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RICHARDSON EXTRAPOLATION FOR LINEARLY DEGENERATE
DISCONTINUITIES∗

J. W. BANKS † AND T. D. ASLAM‡

Abstract. In this paper we investigate the use of Richardson extrapolation to estimate the
convergence rates for numerical solutions to advection problems involving discontinuities. We use
modified equation analysis to describe the expectation of the approach. In general, the results do
not agree with a-priori estimates of the convergence rates. However, we identify one particular use
case where Richardson extrapolation does yield the proper result. We then demonstrate this result
using a number of numerical examples.
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1. Introduction. Estimating the error in numerical approximations to solutions
of partial differential equations is important for many reasons. In order to be useful,
numerical simulations should be accurate in some measurable norm. A particular
application could require the absolute error to be less than a certain level. Other
applications might use an estimate of the numerical error to help guide decisions
about the most cost effective way to spend scarce resources, for example to choose
between higher resolution simulation, to include more physical processes into the
model, or to produce more samples for a statistical analysis. Still other applications
may use estimates of the error directly for uncertainty quantification purposes. There
are many approaches to error estimation found in the literature. Intrusive techniques
such as adjoint error estimators [1, 2], error transport [3, 4], or finite element residual
and recovery methods [5] are extremely powerful. However, because they are intrusive
they require access and modification of the source code. This is often not possible for
theoretical, practical, or sometimes legal reasons.

Non-intrusive techniques are those that require only the ability to produce multi-
ple simulation results, but do not require modifications of the source code. Error
estimation through Richardson extrapolation is one commonly used non-intrusive
technique and essentially relies on asymptotic properties of numerical approxima-
tion. Asymptotically correct in this context refers to the fact that expending a cer-
tain amount more work yields a predictable increase in the accuracy of the result.
Richardson extrapolation estimates can be based on varying the order of approxima-
tion, varying the resolution of the grid, or a combination of both. For many applica-
tions Richardson extrapolation has been shown to yield very good results. However,
behavior of Richardson extrapolation error estimates for simulations of solutions with
jumps, such as shock and contact waves for fluid mechanics, is known to be prob-
lematic [6]. There have been many attempts to introduce richer ansatz to deal with
these situations, and they have yielded varying degrees of success. However, there has

∗This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the Un-
certainty Quantification Strategic Initiative Laboratory Directed Research and Development Project
at LLNL under project tracking code 10-SI-013, by DOE contracts from the ASCR Applied Math
Program, and by Los Alamos National Laboratory under Contract DE-AC52-06NA25396.
†Center for Applied Scientific Computing, L-422, Lawrence Livermore National Laboratory, Liv-

ermore, CA 94551, USA. Phone: 925-423-2697 (banks20@llnl.gov)
‡Weapons Experiments, MS P952, Los Alamos National Laboratory, Los Alamos, NM 87545.

Phone: 505-667-1367 (aslam@lanl.gov)

1



been very little progress on understanding the fundamental sensitivity of Richardson
extrapolation error estimates in the presence of jumps.

In this paper, we investigate one particular realization of Richardson extrapolation
error estimation for the canonical problem of linear advection with jump initial data.
This is a particularly simple model problem with relevance to many complex physical
models of fluid flow, plasma physics, and more. We build on the previous work of [7]
which analyzed convergence rates for approximations for solutions of linear advection
where the exact solution contained jumps. That work used modified equations to
argue that the expected rate of convergence for a nominally pth order method in
the presence of a linear jump discontinuity is p/(p + 1). In the current work we use
the structure of the modified equation solutions to discuss the expected behavior of
Richardson extrapolation error estimates. We show that under certain conditions one
can expect to obtain the p/(p + 1) rate. In addition, we show why the method can
fail to obtain the correct result if these conditions are not met.

The remainder of this paper is structured as follows. Section 2 discusses some
preliminaries, and provides a very brief overview of the Richardson extrapolation
technique for error estimation. A simple model problem consisting of linear advection
of a discontinuity is presented in Section 3. In Section 4 we apply the technique to
approximations generated by a first-order upwind method, and discuss the results.
The technique is found to be effective for this case, and an analysis explaining this
surprising result is presented. That analysis is extended in Section 5 to discuss the
case of high-order linear schemes. This analysis reveals that one particular instanti-
ation of Richardson extrapolation produces the expected convergence rate. Section 7
demonstrates the theory for upwind discretizations of order 2, 4, and 6, as well as the
case of a high-resolution nonlinear TVD discretization. Additional details of the inner
workings are presented for the second-order case. Conclusions are presented in 8.

2. Preliminaries and Richardson extrapolation for smooth problems.
Richardson extrapolation is a commonly used technique for error estimation, and
many variations exist. For a good overview of the technique refer to [6]. Here we
focus on one particular approach to Richardson extrapolation which uses numerical
approximations at three grid resolutions obtained using the same numerical technique.
Even within this particular flavor of the approach, there are essentially three possible
realizations. In this section we review the approach and present the three choices. In
what follows, we consider numerical approximations to the solution of a partial differ-
ential equation (PDE) on an infinite domain. Boundary conditions are an important
aspect of many numerical simulations, but are not critical to the present discussion.
Thus consider the spatial domain x ∈ (−∞,∞), and introduce a spatial discretization
with uniform grid spacing h.

Consider a set of numerical approximations given by uhM
(x, t) ≈ ue(x, t) where

ue(x, t) is the exact solution, and hM indicates the size of the mesh. We consider
performing an estimate at some time t = tf , and whenever the time argument is
not included, it is assumed to imply t = tf (i.e. u(x) = u(x, tf )). Let an estimated
convergence rate be denoted by R (uh1

, uh2
, uh3

) where the various uhM
are numerical

approximations obtained using grid spacing hM , and R (u1, u2, u3) = σ is the solution
of the scalar equation f(σ;u1, u2, u3) = 0, where

f(σ;u1, u2, u3) =
||uh1

(x)− uh2
(x)||

||uh2(x)− uh3(x)||
− |h

σ
1 − hσ2 |
|hσ2 − hσ3 |

. (2.1)

For the purposed of the remainder of this paper we will assume that ||·|| indicates a dis-
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crete approximation to the L1 norm. This is the norm which is most often considered
when discussing hyperbolic equations with discontinuities. For a given set of three
numerical approximations, there are essentially three distinct ways that the estimate
can be computed R (uh1 , uh3 , uh2), R (uh1 , uh2 , uh3), and R (uh2 , uh1 , uh3). As shown
below, this distinction is irrelevant for smooth problems. However, it will become im-
portant for solutions with discontinuities. For smooth problems, the basic assumption
underlying the approach is that a given numerical approximation uhM

(x, t) is related
to the exact solution ue(x, t) as

uhM
(x, t) = ue(x, t) + c(x, t)hpM

where p is the formal order of accuracy of the approximation, and c(x, t) is an order
one function which is independent of the mesh parameters. For any two resolutions,
the difference between approximations is

uh1
(x)− uh2

(x) = ue(x) + c(x)hp1 − ue(x) + c(x)hp2
= c(x) (hp1 − h

p
2) .

For any three resolutions then we find that

||uh1
(x)− uh2

(x)||
||uh2

(x)− uh3
(x)||

=
||c(x) (hp1 − h

p
2)||

||c(x) (hp2 − h
p
3)||

=
||c(x)|| |hp1 − h

p
2|

||c(x)|| |hp2 − h
p
3|

=
|hp1 − h

p
2|

|hp2 − h
p
3|
. (2.2)

Assuming h1 6= h2 6= h3, Equation (2.2) and its counterparts can easily be used to
show that R (uh1

, uh3
, uh2

) = R (uh1
, uh2

, uh3
) = R (uh2

, uh1
, uh3

) = p. Note that in
principle one can then use the computed convergence rate σ in order to estimate the
exact solution and obtain field estimates of the error. Such an approach is presented in
detail in [8] and [9]. Also note that there is the possibility multiple roots in (2.1), but
this situation is easily recognized in practice and so we do not discuss this further.

3. A model problem with discontinuity. We now seek to understand the na-
ture of Richardson extrapolation error estimation for problems with discontinuities or
other self similar behavior. As a model, consider the one dimensional linear advection
equation

∂

∂t
u(x, t) + a

∂

∂x
u(x, t) = 0 (3.1)

with constant advection velocity a > 0. A canonical model problem with discontinuity
can be defined using the initial conditions

u(x, 0) =

{
uL for x < 0
uR for x ≥ 0.

(3.2)

The method of characteristics is used to define the exact solution for all t > 0 as
u(x, t) = u(x − at, 0), which applies also to discontinuous solution profiles using the
notion of weak solutions [10, 11].
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4. First Order Upwind Discretization. As an introductory example, con-
sider the first-order accurate explicit upwind scheme

un+1
i = uni − λ

[
uni − uni−1

]
(4.1)

where uni is a numerical approximation to u(xi, t
n) and the so called CFL number is

λ = a∆t
h . The computational domain [xL, xR] is a truncation of the infinite domain,

and has been discretized with xi = xL + ih where h = (xR − xL)/(N − 1) and N
an integer. Similarly, time has been discretized as tn = n∆t with initial conditions
u(x, 0) being given at t = 0. Numerical stability is obtained for λ ≤ 1.

4.1. Richardson extrapolation error estimation. One can perform an esti-
mate of the convergence rate using Richardson extrapolation and simply ignore the
fact that the assumptions underlying the approach are not strictly valid for cases with
discontinuities. We set a = 1, choose a computational domain with [xL, xR] = [−π, π],
integrate to a time tf = 2, and use λ = 0.6. These choices are made to ensure that the
discontinuity never lies on a cell boundary which can be problematic if finite-precision
arithmetic leads to a jump in the initial discontinuity location during the refinement
process. A series of approximations is generated using a uniform refinement process
with a ratio 0 ≥ r < 1 (i.e. h2 = rh1 and h3 = r2h1), and starts with 51201 points in
the domain (i.e. h1 = 2π

51200 ). Table 4.1 shows the results using the three basic vari-

r R
(
uh1

, urh1
, ur2h1

)
R

(
uh1

, ur2h1
, urh1

)
R

(
urh1

, uh1
, ur2h1

)
1
2 0.50 0.50 0.50

2
5 0.50 0.50 0.50

1
3 0.50 0.50 0.50

2
7 0.50 0.50 0.50

1
4 0.50 0.50 0.50

Table 4.1
Estimated convergence rates for the first-order upwind scheme for a solution with a disconti-

nuity. The base resolution uses 51201 points, and uniform refinement is carried out using a ratio
of r. Results using the three independent variants of Richardson extrapolation are presented in the
various columns.

ants of Richardson extrapolation, and various choices of the uniform refinement ration
r. The table makes clear that the estimated convergence rate is 0.5 for any choice,
which agrees exactly with the expected convergence rate for a first-order scheme with
a linear jump [7].

4.2. Explanation of the result. The fact that Richardson extrapolation seems
to work, in terms of convergence rate estimates, for the first order upwind scheme
even with a discontinuous solution is surprising. In order to understand this result we
extend the analysis in [7]. The approach makes use of modified equation for a more
complete understanding of the behavior. The modified equation is a continuous PDE
whose solution describes the approximate behavior of the well resolved components
of the discrete solutions, and is derived by substituting continuous functions U(x, t)
into the discrete equation (4.1) by setting uni = U(xi, t

n), and expanding all terms in
Taylor series about the point (x, t) = (xi, t

n). For the first-order upwind scheme the
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result is

∂

∂t
U(x, t) + a

∂

∂x
U(x, t)− ah

2
(1− λ)

∂2

∂x2
U(x, t) + · · · = 0. (4.2)

Truncating Equation (4.2) yields the advection-diffusion equation

∂

∂t
U(x, t) + a

∂

∂x
U(x, t)− ν ∂

2

∂x2
U(x, t) = 0 (4.3)

where ν = ah(1−λ)
2 . For discontinuous initial data (3.2), U(x, 0) = uL for x < 0 and

U(x, 0) = uR for x ≥ 0. The analytic solution to (4.3) for t > 0 is then found to be

U(x, t) =
uL + uR

2
+
uR − uL

2
erf

(
x− at√

4νt

)
(4.4)

where erf(ζ) is the error function

erf(ζ) =
2

π

∫ ζ

0

e−χ
2

dχ.

For additional details on this derivation refer to [7].
The analysis to follow assumes the use of the L1 norm and sets z = x − atf ,

δ1 =
√

4ν1tf and δ2 =
√

4ν2tf . Furthermore, assume h1 > h2. As in [7], assume that
the solution to the modified equation is an accurate approximation to the numerical
solution so uh(x, t) = U(x, t). Following a similar line of reasoning as in Section 2
gives

||uh1
(x)− uh2

(x)|| =
∣∣∣∣∣∣∣∣uL + uR

2
+
uR − uL

2
erf

(
z

δ1

)
− uL + uR

2
− uR − uL

2
erf

(
z

δ2

)∣∣∣∣∣∣∣∣
=

∫ ∞
−∞

∣∣∣∣uR − uL2

(
erf

(
z

δ1

)
− erf

(
z

δ2

))∣∣∣∣ dz
= |uR − uL|

(∫ ∞
0

− erf

(
z

δ1

)
+ erf

(
z

δ2

)
dz

)
=

2
√
atf |uR − uL|√

π
(
√
ν1 −

√
ν2)

=

√
atf (1− λ)

2π
|uR − uL|

(√
h1 −

√
h2

)
.

Therefore, under the assumption that the three numerical approximations have been

obtained using the same CFL λ, the factor of

√
atf (1−λ)

2π |uR − uL| will appear in both

the numerator and denominator when the ratio of the norms of differences is taken.
As a result

||uh1
(x)− uh3

(x)||
||uh2

(x)− uh3
(x)||

=

∣∣√h1 −
√
h3

∣∣∣∣√h2 −
√
h3

∣∣ ,
and it is easy to verify that all three approaches to Richardson extrapolation will yield
convergence at the expected rate of 0.5.
Remark: Although the results presented in Table 4.1 use simulations with uniform
refinement, this is not critical in the analysis for this case. In fact, it is primarily the
monotone nature of the similarity solution which is responsible for the robust nature
of the estimates. Uniform refinement was used in order to match the analysis for
high-order schemes below, where uniform refinement is important.
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5. Arbitrary Order Linear Scheme. In general, robust results like those rep-
resented in Table 4.1 are not expected. In this section we analyze why this is the
case and determine a particular strategy which yields accurate estimates even in the
presence of discontinuities (or other self-similar features). We restrict our attention

to noncompressive stable pth order schemes for advection with modified equations of
the form

∂

∂t
U(x, t) + a

∂

∂x
U(x, t)− ηh

∂p+1

∂xp+1
U(x, t) + · · · = 0 (5.1)

where ηh = η̃hp and η̃ is a constant depending on the CFL λ. Following the analysis
in [7], a simple change of variables is performed to translate into a frame of reference
traveling with the wave

z = x− at
τ = t.

After dropping the higher order terms, (5.1) becomes

∂

∂τ
U(z, τ)− κh

∂p+1

∂zp+1
U(z, τ) = 0 (5.2)

where κh is either plus or minus ηh depending on the value of p. Similarity solutions
can be sought with similarity variable

ξh =
z

p+1
√
κhtf

. (5.3)

We again assume that the solution of the modified equation is an accurate represen-
tation of the numerical approximation and set uh = U . For jump initial condition
(3.2) the solution can then be written in the general form

uh(ξh) =
uL + uR

2
+
uR − uL

2
S(ξh). (5.4)

where S is an approximation to the jump from −1 to 1 (similar to an error function but
perhaps with more complex behavior). In general, S will take the form of generalized
hypergeometric functions which oscillate on one or both sides of the discontinuity. In
a Richardson style error estimate, norms of the difference between two solutions will
be used, and so we write

||uh1(x)− uh2(x)|| =
∣∣∣∣∣∣∣∣uL + uR

2
+
uR − uL

2
S(ξh1)− uL + uR

2
− uR − uL

2
S(ξh2)

∣∣∣∣∣∣∣∣
=
|uR − uL|

2

∫ ∞
−∞

∣∣∣∣S ( z
p+1
√
κh1

tf

)
− S

(
z

p+1
√
κh2

tf

)∣∣∣∣ dz
Making the change of variables to

χ =
z

p+1
√
κh1tf

(5.5)

gives

||uh1
(x)− uh2

(x)|| = |uR − uL| p+1
√
κh1

tf

∫ ∞
−∞

∣∣∣∣∣S (χ)− S

(
χ p+1

√
h1

h2

)∣∣∣∣∣ dχ. (5.6)
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Now take the ratio of such norms to arrive at

||uh1(x)− uh2(x)||
||uh2

(x)− uh3
(x)||

=

(
h1

h2

) p
p+1

∫∞
−∞

∣∣∣S (χ)− S
(
χ p+1

√
h1

h2

)∣∣∣ dχ∫∞
−∞

∣∣∣S (χ)− S
(
χ p+1

√
h2

h3

)∣∣∣ dχ. (5.7)

In general therefore, the Richardson estimate will depend on the ratio of integrals of
scaled similarity functions ∫∞

−∞

∣∣∣S (χ)− S
(
χ p+1

√
h1

h2

)∣∣∣ dχ∫∞
−∞

∣∣∣S (χ)− S
(
χ p+1

√
h2

h3

)∣∣∣ dχ. (5.8)

The function S can be an extremely complex object, and so computing this ratio in
closed form is in general impractical. In fact, the definition of S is often found to make
this ratio difficult to even estimate numerically due to ill-conditioning and finite pre-
cision arithmetic. However, for the case of uniform refinement when h3 = rh2 = r2h1,
this ratio is simply unity. Therefore, for this special case, the estimated convergence
rate will be given by R (uh1 , urh1 , ur2h1

) = p
p+1 . This is the expected convergence rate

as discussed in [7]. Notice that such cancelation requires both uniform refinement,
and that the estimate be performed using differences of successive refinement. Other
choices will in general not yield the rate p

p+1 .

6. Second Order Linear Scheme. In order to demonstrate the implications
of the analysis in Section 5, consider the linear second-order upwind method

un+1
i = uni − λ

[(
uni +

1

4
(1− λ)(uni+1 − uni−1)

)
−
(
uni−1 +

1

4
(1− λ)(uni − uni−2)

)]
.

(6.1)
This is simply a second order unlimited Godunov method. As before, one can perform
an estimate of the convergence rate using Richardson extrapolation. Again we set
a = 1, choose a computational domain with [xL, xR] = [−π, π], integrate to a time
tf = 2, and use λ = 0.6. The series of approximations is generated using a uniform
refinement process with a ratio 0 ≥ r < 1 (i.e. h2 = rh1 and h3 = r2h1), and
starts with 51201 points in the domain (i.e. h1 = 2π

51200 ). Table 6.1 shows the results

r R
(
uh1

, urh1
, ur2h1

)
R

(
uh1

, ur2h1
, urh1

)
R

(
urh1

, uh1
, ur2h1

)
1
2 0.67 0.14 1.63

2
5 0.67 0.22 1.73

1
3 0.71 0.38 1.69

2
7 0.67 0.41 1.49

1
4 0.67 0.47 1.35

Table 6.1
Estimated convergence rates for the second-order upwind scheme for a solution with a discon-

tinuity. The base resolution uses 51201 points, and uniform refinement is carried out using a ration
of r. Results using the three independent variants of Richardson extrapolation are presented in the
various columns.

using the three basic variants of Richardson extrapolation, and various choices of the
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Fig. 6.1. Similarity jumps for the unlimited second order scheme in the frame of reference
moving with the discontinuity.

uniform refinement ratio r. The table shows that the expected rate of 2/3 is obtained
as advertised when using the appropriate approach. Also shown in the table are the
type of results that can be experienced if other approaches are used.

6.1. A closer look at this case. In order to more clearly explain what is going
on we present additional details for this case. As discussed above in Section 5, the
crux of the matter centers around the similarity solution S. For this second-order
scheme, the solution can be found as

uh(ξh) =
1

3
−
ξh

(
ξh
√

3
(
Γ
(

2
3

))2
1F2

(
2
3 ; 4

3 ,
5
3 ;

ξ3h
27

)
− 4π 1F2

(
1
3 ; 2

3 ,
4
3 ;

ξ3h
27

))
6Γ
(

2
3

)
π

(6.2)

where Γ is the Euler Gamma function, and 1F2 is a generalized hypergeometric func-
tion. Figure 6.1 shows similarity solutions in the reference frame moving with the
discontinuity at three resolutions. The grid spacing is essentially a parameter, and
so we have chosen a normalization h1 = 1. Solutions with two grid doublings are
also shown. Following the analysis in Section 5, differences of the three solutions will
be taken. Figure 6.2 shows the three sets of differences which are produced for the
three variants of the Richardson extrapolation error estimate. All three plots show
the very complex character of the function whose absolute integral is taken. The key
observation of this paper is presented in Figure 6.3 where the spatial variable is scaled
to the common reference variable χ, as suggested in (5.5). For the case of uniform
refinement when the differences are made as suggested, the integrals in the numerator
and denominator of (5.8) are identical, and the estimate follows. In this case the
method essentially avoids the need to calculate the actual integral and relies on the
fact that the ratio is known a-priori for any similarity function.

7. Additional demonstration of the theory. In order to further demonstrate
the validity of the theory we have just described, we perform a series of tests for linear
schemes of increasing order, as well as a high-resolution nonlinear TVD scheme. The
linear schemes we investigate here are upwind biased single step schemes (i.e. in
advancing from tn to tn+1 they use data from tn only) that are high-order accurate
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Fig. 6.2. Differences of similarity jumps in the frame of reference moving with the discontinuity.

in space and time. Derivation of these schemes follows standard procedures using
a Cauchy-Kowalewski process, sometimes called the Lax-Wendroff procedure [12].
Further details on these derivations can be found in [13, 14, 15]. The nonlinear TVD
discretization is of the high-resolution Godunov type described in [16, 17].

7.1. Fourth-Order Linear Scheme. Consider the linear fourth-order upwind
method

un+1
i = uni +

2∑
s=−3

C
(4)
4+su

n
i+s (7.1)

where C(4) is a vector of stencil coefficients given by

C(4) =
λ

144


5− 8λ2 + 3λ3

−37− 6λ+ 52λ2 − 9λ3

146 + 96λ− 104λ2 + 6λ3

−50− 180λ+ 80λ2 + 6λ3

−71 + 96λ− 16λ2 − 9λ3

7− 6λ− 4λ2 + 3λ3

 .

Table 7.1 shows results using the three basic variants of Richardson extrapolation, and
various choices of the uniform refinement ration r using (7.1). The first column shows
remarkable agreement between the estimated convergence rate and the expected rate
of p

p+1 = 0.8. The other two columns indicate that results which are difficult to
interpret can be obtained for other procedures.
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Fig. 6.3. Differences of similarity jumps in the common scaled reference frame χ (see Equation
(5.5) for details). Note that SN − S2N is nearly identical to S2N − S4N in the upper left plot and
is therefore not visible.

r R
(
uh1

, urh1
, ur2h1

)
R

(
uh1

, ur2h1
, urh1

)
R

(
urh1

, uh1
, ur2h1

)
1
2 0.86 0.23 2.32

2
5 0.83 0.41 2.10

1
3 0.83 0.53 1.91

2
7 0.84 0.73 1.60

1
4 0.85 0.65 1.34

Table 7.1
Estimated convergence rates for the fourth-order upwind scheme for a solution with a discon-

tinuity. The base resolution uses 51201 points, and uniform refinement is carried out using a ratio
of r. Results using the three independent variants of Richardson extrapolation are presented in the
various columns.

7.2. Sixth-Order Linear Scheme. Consider the linear sixth-order upwind
method

un+1
i = uni +

3∑
s=−4

C
(6)
5+su

n
i+s (7.2)
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where C(6) is a vector of stencil coefficients given by

C(6) =
λ

4320



−31 + 43λ2 − 15λ4 + 3λ5

289 + 24λ− 391λ2 − 30λ3 + 123λ4 − 15λ5

−1299− 324λ+ 1623λ2 + 360λ3 − 387λ4 + 27λ5

4325 + 3240λ− 2675λ2 − 1170λ3 + 615λ4 − 15λ5

−1085− 5880λ+ 1505λ2 + 1680λ3 − 525λ4 − 15λ5

−2589 + 3240λ+ 267λ2 − 1170λ3 + 225λ4 + 27λ5

431− 324λ− 419λ2 + 360λ3 − 33λ4 − 15λ5

−41 + 24λ+ 47λ2 − 30λ3 − 3λ4 + 3λ5


.

Table 7.2 shows results using the three basic variants of Richardson extrapolation,
and various choices of the uniform refinement ration r using (7.2). The first column
again shows remarkable agreement between the estimated convergence rate and the
expected rate of p

p+1 = 0.86. The other two columns indicate that results which are
difficult to interpret can be obtained for other procedures.

r R
(
uh1

, urh1
, ur2h1

)
R

(
uh1

, ur2h1
, urh1

)
R

(
urh1

, uh1
, ur2h1

)
1
2 0.90 0.16 2.95

2
5 0.90 0.47 2.35

1
3 0.88 0.60 1.93

2
7 0.88 0.78 1.20

1
4 0.90 0.83 1.24

Table 7.2
Estimated convergence rates for the sixth-order upwind scheme for a solution with a disconti-

nuity. The base resolution uses 51201 points, and uniform refinement is carried out using a ratio
of r. Results using the three independent variants of Richardson extrapolation are presented in the
various columns.

7.3. Second Order Nonlinear Scheme. Finally, we consider a high-resolution
TVD limited scheme. The scheme is a second-order MUSCLE type scheme using a
MinMod limiter applied to the slopes. The scheme can be written

un+1
i = uni − λ

[(
uni +

1

2
(1− λ)α

)
−
(
uni−1 +

1

2
(1− λ)β

)]
. (7.3)

where

α = MinMod(uni+1 − uni , uni − uni−1),

β = MinMod(uni − uni−1, u
n
i−1 − uni−2),

and

MinMod(b, c) =

 b if |b| < |c| and bc > 0
c if |b| ≥ |c| and bc > 0
0 if bc ≤ 0.
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Note that this is nothing more than a high-resolution Godunov method (see [16, 17]
for details). Table 7.3 shows the results for the three variants of Richardson extrapola-
tion convergence estimation. The results in [7] established that although this scheme
is nonlinear, the modified equation has solutions of the form (5.4). Therefore, the
analysis still applies to this case, and the method is expected to yield accurate esti-
mates of the convergence rates for uniform refinement case R (uh1

, urh1
, ur2h1

). The

r R
(
uh1

, urh1
, ur2h1

)
R

(
uh1

, ur2h1
, urh1

)
R

(
urh1

, uh1
, ur2h1

)
1
2 0.48 0.48 0.48

2
5 0.55 0.55 0.56

1
3 0.57 0.57 0.57

2
7 0.57 0.57 0.57

1
4 0.60 0.59 0.60

Table 7.3
Estimated convergence rates for the high-resolution TVD scheme for a solution with a discon-

tinuity. The base resolution uses 51201 points, and uniform refinement is carried out using a ratio
of r. Results using the three independent variants of Richardson extrapolation are presented in the
various columns.

results in Table 7.3 show this to be true, but interestingly the other two estimates,
R (uh1

, ur2h1
, urh1

) and R (urh1
, uh1

, ur2h1
), also appear accurate. This is not in con-

tradiction with the theory which says that the estimate R (uh1 , urh1 , ur2h1
) will be

accurate but not that the others will be inaccurate. In fact this is a similar result
to those results for the first-order scheme in Table 4.1. As was the case for the first-
order discretization, this fortuitous behavior can be traced to the monotonicity of the
approximations.

8. Conclusions. We have provided an in depth investigation of Richardson ex-
trapolation error estimation for linear advection of a discontinuity. The analysis uses
the solution to the modified equation to elucidate the difficulty found in practice.
However, the analysis also reveals one particular realization of the technique that
reproduces the a-priori convergence rates even in the presence of a discontinuity or
other similarity type behavior. The key elements are found to be the use of uni-
form refinement, and that the comparisons inherent in the Richardson estimator be
performed in one specific manner. This result was demonstrated for a number of
discretizations ranging in order from first-order to sixth-order. In addition, results
were also presented for a high-resolution TVD scheme.

Future work will include investigating the techniques discussed here for nonlinear
equations (such as the Euler equations), as well as the extension to higher spatial di-
mension. Other interesting avenues for future investigation are looking into similarity
behavior of differing degrees of smoothness, as well parabolic problems or dispersive
wave propagation.
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