l i qu id  zone remains 

constant while passing by the thermocouple. 

Zone re f in ing  runs were conducted on the  three  B i  s lugs con'1;aining 

Sn solute .  The s lugs  were 14.25 inches i n  length and 314 inch i n  diameter. 

The average i n i t i a l  Sn concentration of the. s lugs were 110, 460 and 760 ppm. 

The average molten zone length  of 1.5 inches and the average zoning speed 

- of 0;7 in/hr were held constant  f o r  a l l  of the runs. 

To obta in  the p r o f i l e  of the Sn concentration along the  s lug a f t e r  

zone ref in ing,  d iametr ica l  d r i l l i n g s  taken a t  nine equally spaced posi t ions  

along the s lug were analyzed spectrographically,  following the same pro- 

cedure used f o r  the  l a t he  turnings.  The s lug  containing approximately 

460 ppm Sn was sampled a f t e r  the  f i r s t  and t h i r d  zone re f in ing  passes, 

while d r i l l i n g s  were taken from the slugs containing 110 and 760 ppm Sn 

only a f t e r  the t h i r d  pass. 

An e lec t ron  mic rop robe  ana lys i s  (1) was  conducted us ing a n  

e lec t ron  mic rop robe  Model EMX, manufactured by Applied R e s e a r c h  

Labo ra to r i e s .  The  m i c r o p r o b e  m e a s u r e s  the  x - r a y  f luorescence  

given off by speci f ic  a t oms ,  such a s  Sn a toms ,  a s  they r e t u r n  

f r o m  a n  excited s ta te .  

Two cross sec t iona l  szmples taken srorn a casL s lug &nil bws smplco  

from a s lug subjected t o  three  zone re f in ing  passes were analyzed on the  

microprobe. A spark cu t t e r  was used t o  remove the cross s ec t i ona l  s l i c e s  

from the slugs,  and the sample surfaces were then polished on abrasive 



wheels before analysis .  The surface of one sample was electropolished 

but it proved t o  be too rough for  accurate analysis .  



DISCUSSION OF RESULTS 

Zone Refining Results  

Zone re f in ing  of three  Bi-Sn s lugs  was pcrformed t o  study the puri-  

f i c a t i o n  e f f e c t  of the  process and t o  determine a d i s t r i bu t i on  coef f i c ien t .  

Plots  showing the  Sn concentration both before and a f t e r  zone r e f i n ing  

versus the distance along the  slug appear i n  Figures 4, 6 and 8. 

Figures 5, 7 and 9 a r e  semi-logarithmic p l o t s  of the  r a t i o  of the Sn 

concentration a f t e r  zone re f in ing  t o  the  i n i t i a l  Sn concentrat ian i n  the  

c a s t  s lug before zone re f in ing  versus the dis tance  i n  zone lengths from 

the beginning of the charge. The s o l i d  curves i n  these  f igures  were 

pl..otted from experimental da ta  while the dashed curves represent  values 

computed by Harming (7) and Burris ,  e t  a l .  (2 ) .  The parameters of the  

curves a r e  the dis t r ibu. t ion coef f i c ien t ,  k,' the  number of zone re f in ing  

passes, n, and the r a t i o  of the t o t a l  length of the s lug  t o  the  zone 

length,  L/R. The t o t a l  length t o  zone length  r a t i o  w a s  10  fof a l l  the runs. 

Figure 7 shows experimental and computed values f o r  one and th ree  

zone re f in ing  passes, while Figures 5 and 9 compare r e s u l t s  only a f t e r  the 

t h i r d  pass. 
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Electron Microprobe Analysis 

Cross sect ional  samples of two Bi-Sn slugs were analyzed on an elec- 

t ron  microprobe t o  study qua l i ta t ive ly  the uniformity of the  Sn concentra- 

t ion i n  the r ad i a l  di rect ion and a l s o  t o  detect  the  presence of eu tec t ic  

and oxide formations. Two samples of 200 pprn and 1600 pprn Sn, taken from 

a slug a f t e r  the t h i rd  zone ref ining pass, and two samples of 700 pprn and 

560 ppm, taken from the ends of a cas t  slug before it was zoned refined, 

were analyzed. None of the samples indicated the presence of appreciable 

amounts of oxides. 

Figures 10 thraugh 13 are.photographs taken of the x-ray fluorescence 

pat tern on the oscilloscope screen during the analysis. I n  Figures 10, 11 

and 12, the ac tua l  sample areas under observation a t  the time of the photo- 

graphs (- 0.27 sq cm) have been magnified 300 times. 

The l i g h t  spots i n  Figure 10 a re  the x-ray fluorescence produced by Sn 

atoms on the cross sect ional  surface of the ca s t  slug containing approxi- 

mately 560 pprn Sn. The fluorescence given off by B i  atoms ( l i gh t  areas)  i n  

a d i f fe ren t  section of the same slug i s  shown i n  Figure 11. These two 

pictures  a re  representative of the x-ray pat terns  obtained f'rom both the 

cas t  and zone refined slugs with Sn concentrations of 700 pprn or l e s s .  

Figure 12 shows the Sn x-rays from the cross sect ion of the  zone re- 

f ined slug having a concentration of 1600 pprn Sn. Appreciable segregation 

of the Sn was present i n  t h i s  sample, as  can be observed from the photo- 

graph. 

Figure 13 i s  an enlargement of the blocked-in portion a t  the bottom 

of Figure 12, The magnification i s  2400 times the ac tua l  surface area 

under obocrvetion (-8 0.033 sq  cm) . 
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I n  Figure 7, which cor re la tes  the  r e l a t i v e  Sn concentration fo r  

s lug  2 (-- 560 ppm) as a function of zone lengths along the slug,  the  

experimental curves show good agreement with the computed curves ind ica t ing  

a d i s t r i bu t i on  coef f i c ien t  of 0.2 f o r  a distance of about four zone lengths,  

and then the experimental values f a l l  s l i g h t l y  below the  computed curve 

equal  t o  0.2. One of the assumptions used i n  ca lcu la t ing  the computed 

curves i s  t h a t  the i n i t i a l  so lu te  concentration, i n  t h i s  case Sn, i s  uni- 

form along t,he length of the  slug.  I n  Figure 6,  it can be seen t h a t  a 

unifrom i n i t i a l  Sn concentration p r o f i l e  does e x i s t  along the first hal f  

of the slug, which corresponds t o  the  region of c lose  agreement i n  Figure 7. 

The i n i t i a l  Sn concentration does decrease somewhat i n  the l a t t e r  half  of 

the slug,  possibly causing the dips  in the experimental curves of Figure 7. 

I n  Figures 5 and 9, the experimental curves do not  f i t  the  computed 

curves as c losely .  The d i s t r i bu t i on  coef f i c ien t  f o r  s lug  3 (-- 760 ppm) 

appears t o  be near t o  0.2, while k fo r  s lug 1 (-- 110 ppm) seems t o  be 

c loser  t o  0.5, although ne i the r  of these p l o t s  shows good agreement between 

the experinlental and computcd curves. By comparing Figures 4, 6 and 8, one 

can r ead i l y  see t h a t  the i n i t i a l  Sn concentration i n  s lugs  1 and. 3 i s  less 

uniform than the  i n i t i a l  concentration i n  s lug 2. This non-uniformity of 

the  i n i t i a l  Sn concentration i s  l i k e l y  a major cause of the deviat ion i n  

t he  shapes of the experimental from the  computed curves. 

Other assumptions made i n  deriving the t heo re t i c a l  curves ' t h a t  

possibly were not  met i n  the experimental work a r e  1 - complete d i f fus ion  

i n  the  l i qu id  melt, 2 - a constant d i s t r i bu t i on  coef f i c ien t ,  and 3 - a 



constant  zone length.  No attempt w a s  made t o  determine the degree of 

d i f fus ion i n  the  l i qu id  melt o r  t o  measure the constancy of the d i s t r i bu -  

t lon  coeff ic ient  along the length of the  slug.  The calcula ted zone lengths 

f o r  the middle two-thirds of the three  s lugs  were a l l  wi th in  5% of the 

average zone length of 1.5 inches, although the zone lengths were up t o  

20% longer than the average near the  ends of the bar.  

Inaccuracy i n  the  spectrographic determination of the  Sn concentration 

could a l s o  be a poss ible  cause of the di f ference between the experimental 

and computed values. The reported accuracy of the spectrographic technique 

was t o  the  neares t  50 ppm, and t h i s  degree of accuracy became questionable 

a t  the lower Sn concentrations. Duplicate samples were analyzed, and these 

values var ied  from 5% t o  over f'rom the  o r i g ina l  values. This l ack  

of precis ion i n  t h e  ana ly t i c a l  data,  e spec ia l ly  a t  lower Sn concentrations, 

could account f o r  the inconsistehcy of the d i s t r i bu t i on  coef f i c ien t  f o r  

s lug 1 (- 0.5 as compared t o  - 0.2 f o r  the other two s lugs)  which had an 

average C of only 110 ppm Sn. 
0 

The e lect ron microprobe analys is  showed t ha t  segregation did  not 

occur wh.en the  Sn concentration was approximately 700 ppm or  below, but  

tlm.1; an appreciable amount of eu t ec t i c  phase was present  a t  a Sn concentra- 

t i o n  of approximately 1603 ppm. Probably the Bi-Sn eu t ec t i c  does no t  

appear u n t i l  the Sn concentration i s  i n  the 1000 t o  1600 ppm range. 



RECOMMENDED FUTURE WORK 

Experimental work i n  zone . ref in ing requires  that, the so lu te  concen- 

t r a t i o n  p ro f i l e  irl the s o l i d  be known t o  a high degree of accuracy, and 

therefore the  development of a more precise  ana ly t i c a l  method than the  

emission spectrographic technique used i n  t h i s . i n v e s t i g a t i o n  i s  a  necessity. 

Also, before one proceeds fu r t he r  with the determination of d i s t r i bu -  

t i on  coef f i c ien t s ,  some considerat ion should be given t o  the s ignif icance 

of the  values obtained. The d i s t r i bu t i on  c o e f f i c i e n t , i n  t h i s  paper i s  

defined general ly  a s  t he  r a t i o  of the so lu t e  concentrat ion in the  so l i d  t o  

the so lu te  concentration i n  the  l iquid .  Moreover, an  equilibrium d i s t r i -  

bution coef f i c ien t ,  ko, can be defined a s  the  r a t i o  of the concentration 

of the solute  i n  the s o l i d  t o  t ha t  i n  the l iqu id ,  when equil ibrium e x i s t s  

between the two phases. If f reezing occurs slowly s o  t h a t  the  so lu t e  

co2centration i n  the l i qu id  remains uniform, the  concentration i n  the 

freezing so l i d  i s  ko times t ha t  in the l iqu id ,  provided one may assume 

d i f fus ion  i n  the  s o i i d  t o  be negl ig ible .  However, i f  c r y s t a l l i z a t i o n  does 

not  proceed slowly, so lu te  atoms a r e  re jec ted  by the advancing s o l i d  more 

rap id ly  than they can d i f fuse  i n t o  the bulk of the melt. A concentrat ion 

gradient  thus develops i n  the  l i qu id  j u s t  ahead of the ad'vancing in te r face .  

It i s  the solute  concentration in t h i s  enriched layer ,  r a t he r  than t h a t  

i n  the  main body of the l iqu id ,  which d i r e c t l y  determines the r a t e  of 

so lu te  incorporation i n t o  the so l id .  True equilibrium presumably occurs 

only i f  the c ry s t a l l i z a t i on  speed i s  e s sen t i a l l y  zero. When c ry s t a l l i z a t i on  

occurs a t  a  measurable speed, the  equil ibrium a t  the  i n t e r f ace  w i l l  be 

disturbed t o  some degree. 



To compensate f o r  any deviat ion from equilibrium at  the  so l id - l iqu id  

in te r face ,  Burton, -- e t  a l .  (3) defined an  e f f ec t i ve  d i s t r i b u t i o n  coefficient ,  

k e f f )  which describes the ove ra l l  r eac t ion  of the so lu te  incorporation i n t o  

the  c r y s t a l  at non-zero growth speeds, as the r a t i o  of the so lu te  concen- 

t r a t i o n  i n  the  s o l i d ' t o  t ha t  i n  the main body of l iqu id .  The e f f ec t i ve  

d i s t r i bu t i on  coeff ic ient  i s  the quant i ty  measured exper imenta l ly ' in  the zone 

re f in ing  process. It may be a function of the zoning speed, the in te r face  

o r ien ta t ion ,  the  d i f f u s i v i t y  and s t i r r i n g  conditions i n  the  l iqu id ,  and 

the solute  concentration. It i s  important t o  know keff because i t  i s  needed 

i n  predic t ing the  pu r i f i c a t i on  achievable by zone ref in ing,  but  i f  the 

deviat ion from equilibrium a t , t h e  so l id - l iqu id  in te r face  i s  g rea t ,  the 

value may be highly empirical: and therefore  appl icable  only t o  a pa r t i cu l a r  

piece of equipment operating under c e r t a i n  conditions. 

In fu tu re  work, it  i s  recommended t ha t  an  attempt be made t o  determine 

how c lose ly  keff approaches ko under various operating conditions. This 

research might include a study of the so lu t e  concentrat ion build-up i n  

the melt a t  the so l id - l iqu id  i n t e r f ace  a s  a function of time, d is tance ,  and 

i n i t i a l  solute  concentration. Possibly, this inves t iga t ion  could be 

ca r r i ed  out by monitoring the  ac tua l . zone  r e f i n ing  process with an e lec t ron  

microprobe. 
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APPENDIX A 

Zone re f in ing  passes were conducted a t  various temperatures on a pure 

Bi slug t o  determine a cor re la t ion  between the furnace temperature and 

the' zone length.  The runs were made a t  zoning speeds of 0.7 and 2 .1  in/hr . 
Figure 14 i s  a p l o t  of the  average furnace temperature versus average 

zone.length, with zoning speed a s  a parameter. 
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APPENDIX B 

Nomenclature 

0 
i n i t i a l  solute  concentration (sn) i n  the s lug before zone re f in ing ,  
PPm. 

C so lu te  concentration ( ~ n )  i n  the s lug  a f t e r  zone re f in ing ,  ppm. 

k  d i s t r i bu t i on  coef f i c ien t  - r a t i o  of the so lu te  concentrat ion i n  the 
so l i d  t o  t ha t  i n  the l iqu id .  

e f fec t ive  d i s t r i bu t i on  coef f i c ien t  - r a t i o  of the  so lu te  concentra- keff t i on  i n  the s o l i d  t o  t ha t  i n  the main body of l iqu id .  

ko equilibrium d i s t r i bu t i on  coef f i c ien t  - r a t i o  of the so lu te  concen- 
t r a t i o n  i n  the  so l i d  t o  t h a t  i n  the l iqu id ,  when equil ibrium 
e x i s t s  between t he  two phases. 

R molten zone length, i n .  

L t o t a l  length  of the slug, i n .  

n  number of zone re f in ing  passes. 

x distance along the slug traversed by the molten zone, i n .  
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