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ABSTRACT

The conversion of Hy.to Hy0 by reduction of CuO in fixed beds was
quite rapid at 300°C.  Residence times required for 99% conversion in
a l-in.-dia bed were 0.6 and 1.2 sec for 30% hydrogen-70% argon and 10%
hydrogen-90% argon mixtures, respectively, at a total gas flow of 1
liter/min. The CuO used was 25-mil-dia wires with a surface area of
0.01G9 m /g. The residence time required for a given value of conver-
sion decreased sbout 10% when the total flow rate was increased from
1 to 1.7 liters/min, which indicates that the reduction is mass-transfer
controlled to a slight extent under the experimentsl conditions used.
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1.0 INTRODUCTION

~ The purpose of this investigation was to-determine the conditioms
under which hydrogen can be quantitatively recovered from mixtures of
gases by oxidation over fixed beds of CuO. The recovery of hydrogen
from hydrogen-argon mixtures was studied initially, with the plan that
" the specific effects of chemically active diluent gases, such as_O2 and
CO, would be determined later.

A convenient way to recover hydrogen is to comvert it to water and
condense. the water vapor. The two most widely known methods of convert-
ing hydrogen to water are direct combination of H2 and O, at low tempera-
tures over a catalytic surface such as platinized asbestos and bed reduc-
tion of CuO at temperatures from 200 to 400°C. The bed reduction of
copper oxidé was chosen as the possibility with the best chance of success
since catalytic surfaces for Hy and Op recombination are easily poisoned
by 1mpurit1es in the gas. The effects of temperature and. of particle
size were® conflrmed by thermogravimetric studies.

Although the 1:.fc,erat'.urc—':l‘8 contains a variety of data on the re-
duction ‘of Cu0, it is mecessary to have information on.several para-
meters in order to design a plant-scale facility. Parameters included
in this study were mesh size of copper oxide, hydrogen concentration
in the ihlet gas ‘stream, temperature, flow rate, and bed length.

The"authors express sincere apprec1at10n to R. A. Suehrstedt, R. H.
Wick, and D. W, Jeffrey of the Massachusetts Institute of Technology
Englneerlng Practlce ‘School who performed a large portion of the experi-
mental work and who made many helpful sugegestions. - The authors also
acknowledge’ the belp of the groups headed by W. R. Laing, J. R. Sites,
and R. L. Sherman of the Amalytical Chemistry Division who made surface
area determinations, gas anmlyses, and x-raey identificatioms, respectively.

2.0 DISCUSSION OF RESULTS

The comversion of Hp to O on a fixed bed of CuO increased with
1ncrea31ng bed length, temperature, hydrogen/argon ratio and decreas-~
ing mesh s}ge of Cu0. Bed residence time of the gas phase was found

to be a use€ful comparative parameter. Thermodynamic data were taken
from the llterature to show theoretical conversion factors and the heat

2.1 Tempé%ﬁfﬁreTaﬁd Mesh Size o

The percentage conversion. of Hy to Hy0 increased with temperature
in both fixed bed and thermogravimetric (Figs. 1 and 2) studies (see
Sect. 3.0) and decreased with mesh size of the CuO (Fig. 3). Reduction
was rapid at temperatures approaching 300°C.. The thermogravimetric data
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are plotted as weight fraction of CuO reduced vs time since the total re-
duction time was indépendent of the mass of the oxide. Little appeared to
be gained by crushing the commercial wire-form oxide, since at 280°C the
reduction rate of the uncrushed oxide was adequate. Theoretical conversion
was not achieved in a CuO bed 6 in. long and 1 in. dla at any of the tempera-
tures investigated (Figs. 1 and 4).

2.2 Bed Length

fhe percentage conversion of H, increased as the bed length was in-
creased from O. 25 to 1.25 in. (Fig. 5). Varying the hydrogen concentration
from 1 to 30% did not change the characteristics of the reduction shown
by the curves in Fig. 5 for 30%. Complete data are tabulated in the
appendix (Sects. 5.1 and 5.2). :

In general, the reduction curves show an induction period, then an
increase in reduction rate to a maximum, and finally a slow decline.
These curves are og the general type that would be predicted from previous
kinetic studies.l The reduction behavior can be explained by reaction
at active centers .on the copper oxide followed by rapid growth of the
active nuclei as a result of the initial réaction. Thus, active centers
are first multiplied at the bed inlet where hydrogerf initially meets the
copper oxide. Because of the rapid growth of nuclei, active centers are
soon being created at a rate such that a sufficient number are available
to remove most of the hydrogen at the bed inlet before it progresses very
far down the bed. Under such conditions. the rate of conversion is nearly
constant, Finally, as the active zone approaches the end of the bed, the
number of active centers begins' to decrease rapidly and the conversion
rate drops abruptly. The length of curve corresponding to a near-constant
reduction rate should increase with increasing bed length according to this
theory, and this was observed experimentally. Also, visual observation
.showed most of the reaction taking place at the bed entrance and .a sharp
band between the copper and the copper oxide. There were a few scattered
specks of copper in the CuO about 1 mm fram the CuO-Cu bo;indary°

In an actual process the induction period could be eliminated by pre-
treating the bed with hydrogen. Hydrogen would be passed through the bed
at reduction temperature until water was produced. abundantly and then- the
hydrogen would be shut off. The bed would be flushed free of Hy and H0 '
by an inert gas and stored under inert gas for future use. Several copper
oxide beds were treated in this way and stored overnight under argon. The
following day the beds were immediately reactive to hydrogen, showing no
evidence of an induction period.

2.3 Residence Time

The percentage conversion of hydrogen increaséd with residence time
of the gas stream in the void volume of the CuO bed. at 300 C (Fig, 6).
The points on the curve are accurate to +lO% and were calculated from
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the peak values and constant conversion sections of the previously de=-
termined percentage conversion vs time curves. The detalls of the cal-
culations are shown in the appendix (Sect. 5.2). Relatively short
residence times were required for 99% conversion; about 1.2 and 0.6 sec
for 10 and 30% Ho concentrations, respectively. For long residence times
the curves approach 100% conversion asymptotically. Thus the residence
time required for 99% conversion is about twice that for 90% conversion.

One experimental determination was made with 1% Ho in order to ob-
serve the order-of-magnitude effect of a fairly low inlet Hp concentration.
With 0.4 sec residence time and a temperature of 300°C, conversion was not
very different from that with 10% Hp:

Inlet Hy Concentration, % Hy Conversion, %
1 76
10 . 84
30 , 97

This indicates that extremely long residence times will not be required for
the conversion of moderately dilute Ho streams. .

The flow rate had & minor effect on Hp conversion. Increasing the
total flow rate of the 10% Ho gas stream to 1670 cc/min increased the
conversion 15% above that at 1000 cc/m:n.n° This increase, which is slightly
greater than the experimental error (+ 10%), indicates that the reduction
is to & slight degree mass-transfer controlled under these conditions.

3.0 EXPERIMENTAL

3.1 Fixed Bed Studies

The experimental apparatus is shown schematically in Fig. 7. Hydrogen
and argon were metered through calibrated rotameters and mixed in a Y tube.
When the flow rate reached steady state, the flow was diverted through a
vertically supported silica reaction tube containing a packed bed of CuO
of known weight and length. The reaction tube was 18 in. long.and 15/16 in.
i.d. Heating was by a split-tube electric furnsce mounted vertically
around the reaction tube. After leaving the reaction tube, the gases
were passed through a drying bulb containing indicating Drierite before
entering the exit sample bottles. Inlet and exit gas samples were taken
in 100- or 300-cc sample bottles by appropriate stopcock arrangements.
Sempling times varied from 2 to 45 min depending on the bed length and
inlet hydrogen concentrations.

The inlet gas was preheated in the upper part of the reduction tube
with electrical heating tape. Wads of glass wool were placed at three
equally spaced polnts along the preheated zone to induce turbulence and
thus assure complete mixing and uniform temperature. The inlet gas tem-
perature was measured by & glass-encased thermocouple placed in the glass

«
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wool packing above the bed. ‘The temperature of the furnace was con-
trolled by an suxiliary thermocouple placed against the outside of the
reaction tube at the bed-gas interface.

In order to achieve a cylindrical bed of CuO with well-defined
edges, approximately 1 in. of sand was placed on a glass wool support
in the tube. The copper oxide was placed on the sand. Pressure taps
were located at points 1mmediately before and after the bed, and.the
pressures at these points were measured by open-end manometers. The
mancmeter fluid was Merism Red 0il, sp. gr. 0.827. The pressure drop
across the bed was approximately 5 cm of the oil and was independent
of the bed length.

The copper oxide was obtained:from Mallinckrodt as the reagent
grade wire form and was used as ohtaiﬁed. The wires were about 20 mils
dia and their length varied from about 1 to 10 mm. Chemical analysis
showed 83.8% Cu. The only impurities found by qualitative x-ray diffrac-
tion analysis were metallic copper and CunsO. The nitrogen adsorption
surface area of the material was 0.019 me/g. .

Electrolytic hydrogen was used and was purified of O, and Hp0 by
being passed through a Decxo unit and a Drierite bulb before entering
the reaction tube. The argon received only the drying treatment.

3.2 Thermogravimetric Studies

Tge experimental technique and apparatus havé been discussed else-
where One-gram samples of Cu0 and a hydrogen flow rate of 2000 cc/min
were used. S
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5.0 APPENDIX

5.1 Experimental Parameters

Bed

. . Gas Ho Wt of
Run lLength, Flow Rate, Concentration, H50 Formed,
No. in. cc/min % g

1 3.3 ' 1000 10 4 6656

2 0.75 1000 10 4.3183
3 0.375 1200 30 2.326:

oI 0.91 1200 30 L.8761
5 o,és 1209 30 1.2162
6 0.25 1000 10 0.9107

T 1.25 1200 30 7.6533
8 1.75 1000 10 4.6318

9 1.5 1670 10 7.2086

T2 1000 1 1.1936

-
e

All experiments were carried out at 300°C.

N
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62.5

80.7
1.0

2.8
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18.1

2.6
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43.6

. k9.5

51.4

52.5
55.4
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bh.1

ba.3

9.8
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89,5
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16.9

4.8
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88.0

Th.T
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_91;8"

85.8°

?8{2 .

T3

Tg5i

3.2

52,6

65.3

56.8
64.1
81.3
67.8
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5.3 Semple Calculations of Residence Time
For Run 2:

Pure Cu0 = 5.94% g/cc

Wt of Cu0 in bed = 25.4 g

Volume of CuO = 25.4/5.94 = 4.28 cc

Bulk volume of bed = (1.90)(3.14)(1.19)%

Void volume = 4.20 cc

Residence time = 4,20/1000 = 0.00420 min
unreactive bed)

8.48 cc-

"0.252 sec (based on total

To get the residence time at any time the percentage conversion-—time
cyrves are graphically integrzted to find the total quantity of Ho
reacted. The percentage of the bed that is reacted can be computed
from the hydrogen consumed. The residence time is given by the pro-
duct of the fraction of the bed unreacted and the residence time for
the initial unreacted bed. : ' -
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