Electronic structure of uranyl compounds: an XPS study

PDF Version Also Available for Download.

Description

X-ray photoemission spectroscopy (XPS) measurements are reported for a series of uranyl compounds in which the primary uranium--oxygen (U--O/sub I/) separation varies substantially. Crystal field splittings of the U 6p$sub 3$/ $sub 2$ core electron energy levels were observed. These splittings are explained with the point charge crystal field model when both first and second near uranium neighbors are considered. The systematics of charge migration (observed by monitoring electron core level shifts) associated with bonding in the uranyl series were also investigated. Core level shifts for compounds with different U--O/sub I/ separations are large, but essentially no relative shifts of ... continued below

Physical Description

9 p.

Creation Information

Veal, B.W.; Lam, D.J.; Hoekstra, H.R. & Carnall, W.T. January 1, 1975.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

X-ray photoemission spectroscopy (XPS) measurements are reported for a series of uranyl compounds in which the primary uranium--oxygen (U--O/sub I/) separation varies substantially. Crystal field splittings of the U 6p$sub 3$/ $sub 2$ core electron energy levels were observed. These splittings are explained with the point charge crystal field model when both first and second near uranium neighbors are considered. The systematics of charge migration (observed by monitoring electron core level shifts) associated with bonding in the uranyl series were also investigated. Core level shifts for compounds with different U--O/sub I/ separations are large, but essentially no relative shifts of uranium and oxygen core levels were observed within the uranyl group. Thus charge appears to flow between the uranyl group (as a unit), and the secondary uranium ligands as U--O/sub I/ is varied. The U 5f electron participation in covalent bonding was also studied by systematically measuring XPS line intensities; U 5f electron occupation appears to be minimal. (auth)

Physical Description

9 p.

Notes

Dep. NTIS

Source

  • 5. international conference on plutonium and other actinides, Baden-Baden, F.R. Germany, 10 Sep 1975

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: CONF-750915--22
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 4166083
  • Archival Resource Key: ark:/67531/metadc867478

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1975

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Oct. 11, 2017, 3:14 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Veal, B.W.; Lam, D.J.; Hoekstra, H.R. & Carnall, W.T. Electronic structure of uranyl compounds: an XPS study, article, January 1, 1975; Illinois. (digital.library.unt.edu/ark:/67531/metadc867478/: accessed August 14, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.