A Note on the Convergence of the Godunov Method for Impact Problems

J. W. Banks

April 19, 2012

Computers and Mathematics with Applications
Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.
A Note on the Convergence of the Godunov Method for Impact Problems

J. W. Banks
banks20@llnl.gov
7000 East Ave., L-422
Livermore, CA 94551
April 18, 2012

1 Introduction

Theoretical convergence characteristics of numerical methods for systems of nonlinear PDEs have been difficult to ascertain even in 1D. With the notable exception of the random choice method of Glimm [1] and its extensions, rigorous error bounds have remained largely elusive. This is not a situation where there is simply a hole in the theory but convergence troubles are never found in practice. There are in fact a number of well-known examples where numerical methods are known to behave poorly. Examples in a single space dimension include rarefaction shocks at sonic points [2], the so-called wall heating phenomenon [3, 4], and sub-linear convergence for linear waves [5, 6]. Often these difficulties are associated with discontinuous solutions or a lack of sufficient dissipation in the method because the nonlinear artificial dissipation inherent to the schemes goes to zero at certain points in the flow. We investigate here a new pathology where the dissipation is insufficient over a large portion of the domain. The result is convergence to a very weak solution which is nowhere differentiable and which violates an entropy condition. The exact nature of this weak solution is seen to depend heavily on the choice of time step. Admittedly this poor behavior could be eliminated with a simple linear artificial viscosity, but the intent here is simply to indicate the kind of behavior that can be found.

2 Governing equations and model problem

Consider the one-dimensional Euler equations with ideal equation of state

$$\frac{\partial}{\partial t} u + \frac{\partial}{\partial x} f(u) = 0, \tag{1}$$

where $u = [\rho, \rho u, \rho E]^T$ and $f(u) = [\rho u, \rho u^2 + p, u(\rho E + p)]^T$. Here ρ is the density, u the velocity, E the total energy per unit mass, and p the pressure. The total energy for the fluid is given by $E = e + \frac{1}{2}u^2$ where the equation of state is given by $e = \frac{p}{\rho(\gamma - 1)}$ with γ the ratio of specific heats.

We investigate an impact problem with $\gamma = 1.4$ on the domain $x \in [-.5,.5]$. The initial conditions in primitive variables are

$$[\rho, u, p] = \begin{cases}
[1.0, 2.0, \frac{1}{\gamma}] & \text{for } x < 0 \\
[1.0, -2.0, \frac{1}{\gamma}] & \text{for } x \geq 0.
\end{cases}$$

Inflow conditions are applied at domain boundaries, and we integrate to time $t_f = 0.5$.

3 Numerical results

We approximate the solution using the first-order Godunov method [7] with Roe’s approximate Riemann solver [8, 9]. Note that the results do not change in any significant way if one instead uses an exact Riemann solver, nor if one moves to a second-order or high-resolution scheme. Discretization is performed on the
Figure 1: Density (top left), pressure (top right), and a zoom of the density (bottom). In all plots the black line is the entropy satisfying solution and the red ‘x’ marks and corresponding line are the first-order Godunov approximation.

computational mesh $x_i = -0.5 + (i-1)\Delta x$ for $i = 1 \ldots m$ and $\Delta x = 1/(m-1)$. Initial conditions are applied with exact states to the left and right of the origin. For the cases considered here, $x_i \neq 0$ for any i and the initial condition is applied as an exact conservative average of the left and right conservative states.

Approximate solutions to the impact problem are shown in Figure 1. Shown are the density, pressure, and a restricted view of the density for a CFL number of 0.9 and $m = 401$. The eventual limiting behavior can already seen in the zoom of the density where the solution oscillates around the entropy satisfying solution. Because the artificial viscosity in the Godunov method is dependent on the velocity and because the exact solution has no post-shock velocity for this problem, the magnitude of the oscillations does not decrease if the post-shock velocity converges to zero fast enough in some sense. This appears to be the case and the frequency of oscillation increases in an unbounded manner as the grid resolution increases. Such an approximation will be correct in some average sense, but will not converge in an L_2 or even L_1 sense. The solution to which the numerical approximation is converging appears to be a measure valued solution, whose value at a point can be drawn from a statistical distribution. Intuitively one can think that as $\Delta x \to 0$, the approximation solution in the post-shock region is converging to a solution that lives in a band containing the exact solution. The size of that band is dependent on the details of the discretization, and most prominently the time step. Furthermore the width can be zero for certain circumstances.

We perform a convergence study using the discrete L_1 norm to judge convergence. The results are shown in the table of Figure 2. We can see that the density does not converge below approximately 5×10^{-3}. To understand the details, consider a single cell as it transitions from before to after the shock. Because the method is conservative and seems to be converging to some weak solution, the approximate shock location should be correct in the limit. However, each point travels through the shock in a slightly different manner which leads to the oscillations in density. To see this more clearly we can modify the time step such that the shock travels through a computational cell in an integral number of time steps. It is determined that the shock speed is ≈ 0.76205. For the results in Figure 1 (with CFL = 0.9 and $m = 401$), the time step is found to be $\Delta t \approx 7.496 \times 10^{-4}$. As a result, the shock travels through each cell in approximately 4.3765 time steps. For the case of $m = 401$, a time step of $\Delta t \approx 5.613 \times 10^{-4}$ corresponding to CFL ≈ 0.787, will have the shock traveling through each computational cell in exactly 5 time steps. Figure 3 demonstrates that this choice does indeed remove the post-shock density oscillations. Also in this figure we show the results for $\Delta t = 5.965 \times 10^{-4}$ corresponding to CFL ≈ 0.716 where the shock travels through one cell in exactly
Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344.
Figure 4: L_1 errors and convergence rates for density, velocity, and pressure for a time step chosen so that the shock travels through each cell in exactly 5 time steps. This corresponds to $CFL \approx 0.787$.

References

