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Abstract—Integrating wind energy on the power grid is a
challenging task given the intermittent nature of these resources.
When the percentage of wind energy was small, control room
operators did not have a major problem in scheduling wind
resources. However, as this percentage has increased, it is clear
that the operators will need more accurate forecasts, as well
as any additional information they can exploit, to make better-
informed scheduling decisions. In this paper, we investigate
diurnal patterns observed in wind-power time series data. Using
actual wind generation data from two sites, we try to identify
these patterns, understand them better, and determine if it is
possible to use weather conditions in the vicinity of the wind
farms to predict the pattern for a day. Such analysis could
provide insights useful in scheduling wind resources on days with
inaccurate forecasts.

Index Terms—Wind power generation, diurnal patterns, pre-
diction

I. INTRODUCTION

RENEWABLE resources, such as wind, are providing an
increasing percentage of our energy requirements. How-

ever, integrating wind energy on the power grid is challenging
for several reasons. Control room operators find it difficult to
schedule wind power as it is an intermittent resource. They
typically use 0-6 hour ahead forecasts, along with the actual
generation in the previous hours, to determine the amount
of energy to schedule for the hours ahead. These forecasts
are obtained from numerical weather prediction simulations
or based on estimates of wind speed in the region of the wind
farms. However, the forecasts can be inaccurate, especially
for ramp events, where the generation suddenly increases or
decreases by a large amount in a short time.

In our previous work [1], [2], we analyzed ramp events
and identified important weather conditions associated with
them. The control room operators could then monitor these
variables to determine if a day was likely to have ramp events.
In the current work, we are interested in the situation where the
energy forecasts are inaccurate. In such cases, the control room
operators consider the energy generation for the previous few
days and hours, and based on their experience and expertise,
estimate the energy they should schedule for the upcoming
hour. However, as this approach can be somewhat ad-hoc, we
want to determine if there are ways to improve it.

In discussions on scheduling wind resources with operators
at Southern California Edison, we had observed that there ap-
peared to be a diurnal pattern in the generation for the previous
days. A closer examination of historical data confirmed the

presence of these patterns. The generation may be low and
flat on days with little wind, or it may be high and flat on
days when the wind speed is at a sustained high level for
most of the hours in the day. Or, the generation may be high
in the early hours, drop down to near zero by noon, and rise
again in the late evening. It is obvious to ask if there is a
limited number of these patterns for the wind generation at
a site? If so, can we use the expected weather conditions to
predict what kind of pattern is likely for the day?

In this paper, we analyze historical data to understand these
diurnal patterns better and to determine if we can use weather
conditions to provide the control room operators additional
information they can exploit to schedule wind energy on the
grid. We start in Section II by describing the wind and weather
data used in our work. Next, in Section III, we outline our
approach to identifying the daily patterns. Section IV describes
the results using our test-bed data sets and we conclude in
Section V with a summary and ideas for future work.

II. DATA DESCRIPTION

We conduct our analysis using data from two regions - the
Tehachapi Pass in Southern California and the Columbia Basin
region on the Oregon-Washington border. The wind generation
data are available at 15 minute intervals for the Tehachapi Pass
and at 5 minute intervals for the Columbia Basin region. While
the weather data are available at different temporal resolutions
from several meteorological towers in the two regions, we
focus on daily averages to remain consistent with the daily
patterns in the generation data.

A. Wind generation data

In our study, we use data for the years 2007-2008 from
wind farms in Tehachapi Pass that feed into the grid through
Southern California Edison (SCE) and the 2007-2009 data
from farms in the Columbia Basin region which are part of the
Bonneville Power Administration (BPA) balancing area [1],
[3]. We chose data from the recent past as any analysis of
these data is likely to be more relevant. Also, the last few
years have seen a large increase in installed wind power, which
makes this analysis timely. For example, in the BPA balancing
area, the installed wind capacity has increased from 700 MW
in 2006-2007 to over 1300 MW in 2008 and more than 2600
MW in 2009 [4], [5].

The Columbia Basin data available for the period 2007-
2009 are the total generation from all the wind farms in the
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Fig. 1. A week-long segment for wind generation: SCE, May-June 2008.

BPA balancing area [6], sampled at 5 minute intervals. There
are missing values in the data - if values were missing for
one or two consecutive intervals, they were filled-in using
interpolation, while longer periods were replaced by “-9999”
to indicate such values for future processing.

The Tehachapi Pass wind generation data are sampled
more coarsely than the Columbia Basin data. These data are
available at 15 minute intervals for the Vincent and Antelope
regions. As these regions are close by, their wind generation
is very similar, and we consider the sum of the generation in
our analysis. Also, the generation from the Antelope region
occasionally had small negative values which were replaced
by zero before being added to the data from the corresponding
interval from the Vincent region.

Figure 1 shows the wind power generation for SCE for a
week in May-June, 2008. In this short segment of the data,
there are two discernible patterns. The generation on 29 May
and 30 May starts high at midnight, drops by the middle of the
day and then rises again in the afternoon. A similar pattern,
though less pronounced, is also seen in the generation for 31
May. The generation on 1 June and 2 June are both somewhat
flat, though the 1 June data also has a drop around mid-day.
It is harder to categorize the pattern for 3 and 4 June, 2008,
at least visually by looking at the original data.

Figure 2 shows the wind power generation for BPA for a
week in January 2008. In this segment, the diurnal patterns
are initially less obvious. However, a closer look indicates
that several days have a flat pattern for most of the day, with
a rise or fall at the start or end of the day. For example, 8
January is an initial low flat, followed by a rise late in the
day. 11 January is an initial high flat (with some large dips),
followed by a fall late in the day. 13 January is a fall by
mid-morning, followed by a low flat for the rest of the day,
while 12 January is a low flat until early afternoon, when the
generation rises. The generation for 7 January and 9 January
are also very similar (though one is a slightly shifted version
of the other). 9 January could also be considered as a high
flat, which drops by mid-day.

B. Weather data

For the weather data, we used the Remote Automated
Weather Station (RAWS) data for Oregon and Southern Cal-
ifornia available from the Western Regional Climate Center

Fig. 2. A week-long segment for wind generation: BPA, January 2008.

Fig. 3. The Oregon-Washington border region, where the square box
indicates the region of the wind farms in the BPA BA. The small squares
indicate the meteorological tower locations from WRCC. The four circles
indicate the specific sites chosen in our analysis, which are at the follow-
ing latitude/longitude: Locks (45.669444, 121.881667); Patjens (45.322222,
120.925); Umatilla NWR (45.916667 119.566667); Wasco (45.61,121.33).

(http://wrcc.dri.edu). For each region, we started by consid-
ering weather stations near the area of the wind farms and
selected those which had the fewest missing values. For the
Columbia Basin region, four sites (Locks, Patjens, Umatilla,
and Wasco) had no missing values and were considered in
our analysis (see Figure 3). For the Tehachapi Pass region,
three sites (Bearvalley, Jawbone, and Piutes) met our criterion
of no missing values and were therefore used in the analysis
(see Figure 4).

As discussed in our earlier work [2], the data from each
weather station comprises of 28 variables. Some are irrelevant
to the analysis, such as the day of the year, while others
are either missing, such as the barometric pressure, or are
correlated to other variables. For example, the fuel temperature
and the soil temperature are correlated to the air temperature.
When all such variables are removed, we are left with the
following seven variables:

1 Solar Rad. total kW-hr/m2
2 Speed average m/s
3 Wind dir vector deg
4 Speed Gust m/s
5 Air temp Average deg C
6 Relative humidity Average percent
7 Precipitation Total mm

For each region, the variables from the selected weather
stations were appended to form one long vector which rep-
resented the values of the weather conditions in the region for
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Fig. 4. The Southern California region, where the white cross indicates the
Tehachapi Pass area. The small squares indicate the meteorological tower lo-
cations from WRCC. The three circles indicate the specific sites chosen in our
analysis, which are at the following latitude/longitude: Jawbone (35.294722,-
118.226389); Bearvalley (35.139722, -118.625); and Piutes (35.431667, -
118.329722), with Tehachapi Pass located at (35.102222, -118.282778).

that day.

III. ANALYSIS OF THE DATA

Our first task in the analysis was to see if we could identify
the patterns in the wind generation data. An examination of
the data indicated that we could consider the signal as being
composed of several components. For example, the segments
in Figures 1 and 2 indicate that there is i) a high frequency
noise component; ii) short term variations that last from several
minutes to a couple of hours; and iii) a longer-term trend
signal that represents the diurnal pattern. Thus, to identify the
diurnal patterns in the data, we need to pre-process the data to
remove the high-frequency noise and the short-term variation.
In the case of BPA data, we also need to address the issue of
increasing installed capacity during the years of analysis.

A. Accounting for increasing installed capacity at BPA

In our analysis of BPA data, we observed that the maximum
wind generation during a reasonably long period was linearly
correlated to the installed capacity during that period. Thus,
to account for the increasing installed capacity from 2007 to
2009, we normalized all measurement points to a common
nominal capacity C0 by scaling each point by C0/C, where
C is the installed capacity for the data point and C0 = 2617.0
MW was chosen as the largest installed capacity during the
years of analysis.

B. Removing the noise

Next, we remove the high frequency component, which
represents the measurement noise in the time series data,
by using a Fourier/frequency decomposition. Representing
the data as {y(n) : n = 0, 1, . . . , N − 1}, we obtain the
corresponding discrete Fourier transform coefficients as

Yk =
N−1∑
n=0

y(n) · e−i 2πkn
N , k = 0, 1, . . . , N − 1. (1)

Fig. 5. Reducing the noise in the time series: (left) original signal from BPA,
January 2008; (right) denoised version.

To reduce the noise, we reconstruct the signal using the fre-
quency components associated with the K largest coefficients:

ỹ(n) =
1
N

K−1∑
k=0

Yk · ei 2πkn
N , n = 0, 1, . . . , N − 1. (2)

We choose K to preserve a prescribed percentage θ of the
original time series energy:

‖ỹ(n)‖2 = θ% · ‖y(n)‖2 (3)

In our experience, a value of θ in the range between 95 to
99 worked well for our data. Figure 5 shows the results from
denoising a data segment using the above procedure, where θ
was chosen equal to 99. We used θ = 98 and θ = 99 to denoise
the year-long observations for SCE and BPA, respectively.

We note that our denoising approach is akin to the use of
principal component analysis to remove noise.

C. Removing short-term variation

Once we have reduced the noise, we observe that there
are short-term variations in the data, which last from several
minutes to an hour or two. For example, in Figure 5, the
denoised signal can be considered as composed of four peaks
and four valleys, starting with the peak on 7 January and
ending with the valley on 13 January. However, there is
variation in the generation in the time interval around these
peaks and valleys. Some of the variation is relatively small
in magnitude, for example, in the first valley in 8 January,
while in other cases, the variation can be large, as in the
peak that spans 10-11 January. These short-term variations can
hinder the identification of diurnal patterns, and they must be
removed. There are several ways in which this can be done.

A simple approach is to start by visually inspecting the data
and identifying the time range for these variations. Then, by
smoothing the signal with a Gaussian filter, whose standard
deviation σ is appropriately selected within the above range,
we can obtain a signal that makes it easier to identify the
diurnal patterns. Figure 6 illustrates this approach using a
week-long data segment. The data are smoothed using five
Gaussian filters whose σ-values range from one to five hours
in one-hour increments. When σ is equal to four or five hours,
we observe that the smoothed signal is devoid of short-term
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Fig. 6. Smoothing of a week-long data segment from BPA, January 2008,
using five Gaussian filters with σ-values ranging from one to five hours in
one-hour increments.

variations and captures the trend in the data necessary to
subsequently identify the diurnal patterns. Based on this visual
analysis, we smoothed the entire SCE and BPA data using a
σ of 2.5 hours and 4.5 hours, respectively.

We also considered other approaches that remove the short
term variation by directly determining the intrinsic scale of
the data. The application of a scale-space approach [7], [8]
indicated that to obtain the intrinsic scale, we needed to
use a σ of 2.25 hours for SCE and 4 hours for BPA. We
also considered a multi-scale analysis of the data using the
undecimated wavelet transform [9], [10] with the quadratic
spline wavelet. Our analysis indicated the intrinsic scales to
be at k = 4 and k = 6, corresponding to structures in the time
scale ranges between 1.5 to 3 hours for SCE, and between 3
and 6 hours for BPA, respectively. We observe that the three
methods all provide similar measures for the intrinsic scale
of the data. Also, our approach to removal of the short-term
variation includes the reduction of the measurement noise;
treating the denoising step separately allows us to identify
appropriate follow-on steps for analysis.

D. Identifying diurnal patterns
Having reduced the noise and removed the short-term varia-

tion in the data, the next step is to identify the diurnal patterns.
We observed that a day might typically be composed of time
periods with increasing generation, or decreasing generation,
or flat generation, where the power generation remains roughly
constant. A diurnal pattern could then be composed of these
“sub-patterns” suitably concatenated. Our task thus reduces
to identifying periods with flat, up, or down generation, and
determining in what combination they occur during a day.

An obvious solution approach is to identify peaks and
valleys in the data and use them to identify first the “sub-
patterns” and then the patterns for each day, as follows:
Finding peaks and valleys: Let the smoothed wind power
data be denoted by s = {s(n) : n = 0, 1, . . . , N − 1}, the
current data point by s(n), the candidate peak by s(p)(m),
and the candidate valley by s(v)(m). We start by selecting a
threshold T which represents the minimum amount of change
necessary to define a point as a genuine peak or valley. Algo-
rithm 1 describes how we find the peaks and valleys by starting

in a seek-a-peak state, tagging the first data point as a
candidate peak, and traversing the sequence s while alternating
between the seek-a-peak and seek-a-valley states.

Algorithm 1 Peak-valley finding algorithm
if in seek-a-peak state then

if s(n) > s(p)(m) then
s(p)(m)← s(n)
n← n + 1

end if
if s(n) + T < s(p)(m) then

s(p)(m) is declared a peak
s(v)(m)← s(n)
n← n + 1
switch to seek-a-valley state

end if
end if
if in seek-a-valley state then

if s(n) < s(v)(m) then
s(v)(m)← s(n)
n← n + 1

end if
if s(n)− T > s(v)(m) then

s(v)(m) is declared a valley
s(p)(m)← s(n)
n← n + 1
switch to the seek-a-peak state

end if
end if

Identifying patterns using peaks and valleys: Having iden-
tified the peaks and valleys in the entire time series, we now
focus on the segment for each day. To determine the “sub-
patterns” that comprise the generation for the day, we need
to identify if the first or last data-point is a peak or a valley
within the context of a day-segment. We accomplish this with
Algorithm 2 where the first and last data-points for the day
are denoted by edge1 and edge2, respectively, and the first
and last extrema-points inside a day-segment by extrema1

and extrema2, respectively.
Following the assignment of the end-points of the day-
segment, we can now tag the sub-intervals in a day with
an up (’U’) or down (’D”) sub-pattern, based on whether
the sub-interval started with a valley (peak) and ended in a
peak (valley). A day-segment will have either no tags or a
concatenation of ‘U’ and ‘D’ tags. Given a maximum number
of tags, M (2 in our case), we assign a pattern to each day as
follows:

• no tags - A day with no tags is assigned the flat
pattern: The range of values in such a segment is less
than the threshold T .

• one to M tags - A direct correspondence exists between
the sequence of tags and the assigned pattern: A day-
segment with tag-sequence ’U’ is assigned to the up
pattern, a day-segment with tag-sequence ’D’ is assigned
to the down pattern, a day-segment with the tag-sequence
’D’-’U’ is assigned to the down-up pattern, and so on.
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Algorithm 2 End-point assignment algorithm
if no peak/valley inside day-segment then

if edge1 > edge2 + T then
edge1 is a peak, edge2 is a valley

else if edge2 > edge1 + T then
edge2 is a peak, edge1 is a valley

else
neither edge1 nor edge2 is a peak/valley

end if
else

if extrema1 is a peak, extrema1 > edge1 + T then
edge1 is a valley

else if extrema1 is a valley, extrema1 < edge1 − T
then
edge1 is a peak

else if extrema2 is a peak, extrema2 > edge2+T then
edge2 is a valley

else if extrema2 is a valley, extrema2 < edge2 − T
then
edge2 is a peak

else
neither edge1 nor edge2 is a peak/valley

end if
end if

• more than M tags - A day segment with more than M
tags is assigned to the pseudo-pattern others.

Choosing the value of the threshold, T : The assignment
of patterns to days depends on the choice of the thresh-
old. Varying the threshold changes the number of detected
peaks/valleys, which, in turn, modifies the pattern assignments
for certain days. To mitigate this, we choose a threshold
that achieves maximal stability; that is, small deviations from
the threshold value lead to minimal changes in the number
of peaks/valleys detected. Figure 7 shows the number of
peaks/valleys detected as the threshold is varied from a small
value to half the maximum value of the time series. The
function has a profile with two regimes, decreasing exponen-
tially at first and then linearly. We choose as threshold the
value of T that lies between the two regimes as this choice
maximizes stability while minimizing the number of relevant
peaks/valleys that could be missed. This threshold is 100 for
the data in Figure 7. Threshold values of 100 and 300 were
used for the SCE and BPA data, respectively.
Enhancing the pattern assignment: Once the pattern for each
day in the 2007-2008 data for SCE and the 2007-2009 data for
BPA has been assigned, we verify the assignments by selecting
days at random and visually inspecting the original generation
for the day to determine if the assignment is correct. As is
often the case in these situations, while the pattern for some
days is very clear, it can be ambiguous for other days. We
saw an example of this earlier in Figure 2, where the diurnal
pattern for 7 January is ’up-down’, but one could question if
the pattern for 9 January should be ’down’ (as it starts from
a high and falls to near zero by early afternoon), or ’flat’ (as
it is high and flat for several hours), or ’up-down’ (as it is

Fig. 7. Number of peaks/valleys as function of threshold value T : SCE 2007
dataset.

slightly shifted version of the pattern on 7 January 2008).
In such cases, we have several options we could pursue. One

would be to create additional patterns, such as ’flat-up’, ’down-
flat’, ’flat-down’, ’up-flat’, or even ’flat-down-up-flat’ (for the
pattern seen for 1 June 2008 in Figure 1). We could also
have split the flat pattern into a “high-flat: and a “low-flat” to
account for the magnitude of the generation. However, having
a multitude of diurnal patterns would mean fewer examples of
each pattern, making it difficult to train a classifier to predict
the pattern. So, we focused on six patterns in our study: ’flat’,
’up’, ’down’, ’up-down’. ’down-up’, and ’others’, where the
last category was composed of patterns that did not belong to
the first five categories. Since we found several days where the
pattern was flat for a large percentage of the day, with a sharp
rise or fall at the start or end, we chose to label these patterns
as ’flat’, instead of “down” or “up”. The rationale was that
weather conditions, being daily averages, would be predictive
of the pattern that was prevalent for a majority of the day.

We also observed that sometimes, a pattern for a “day”
might be best assigned by including a small shift in the time
series. For example,the pattern for 9 January 2008 in Figure 2
could be considered an “up-down” pattern if we took into
account the rise in generation late in the day of 8 January.
However, in our assignment of patterns to days, we chose to
ignore these effects.

E. Predicting the patterns

Once we have the pattern associated with each day, we can
combine it with the weather data described in Section II-B to
create the data set for prediction. The SCE data set consists of
731 days, each represented by 21 weather conditions (i.e., the
features) and the pattern associated with the day. The BPA
data set has 1036 days described using 28 features and the
associated pattern. Our task now is to determine if we can
build a predictive model to assign a pattern to a day given
the weather conditions for the day. We note that since we are
working with historical data, we are using the actual weather
conditions for each day. In practice, if we are successful in
building a model to predict the diurnal pattern, we would be
using the forecast weather conditions for the day.

In our work, we use an ensemble of decision trees to
create the predictive model. This ensemble is generated by
introducing randomization at each node of the tree in two
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ways [11]. We first randomly sample the examples at a node
and select a fraction (we use 0.7) for further consideration.
Then, for each feature, instead of sorting these examples based
on the values of the feature as would be done at a node
of a tree [12], we create a histogram, evaluate the splitting
criterion at the mid-point of each bin of the histogram, identify
the best bin, and then select the split point randomly in this
bin. We use the Gini splitting criterion described in [12]. The
randomization is introduced both in the sampling and in the
choice of the split point and the use of the histograms speeds
up the creation of each tree in the ensemble.

IV. EXPERIMENTAL RESULTS

We next describe the result of our analysis for the SCE
and BPA data. First, in Figures 8 and 9, we show examples
of the different types of patterns found in the wind power
generation data in these two regions. The curves in black
are the original generation, while the blue curve is the trend
curve after removal of the short-term variation. We selected
patterns that illustrate our labeling procedure as well as the
challenges. For example, while many of the flat patterns are
near zero for most of the day, others have some variation,
as shown in Figure 8(a), or are flat for most, but not all,
of the day, as shown in Figure 9(a). These latter examples
of the ’flat’ pattern vary from the ’up’ or ’down’ patterns as
they have the flat part present for a larger percentage of the
day. Needless to say, there is some subjectivity in the labeling
of these patterns, though care was taken to be consistent in
the labeling. The ’others’ pattern also has some interesting
behavior. Most of these are composed of three or more ’sub-
patterns’. In particular, we found that the SCE region had
distinct patterns of the form ‘down-up-down-up’ or ’up-down-
up-down’, as shown in Figure 8(f), which were not seen in the
BPA data. While interesting, there were too few occurrences
of these patterns to assign them to a class of their own.

We also obtained some interesting insights during our use of
the Fourier transform in denoising. Figure 10 displays the well-
defined components of the frequency domain representation
of the 2007 data from SCE and BPA (the results for the
other years are similar). In the case of SCE, there are three
peaks (indicated by arrows in the figure), at frequencies 0
Hz, 0.00001158 Hz, and 0.00002316 Hz. The latter two
frequencies correspond to intervals of 23.99 hours and 11.99
hours, respectively. In contrast, BPA has only two peaks at 0
Hz and 0.00001158 Hz. The third peak in the SCE data is
reflective of the patterns composed of concatenations of four
sub-patterns.

Next, in Tables I and II, we list the percentages of the
different patterns for the two sites for the years of the analysis.
We find that the ’flat’ and the ’down-up’ patterns occur more
frequently in the SCE region accounting for nearly 75% of
the days, while the ’flat’ pattern dominates in the BPA region,
accounting for an average of 57% of the days. We also observe
that in BPA, none of the other patterns dominate, though ’up-
down’ and ’others’ tend to occur less frequently.

We also investigated the monthly distribution of the different
patterns to see if there is a seasonal variation as shown in

(a) flat pattern (b) up pattern

(c) down pattern (d) up-down pattern

(e) down-up pattern (f) others pattern

Fig. 8. Sample diurnal patterns from SCE data.

(a) flat pattern (b) up pattern

(c) down pattern (d) up-down pattern

(e) down-up pattern (f) others pattern

Fig. 9. Sample diurnal patterns from BPA data.

Figures 11 and 12. The SCE data showed a reduction in the
occurrences of the ’flat’ pattern during the summer months and
a corresponding increase in the ’down-up’ pattern. A similar,
though less pronounced, behavior is seen in the BPA region.
We also observe that the years 2007 and 2009 are similar for
BPA, while 2008 is a bit different.

Finally, we investigated the possibility of predicting the
diurnal pattern based on the weather conditions. The clear
monthly variation that we see in the SCE data indicates that
such a prediction might be possible, though it is unclear if
this will hold for the BPA site as well. Table III indicates
the percentage error rate in prediction obtained using 5 runs
of five-fold cross validation with an ensemble of 10 trees. For
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Fig. 10. Fourier domain representation of the 2007 SCE (top) and BPA
(bottom) data.

TABLE I
PERCENTAGE OF PATTERNS IN THE SCE 2007-2008 DATASETS.

Pattern SCE-2007 SCE-2008
flat 46.02 % (168 days) 49.45 % (181 days)
up 8.76 % (32 days) 8.46 % (31 days)
down 3.28 % (12 days) 2.45 % (9 days)
up-down 3.83 % (14 days) 4.09 % (15 days)
down-up 28.21 % (103 days) 26.50 % (97 days)
others 9.86 % (36 days) 9.01 % (33 days)

each site, we consider two cases - one with all the patterns and
the other with just the majority pattern(s) and the remaining
patterns all labeled as others. So, for SCE, we have ’flat’,
’down-up’, and ’others’, while for BPA we have ’flat’ and
’others’. Since there are relatively small numbers of the non-
majority patterns at the two sites, it is not clear if these
numbers are sufficient for the decision tree ensemble to learn
the patterns. The second experiment allows us to determine if
we can at least predict the majority classes with a low error
rate.

The results in Table III indicate that we can reduce the
error rate for both SCE and BPA data by combining the
non-majority classes with the ’others’ pattern. As mentioned
earlier, we suspect that this is due to an insufficient number
of examples of the non-majority patterns. When we consider
all patterns, the accuracy for the SCE site is better than for
the BPA site most likely because the two majority patterns in
SCE constitute a larger percentage (75%) of the total sample
than the one majority pattern in BPA (57%). We also observe
that the accuracy for the two sites is comparable when the
non-majority patterns are merged with the ’others’ pattern.

While these prediction results are encouraging, we believe
that there are several ways in which this study can be im-
proved. First, we need to consider the data for additional
years so we can have a reasonable number of examples of the
minority classes. With a larger data set and more examples
of each class, we may be able to define each pattern better,
leading to fewer mis-labeled days. Second, we need to revisit

TABLE II
PERCENTAGE OF PATTERNS IN THE BPA 2007-2009 DATASETS WITH THE

CORRESPONDING NUMBER OF DAYS IN PARENTHESIS.

Pattern BPA-2007 BPA-2008 BPA-2009
flat 60.27 % (220) 53.69 % (196) 57.80 % (211)
up 8.49 % (31) 15.34 % (56) 9.58 % (35)
down 10.41 % (38) 12.05 % (44) 8.21 % (30)
up-down 4.38 % (16) 5.47 % (20) 6.84 % (25)
down-up 12.05 % (44) 9.31 % (34) 11.23 % (41)
others 4.38 % (16) 4.38 % (16) 6.30 % (23)

(a) flat pattern (b) up pattern

(c) down pattern (d) up-down pattern

(e) down-up pattern (f) others pattern

Fig. 11. Monthly distributions of patterns for the SCE datasets.

the patterns identified to see if there are some patterns that
occur frequently enough that they should be considered as
a separate pattern. For example, the pattern in Figure 9(a),
though labeled as a ’flat’ as the generation is flat most of
the day, could form a category of its own if, with a larger
data set, we found that there were enough examples of such
patterns. We may also find that the few distinct patterns of
the form ‘down-up-down-up’ or ’up-down-up-down’ found in
SCE should be considered a separate class, while the ’up-
down’ pattern occurs rarely enough, even in a large data set,
to be considered in the ’others’ category. And finally, the use
of high quality weather data from additional sites might also
improve the accuracy of prediction.

V. CONCLUSIONS

In this paper, we considered the problem of identifying
diurnal patterns in wind power generation data from two sites -
Tehachapi Pass in Southern California and the Columbia Basin
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(a) flat pattern (b) up pattern

(c) down pattern (d) up-down pattern

(e) down-up pattern (f) others pattern

Fig. 12. Monthly distributions of patterns for the BPA datasets.

TABLE III
PERCENTAGE ERROR RATE IN PREDICTING THE DIURNAL PATTERNS USING

THE WEATHER CONDITIONS

Site and patterns Percentage error rate
SCE, all patterns 31.09 %
SCE, ’flat’, ’down-up’, and rest 24.77%
merged into ’others’
BPA, all patterns 37.88%
BPA, ’flat’ and rest 22.21%
merged into ’others’

region at the Washington-Oregon border. We found that it was
indeed possible to identify patterns in the data, though, given
the size of our data sets, some patterns occurred infrequently.
We also found that for SCE, there was a seasonal dependence
of the two majority patterns. Though our data sets were small,
we also obtained encouraging results in predicting the patterns
using weather conditions in the region around the wind farms.
The next step would be to repeat the analysis with data from
additional years; this would not only provide the benefits of a
larger data set, but also mitigate any effects of yearly changes
in the weather.
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