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Abstract—Validated computer simulation is an important
aspect of critical infrastructure vulnerability assessment. The
high computational cost of such models limits the number of
threat scenarios that may be directly evaluated, which leads
to a need for statistical emulation to predict outcomes for
additional scenarios. Our particular area of interest is statistical
methods for emulating complex computer codes that predict if a
particular tunnel/explosive configuration results in the breaching
of an underground transportation tunnel. In this case, there
is considerable a priori information as to the properties of
this breach classification boundary. We propose a constrained
classifier, in the form of a parametric support vector machine,
that allows us to incorporate expert knowledge into the shape
of the decision boundary. We demonstrate the effectiveness of
this technique with both a simulation study and by applying the
method to a tunnel breach data set. This analysis reveals that
constrained classification can offer substantial benefits for small
sample sizes. The technique may be used either to provide a final
classification result in the face of extremely limited data or as
an interim step to guide adaptive sampling.

Index Terms—support vector machines, computer experiments,
statistical learning

I. INTRODUCTION

Validated high fidelity computations are increasingly em-

ployed to supplement costly physical experiments; further,

such modeling, when carefully used, can estimate structural re-

sponse of systems that cannot be feasibly tested. As computer

codes increase in capability and utility, computational cost

typically increases. Therefore, when a large number of input

configurations need to be modeled, this is often accomplished

through the use of a statistical “emulator” that uses a small

set of expensive code runs to characterize the complete input

space [1], [2]. For example, the use of statistical learning meth-

ods has been examined to approximate limit state functions in

reliability analysis [3].

Infrastructure threat assessment is a field that can particu-

larly benefit from the application of computer modeling and

corresponding emulation. Consider, for example, the assess-

ment of explosive threats to tunnel systems [4]. The goal is to

determine what combinations of explosive threats and tunnel

geometries could lead to a tunnel “breach.” Here we define a
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AC52-07NA27344. This work was sponsored by the Department of Homeland
Security, Science and Technology Directorate, Infrastructure Protection and
Disaster Management Division.

tunnel breach simply as damage which would allow material

from outside of the tunnel to flow or fall into the tunnel. The

input space of interest consists of the wall thickness of the

tunnel, the mass of the explosive charge, and the distance from

the surface of the charge to the tunnel wall (standoff distance).

For any given tunnel-charge configuration, simulations can

be used to predict the effect of the blast and classify the tunnel

as either breached or not. The full three-dimensional physics

model is very costly to evaluate, so only a relatively small

number of simulation runs will be available to characterize

the full conformation space.

Since full simulation runs can be performed for only a lim-

ited number of input conformations, they should be chosen so

as to maximize the information generated about the breach/no

breach boundary. Even without any simulation runs, certain

characteristics of the breach boundary are known: the breach

region should be contiguous, the risk of breach should increase

as charge size increases, decrease as standoff increases, and

decrease as wall thickness increases. Incorporating this infor-

mation into the sampling scheme should reduce the number

of data points required to completely characterize the breach

curve.

This is not a typical classification problem. In general,

sophisticated statistical learning algorithms (e.g. support vector

machines, random forests, and neural networks) are used for

nonparametric classification: minimal assumptions are made

about the characteristics of the underlying data or the clas-

sification surface itself. In contrast, parametric classification

models, such as quadratic discriminant analysis, make as-

sumptions about the underlying probabilistic nature of the

classification features, which is also inappropriate in this case.

The breach/no breach data is frequently separable for small

to moderate sample sizes, which limits the utility of logistic

regression.

We therefore propose a version of the support vector

machine, the parametric SVM, that has the ability to in-

corporate expert knowledge into the classification boundary.

By sacrificing some of the flexibility of the standard SVM

formulation, we gain the ability to limit the boundary shape

to an explicitly defined class of functions. Parametric SVMs

also have interpretable model parameters which are functions

of support vectors and Lagrange multipliers. In particular,

an intercept value is directly related to the standard SVM

bias term, which allows constraints to be placed. Note that
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Fig. 1. A maximal margin hyperplane, in this case a line, between two
classes. Dotted lines represent the margin, while circled points are support
vectors.

this form of constrained classification is different from the

alternative use of the term that refers to placing constraints on

error rates [5]. Section II gives an overview of classification

with support vector machines. In Section III we present the

parametric SVM, and discuss how constraints can be placed

upon a decision boundary and the bias parameter. Section IV

contains a simulation study of both parametric and intercept

constrained parametric support vector machines under adaptive

sampling, and Section V examines the feasibility of applying

this methodology to tunnel simulation data. In Section VI we

discuss our conclusions.

II. SUPPORT VECTOR MACHINES OVERVIEW

The support vector machine (SVM) is a method for gen-

erating optimal decision surfaces separating two classes [6].

Consider a set of observations consisting of z1, ..., zn, where

zi = (zi0, ..., zim)T . Each observation has a class label

di ∈ {−1, 1}. The goal is to identify a decision rule that

can predict the class label of a new observation zn+1 based

on the existing labeled data. Assuming that the data is linearly

separable, there are infinitely many hyperplanes of the form

0 = a
T
z+ ρ (1)

which will perfectly separate the existing data. To ensure a

unique solution, we can specifically consider the maximal

margin hyperplane: the hyperplane of the form given in (1)

which perfectly separates the data and for which the minimum

distance to an observed point, or margin, is maximized. In

particular, this is accomplished by minimizing ||a||2 over a, ρ

subject to the constraint di(a
T
zi + ρ) ≥ 1. An example of

such a boundary is shown in Fig. 1. Note how the margin,

and therefore the decision boundary, is defined by a small

subset of points.

The support vector machine generalizes this concept in

two important ways: allowance for nonlinear boundaries and

misclassified points. The final classification function is defined

in terms of the existing data and Lagrange multipliers as

follows:

g(z) = ρ+
n∑

i=1

λidiK(zi, z). (2)

Here K is a kernel function that may map the data into

a higher, and possibly infinite, dimensional space, and the

margin maximization step includes “slack variables” and a

cost parameter. In brief, slack variables and the cost parameter

allow some points to fall within the margin or even be

misclassified. As the cost parameter increases, the penalty for

a point falling inside the margin increases as well. A “soft-

margin” SVM, which allows misclassification, increasingly

resembles a “hard-margin” SVM, which does not, as the cost

goes to infinity. Common kernel functions include the linear

kernel (K(z1, z2) = z
T
1 z2), radial basis kernel (K(z1, z2) =

exp(−γ||z1 − z2||
2)), and the dth-degree polynomial kernel

(K(z1, z2) = (1 + z
T
1 z2)

d) [7]. A detailed discussion of

the role of kernel functions, Lagrange multipliers, and slack

variables is beyond the scope of this paper, but may be

found in many introductions to SVMs and statistical learning

methodologies, including [7]–[9].

The sign of g(z) gives the classification of the new point.

Note that, in general, most of the coefficients λi will be equal

to 0, meaning that only a small subset of the data will need to

be retained in order to classify new points. These points are

known as support vectors.

III. CONSTRAINED SUPPORT VECTOR MACHINES

The support vector machine is generally used in a non-

parametric classification context. The flexibility offered by

the high-dimensional mapping generated by standard kernel

functions allows the separating surface to take on a tremendous

variety of shapes, including noncontiguous ones. However, in

practical applications this flexibility may be unnecessary, and

may in fact hinder effective classification.

Of particular interest is the scenario in which the clas-

sification boundary may be defined as a function of m of

the classification features. Without loss of generality, we

may say that this excluded feature corresponds to zi0, and

further rename it yi. We will also henceforward refer to our

“explanatory” variables (z1, ..., zm) as x = (x1, ..., xm). In

order for the decision boundary to meet the definition of a

function, g(y,x) = 0 and g(y′,x) = 0 ⇒ y = y′ for each x.

This allows a function f(x) = (y|g(y,x) = 0) to be defined.

If it may further be assumed that sign(yn+1 − f(xn+1)) =

(−1)ksign(g(yn+1,xn+1)), where k is fixed as either 0 or 1,

then the SVM may be considered to define a “critical surface”

in y, such that for any x there exists a value for y above which

observations receive one classification and below which they

receive another.

It is possible to generate such boundary functions using

SVMs with a linear kernel. The fact that data is separated in

a known space, rather than the potentially high dimensional

space implied by other kernels, allows for a unique degree

of interpretability for the coefficients in the classification

function. In particular, we can define f(x) as:

f(x) = b0 +

m∑

j=1

bjxj (3)

where

bj =
− (

∑n

i=1
λidixji)∑n

i=1
λidiyi

(4)



and

b0 =
−ρ∑n

i=1
λidiyi

. (5)

given
∑n

i=1
λidiyi 6= 0. Note that when this assumption is

violated, the SVM is ignoring y for classification purposes,

and so defining a classification surface in terms of y is not

reasonable. The classification predicted for a new observation

(y,x) is given by:

sign(y − f(x)) if

n∑

i=1

λidiyi < 0

−sign(y − f(x)) if

n∑

i=1

λidiyi > 0

Note that this formulation gives us coefficients that corre-

spond to particular variables, allowing us to determine their

relationships and relative importance. This is a contrast to the

standard SVM formulation in which the coefficients λi give

information about the impact of a particular observation, rather

than a particular variable.

This formulation is not limited to modeling linear decision

surfaces. A fixed transformation into a higher dimensional

feature space may be performed if desired. In order to

fit a more complex classification surface, functional terms

{pj(x)}
k
j=1 may be included and the linear SVM fit in the

k + 1 dimensional space defined by (y, p1(x), ..., pk(x)).
For example, consider data of the form (yi, xi1, xi2). A

quadratic separating surface can be generated by fitting a linear

SVM on the feature vector (yi, xi1, x
2
i1, xi2, x

2
i2, xi1xi2). The

resulting decision boundary may be written as:

f(x1, x2) = b0 + b1x1 + b2x
2
1 + b3x2 + b4x

2
2 + b5x1x2. (6)

This strategy is not equivalent to using an SVM with

a polynomial kernel of degree two, for which the optimal

decision surface may not be a function with response y. That

is, there may exist a vector x and values y 6= y′ such that

g(y,x) = g(y′,x) = 0.

The functions pj(x) need not necessarily be terms in a

polynomial expansion, and are at the discretion of the user.

Interpretability of the coefficients b0, ..., bk also allows

meaningful constraints to be placed at optimization time.

Specifically we will explore the imposition of equality con-

straints on the intercept term b0.

If the component functions of the parametric SVM all

satisfy the constraint pj(0) = 0, where 0 is the 0 vector,

then b0 is the y-intercept for the classification surface. Recall

that the standard SVM formulation is not defined explicitly in

terms of b0. Rather it is defined in terms of the Lagrange

multipliers {λi}
n
i=1 and the bias term ρ as shown in (5).

The parametric SVM context is already restricted such that∑n

i=1
λidiyi 6= 0, so the intercept will always be well defined.

Therefore, the equality constraint ρ = 0 is equivalent to the

intercept constraint b0 = 0. Note that recentering the data will

allow a constraint of this form to force the parametric SVM

boundary to pass through any one point in the input space.

IV. ADAPTIVE SAMPLING STUDY

A simulation study was performed to compare the perfor-

mance of three classifiers: a nonparametric SVM with a radial

basis kernel, a parametric SVM trained on data of the form

(y, x, x2), and the same parametric SVM constrained to have

b0 = 0. Two simulated boundaries in two-dimensional space

were considered: y = −x2 + 2x and y = ex − 1. In both

cases the assumptions about the classification boundary being

expressible as a function of x and the intercept hold, however

only one case has the exact functional form of the parametric

SVM classifier. The purpose of the study was to evaluate the

classifiers for both small fixed sample sizes and under adaptive

sampling.

Adaptive sampling is a technique used to minimize the

number of data points needed to produce an accurate final

model by querying new points based on a model fit to existing

data. The basic premise is that points should be sampled

in regions where there is the greatest potential for model

improvement [10].

For the simulation study, an initial space filling sample of

size 10 was chosen using Latin hypercube sampling [11].

In the SVM framework, points far from the classification

boundary have no impact on the classifier, and conversely

points on the boundary itself have the greatest influence.

Existing strategies for adaptive sampling with SVMs therefore

focus on points on or near boundary [12]–[14]. Therefore

a SVM was trained on the existing data, and a large set

of candidate points located on the decision boundary was

generated. The point with the maximum minimum distance

to an existing point was selected for addition to the training

set. The process was then repeated on the remaining candidate

points, each time including all previously selected points in

the maximin evaluation step, until five new points had been

chosen. All points in the newly selected set were evaluated,

and the classifier retrained. This strategy is similar to that

of [13] in that it ensures that successive selected points are

located on the classification boundary, but are distant from

existing sampled points and each other. Adaptive sampling

was carried out for a total of four iterations yielding a final

total of 30 data points.

The cost parameter C was permitted to take values between

2−5 and 215, while the γ parameter for the radial basis kernel

could take values between 2−15 and 25. When sufficient data

points from both classes were observed, tuning was carried out

using cross-validation. Otherwise default settings of C = 100
and γ = 0.5 were used. All three classification methods were

trained on the same 100 LHS starting sets, allowing direct

comparisons to be made for each initial data set. Calculations

were carried out in R [15] using the e1071 [16] and LiblineaR

[17] packages.

The overall classification accuracy of each method was

assessed on a grid of 106 points after each iteration. The

median accuracies for the 100 replicates at each iteration

are shown in Fig. 2. Notice that the differences in median

accuracy between methods decrease dramatically over the
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Fig. 2. Median accuracy across initial sampling and four iterations of adaptive sample for each of the three classification methods.

TABLE I
DIRECT COMPARISON OF CONSTRAINED AND UNCONSTRAINED SVMS.

THE TABLE GIVES THE PROPORTION OF THE REPLICATES FOR WHICH THE

PARAMETRIC SVMS HAD HIGHER GLOBAL ACCURACY THAN THE RBK
SVM.

Quadratic Simulation

Sample Size 10 30

Parametric SVM 0.45 0.74

Constrained Parametric SVM 0.72 0.58

Exponential Simulation

Sample Size 10 30

Parametric SVM 0.61 0.69

Constrained Parametric SVM 0.90 0.68

four adaptive sampling iterations. Rather than considering the

magnitude of the difference in accuracy, comparisons are made

based on the proportion of simulation samples for which one

method outperformed another. Table I gives the proportion

of simulation runs for which the parametric or constrained

parametric SVMs performed better than the unconstrained

RBK SVM for the initial sample of 10 and the final sample of

30. Where p-values are mentioned in this analysis, they refer

to the binomial test with the alternative hypothesis that the

parametric SVM provides superior performance as compared

to the RBK SVM more the half of the time.

For both simulation studies, the constrained parametric

SVM is clearly outperforming the other methods for the

initial data set, reinforcing our intuition that knowledge-

based constraints add considerably to accuracy when data

is limited. In both cases a binomial test of superiority of

the constrained parametric SVM to the RBK SVM is highly

significant (p-value < 1e-5). Fig. 3 illustrates the advantage

of constrained versus unconstrained classification in this case.

The nonparametric SVM places the classification boundary

far from the true value, which both decreases accuracy for

the current iteration and decreases the value of adaptive

sampling. In contrast the constrained parametric SVM is very

close to the true boundary, and any samples chosen for the

next iteration will be of high value. For the exponential test

case, this advantage is maintained throughout the adaptive

sampling process, with a p-value of 2e-4 for a binomial test

of superiority for the complete samples. In contrast, for the

quadratic example the advantage dwindled to the point where it

is no longer significant at the 0.05 level by the fourth adaptive

sampling iteration.

For the initial sample, the unconstrained parametric SVM

underperforms the RBK for the quadratic target, though not

by a statistically significant amount. However, after four

iterations of adaptive sampling this method outperforms the

RBK SVM for both the quadratic and exponential simulations

a significant proportion of the time (p-values less than 1e-5 and

1e-4 respectively). These results suggest that the constrained

parametric SVM has a substantial advantage for small data

sets, but benefits less from adaptive sampling than does the

unconstrained parametric classifier. The version without an

intercept constraint is not always superior for initial samples,

but shows a considerable advantage over the RBK SVM after

several iterations of adaptive sampling.

Surprisingly, the advantage of the parametric SVM models

is most evident in the non-quadratic target case, with both

quadratic-based models surpassing the RBK model during

both initial and final modeling stages. This indicates that an

exact match between the functional form of the SVM and the

that of the target boundary is not necessary for an improvement

over the fully nonparametric classifier.

In no case did either of the parametric methods perform

significantly worse than the fully nonparametric model, and

in most they were significantly better. As a caveat, these sim-

ulations involved neither substantial model misspecification

nor large sample sizes. The combination of the two could

cause a parametric SVM to considerably underperform an

RBK model. When using the parametric SVM, we recommend

that diagnostics be employed to identify potential poor model

fits at each adaptive sampling iteration.

V. APPLICATION: TUNNEL BREACH CLASSIFICATION

Recall that our motivating example involves computer mod-

eling to predict tunnel breach in response to an explosive

threat. These simulations are computationally costly, so an

algorithm that provides high accuracy with fewer samples

would be of considerable value.

The test data set contains 377 breach simulations. As

described previously, each observation consists of a threat

conformation represented by charge mass and standoff, tunnel

conformation represented by wall thickness, and a breach
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or no breach label. Due to the complex nature of a breach

failure, there will be some noise near the breach boundary,

so a soft-margin SVM is appropriate. The minimum charge

weight for this data set constitutes a “threshold charge.” No

contact charge with less mass is expected to cause breach

for the thinnest tunnel wall studied. All data was rescaled

to fall between 0 and 1 prior to either nonparametric SVM

classification or fixed mapping into a higher dimensional space

for parametric SVM classification.

Once again, three competing models were considered for

this data: a standard SVM with a radial basis kernel, a para-

metric SVM without additional constraints, and a parametric

SVM with the intercept constrained to be equal to 0. The

parametric SVM treats the standoff distance as the response

variable and the charge mass and wall thickness as explanatory

variables. Thus this model identifies a “critical standoff” for

each charge mass and wall thickness: a charge of the given

size placed less than the critical distance from the wall will

be predicted to cause a breach. Our initial belief about the

shape of this classification surface is that it should be smoothly

decreasing as wall thickness increases, smoothly increasing

as charge mass increases, and not contain a large number

of inflection points. The transformation chosen will give a

classification surface of the form:

y = b0+b1x1+b2x
2
1+b3x

0.5
1 +b4x2+b5x

2
2+b6x

0.5
2 +b7x1x2

(7)

where y is the critical standoff, x1 is charge mass and x2

is wall thickness. This gives a relatively broad class of func-

tions which will generally satisfy the previously mentioned

restrictions even for fairly small amounts of data. In practice,

the intercept constraint forces the classifier to indicate that

there is no chance of breach for values less than our minimum

threshold charge.

TABLE II
ACCURACY OF METHODS ON TUNNEL BREACH DATA. SUBSETS OF THE

DATA WERE USED FOR TRAINING, AND THE REMAINING POINTS WERE

SUBSEQUENTLY PREDICTED. FOR THE FULL DATA SET, LEAVE-ONE-OUT

CROSS VALIDATION WAS USED TO ASSESS ACCURACY.

Training Set 50 100 200 300 Full Data

RBK SVM 0.670 0.765 0.684 0.714 0.836

PSVM 0.670 0.783 0.678 0.753 0.798

Const. PSVM 0.826 0.801 0.718 0.753 0.833

This data was generated using adaptive sampling, although

the original classification method was not equivalent to any

of the SVM formulations under consideration. Due to the

nonrandom nature of the sampling, the observations are not

of uniform predictive value: points which were added to the

set later tend to be closer to the classification boundary, and

therefore more difficult for a method to correctly classify.

Conversely, they are more valuable to a classifier since they

contain better information. The data set included the order

in which points were chosen for evaluation, so that it was

possible to train on the first n points sampled and test on

the remaining points. All three methods were trained on

the first 50, 100, 200, and 300 points, and tested on the

remaining values. Leave-one-out cross validation was also

used to examine the accuracy of the methods trained on the

full data set. Parameter tuning was carried out as described

in the simulation section. Results are given in Table II. Note

that accuracy does not uniformly increase as training set size

increases for any method, again due to the adaptive nature of

the sampling and the relative difficulty of predicting breach

classification for later points.

The benefits of using the intercept constrained parametric

SVM are evident for the smallest sample case, with a sub-

stantial difference for the set of size 50. For this test case,

McNemar’s test [18] comparing the accuracy of the intercept

constrained SVM and the nonparametric SVM gives a p-value

less than 10−6, indicating that the difference is statistically

significant. For the larger sample sizes, the constrained SVM

generally performs better, but the differences are not statis-

tically significant. The unconstrained parametric model was

never significantly different from the nonparametric SVM. It

appears that the primary benefit of the parametric SVM in this

case comes from the constraint placed on the intercept term.

Conversely, there is no evidence that anything is lost by using

a parametric SVM for the sample sizes under consideration.

This suggests that the potential problems caused by an overly

constrained parametric model are not in evidence here.

Fig. 4 shows the constrained parametric versus nonparamet-

ric classification boundaries at a fixed wall thickness for the

both the first 100 samples and the full data set. The classi-

fication boundaries for the full data set are very similar for

the two methods. However, the nonparametric SVM boundary

based on the first 100 data points is a poor match to the

either of the full data boundaries, in addition to failing to

respect the intercept constraint. In contrast, the constrained
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parametric SVM gives similar results for both the reduced and

full training sets. This once again emphasizes the advantage of

incorporating all available information into data classification

efforts. The improvement in performance for this reduced

sample size indicates that using a constrained parametric SVM

may lead to the identification of a reliable breach boundary

more quickly than the nonparametric alternative.

While strong conclusions should not be drawn based on a

single nonrandom data set, these results indicate that a well-

formulated parametric SVM, particularly one with an accurate

intercept constraint, could be a valuable tool for characterizing

future breach curves, particularly during the early stages of

adaptive sampling.

VI. DISCUSSION

We have presented a variant of the support vector machine

that is suited to the situation when there is a priori information

about the nature of the boundary between classes. This method

gives more interpretability to the model coefficients, which

may now be explicitly associated with particular explanatory

variables. In particular, under mild restrictions, the constraint

ρ = 0 is equivalent to the y-intercept of the decision surface

being equal to 0.

A simulation study showed the advantages of our parametric

SVM formulation over a standard radial basis kernel SVM.

The intercept constrained formulation performed particularly

well for small initial sample sizes, while the unconstrained

quadratic model performed best after successive applications

of adaptive sampling. A mild mismatch between the choice of

parametric formulation and the true functional form did not

remove these advantages.

A data set examining the vulnerability of a hypothetical

tunnel geometry to blast showed evidence that a constrained

parametric SVM could provide an improvement over a non-

parametric SVM for the purposes of modeling and adaptive

sampling. A constrained model that can rapidly refine the

search space during the early stages of sampling would reduce

the computational cost of developing reliable tunnel breach

assessments. Once trained, such a classification method can

be used to create a “fast-running” tool to examine potential
tunnel vulnerabilities. This technique could also be applied to

other classification problems where the decision boundary can

be described in an explicit functional form.
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