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THE FISSION ENERGETICS OF Th' 

by 

A. B. Smiths A. M. F r i edman , and R. G. Nobles 

ABSTRACT 

The distr ibution of the kinetic energy of fragments emit ted 
as a resu l t of the neutron- induced fission of thor ium-232 has 
been de te rmined . Incident neutron energies of 1475 ± 35 kev and 
1600 + 35 kev were used. The distr ibut ions determined at the 
two incident neutron energ ies a r e ident ical . The m e a s u r e d total 
average fragment kinetic energy was 155 ± 4.5 Mev. The most 
probable fragment m a s s ra t io is 1.47 ± 0.05, and the average 
kinetic energ ies of the light and heavy fragments a r e 95 ± 2 and 
60 ± 3 Mev, respec t ive ly . The exper imenta l r e su l t s have been 
re la ted to the known sys temat ics of neutron-induced and sponta­
neous f ission. The effect of collective nuclear rotat ions at the 
saddle point is d iscussed , with par t icu la r emphasis on fission 
f rom specific rotat ional bands . 

L INTRODUCTION 

The la rge kinetic energy of the mass ive fission fragments emit ted 
at neutron- induced fission is the bas i s for many applications of nulcear 
energy. Thus it is not s t range that , s ince the discovery of f ission, a la rge 
number of studies of fragment kinetic energ ies have been undertaken. Some 
of the ea r ly work dealt with the neutron- induced fission of thor ium-232. ' - ' '^^ 
The r e su l t s of these invest igat ions a r e amazingly accura te in view of the 
techniques con temporary to the per iod. However, this ea r ly work did not 
give a detai led knowledge of the thor ium-232 fission p roces s and the resu l t s 
a r e in some d isagreement with cu r ren t ly accepted sys temat ics of fission.\3) 
Recently, fragment studies of thor ium-232 fission induced by 14.9-Mev 
neutrons have given a c lear p ic ture of the p rocess at this re la t ively high 
incident neutron energy.(4) 

Soon after the d iscovery of fission, the s ingle-par t ic le aspec ts of the 
nucleus were re la ted to the cha rac t e r i s t i c fission naass asymmetry . (5) 
Recently, the theory of collective nuclear motions has been uti l ized to 
in t e rp re t the nuclear s t ruc tu re of heavy elements and has been extended 
to studies of the fission p rocess . (6 -9 ) xhe collective in terpre ta t ion of 
fission has been r emarkab ly successful in explaining the g ross and detailed 
features of the angular cor re la t ion between the incident par t ic le and the 
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fission fragment axis .(8,9) The unique dependence of the thor ium-232 fission 
fragment angular anisot ropy on the incident neutron energy has been very 
nicely in t e rp re ted in t e r m s of the collective model .C^JIO) Thor ium-232 
fission anisotropy displays a ve ry sharp shift toward 90° at incident neutron 
energies corresponding to the f i r s t "giant r e sonance" just above threshold 
(En = 1.6 Mev).^^-''' This abrupt change in anisotropy is a t t r ibuted to f issi le 
nuclei c ross ing the saddle point in energy s ta tes belonging to the K = 3/2 r o ­
tational band. At incident energ ies above or below 1.6 Mev, rotat ional bands 
cha rac t e r i zed by K ^ 3/2 a r e predominant at the saddle point and lead to l e s s 
energy-dependent and sma l l e r an iso t ropy . Thus a detailed compar ison of the 
p roper t i e s of thor ium-232 fission induced by neutrons of 1 .6 Mev with that in­
duced by neut rons of sufficiently different energy to provide l a rge contr ibu­
tions f rom rotat ional bands other than K = 3/2 should indicate how deeply 
the rotat ional s t ruc tu re at the saddle point effects the fission p r o c e s s . 

In view of the theore t ica l aspec ts of thor ium-232 fission outlined 
above and because of the growing impor tance of thor ium-232 in many nuclear 
applicat ions, this exper imenta l study of the neutron induced fission of 
thor ium-232 was under taken. 

IL EXPERIMENTAL PROCEDURE 

A SO-^gm/cm^ sample of thor ium-232 was e lec t rochemica l ly de­
posited onto a 25- f igm/cm Zapon film. This source was supported over a 
5-inch d iameter a r e a by a Lek t romesh grid.(12) The coinpleted sample was 
placed between two halves of a conventional back- to-back e lec t ron collection 
chamber. ' • '3) The chamber was carefully evacuated before each run and then 
filled to an a tmosphere and a half with a mixture of 90% argon and 10% meth­
ane . Under these conditions the resolut ion of the detector for 5-Mev alpha 
par t ic les was 1 to 2%, full width at one-half maximum. 

The voltage pulses der ived from the e lec t ron collection chamber 
were amplified and converted to digital information. This digital r e p r e s e n ­
tation of the ionization occur r ing within the chamber was recorded in such 
a manner that the one- to-one t ime cor re la t ion between the two fragments 
resul t ing from a given fission event was maintained. Final data reduction 
was c a r r i e d out with the aid of a digital computer . The actual e lectronic 
c i r cu i t ry ut i l ized is sho-wn schemat ica l ly in F ig . 1. 

The analyzed proton beam from a Van de Graaff acce le ra to r was 
used to produce neut rons by means of the Li'^(p5n)Be reaction.(14) The 
fission chamber was placed near the t a rge t . The geometry and target thick­
ness were a r r anged so as to provide a neutron energy spread of <70 kev at 
the thor ium sample . The mean energy of the incident neutrons was known 
to ± 5 kev. The chamber was frequently rota ted to avoid any possible angular-
dependent effects due to the chamber s t ruc tu re or source support . 



The exper iment was executed on th ree separa te occasions spread 
over some eighteen months . Each exper iment consis ted of four separa te 
m e a s u r e m e n t s , two at an average incident neutron energy of 1600 kev and 
two at 1475 kev. Following the m e a s u r e m e n t s , a compar ison of the 
thor ium-232 fragment energ ies with those resul t ing from californium-252" 
spontaneous fission was made .^ l^ ' l "^ The californium secondary s tandard 
was ca l ib ra ted against u ran ium-235 the rma l neutron-induced fission.(l ' / 
Since thor ium-232 and uran ium-235 fission fragment energies a r e not 
widely different, this method of energy cal ibrat ion avoids any significant 
e r r o r s due to the energy and m a s s dependence of the ionization defect.(1°) 

III. RESULTS 

The prominent c h a r a c t e r i s t i c s of thor ium fission a r e shown in Fig . 2. 
It is at once evident that t he re is no pronounced difference between thor ium 
fission induced by 1.475-Mev neutrons and that induced by 1.600—Mev neutrons a 
Actually, any differences between the two plots in Fig. 2 a r e welj within 
the s ta t i s t ica l uncer ta in ty of the m e a s u r e m e n t s . A typical "one-sided" 
fragment energy dis tr ibut ion is shown in Fig. 3. This two-dimensional 
dis tr ibut ion can be obtained from Fig . 2 by reflection of the l a t t e r about the 
line of s y m m e t r y and project ion to e i ther of the individual fragment energy 
a x e s . The apparent peak to valley ra t io in Fig . 3 is 12:1, indicating a l a rge 
fission a s y m m e t r y and good chamber resolut ion . 

Suxnming, in a one- to-one mianner, the two fragment energ ies r e su l t ­
ing from the b inary thor ium fission yields the total fragment kinetic energy 
distr ibution shown in F ig . 4 . The average total fragment kinetic energies 
at the two incident neutron energies a r e essent ia l ly equivalent. The full 
widths at half max imum of the dis t r ibut ions agree within the exper imenta l 
e r r o r of ~ ± 1.0%. Similar total energy distr ibut ions were obtained at spe­
cific m a s s r a t i o s . Although of l e s s p rec i s ion , these resu l t s c lea r ly indicate 
that the speed in total fragment kinetic energy is smal les t at the most probable 
m a s s spl i t . 

F igu res 5 and 6 show, respec t ive ly , the m a s s ra t io distr ibution and 
m a s s yield as de te rmined in this exper iment . In Fig. 6 the p r i m a r y m a s s 
yield curve obtained from chemical studies is compared with this work, 
assurjaing (19) a value of |?= 3.0. The agreement with the chemical data is 
reasonable in view of the uncer ta in t ies of the chemical measu remen t s and the 
fact that the two techniques rea l ly m e a s u r e different quant i t ies . The chemical 
values mus t be ext rapola ted over a th ree -d imens iona l c h a r g e - m a s s surface 
to the p r i r aa ry yields while the detector in this exper iment actually m e a s u r e s 
ionization, a quantity slightly dependent on the m a s s and charge of the mass ive 
p a r t i c l e s . Another ^source of possible var ia t ion between the chemical and 
ionization m a s s yield curves is the energy of incident neu t rons . In the chem­
ical studies f ission was induced by "fast" neutrons while this exper iment 
uti l ized neut rons of specific ene rg i e s . 
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The dependence of the total fragment kinetic energy on m a s s rat io 
is shown in Fig. 7. The qualitative shape of the curves is charac te r i s t i c 
of a s y m m e t r i c fission. However, the re is a ra ther more pronounced de­
c r e a s e in the total energ-y as symmet ry is approached than is evidenced 
in most fission.(15,1 7,20) 

The cha rac t e r i s t i c s of thor ium fission i l lus t ra ted in the above 
figures a r e numer ica l ly summar ized in Table I. The table also gives 
resu l t s from other pert inent work. F r o m the table it is evident that the 
fragment kinet ics of thor ium-232 fission induced by 1 .475, 1 .600 and 
14.0 Mev-neutrons a r e s imi l a r . However, a detailed comparison of this 
work with that of Protopopov et al.''*'' shows that the probabili ty of s y m ­
me t r i c fission inc reases by at leas t an order of magnitude when the inci­
dent neutron energy is r a i sed from 1.600 to 14.9 Mev. 

Table I 

THORIUM-232 FISSION PROPERTIES 

Average Incident 
Neutron Energy 

(Mev) 

1.475 

1.600 

14.9 

"fast" 

"fast" 

Average Kinetic 
Energy, Light 

F ragmen t 
(Mev) 

95 ± 2 

9 5 + 2 

9 6 * 

91 *a 

92.6*^ 

^ ' Not c o r r e c t e d for ionization 

t "Single sided" measu remen t s 

Average Kinetic 
Energy, Heavy 

F ragmen t 
(Mev) 

60 ± 3 

60 ± 3 

6 2 * 

60*a 

58.3*a 

defect. 

giving peak ra t ios 

Total Average 
Fragment Kinetic 

Energy 
(Mev) 

155 ± 4.5 

155 ± 4.5 

157 ± 4.0* 

only. 

Most Probable 
Mass Ratio 

1.47 ± 0.05 

1.47 ± 0.05 

1.43 ± 0.05 

l . S l f a 

1.59ta 

Reference 

This -work 

This -work 

4 

1 

2 

Denotes mos t probable va lues . 

IV. CONCLUSIONS 

F r o m the above experiraental resu l t s it is evident that thorium-232 
fission induced by 1 .600-Mev neutrons is experimental ly indistinguishable 
from that produced by 1 .475-Mev neut rons . The process is a highly a s y m ­
me t r i c neutron-induced fission qualitatively s imi lar to the slow neutron 
fission of u ran ium-235 . The m a s s a symmet ry and total kinetic energy of 
the fragm.ents agree very well with the sys temat ics of neutron induced and 
spontaneous fission.(l 6,3) This is i l lus t ra ted in Fig. 8. The thorium-232 
total kinetic energy continues the t rend toward decreasing energy with 
smal le r values of the pa r ame te r Z^/A^ '^^ . (21 .1 6) The mass of the 
thor ium-232 heavy fragment is 138, in agreement with the systematic 
constancy of this quantity for all f issi le nuclei that have neutron numbers 
l e s s than 152. 
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The anisot ropy of thor ium-232 fission fragments near threshold , as 
m e a s u r e d by Henkel and Brolley,(10) is shown in Fig. 9. Clear ly evident 
is the pronounced dip ino) (0°)/a)(90°) (fragment emiss ion in the direct ion of 
incident neu t rons /pe rpend icu la r f ragment emiss ion) corresponding to the 
sharp peak in the fission c r o s s sect ion. Using the Bohr collective 
model,(6j8) Willets and ChaseC^) have explained the thoriunn angular anisot­
ropy at an incident neutron energy of 1.600 Mev. Their fit to the exper i ­
menta l dis tr ibut ion of Henkel and Brol ley( l^ / is shown in F ig . 10. F r o m 
this figure it is evident that the angular distr ibution of the anisotropy tends 
to ze ro at ze ro degrees in a ve ry precipi tous manner . Such behavior in 
t e r m s of the collective model can only be obtained by fission through 
saddle point s ta tes belonging to the K = 3/2 rotat ional band. All other 
reasonable K bands resu l t in angular dis tr ibut ions tending toward zero 
degrees with zero slope. The inset in F ig . 10 shows the contributions of 
the I = 3 /2 , 5/2 and 7/2 total angular moraentum components to the K = 3/2 
band n e c e s s a r y for the exper imenta l fit. Anal-ytically, this mixture is 
given by'"^) 

a)(0) - 0.63 (LY/1 + O.lScjb^/^ + 0.33 0) '̂̂ / + 0.68 x l / 2 . 
3/2 3/2 3/2 / 

Thus it s eems c lea r from the exper imenta l and theore t ica l knowledge of 
anisot ropy that a ve ry l a rge port ion of thor ium-232 fission at an incident 
neutron energy of 1 .600 Mev proceeds through K = 3/2 rotat ion saddle 
point s t a t e s . All m e m b e r s of this band have the same parity.'"^s^/ F u r t h e r ­
m o r e it is a rgued that i = 3 neut roas a r e the major contr ibutors to this 
band. Thus the par i ty of this set of levels must be negat ive. This a s s u m p ­
tion is supported by cu r ren t optical model in terpre ta t ions of neutron 
phenomena in this energy range . \^^ / 

At a lower incident neutron energy of 1 .475 Mev, the anisotropy of 
thoriura fission is considerably sma l l e r than that at E^ = 1.600 Mev. This 
indicates that the re a r e s izable fission contributions from saddle point 
rotat ional bands other than K ~ 3 /2 . As a resu l t of the absence of any 
m e a s u r a b l e differences in f ission fragment energet ics of m a s s a s y m m e t r i e s 
at the bombarding energies of 1 .600 Mev and 1.475 Mev used in this exper i -
naent, we mus t conclude that f ragment anisotropy and energet ics a r e not 
sensi t ive to the rotat ional quantum number K. 

In the above we have, a p r i o r i , a s sumed that the collective nuclear 
motion grea t ly influences fission at and just above threshold . It may well 
be that such basic phenomena as fission a s y m m e t r y a r e rooted very deeply 
in the energe t ics of f ission. In this eventuality one would expect the 
collect ive nuclear motion to so slightly pe r tu rb the basic p roper t i e s of the 
p r o c e s s as to make the m e a s u r e m e n t of the effect exceedingly difficult. 
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(En = < 1.5 Mev) INDUCED FISSION PROCESS. 
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