Computer studies of the scattering of low energy hydrogen ions from polycrystalline solids

PDF Version Also Available for Download.

Description

Reflection of 50 eV to 10 keV H atoms from polycrystalline Cu, Nb and Au targets has been calculated using the binary collision cascade program MARLOWE. The fractions of particles and energy reflected (backscattered) increase with increasing atomic number of the target and decrease with increasing incident energy. The results indicate that the effects of polycrystallinity are modest, reducing the amorphous reflection coefficients by about 25 percent. The calculations agree quite well with the experimental data for Cu and Au, but are about a factor of two larger than is observed for Nb.

Physical Description

13 p.

Creation Information

Oen, O.S. & Robinson, M.T. February 1, 1976.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Reflection of 50 eV to 10 keV H atoms from polycrystalline Cu, Nb and Au targets has been calculated using the binary collision cascade program MARLOWE. The fractions of particles and energy reflected (backscattered) increase with increasing atomic number of the target and decrease with increasing incident energy. The results indicate that the effects of polycrystallinity are modest, reducing the amorphous reflection coefficients by about 25 percent. The calculations agree quite well with the experimental data for Cu and Au, but are about a factor of two larger than is observed for Nb.

Physical Description

13 p.

Notes

Dep. NTIS

Source

  • 2. international conference on surface effects in controlled fusion devices, San Francisco, California, United States of America (USA), 16 Feb 1976

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: CONF-760209--20
  • Grant Number: None
  • Office of Scientific & Technical Information Report Number: 4048560
  • Archival Resource Key: ark:/67531/metadc867374

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 1, 1976

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Oct. 11, 2017, 3:35 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Oen, O.S. & Robinson, M.T. Computer studies of the scattering of low energy hydrogen ions from polycrystalline solids, article, February 1, 1976; Tennessee. (digital.library.unt.edu/ark:/67531/metadc867374/: accessed June 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.