SPACE VEHICLE SHIELDING STUDIES (PART III):
THE ATTENUATION OF A PARTICULAR SOLAR FLARE BY AN ALUMINUM SHIELD

R. G. Alsmiller, Jr.
J. E. Murphy
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:
A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.
As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
SPACE VEHICLE SHIELDING STUDIES (PART III): THE ATTENUATION OF A PARTICULAR SOLAR FLARE BY AN ALUMINUM SHIELD*

R. G. Alsmiller, Jr.
J. E. Murphy**

Date Issued
FEB 20 69

*Work supported by the National Aeronautics and Space Administration.
**Central Data Processing Facility of the Oak Ridge Gaseous Diffusion Plant.

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION
THIS PAGE
WAS INTENTIONALLY
LEFT BLANK
Abstract

Using the straight-ahead approximation, nucleon-meson cascade calculations have been carried out for a particular solar-flare proton spectrum incident on a shield. The shielding material has approximately the properties of aluminum. Both spherical-shell and slab geometries are considered.
I. Introduction

In two previous reports\(^1,2\) (hereinafter referred to as 1 and 2, respectively) nucleon-meson cascade calculations were carried out and results were given for a variety of cases of interest in the shielding of manned space vehicles. In this report similar calculations showing the attenuation of a particular solar flare by an aluminum shield are presented.

The method of calculation, the data used to describe the shielding medium, and the notation are the same as used in 2.

II. Flare Spectrum and Results

The proton flare spectrum used in the calculations has the form\(^*\)

\[
P(E,0) = \frac{1.26 \times 10^{12}}{E^{3.12}} \text{ protons Mev}^{-1} \text{cm}^{-2} \text{ster}^{-1}, \quad 32 \text{ Mev} \leq E \leq 2 \text{ Gev}.
\]

As in 2 it is arbitrarily assumed that the flare contains no particles with energy less than 32 Mev or greater than 2 Gev.

In Fig. 1 the particle doses at the center of a spherical shell when the flare is incident isotropically on the shell are plotted as a function of shell thickness, \(r\). The dose as calculated here is the surface dose and includes a contribution from nonelastic reactions in the tissue as well as a crude estimate of the contribution from low-energy particles.\(^3\)

In Fig. 2 the particle doses behind a slab when the flare is incident isotropically on the slab are plotted as a function of slab thickness, \(x\).

* The calculations reported here were done at the request of I. M. Karp of the Lewis Research Center in order that he might compare the results with similar calculations he has done. This form of the flare was suggested by Mr. Karp as being an appropriate one for the comparison.
In both figures the smallest shield thickness considered is 1.6 g/cm^2 for the primary dose and 2.3 g/cm^2 for the secondary doses. A thickness of 1.6 g/cm^2 is slightly greater than the range of a 32-Mev proton. At shield thicknesses smaller than this, those incident protons with energy less than 32 Mev which have been neglected will contribute to the dose.

In both figures, as in 2, the dose due to secondary particles does not become comparable to the primary dose until rather large shield thicknesses are considered. As one goes to thick shields, the primary dose rapidly becomes negligible and the dose is due primarily to secondary neutrons. Note that for very thick shields (Fig. 1) the dose is decaying nearly exponentially and at all shield thicknesses the pions and muons are negligible.

Acknowledgement

We would like to thank the members of the Data Processing Facility of the Oak Ridge Gaseous Diffusion Plant, particularly R. G. Mashburn, for their work in carrying out the numerical computation.
Fig. 1. Dose vs. Shell Thickness.
Fig. 2. Dose vs. Slab Thickness.
INTERNAL DISTRIBUTION

1. Biology Library
2-4. Central Research Library
5. Reactor Division Library
6-7. ORNL - Y-12 Technical Library
Document Reference Section
8-57. Laboratory Records Department
58. Laboratory Records, ORNL R.C.
59-63. R. G. Alsmiller, Jr.
64. J. A. Auxier
65. R. D. Birkhoff
66. E. P. Blizard
67. W. A. Gibson
68. W. H. Jordan
69. W. E. Kinney
70. C. E. Larson
71. F. C. Maienschein
72. J. A. Martin
73. R. W. Peelle
74. S. K. Penny
75. R. T. Santoro
76. M. J. Skinner
77. J. A. Swartout
78. D. K. Trubey
79. J. W. Wachter
80. A. M. Weinberg
81. H. A. Wright
82. R. A. Charpie (consultant)
83. P. F. Gast (consultant)
84. M. L. Goldberger (consultant)
85. R. F. Taschek (consultant)
86. T. J. Thompson (consultant)

EXTERNAL DISTRIBUTION

87. J. E. Duberg, NASA, Langley Field, Virginia
88. Trutz Foelsche, NASA, Langley Research Center, Hampton, Virginia
89. W. C. Hulten, NASA - IRD, Langley Research Center, Hampton Virginia
90. L. F. Vosteen, NASA, Langley Research Center, Hampton, Virginia
91. W. L. Gill, NASA, Manned Space Craft Center, Houston, Texas
92. R. H. Steelle, NASA, Manned Space Craft Center, Houston, Texas
93. Evalyn Repplinger, Crew Systems Division, Houston, Texas
94. W. N. Hess, NASA, Goddard Space Flight Center, Greenbelt, Maryland
95. H. E. Stern (M-RP-N), NASA, George C. Marshall Space Flight Center, Huntsville, Alabama
96. Frank Voorhis, USAF (MC), OART/RBH, NASA, Washington, D.C.
98. Jerry Modisette, Manned Space Craft Center, Houston, Texas
99. Jim Johnson, LTV Research Center, Dallas, Texas
100. Lt. Duane Adams, Air Force Weapons Laboratory, WLRB-1, Kirtland Air Force Base, New Mexico
102-104. Aerospace Corporation, El Segundo, California (1 copy each to F. L. Keller, Stan Freden, and Robert Pruett)
105. George Joanou, General Atomic, San Diego, California
109. K. Ziöck, University of Virginia, Charlottesville, Virginia
110. R. T. Siegel, College of William and Mary, Williamsburg, Virginia
111. Jerry Speakman, 6570 AMRL (MRBBR), Wright-Patterson Air Force Base, Ohio
112. T. J. McGuire, ASD(ASRSSV-e), Shielding Research Reports, ASR55-54, Wright-Patterson Air Force Base, Ohio
113. Loren Pittman, 6570 AMRL (MRBBR), Wright-Patterson Air Force Base, Ohio
114. Capt. R. F. Cooper, ASRPE-20, Wright-Patterson Air Force Base, Ohio
115. C. A. Dempsey, 6570 AMRL, Wright-Patterson Air Force Base, Ohio
116. R. E. Fortney, Northrop Space Laboratories, Hawthorne, California
117. M. C. Chapman, Northrop Space Laboratories, Hawthorne, California
118. S. H. Levine, Northrop Space Laboratories, Hawthorne, California
119. L. W. McCleary, North American Aviation, Inc., Downey, California
120. G. E. Laubaug, North American Aviation, Inc., Downey, California
121. Frederick Raymes, North American Aviation, Inc., Downey, California
122. M. R. Kinsler, North American Aviation, Inc., Downey, California
123. E. R. Beever, North American Aviation, Inc., Downey, California
124. T. J. Rock, General Dynamics, Fort Worth, Texas
125. C. F. Johnson, General Dynamics, Fort Worth, Texas
126. T. R. Strayhorn, General Dynamics, Fort Worth, Texas
127. G. T. Western, General Dynamics, Fort Worth, Texas
128. R. A. Miller, General Dynamics, Fort Worth, Texas
129. T. W. De Vries, General Dynamics, Fort Worth, Texas
130. E. C. Kidd, General Dynamics, Fort Worth, Texas
131. D. N. Robey, General Dynamics/Astronautics, San Diego, California
132. Sidney Russak, The Martin Company, Baltimore, Maryland
133. Ed Divita, 1504 Doxbury Road, Towson, Maryland
134. I. M. Karp, Lewis Research Center, Cleveland, Ohio
135. R. I. Hildebrand, Lewis Research Center, Cleveland, Ohio
136. R. V. Meghebrilian, Jet Propulsion Laboratory, Pasadena, California
137. R. J. Mackin, Jr., Jet Propulsion Laboratory, Pasadena, California
138. F. Felberg, Jet Propulsion Laboratory, Pasadena, California
139. D. F. Spencer, Jet Propulsion Laboratory, Pasadena, California
141. Maurice Wilkinson, Boeing Aircraft Company, Seattle, Washington
142. J. C. Noyes, Boeing Scientific Research Laboratories, Seattle, Washington
143. J. F. Kenney, Boeing Scientific Research Laboratories, Seattle, Washington
144. Maynardi Pearson, Boeing Aircraft Company, Seattle, Washington
145. Brian Mar, Boeing Aircraft Company, Seattle, Washington
146. Lt. Col. R. G. Allen, Jr., USAF Aerospace Medical Center, Brooks Air Force Base, Texas
147. Col. J. E. Pickering, USAF Aerospace Medical Center, Brooks Air Force Base, Texas
148. W. M. Schofield, Advanced Research Corporation, Atlanta, Georgia
149. E. C. Smith, Advanced Research Corporation, Atlanta, Georgia
150. Wade Patterson, University of California Radiation Laboratory, Berkeley, California
151. Cornelius Tobias, University of California Radiation Laboratory, Berkeley, California
155. Sol Krasner, Office of Naval Research, Washington, D.C.
156. W. H. Langham, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
157. M. A. Van Dilla, Los Alamos Scientific Laboratory, Los Alamos, New Mexico
158. G. A. Whan, University of New Mexico, Albuquerque, New Mexico
160. E. M. Finkelman, Grumman Aircraft, Bethpage, New York
161. R. V. Gowzowski, McDonnell Aircraft, St. Louis, Missouri
162. R. A. Glass, Lockheed Missiles and Space Company, Palo Alto, California
163. S. P. Shen, New York University, New York, New York
164. J. P. Neissel, General Electric Company, Schenectady, New York
165. R. L. Harvey, General Electric Company, San Jose, California
166. David Langford, Pratt and Whitney Aircraft, East Hartford, Connecticut
167. C. W. Hill, Lockheed-Georgia Company, Marietta, Georgia
168. C. K. Bauer, Lockheed-Georgia Company, Marietta, Georgia
169. K. D. George, Picatinny Arsenal, Dover, New Jersey
170. R. B. Curtis, University of Indiana, Bloomington, Indiana
171. H. J. Schaefer, U.S. Naval School of Aviation Medicine, Pensacola, Florida
172. William Steigelmann, Kuljian Corporation, Philadelphia, Pennsylvania
173. G. P. Wachtell, Franklin Institute, Philadelphia, Pennsylvania
174. Keith More, Bendix Systems Division, Ann Arbor, Michigan
175. L. R. Lewis, Bendix Systems Division, Ann Arbor, Michigan
176. T. H. Colvin, Bendix Systems Division, Ann Arbor, Michigan
177. Børje Larsson, The Gustaf Werner Institute, University of Uppsala, Uppsala, Sweden
178. Martin Leimdorfer, Research Institute of National Defense, FOA4, Stockholm 80, Sweden
181. C. D. Zerby, Union Carbide Research Institute, Tarrytown, New York
182. Fred Casal, NASA Headquarters, Washington, D.C.
183. V. B. Bhanot, Physics Department, Panjab University, Chandigarh-3, India
184. Jacobo Rappaport, University of Chile, Box 2777, Institute of Science, Santiago, Chile
185. Research and Development Division, ABC, ORO

Given distribution as shown in TID-4500 (26th ed.) under Physics category (75 copies - OTS)