Implications of high efficiency power cycles for fusion reactor design

PDF Version Also Available for Download.

Description

The implications of the High Efficiency Power Cycle for fusion reactors are examined. The proposed cycle converts most all of the high grade CTR heat input to electricity. A low grade thermal input (T approximately 100$sup 0$C) is also required, and this can be supplied at low cost geothermal energy at many locations in the U. S. Approximately 3 KW of low grade heat is required per KW of electrical output. The thermodynamics and process features of the proposed cycle are discussed. Its advantages for CTR's are that low Q machines (e.g. driven Tokamaks, mirrors) can operate with a high ... continued below

Physical Description

19 p.

Creation Information

Powell, J.R.; Usher, J. & Salzano, F.J. January 1, 1975.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The implications of the High Efficiency Power Cycle for fusion reactors are examined. The proposed cycle converts most all of the high grade CTR heat input to electricity. A low grade thermal input (T approximately 100$sup 0$C) is also required, and this can be supplied at low cost geothermal energy at many locations in the U. S. Approximately 3 KW of low grade heat is required per KW of electrical output. The thermodynamics and process features of the proposed cycle are discussed. Its advantages for CTR's are that low Q machines (e.g. driven Tokamaks, mirrors) can operate with a high (approximately 80 percent) conversion of CTR fusion energy to electricity, where with conventional power cycles no plant output could be achieved with such low Q operation. (auth)

Physical Description

19 p.

Notes

Dep. NTIS

Source

  • IEEE 6. symposium on engineering problems of fusion research, San Diego, California, USA, 17 Nov 1975

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: BNL--20716
  • Report No.: CONF-751125--137
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 4093441
  • Archival Resource Key: ark:/67531/metadc867440

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1975

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Oct. 12, 2017, 2:51 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Powell, J.R.; Usher, J. & Salzano, F.J. Implications of high efficiency power cycles for fusion reactor design, article, January 1, 1975; Upton, New York. (digital.library.unt.edu/ark:/67531/metadc867440/: accessed October 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.