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ABSTRACT

Recent interest in adaptive control systems has led to
considerable investigation of the problem of process identification;
that is, the problem of describing the perfofmance of an operating
control system,

In the case of a linear-lumped control system with slowly
changing performance characteristic, the process identification
problem can be solved by evaluating, as functions of time, the co-
efficients of the polynomials which constitute the transfer function
of the "undetermined" control system.

In this paper a method of estimating these coefficients is
described and its advantages and limitations are discussed. The
technique applies only to linear-lumped control systems whose zeros
are kﬁown, and hence estimates only the poles of the system, In
this technique the input and output of the undetermined system are
fed into a set of fixed, known linear éystems. These fixed systems
nay be desiéned so that they are isolated from the conditions which
cause the coefficients (or parameters) of the undetermined system to
change. The output of these fixed systems; along with the output of
the undetermined system, is fed into a computer which esfimates the
unknovn parameters, The method has three major advantages over other
techniques in this area.

1) No extraneous inputs are introduced into the

undetermined system, |

2) The accuracy of the estimation does not depend

on the time taken to evaluate the parameters,



3) Only the input and output of the undetermined
system need be available forAmeasurement. No

derivative of these signals need be taken.

After & description of the method itself, a discussion is
given concerning the accuracy of the estimation in the presence of
noise., In particular, techniques are evolved to enable choice of
the fixed'systems to lessen any error in the estimation due to noise.
Expressions are evolved for error estimation with gaussian noise and
signals., Techniques are also discussed which further lessen the
errors in the estimations once the fixed systems have béen chosen;

Finally, a computer simulation of the estimation method is
presented for a few simple cases, Conclusions drawn from the simula-
tion indicate that the method does indeed measure the unknown pafameter
and yield good results for reasonable noise levels, The simulation

also corroborates the error reduction techniques previously discussed.



TABLE OF CONTENTS

Chapter | Page
I, INTRODUCTION
Process Control of Linear-Lumped Systems . . . . . . . 2
II. DESCRIPTION OF THE METHOD
2,1 Statement of the Problem . . . . . . . .. .. . . .. 9
2,2 The Second Order System . . . . . . . . . . .. ... 9
2.3 The mth Order System . . . v 4 &+ 4 o ¢ v o o o o o . . 21
2.4 Difficulties with the Method . . . + . + o+ + . . .. 26
I1I, CHOICE OF THE FIXED PARAMETERS
3.1 General RemarksS . . . v v v ¢ o ¢ o ¢ o o o « « « . . 28

3.2 Statistical Description of the Input and Noise . . . . 31

3.3 Some Notation . . . . . . ¢« ¢+ o ¢« ¢ ¢« v 'v o o « + « . 33
3.1 The Possibillly of an Exact Solution . . . . . . . . . 37T
3.5 An Approximate Solution . . . . . . . . .. .. ... bhO

3.6 Choice of the Fixed Parameters with Unspecified Noise L6
IV, ADDITIONAL METHODS OF REDUCING THE ERRORS

L.,1 Constraining the Measurement . . . . . . . . . . . . . 52

4,2 Filtering the Computed Parameter Values . . ., . . . . G5k
V. A SIMULATION OF THE METHOD

5.1 INtroduction o « . o v v s b e oo e e e e e e .. 56

5.2 Input and Noise Signals . v . v 4 e e e e e e e e .. ST

'5.3 Simulation Procedure . . . . . ; e e e e e e e e e .‘ 58

5.4 Results of the Simulations . . . . . . . .. ... .. 63

5.5 Conclusions from the Simulations . . . . . . . . . . . 65



TABLE OF CONTENTS - Continued

Chapter

APPENDIX A Overdetermination and Least Squares . . . . . .

APPENDIX B Statistical Theory . . . . . . . « ¢ « o« « &

APPENDIX C Evaluation of (Nae—a*De)2 and (1\11)‘5‘4;*1)@)2

REFERENCES . . ¢ ¢ ¢ ¢ ¢ o o v o o o o o 0 o o o o o o o

Page
87
89
96

101

ii



Figure
F1.
F2,2-1
F2,2-2
F2.2-3
F2.3
F3.1
F5.h-1
F5.4-2
F5.4-3
F5. h-h
F5.4-5
F5.L4-6
F5. 47
F5.4-8
F5.4-9
F5.4-10
Fs.ﬁ-ll
F5.k-12
F5.4-13
F5.h-1k
F5.4-15
F5.4-16
F5.4-17
F5.4-18

LIST OF FIGURES

Flow Diagram of Proposed Solution . . . . . . . . . . .
Second Order Solutién e e e s e e e e e e e e e
Suggested Analog Circuit for Fixed System Hi e e e
Simplified Second Order Solutiom . . . . . . . . . .
Proposed mﬁh Order System ., . . . . .

Placement of tﬁe Noise . . .. ..+ . .. ...

a: vs Time for Conditions All and A21 . , . .

ag vs Time for Conditions Al2 and A22 .

a: vs Time for Conditions Al3 and A23 ., .

a% vs Time for Conditions A1l and A2k ... .
ag vs Time for Conditioné Al15 and A25 . . .

bg vs Tinme fqr Conditions All and A2l . .

bg vs Time for Conditions Al2 and A22

b: vs Time for Conditions Al3 and A23 . . .
b* vs Time for Conditions Alh and A2k ..

b: vs Time for Conditions Al5 and A25 , . . . .

RMS Errors vs Noise to Signal Ratio for Condition A .
RMS Errors vs Noise to Signal Ratio for Condition B . .
RMS Errors vs Noise to Signal Ratio for Condition C .
RMS Errors vs Noise to Signal Ratio for Condition D .
Mean Errors vs Noise to Signal Ratio for Condition A
Mean Errors vs Noise to Signal Ratio for Condition B
Mean Errors vs Noise to Signal Ratio for Condition ©

Meén Errors vs Noise to Signal Reiio for Condition D .

Page

18
19
20

25

69
T0
et

73
Th
75
76
77
78
9

81
| 82
83
8l
85
86

iii



CHAPTER I

INTRODUCTION

In recent years there has been an increasing interest in the
so-called "adaptive" control systems. In general, the term adap-
tive is applied to systems which are capable of maintaining pfoper
performance over a wide range of environmental conditions. Alﬁost
all feedback control systems are somewhat adaptive in’that they are
not sensitive to small changes in their system parameters caused
by a changing environment. However, thé term adaptive is usually
reserved for the more exotic systems in which a deliberate effort
is made to overcome the effects of the environment on the system
performancg.

Many différent techniques have been proposed for designing
systems to be adaptive. One significant ¢lass of methods involves
the continuing measurement of the system function, and on the basis
of this information adjusts the compensation to bring the overall
system performaﬂce within the design specifications.

In this paper a technique for measuring the system function
of an operating system is proposed and its advantages and limita-
tions are investigated. The technique is restricted to the analy-
sis of linear-lumped systems, or systems ﬁhich can reasonably be
approximated by a linear-lumped system. The class of systems con-
sidered here is a very significant one.

The modification of the compénsation in view of the infor-
mation provided by this measurement is not discussed in this paper

as the two parts of the problem are quite distinct.



PROCESS IDENTIFICATION OF LINEAR-LUMPED SYSTEMS

The problem of describing the performance qf an operating
control system, often called "process identification," [h]* has been
studied for many years and from many points of view. Even restric-
ting ourselves to linear-lumped time-invariant systems, we find
that there are numerous fuﬁctions which can be used to describe
thé system, and varied techniques for measuring the various func¢-
tions and/of the parameters involved in them.

Probebly the three most common ways of describing a linear-
lunmped , time-invafiant system are the following:

1. Differential Equation.

n i m
a. d _t) = d_?fg_t_. i a_,8.#0
1 1 n’ ' m
= dt = .
1=0 =0

where x and y represent, respectively, the input and the output of

the system, and the oy and B, are parameters which campletely char-

J

acterize the system.

2. Transfer Function (frequency response).

m
E: B. s'j
J
H(s) = J{———- 3 o, 8 #0
where the coefficients.ai and 8, again characterize the system, and

J

are the same. parameters that appeéf in the differential equation.

*
Square brackets denote references.



3. Impulse Response. For this restricted class of systems

the output response of the system to an input of the form of an

impulse can be written as

n
-c .t -clit t

. ~C
h(t) = EZ(Kbi'e o+ ik e o+ K e m
1=0

The Ki and c, again completely characterize the system.

i

In theory, all of these descriptions are equivalent, since
any one of them can be derived from any other. When it comes to
practical matters, however, thére'is considerable difference in de-
termining the system paraﬁeters from physical measurements. To il-
Justrate the sort of difficulties that arise in the practical meas-
urement of system parameters, three techniques are discussed in the
examples below. These are not necessarily the best methods avail-
able, but are rgpresentative of the general approaches to the prob-
lem.
Example 1

The first method is based on the direct use of the differ-
ential equation describing the systeﬁ. If the input. and output; to-
gether with pértinent derivatives, are measured at a set of points,

t

K’ & set of linear simultaneous equations can be set up

| i“ ) ;m:edjx(tk)
=70 ad? = 9 add

=0, 1, vo., ntm+1 bty Fty 1f 1 F 5.

=

The solution of this set of equations will give the oy and Bj

.which characterize the system.



The major disadvantage of this method is that it is generally
very sensitive to any errors which might occur in the values of x, ¥y,
or their derivatives. This difficulty is compounded by the fact that
the derivatives are not ﬁormally avallable, and when they are measured
by differentiating the input and output signals, the noise may be am-
plified very seriously.

The advanluges of this method are that it can use the input
and output signals that occur naturally in the operation of the sys-

- tem, and the evaluation of the parameters requiresiqnly a finite,
rather short, period of tine.
Example 2

The second method invol#es a direct measurement of the fre-
quency response. A very common method of characterizing a system
is to'measure its steady-state response to applied sinusoids of dif-
ferent frequencies. The coefficients of the transfer function can
then be determined from the solution of a set of simultaneous linear
equations; or, if the freguency response is measgred as a contigabﬁé
function of freguency, by certain techniques for approximating a curve
by rational functions. |

The major disadvantage of this method is the use of a-generally
extraneous input signal, the sinusoid. While this is often quite satis-
factory for a piece of equipment in the laboratory, it can be quite
disconcerting to use such a fest signal on an aircraft in actual
flight. Also, as the sinusoidal response must be measured after the
transients have decayed, the time required to perform a reasonably
complete frequency response test is likely to be excessive for a sys-
tem whose characteristics can change moderately quickly,‘such as a

rocket.



Examgle 3

The third method uses an autocorrelation téchnique. In a
preceding paragraph we mentioned the general undesirabilit& of intro-
ducing specific inputs to an operating control.system. An input
which is generally undesirable but which tends to minimize the un--
desirable effect on the output is white hoise. This characteristic
of white noise leads to an interesting method described by Truxal [h],‘
vhich uses white nolse as follows:

It is well known that if ¢x(7) represents the autocorrelation
function of a .stationary ergodic random process (Appendix B) which is
the input to a linear-luhped time-invariant system whose weighting )
function is h(t), the cross correlation function of the input, x(t),

and the output, y(t), is given by

o |
MOE J n(r)g (t-1) ar

o]

The time-invariént property of the system has been chosen since we as-
sume the system parameters remain essentially constant over'the periad
iof time that it takes to compute the weighting function of the undeter-
mined system with suitable accuracy.

Now, if the input is white noise,
g (t-T) = K&(t-1 )5
where § is the Dirac delta function. Hence,

WOE Ki(t)



Consequently, if we introduce white noise into the input of the undeter-
mined system and perform the integration above, we may compute the
welghting function of the system. Knowing the weighting function of the
system, we have, at least in implicit form, all desirable information
as to system operation. ‘

. Unfortunately, besides the existence of & generally undesirsble
output, this method involves an extremely difficult computation; namely,
the computation of ¢xy To .compute ¢xy infinite delay is theoretically
necessary, and hence considerable time delay may be necessary to yield
reasonable a.ccuracjr. Consequently, we can evaluate the system weighting
function only at discrete, perhaps widely spaced, times. Sufficiently
accurate computation may therefore place serious restrictions on the
@dm possible rate of change éf the system parameters.

Another objection to this method is that the decom’pésition of
the \;'eighting function, given in some analog or digital form as an
explicit time funetion, into useful information may be an extremely
difficult procedure. |

In view of the discussion of the above methods, one can list
a number of desirable characteristics for a process identification method
to be used in a system which is to adapt itself to significant changes
in its operating environment.

1. DNo extraneous inputs. The technique should make use of

the normal input and output of the system while it is in
actual operation.

2. Finite evaluation time. If changes in the system parameters

are to be detected, the evaluation time must be sharter than



the period of time in which significant changes can occur.

3. Reasonable accuracy.

In the next chapter a new method of process identification is
proposed which attempts to meet these reéuirements. We call the process
we desire to identify the "undetermined" system. Briefly, in this
technique the input and output of the undetermined system are fed into
a set of fixed, known linear syétems. These fixed systems may easily
be designed such that they are independent‘of the c&nditions which
cause the parameters of the undetermined system to change. The outppts
of these fixed systems, along with the outpﬁt of the undetermined sys-
tem are fed into a computer which generates a set of outputs which are
estimates of the unknown parameters. A simplified block diagram of the
procéss is shown in Fig. F 1.

After a baslc discussion of the new method and the derivaiion
of the equations involved in the computation, the major part of this
paper is devoted to the problem of selection of the fixed systems in
order to minimize the error in the estimated parameter values. Be-
céuse of the complexity of the computation and its basic nonlinear
nature, an exact solution for the optimum choice of fixed systems was

not obtained; however, criteria for selecting the fixed systems to

-obtain"good" performance are presented. This proposed method was

similated on a computer, and the results are presented in the final

chapter.
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CHAFTER IIX
DESCRIPTION OF THE METHOD

2.1 Statement of the Problem

We assume that, ve have an undetermined linear-lumped, un-
conditionally stable, operating control system whose transfer func-

tion H(s) is represented by

H(s) = 6(s)(s) = &(s) s #0 - (21)

1

oo
§:cis
1=0

Since H(s) is a ratio of polynomiais in s, the factoring of H(s)
into G(s) and K(s) is always possible, and G(s) is a ratio of poly-
nomials in s.

We restrict the discussion to those systems whose G(s)
is known throughout the history of. system operation, but that K(s)
changes in a manner which can be suitably represented by varying
at least some of the {ci} slowly with time in some unspecified
fashion. In effect, we have stated that all of the zeros, if any,
of H(s) are known, but at least some of the poles are not known.

It is our purpose here to develop a method for measuring
the {ci} throughout -the history of system operation, while the un-
determined system is performing its control function. We shall call

the {ci} the "undetermined parameters" of the undetermined system.

2.2 The Second Order System

Although the method presented in this paper is applicable

to any control. system which obeys the restrictions of section 2.1,
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we shall first describe the method as applied to a Siméle second
order undetermined system.‘ A discussion of the mﬁh order system
will be fognd in section 2.3. A control system which is, or may
be closely approximated by, a second order lumped -linear system
is commonly encountered in practice; and hence a detailed analy-
sis‘of the method as applied to such a system is of considerable
importance. Bxccpt for pection 2.3 we shall devate the remainder
of this paper Lo the second arder system described in this section.

We assume that the undetermined system contains no zerosg
end that the zero frequency gain remains constant at unity. The
natural frequency, W and the damping factor, (; howéver; do vary
in some manner. For such a system, G(s) = 1, and the transfer
function is given b&

-1

as2 + bs + 1

H(s) =

It is our purpose to measure a and b while the system is
performing its control functions. Knowledge of the undetermined
parameters a and b immediately yield the natural frequency and

damping factor via the simple relations

Nj—

w_= l/a

[/
i}

bwn/2

O

o
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Consider two other systems whose transfer functions are

. given by

1]

H.(s)
1 a152 + b,s + 1

8,78y, 170,

H.(s)
.2 a.sc +b.s+1

where a), 8y, b15 and b2 are known and fixed. We shall call these
constants the "fixed parameters" and the systems represented by Hy
and H, the "fixed systems." We stipulate that the fixed systems
are unconditionally stable.

Let x(t) be the input to the undetermined system and let

)

X(s) be the Laplace transform of this input. We define
Y(s) = H(s)X(s)
Y, (s) = H (s)x(s)
Y, (s) = Hy(s)x(s) Vi

We also formally define the quantities a{, ag, bi, and b;

by the relationships

af + a ag +a, =a

(2.2-1)

i
o
%
-+
o
!

o

x +
bf *+ by =DbF *+ b,
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Consider the differences Yl - Y and Y2 -Y

Y, -Y=HX-HK-= (Hi-H)X i=1, 2

hence,

Y-y=__.__]:.__..___;._]:_...__j(

5240, s+l asc+bs+l ) N
iv o

| %4

=F_ 1 ) 1 «

2 * 2 4 (p¥+b, ) -
Lais o, s+l (aifai )s (bi bi) ¥ 1

a»i%sg + bs
X

#

(a, s2+bi s+1 )(as+bs+l)

In terms of the transfer functions defined previously,

we have,

o]
1
4
[H

a¥%soH, IX. + bYoH, X
1 1 1 1

i=1, 2 (2.2-2)

2
* * )
ais HiY + biSHiY .

From (2.2-1) we may express a¥ and b"z" in terms ot a¥ and

¥
"

¥% -
2=8 ta -a,

o'
ES
N

* -
B S

114

With these relationships we may rewrite, with some rearrange-
[ 28
ment, equations (2.2-2) as the two equations
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A
: 2
tlr' : .Y = a¥ ¥
| | Yl Y als HlY + blSHlY
(2.2-3)
2 2
- - - - - = *
Y, - Y (a1 a2)s H,Y (bl b2)sH2Y a¥s“H,Y + bisH Y

It would now be advantageous to move to the time domain.

1

Using the symbol L™ to denote the inverse Laplace transform, we

define the following Laplace transform pairs:

x(t) = L7X(s))
y() = L¥(e)]
v, (8) = LMY, ()] i=1,2

that is, x is the input to the undetermined systeﬁ, y is the output
of the undetermined system, and y, is the output of the i £ixed
system whose input is x.

Equations (2.2-3) contain terms of the form stiY. We

\ formally denote these expressions in the time domain as
z§3)(t) = L'l[stiY] i=1,2; j-1,2

that is, zgj) is the output of the ith fixed system whose transfer
function is sJHi and whose input is the output of the undetermined
system. It is not without reason that the notation above implies

differentiation. If the initial conditions on all time functions
aboVe were zero we could write

J
a zi(t)

, (3)y
5 Zi (t) = dtj



If the measurement of the undetermined parameters is begun when all
systems are at rest; i.e., when all signals (except perhaps x(t))
and all of théir derivatives are zero, zero initial conditions are
assured. If the initial conditions are not alluzero, the stability
of the fixed and undetermined systems assures that the effect of non-
zero initial conditions will become negligivle within a relatively
short time in the history_of system operation. With these considera-
tions in mind we take z§j) to be the jth derivative of the function
gét) for the remainder of the paper. |
With this notation, equations (2.2-3) can be written in the

time domain as

’ - "
Yy - v = afz) +bizy
(2.2-4)
. " ' =
Yp - ¥ - (al-ag)zg - (b14b2)22

]
i

N
=
o’
sk

3

Equations (2.2-4) represent two simultaneous linear alge-
braic equations in the two unknowns ai and b{. Once these unknowns -
have been found, the undetermined parameters a and b may be evaluated
from equations (2.2-1). s

Solution of (2.2-4) can be accomplished by Cramer's Rule,

(1] yielding

by, 31z - [yé-y (2, -8, )25 (bl b, )z} 2]

8-9](:- ' ] []
202 - ZpZ)
(2.2-5)
o [yq—y ~(a, -8, )z) (bl b, )2372) - [y -ylzg
l 1t

4 [N
2025 = 2p2)

™
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It should be noted that similar equations could have been
written for the unknowns ag and bg by a parallel development, but
that either pair will allow calculation of a and b.

A detailed discussion of the terms of (2.2-5) is now in
order. The constants (al-ae) and (b14b2) are known and fixed. The
function y(t) is the output of the undetermined system. The functions
yi(t) and yé(t) are the outputs of the two fiked systems whose trans-
fer functions are, respectivély, Hl and'HQ and whose input is the input
to the undetermined system. The functions zi, zi, zg, and zé are
the outputs of a set of fixed systems whose transfer funcfions'are,
respectively, SQHl’gSHl’ 52H2,
the output of the undetermined system. The signal flow is diagram-

and sH,, and vhose input is y(t),

med in figure F2.2-1. We observe that all'of'these signals are
explicitly available.

A question naturally arises as to the desirability of cal-
culating the derivativeé of y(t), as the operations SjHiY seen to
imply. Actually no differentiation as such takes place. The systems,
sti, which appear to imply differentiation, never contain higher
powers of s in the numerator thén in the denominator. The important
consequence of this fact is that the differehtiation implied by SJHi
can be accomplished internal to the operation Bi. A suggested analog
circuit for H,, J=1,2, is shown in figure F2.2-2. It is seen from
thig figure that the outputs, zgj), of the systems represented by
sti are all explicitly available in the one circuit représented by
Hi' It is to be observed that this circuit doeg not explicitly dif-

ferentiate the output of the undetermined system and hence does not



generally tend to amplify any noise which may accompany y(t). We
may now replace the portion of F2.2-1 within the dashed lines by one
circuit and represent the signal flow by figure F2.2-3..

In sumation, equations (2.2-4) are two éimulfanepus linear
algebraic equations in the two unknowns af and bf. Once these un-
knowns have been found, the undetermined barametérs, and hence the
transfer function of the undetermined system, may be evaluated from
equations (2.2-1). The signals x(t), y(t), 'y'i(t) and z§‘j )(t)' can |
all be easily made explicitly aveilable Tor the computation (p.2-5).

It must be emphasized that the fixed systems are independent

16

of the undetermined system, and thus may be insulated from the condi-

tions which cause changes in the undetermined parameters. The fixed

systems can bec relatively simple networks built fram simple clectronic

components. Since the fixed parameters are parameters of the fixed
systems only, these parameters may be held constant.

The proposed method does indeed embody advantageous features

mentioned in section i.2. Only the input and output of the undetermined

system is used as measurable information. No extraneous inpuls are
introduced into the undetermined system. The evaluation of (2.2-5)
may be accomplished by continuous time analog devices or discrete
time digital devices, or some combination of both. If a discrete
- time implementation of the method is emplbyed, the accuracy of the
measurement is not affected by the time interval between measurements
Further advantages are available in using the method: No
restriction has been made .on the input to the undetermined system.

Since the fixed systems can be designed so that they do not "load"

-

.y

W
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the undetermined system, the independence of the control operation

from the measurement is assured.

After the derivation of the measurement équations for the
more general undetermined system, in the following section, some
of the practical proi)lems in the application of the method wiil be

discussed.
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2.3 The m'" Order Undetermined System

In this section we shall present a mare general development
of the mgterial of section 2.2. For simplicity, certain algebraic
manipulations and discussion material which seems redundant to section
2.2 will not be presented.

By the mth order undetermined system, we ﬁean that the por-
tion of the transfer function of the undetermined system which con-
tains the undetermined parameters is of order m. With this defini-

tion we write the transfer function of the undetermined system as

Hy(s) = G(s)K(s) = G(s) = ;5  c .70

We specify that the undetermined system be unconditionally stable.

The only restrictions we impose on G(s) is that it be linear, of

finite order, and remain fixed throughout the history of operation

of the undetermined system. The { Coj} are the undetermined parameters.

Let there be mtl other unconditionally stable fixed systems

with transfer functions

H(s) = 6(s)K,(s) = 6(s) =—-3— ;  i=1, 2, ..., mH

m s
E c, sY
1d
L] J=0

The {cij} are the fixed parameters. The only condition we impose

upon them, except finiteness, is that for any chosen j; c.. = ¢

i kj
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if and only if i=k.

As before, we define the parameter cgj by the relation

¢ + cyj =cyy i=1, 2, ..., ml; §j=0, 1, ..., m (2.3-1)

We also define the output of the ith system
Y,(s) = H (s)X(s) = G(s)k, (s)x(s)  1=0,1,...,m*1

where X(s) is the Laplace transform of the input, x(t), to the
undetermined system.

We write the mtl differences

Y. - Y =HX-HX
1 [e]

= _ ‘ ——— G(s)X(s)

i=1,2,...,mtl

J=0,1,...m

- = * 'j =
Y, - Y z; cys K, Y (2.3-2)

For any fixed j, c, . +c¥*, = +C§j’ from equations (2.3-1)

+ =
1i37%15 T %y

We may therefore express equations (2.3-2) in terms of any one set

* .

of ciJ

transfer functions_(Hi,Ki) of the fixed systems, provided no two

We may also assign any non-zero subscript to any of the
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‘Hi'or Ki are assigned the same subscript. Let us therefore express

all the c¥, in terms of the set ¢¥.,. We have, for each j,
1] ) ’

c¥, =¢.. -¢C + c¥

157 %5 " %5 7 %4 3o 151, 2, .., kL

Equations (2.2-2) now become, with a slight rearrangement
- - - ) j = Z * ‘j -
Y, - Y, Z;(clj cij)s K.Y, 4 cfys K, Y, (2.3-3)

i=1, 2, ..., ml

J=o0, 1, e, m

Using the definitions of section 2.2, we express (2.3-3) in the

time domain as

Yy =¥ - ; (clj'cij )zgj) = ;c'{jzgj) (2.3-4)

¢

i=1, 2, ..., mtl; j=0, 1, ..., m

Eqpétions (2.3-&) are mt+l linear, simultaneous, algebraic equétions
in the m+l unknowns cfj. All time functions needed to generate
equations (é.3-h) are easily available from the undetermined ‘system
and the fixed systems.

The only impprtant point in this section, other than the
extension to mtl unknowns, is that zgj) is defined to be the inverse
Laplace transform of {stiYo}; that is, the fixed systems whose input

3 is the output of the undetermined system do not contain G(s) in their



transfer functions. This point was not brought out in section 2.1
because G(s) was set to unity in that section. Tne n® order case
is diagrammed in figure F2.3.

It should again be observed that no actual differentiation
of y(t) fakes place, as seemingly implied by the operation sJKiY,
since the order of the denominator of Ki(s) is always equal to or

higher than j.
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2.4 Difficulties with the ﬁethod

| The major difficulty with the method is obviously the
problem of accurate solution of equations (2.2-4). Accurate solution
of a set of linear simultaneous equations is often a difficult task,
especially if the order of the equations is high. Computational
errars such as round-off and-errors in signal measurement due to
noise phenomena may present problems. These errors are especially
severe if the signal level is small compared to the noise and com-
putational levels.

The method does not preclude overdetermination and least
squares solution, a process which usuélly tends to alleviate the
accuracy problem. We shall not discuss this procedure here, but a
brief discussion of'this approach can be found in Appendix A.

The accuracy problem is particularly serious if the deter-
minant of the coefficient matrix is singular, or almost singular.
When the system is at rest, the value of this determinant will be
identically zero, in the absence of noise or ¢omputational erruﬁ, arsl
the equationc will become indeterminant.. An indeterminancy will
also result if the value of this determinant passes through zero
(we have no reason to assume that this situation is not possible).
The indeterminancy due to the rest condition is not surprising since
no information about its performance is available from a system at
rest.

In the presence of computational and/or noise errors it

is evident that our results will be virtually meaningless when the

Y
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value of the coefficient determinant is near zero. -It therefore
'appears.imperitive that any implementation of the method ‘provide a
procedure for alleviating this problem.

It should be noted that, while all the systems involved
are assumed linear, and the basic problem of method accuracy is the
solution of a set of linear.algebraic equations, ‘the computed values
af and b¥ (o; c{j) are not linear with respect to the various coef-
ficients in the set of equations. In particular, the results of the
computation depend in a nonlinear fashion on the input x(t), any
noise that might be introduced into the system, and the set of fixed
parameters chosen for the fixed systems. As will soon become ap-
parent, this fact of nonlinearity considerably complicates the
problem of optimizing the accuracy of this method of parameter meas-
urement.

The remainder of this paper will be devoted to the deter-
minant zero-crossing problem and accuracy of parameter measurement
in the presence of noise. In order to keep the complexity of the
problem to & reasonable level, we shall restrict ourselves to the
second order system; and hence to the accuracy of the computation

described in equations (2.2-5).
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CHAPTER III
CHOICE OF THE FIXED PARAMETERS

3.1 General Remarké

In this chapter we shall be concerned with choosing the
fixed parameters so as to minimize errors in the computation (2.2-5)
which are caused by noise. Under certain simplifying assumptions.,
‘techniques will be developed which enable us 1o make a Jjudicious
‘choice of the fixed parameters.

The firct acsumption is that no error is caused by any‘de-
vice usea to perform the computation. In the final énalysis, fac-
tors such as size, cost, etc. would determine thé computational ac-
curacy in terms of hardware and computer sdphisfication.

The second assumption is that tﬁe fixéd systems generate no
noise in themselves, and are unaffected by the environmental changes
which affect the undertermined system. Since the fixed systems Hl
and H2 can eaoily be ieolated from the undetermined system, they
may be designed to relatively severe specifications.

Thirdly, we assume that the input to the undetermined system
is also the input to the fixed systems which generate Yl and Y2. Thus
any noise that might be superimposed on the original input merely be-
comes part of the actual input and produces no error inAthe measure-
ment. It is of course possible that the input. to the undetermined

system must be fed through a cable and/or transducer to provide input

to the fixed systems. 1In this event, we assume that any noise caused
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by this transmission is negligible.

With these restrictions on the noise we must assume that any
and all nolse is generated within or at the output of the undeter-
mined system. Since a “perfect" computer and "perfect" (in the sense
of zero noise generation) fixed systems have been assumed, it is
evident that all noise must pass through the fixed systems which gen-
erate the zgj).r The order of ihe fixed systems is specified by the
undetermined system. Consequently,'once the input to the undetermin-
ed system, the undetermined system itself, and the noise have been
specified, only the choice of the fixed parameters is‘available to
attempt to reduce ﬁny error in the measurement.

The importance of the fixed parameters with respect to er-
ror reduction may easily be seen from the fact that if the two fixed
systems are chosen to be identical to eéch other, solution of (2.2-4)
is not even possible. It is then at least intuitively evident that
with specified input, noise, and undetermined system, there must
exist sets of fixed parameters which allo& less error in the measure-
ment than other sets of fixed parameters under the same set of given
conditions.

In order to make a suitable choice of the fixed parameters

we must have some knowledge of the input to the undetermined system,

x(t), and the noise. In general, we may not specify the input and

noise as known functions of time, but it must be assumed that we have

at least some statistical knowledge of these functions. Indeed, if

the input and/or noise were known functions of time it is conceivable
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N
that another, more generally accurate, method could be devised to
ﬁeasure the undetermined parameters.

The computer and fixed systems have been'eliminated as
noise generators in the sense that if any noiseé appears on their out- .
puts it is wholly attributable to noise on their inputs. The input
x(t) is not subject to noi;e for reasons discussed above. Conse-
quently, any noise in the overall system must be that noise. which
appears at the output of the undetermined system. We shall there-
fore assume that the output of the undetermined system appears as
y(t)+e(t), where e(t) is the noise and y(t) is the noiseless output
of the undetermined systcm dﬁe"to.thé input x(t).

In the technigues'of error -reduction discussed below it is
often necessary to specify the unaétermined parameters. We are not
begging the question by specifyihg what we wish to Tind, but are mere-
ly pointing out that the results found from error reduction compu-
tation are themselves functions of the undetermined parameters. In
general, if a best (in the sense of error reduction) set of fixed
parameters is chosen, this set 1s best only for a certain set of un-
determined parameters. Fortunately, this set should be a "good"
set for relatively small variations in the fixed parameters. 1If
the measurement is being used to control the undetermined parameters,
no difficulties arise if the control is adequate, since the undeter-
mined parameters will always-be near some specified operating point.

In the remainder of this chapter we shall discuss the statis;

tical description of the signals and noise and present methods for



choosing the fixed parameters which tend to minimize the error in

the measurement of the undetermined parameters.

3.2 Statistical Description of the Input and Noise

In the analysis below we shall represent x(t) and e(t) as
two sample functions of two independentvstationary ergodic gaussian
random processes with zero mean and known power spectral density.
The above properties have been chosen because such processes are
often reasonable approximations to the actual phenonema, and are
mathematically tréctable. Besides assuming that e(t) is independent
of x(t), we assume that e(t) is independent of the overall system

configuration; that is, e(t) is in no way dependent on H, or H,_,

1 2

nor on the undetermined system, nor on any device used to solve
(2.2-4). The ergodic property states that averages across the en-
semble; i.e., "across the process," may be replaced with averages
across time of a sample function. The stationary assumption assures
that the statistical properties of the processes will be indepeﬁdent
of time. A gaussian process has been chosen because such a process
is "highly random" and is capable of relatively simple analysis.
Further discussion of these concepts may be found in Appendix B.

- The control designer often has little information about what
fgnctions his system will be subject to in the field beyond the fre-
quency content ‘of the input and of the noise. When the power spec-
tral density (PSD) of the input and noise are specified it is not

necessarily implied that these representations apply exactly to these

functions. What is implied is that this representation is the best
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available. Also implied is that this representation defines the
frequency region over which we desire the measurement of the unde-
termined parameters to be more accurate with respect to the choice
of the fixed parameters. For instance, if we cut off these spectra
at some frequency, we only imply that we are not particularly con-
cerned with (say) the high frequency portion of the spectra.

We have chosen x(t) and e(t) to be sample functions of ran-
dom processes. Tt therefore follows that the outputs of the unde-

termined and fixed systems are also sample functions of random

processes, related to their inputs by linesr transformations. Due

to the statistical nature of the signals and noise, it is evident
that some sort of averaging process must be used tq_evaluate, and
hence attempt to reduce, the errors in the measurement of the un-
determined parameters. In particular, we shall use the mean square

error, or a suitable approximation to the mean square error, as a
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measure of the error in the estimation of the undetermined parameters.

3.3 Some Notation

In the following material all formulas for integration

- over a specturm will be given the limits (0, ») or (=, ®»). This

convention does not exclude the possibility'of finite limits if the
spectrum in question is non-zero over only a finite range of fre-
quencies. |

It is advantageous at this point to introduce éome addition-

al notation. We define
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S L | i
D zlz2 z2z1

Na

[y, -¥12) - Ty -v-(a)-a,)z5-(b; b, )28 020 (3.3-1)

E

= -~ - Yo iV _ _h [ P LR o il

We have suppressed the argument (t) in (3.3-1) and shall continue
to do so when no confusion would result. It should be noted now,
however, that since the ¥y and the'zgj) are functions of time, D,
Na, and Nb are functions of time.

The function D may be recognized as the denominator and

the functions Na and Nb as the numerators of the expressions in

equations (2.2-5); therefore we may write

Na/D

il

a¥*

(3.3-2)

b* = Nb/D

The subsecripts on a* and b¥ have been suppressed for brevity. Since
a* and b¥* each differ from the undetermined parameters only by an
additive constant (a1 and bl, respectively), a* and b¥ are functioﬁs
of time only if the undetermined parumeters aré functions of time.
Since the undetérmined and fixed systems are linear, the
principle of superposition applies; that is, if the input to any of
. these devices is composed of signal and additive noise, the output
may'be represented simply as the sum of the output of the system with
‘'signal only as the input plus the output §f th¢ system with noisge

only as the input. This fact leads naturally to the following notation:



We shall use the previous notation to refer to the signal
portion of the variables. The noise portion will be subscripted
with the symbol "e." The subscript "m" will refer to the variables

actually measured by the parameter estimation system; i.e., the sum

of the noise and signal. We thus write

y (£) = y(t) + y (8) = y(t) + e(t)
zég)(t) = zgj)(t) + zig)(t)

Noting that Y and Yo inelude no noise terms, we write
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Although Na, Nb, and D are not generated by linear operations,

it is possible to separate the signal and noise portions of these

variables by collecting terms. We have

b(t) + De(t)

D (t)

Ne.m(t) Na(t) + Nae(t)

me(t) = Nb(t) + Nbe(t)

If, for brevity, we write

u=yl-y

- (o) -by)z),

<

1
I\JQ:

]
e

]
~~

®
o

j

IS
n =
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<
I

-e (ay-a5)z0, ()b, )z,

Na. and Nb_ can be written
m m

Na = (u+u )(z’+z ) - (v+v )(z‘+z l)
W, = (v eghagy) - (uragNegrely)
Thus,
Na = Na -Na = uz  +u.z,-va,, -V 2 U2 -V 2,
Nbe = me-Nb - vzgl+szi-uz e2 ue22+vézel ez;2 (3.3-3)
De =le D = 212 o% 2020 2 B Rp2e) e ZenRen el
The parameter measurement system computes the following
variables

a;él(t) = Nam(t)/Dm('b) = a¥ + e."ef(t)
b;el(t) = me(t)/Dm(t) = b¥ + bg(t)

Simple algebra yields

Na, - a¥D
e e

D
m

a¥
e

(3.3-4)
Nb . - b*D
e e



The quantities a:(t) and b:(t) are the errars in the measurement

of the undetermined parameters caused by noise. It should be ob-
served thaf ag and bg are somewhat complicated non-linear functions
of the undetermined parameters, the fixed parameters, the input to
the undetermined system, ard the noise. It is the purpose of Chap-
ters III and IV to investigate techniéues for reducing these errors

in some sense. .

3.4 The Possibility of an Exact Solution

‘ Initial reasoning would suggest that a possible approach
toward reducing the error in a* and b* would be to find the fixed
parameters, with x and e given and a and b given and fixed,. such

that the magnitude of the qpantity.
) ) ‘
= *= 4+ ¥ I
E, = q, 8% qbbe (3.%-1)

be minimized; that is, the weighted sum of the mean square errors
be minimized. The positive numbers qé and q are arbitrary weights,
chosen such that q, + qb = 1. Unfortunately; such gn.approach is
not feasible, for reasons stated in the remainder of this seétion.
In the absence of an exact solution, i£ appears that an approximate
solution must be used. Such an approximate solution is discussed
in the next section.

The most serious difficulty in evaluating Ee is that there

appears to be nothing inherent in the form of a: and bg (3.3-4) that
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precludes the possibility of Dm passing through zero in such a fashion

that ag and bg have non-integrable sihgularities across time. Indeed,



38

it is possible, and highly probable, that when Dm is zero, either
-Nae - a*De or Nbe - b*De, the numeratofs of az and b:, will not be
zero. Sinceintegrationis not possible, averaging is not possible,
at least in the sense that the mean square value of ag and bg will
in general be non-finite.

It may also be observed fhat the quantities Nae - a*De,
Nbe - b*De’ and Qm are all statistically mutually dependent. No
general practical theory exists for generating the probability
density function of the ratio of two statisticélly dependent func-
tions, and hence the probability density function of a: and b§,
whether or not the ratio exhibits singularities.

If the singularities did not eiist, it would be possible to
expand D_ aﬁout some point, say ﬁ;, and write

o _n

—— D -D :
a¥ = (Na.e —a*De) 2: (-1)% -%%—JE (3.k-2)

e
n=0 m

a similar expression holds for b:. With x and e chosen to be the
Gaussian processes described in section 3.2, it is possible to e-

veluate expressions of the form

2 n
- a¥ -
(Nae & De) (D D )

[S—

and hence evaluate agz

For large n, about 3 or L4, the terms of (3.4-2) become ex-
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ceedingly complicated; and thus, if the convergence of the series
is not rapid, the tediousness of the computation would render the
series essentially useless.

It is possible to remove the singularities of a¥ and b*

by imposing & constraint on Dm' Consider the following constraint.

Let
* = z * =
a Nam/Dcm and b me/Dcm
where, for some positive V,
D =D ;ID| >V
cm m m
D =-V; 0>D > -V
cm - m -
Dgp =V 0<D <V

Although such a constraint is quite arbitrary, it will be ahown in
section 4.1 that this constraint is very useful if V is judiciously
chosen. The imposition of this constraint is important to the para-
meter measurement method described in this paper and it will be more
fully discussed in section b.l.

We have removed the.singularities in ag and bg,Abut the dis-
continuous probability denéity function of Dcm now makes the evalua-
tion of ;gé-and ;§§-even more difficult. The imposition of a con-
straint which allows the.probability density function of Dcm to be

continuous and yields a value of zero with zero probability would be

virtually impéssible to implement.
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In view of the severe complications discussed above, it o
seems that some sort of approximation scheme must be used to deter-

mine the H and'H2 which reduce the error in a¥* and bX.

1
Incidently, it may be considered that an advantage may be .
gained if ag (b')e“) were computed in lieu of a¥ (b')l(') It can be
i * . gk ¥ - p¥%_ )i
shown that by v1r§9e of the fagt that a* - a*, (bml bm2) is
constant, independent of signal and noise, the error in aﬁe

* i i 3 * * .
(bm2) is identical to the error in at (bml . Hence, there is no
advantage in choosing one set of fixed parameters over another set
(all fixed parameters having been chosen, ) to use as the reference

values.

3.5 An Approximate Solution

A first order approximation which tends to reduce the
errors in the undetermined parameter measurements in the presence

of noise is to choose the fixed parameters such that the quantity

(3.5-1)

is minimized, where qa and %y are weights chosen such that q&*’qb = 1.

In minimizing Re’ it is implied that since ag and bz are

v,

both the ratio of two functions, these errars will tend to be small

if their respective numerators are small with respect to their denomi- ,
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nator. Although minimization of Re does not necessarily yield the
best choice of the fixed parameters, in the sense of mean square
error reduction, it does offer a useful guide towards fixed para-
meter choice.

Little error is introduced in the evaluation of Re if the
constraint described in sections 3.4 and 4.1 is ignored, even though
the constraint may be used in an actual implementation of the para-
mweler measurement method. The constraint is only usetul if V2 is
small compared to 53., and hence the replacement of Dcm with Dm
makes little difference in the evaluation of Re.

We shall now evaluate R_ where x(t) and e(t) are each sample
functions of two independent stationary ergodic gaussian random
processes with zero mean and known PSD. In order to perform this
evaluation, we shall first show how the mean value of the product
of the outputs of two linear-lumped filters with the same stationary
ergodic process as input may be evaluated.

Let g(t) be a sample function of a random process described
above. Also, let g be the input to two linear-lumped time invariant
filters whose transfer functions are Kl(s) and K2(s)‘ Let rl(t)

and re(t) be the respective outputs. We may write (Property 4,

Appendix B)

r.r

rr, = % G (w) aw
172

]

where G, 5, (W) is the CSD of r (t) and r (t). With the aid of
properties 5 and 6, the CSD of r, and r, can be written as

Gz (%) = Ky (300G, () 5 57 = -1
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Since Gr r exhibits odd symmetry of its imaginary part and even
12
symmetry of its real part, we can vrite
[
rr, = Real part of {Kl(-JW)Kg(JW)Gg(W)}dW (3.5-2)

o]

Using the relation (3.5-2), R,, as given in (3.5-1) can be

evaluated. In the remainder of this section we shall describe the

j—

evaluation of Dﬁ in some detail. The evaluation of the numerators

of R can be found in Apperdix C.

We have defined

. A t
Dpn = Zm1 %P

Thus,
2 = 112 |2 l|2 |2 t t /
Dy = Zmi%me ¥ Zp?ml 2% fm%mi P

Since the average of a sum is the sum of the averages,

DB = g72g12 4 g02, 2 oo . -
D = Zni%mp * Zmpmy " PPt EmoZm e (3.5-3)

X

Since x is gaussian, y is gaussian (Theorem 1). Since e is gaussian,
yt+e is gaussian (Theorem 2). Since y+te is the gaussian input to
the filters which generate the functions zg (t), these functions are

jointly gaussian (Theorem 3). Hence, fram (B-1),
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(T2 (o7m) + (T P

EUI\) '
|

o+ () (Free )+ elE

(3.5-4)

-2 (zglz;!'lz) (zl;]lzI;Q) -2 (z;y'ﬂ_z;nl) (zTn';QzI'ne)

1" n [
'—92 (zmlzr'@) (zmQZInl)

In order to evaluate the means in (3.5-4) we must evaluate expressions

of the form
G.(p) (n) i,k = 1,2andp,n =1, 2
“mi Zmk :
For convenience, we define

My (w) = (B (5012 = m(3om (-w) (3.5-5)

With the PSD of x given as Gx’ the PSD of y is

G =G e = MG + Ge (3.5-6)

We now write



and therefore

& (). (n) (-1 PSP P P (-5 )H, (3w )o
mi "mk

(-1)P(3% )PP MG (L 8w +(b.b, -a, -a W41

We now det'ine -

ik [aiakwu+(bibk"ai-ak)w2+l]MiMk

o)
|

|

>
Ly = [(agby-a,b, W40 b MM,

A few properties of R and I are apparent:

1) R, =R, =R (i#x)
2) Ry =M

3) Ly = Ty

W) Ly =T =0

5) R and I are even functions of w

With the new notation the required CSD is given by

¢ (), (m) = (LR, o

(3.5-7)

(3.5-8)

-
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Using the stated properties of R and I, evaluating (3.5-8)
for the indicated i, k, p, and n, and using these values in (3.5-4)
yields

© ©

2 N o ® oy ®
D2 = j Gw M aw ] GvMaw  + f G M dw J’ GwaMldw

(o] (o] o o

(3.5-9)
;6 ] thllgd.w 2 -2 f Gw)I'Rdw j ngRdw
o

(o] O

where R and I are given by (3.5-7), G is given by (3.5-6), ard the

M; are given by (3.5-5).

The expressions for the mean square values of Née-a*De and
Nbe'b*De can be derived by essentially the same methods. Expressians
for these averages are found in Appendix C. If Gx and Ge are each
the ratio of polynomials, as is often the case, all the integrals in
(3.5-9) and Appendix C are closed-form integrable vis partial fraction
expansion. The expansion can be extremely complicated, however, and
the use of a high speed digital computer to perform a numerical inte-
gration may be usually more expeditious.

It is thus possible to express Re as the ratio of functions
involving a1, 8y, bl’ and b2, these functions also depending on the
undetermined system H(s), and the PSD assumed for the input x(t)
and the noise e(t), with the afarementioned restrictions of x and e.
The usual straightforward'minimization of Re involves the differentia-

tion of Re with respect to a5 8y bl, and b2’ setting these expressions
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equal to zero, and solving simultaneously for a5 8y, bl, and b2.
This is an extremely complicated procedure, however, and the minimum-
ization of Re appears to be more easily accomplished using a four
dimensional search for ay
of a high speed digital computer).

» 8y, by, and b, (assuming the availability

3.6 Choice of the Fixed Parameters with Unspecified Noise

It is possible that the control system designer will have
knowledge of the input to the undetermined system, but will not have
sufficient information available to adequately describe the noise.
In this situation it is still possible to make a generally judicious
choice of the fixed paranmeters.

Consider the error terms

Na « a¥*D

a¥ = - €
e D+D
e

(3.6-1)

Nb_ -~ b¥*D
b¥* = £ :
e D+D
e

HWithout information about the noise it is not possible to compute
averages of Nae, Nbe, and De' It is possible, however, to compute
averages of D, since the input to the undetermined system is assumed
to be specified.

Examination of (3.6-1) shows that a¥* and b* will tend to be
lessened if D is increased. It therefore seems reasonable, initially,
that choosing the fixed parameters such that the mean square value of D

is maximized would tend to decrease the mean square values of a: and b:.
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Unfortunately, simply maximizing D2 does not appear to be a

valid method. The quantity D2 may be increased by merely increasing

the mean square values of the zgn). Examination of (3.3-3) indicates

that increasing the mean square values of the zgn)-will also tend

to increase Na_, Nb_, and D_. It is therefore not evident that
this scheme would yield minimization, or even lessening, of ag and
.

b3

(n)

Alsq? merely increasing the zZg essentially amounts to
multiplying the equations (2.1-4) through by a constant. In solving |
a set of simultaneous equations, no accuracy improvement can be
achieved by this operation.

We may also consider the following argument against merely
increasing the mean square value of the zgn): It is evident that

such an increase can be accomplished by setting b, and b2 to zero;

1
that is, by designing the fixed systems to have zero damping.. Zero-

damped fixed systems violate the unconditionally stable stipulation
mentioned in Chapter II. Also, undamped systems exhibit large out- -
puts in only a relatively small range of frequencies, and lessening
of the errors would be effected only over this small band, if at
all. It would be generally more advantageous to lessen the errors

over a broad input frequency range.

It therefore appears desirable to maximize D2 while keeping

the zgn) soméwhat small. This operation can be accomplished by

"normalizing" D with respect to the zgn) in some fashion. We choose

here to maximize D2 with respect to the mean square value of some

(n)
1

function of the z; A useful normalizing function is
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0™ = S (@2 + 222) (22 + 22) (3.62)

We therefore shall choose the fixed parameters such that the ratio

—_ 2
2 (2r'z! - z"z2!)
D S (3.6-3)
2 ne 2 n2 2
Dy (217+207) (257+2,7)
is maximized.

The functien (3.7-2) was choscn because it can be shown that

for all (finite) zgn), and consequently (3.6-3) is maximized if D2/D§

is unity. Evaluation of (3.6-3) for given input, undetermined para-
meters, and fixed paraméters will always yield a number between zero
and one; and hence, an easily interpreted index of the degree of maxi-
mization is available. | '

Using the results of sectibn 3.5 it is possible to compute

the mean square values of D and DN’

> L 2 N ®. .2
D° = -/' G WM, aw J[ G WM aw + ‘/' G WM dw .]' G WM aw
(o] (o] (o] (o]
(3.6-4)
[ ll» @© @ )+ 2

¢
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- @ l', (-]

—— ®
2 L 2 2
= + +
D§ ‘[ G My av ‘[ 6 M aw ‘[ G 3 M Jf oM aw
o (o] Q (o]

® L 2 ® 2 ® L 2
+2 G w Raw +2 G wRdw| +h G w'I. aw

y N y "12
(o] (o] (o}

{H' If we consider the solution of (2.2-4) to be the intersection
i of two vectors, the maximization of (3.6-3) implies that the vectors
are mutually ofthogonal. In general, the errors in the solution of
simulﬁaneous linear equations tends to be relatively insensitive to
errors in the coefficients of the equations if thc vecetors reprecented
¢ by the equations are mutually orthogonal.
In terms of the theory of the solution of simultaneous linear
equations, we have specified in this section that the fixed parameters
be chosen such that the equations (2.2-4) be generally "well-conditioned;"
tﬁat is, that the solutions of (2.2-4) be relatively insensitive to errors
in the coefficients of the unknowns. If the solutions tend to be very
sensitive to these errors, the equations are said to be “ill-conditioned."
A common way of evaluating the condition of a set of simultan-
eous linear equations is as follows: [1]

Consider the set of equation

ByyX) ¥ s Fagx, = by

+ ... = '
anl-xl nnn bn
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The set is transformed by dividing the ith equation by

and evaluating the magnitude of the coefficient determinant of the
transformed equations. If this magnitude.is near unity, the equations
are well-contitioned. If this magnitude is small compared to unity,
the equatigns are ill-conditioned.

From the discussion abo?e it is evident the wvalues of the fixed
parameters which maximize (3.6-3) will tend to keep (2.2-4) well-

conditioned across time.



CHAPTER IV

ADDITIONAL METHCDS OF REDUCING THE ERRORS

4.1 Constraining the Measurement

It was mentioned in section 2.4 that in order to awvoid
grotesque errors in the measurement of the undetermined parameters

when Dm(t) is near zero, it is necessary to constrain the measure-

51

ment. in some fashion. Even in the absence of generally serious noise,

little accuracy can be obtained when D_ is small. Indeed, if the
undetermined system is at rest, no computation is possible and any
results from the measurements can be attributed wholly to noise.

If the parameter measurement is to be used simply to
yield a'time history of the undetermined parameters, it is only
necessary to provide a time history of D so that the parameter
measurement results may be properly assessed in any region of time.

If the parameter measwrement is to be used to provide a
signal to control some device,.it apﬁears generally Jjudicious either
to delete the control function or to constrain the measurement to
a reasonable level when Dm is near zerq.

Whatever the application of the measurement, a simple and
effective approach to this problem is to constrain the measurement

whenever

o, | v

where V is some mreassigned positive number. In preassigning V

we do not preclude that V be a function of time, or any other variable
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which may be useful for this purpose.

If the measurement is to be used to provide a signal to
control some device and it is not feasible to remove the control
when the magnitude of Qm is less than V, a reasonable constraint
may be applied as follows:

If at time ¢, lnm! becomes less than.v, and remains less

than V until time t2, we constrain the measurement by setting
¥* = g¥*
ah$t) am(tl)

bg(t) = bg(tl) (k.1-1)

for all t such that

t. <t <t

1 2

Application of (L4.1-1) tends to assure thé absence of large errors
in the measurement of the undetermined parameteré when Dm is rela-
tively small.

With knowledge of Lhe noige and the input to the undetere-
mined system, it is a simple matter to.choose a reasonable value

of V. We note that when

D2 < D°
m-="e
during the measurement, it is highly probable that the value of Dm

is composed almost wholly of noise. Therefore, a judicious choice

of V appears to be
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With the techniques of section 3.5, it is easy to compute

the value of Di; vis.,

? = f e iav [ Gl + j' G M G WM, dv
o |

o
o\

(o]

+
+ Gwaldwj Gdew fGwadej Gde'w
(o] 0 (o}

o

o o o0

o {

-2 f G w'Raw f G wRdw -2 f G woRaW f G v Raw
Y e Y e
(o} () (o] (o]

) L .
+ L [ G I, v f G v T, dv (4.1-2)
(o] (o]

o 4 ® o . L @
+ [ G v M, dv [ G WM v + f G v M dw f Geszldw
(o] (o] [0} (o]

® ) 2

- G d +
2 ] oV Raw ] Gew Rdw + 6 f Gew Iledw
o) o

o

It is conceivable that one is not particularly concerned

with the errors themselves in ax";l and br')r"l, but finds it generally more
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desirable to prevent the application of the constraint over as
much time as possible without using an excessively small value of V.
If this is the case, excellent results can be obtained by choosing

the fixed parameters such that the ratio

2,2
D / D
is minimized. Use of this criterion has the effect of generally
keeping ag and bz at reagonable levels and assures that the magni-
tude of Qm will be less than V as infrequently as possible.
If the noise is not known, V may still be estimated by

choosing
V=1p D

where p is some positive number less than one.

4.2 Filtering the Computed Parameter Values

In addition to choosing a "good" set of fixed parameters
further reduction in the errors in the measurements can usually be
obtained by passing the computed values of ag(t) and b;(t) through
low pass filters. Since we have specified that a¥ and v* are slowly
varying functions of time, it is evideht that any relatively hiéh
frequency content in a; and b; must be due to noise. If ag anml b;
were passed through low pass filters much of the high frequency noise
would be reduced.

Since the power spectra of the error functions ag and bg

cannot easily be determined, the optimum low pass filter cannot be
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easily designed. However, 'e.lmost any low pass filter will tend to
reduce the errors. When this method of parameter measurement is
applied to an actual system, an appropriate low pass filter can be
selected and the éutoff frequency determined on the basis of ex-
periment. In the simulation study described in Chapter V; such low
pass filters were found to be generally effective in reducing the

noise content of a;; and br";.



CHAPTER V

A SIMULATION OF THE METHOD

5.1 Introduction

A similation of the proposed method of parameter evaluation
was performed using a digital computer.* The results of the simu-
lation are given in this chapter. The difficulties entailed in
generating statiénary Gaussian random variables with known PSD by
the digital computer precluded using the exact inputs and noise de-
scribed in Chapter III in the simulation. Aé an approximafion to
these signals, a set of sinusoids were used and the fixed and unde-
termined systems were assumed to be in the steady state.. These sinus-
oidal signals could be interpreted as random functions with rather
specialized frequency spectra.l The particular sinusoids used are
described in Section 5-2.

Although sinusoids can hardly be described as general signals,
it was felt that insight into the behavior and accuracy of the method
could be obtained with these signals. In particular, the strong de-
pendence of the accuracy of the method, in the presence of noise, upon
‘the fixed parameter could be clearly shown. It must be remembered
that knowledge of the sinusoidal nature of the inputs énd noise was
not used per se in the simulation.

Thé simulation is intended to give an indication of the opera-
tion and noise sensitivity of the method for a few simple cases. 1In

particular, the aims of this simulation study were threefold:

*
Courtesy Sandia Corporation, Albuquerque, New Mexico
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1. To indicate that the method does indeed measure the
parameters of an operating (second order) linear-lumped
control system.

2. To show the sensitivity of the method to noise and the
choice of the fixed parameters.

3. To offer evidence that use of the techniques discussed
in Chapter III and Chapter IV does reduce the errors in

the measurements.

5.2 Input and Noise Signals

The input signal was chosen to be

10
x(t) = X(n) sin (0.2nt)
'and the noise
10
e(t) = sin (0.2nt)
n=1

The X(n) were determined by the shape and level of the PSD
assumed for the input signal. In all cases, the noise spectrum was
flat and E was determined by the chosen noise level.

An advantage to using periodic noise and input, and assuming
that the fixed and undetermined systems were in the steady state, is
that the results repeat periodically. It thus becomes unnecessary to
use excessive machine time. From the functions above, it may be seen

that the measurements repeat every 10 M seconds of simulation time.

2T
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In the two undetermined systems examined, the natural frequency
of each undetermined system was chosen to be one rad./sec.; consequent-
ly, the input and noise spanned the major operating frequency range of

the undetermined system.

5.3 Simulation Procedure

Briefly, the procedgre consists of two computational phases.
An undetermined system, noise level and input spectrum were chosen.
With given noise, input, and undetermined system, the quaﬁtity Re
(equation 3.5-1) was computed for different sets of fixed parameters.
Based on the value of Re, two sets of fixed parameters were chosen,
a "good" set and a "poor" set. The "good"' set would presumably allow
less error in the measurement than the "poor" set. Under the given
condition, simulationgs were then run using each set of the chosen
fixed parameters. Additional simulations were run with the same
undetermined system and input function, but with different noise
levels, for both sets of fixed parameters. In all, four sets of
undetermined parameters and input spectra were examined.

Details of the procedure are as follows:

. 1. The natural frequency and damping factor of a‘second
order linear-lumped "undetermined system" were chosen. The
natural frequency of the two undetermined systems examined
here was taken to be 1.0 rad./sec.

2. An input spectruﬁ was chosen, the frequencies them-
selves being taken as described in section 5.2. The.ﬁoise

spectrum was taken to be flat for all cases.
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3. The noise to signal ratio was chosen at the relatively

high value of 0.1. The noise to signal ratio is defined as

L= J & /y (5.3-1)

where e is the noise in the measurement system at the output
of the undetermined system and y is the (noiseless) output

of the undetermines system. The quantity L Qas defined

with respect to the output of the undetermined system so that
errors in the measurements at comparable noise to signal
levels could be compared for different undetermined systems.

4., For different sets of fixed parameters the quantity

J (a0 Na ) + (b - )?
R = e e e e
e ———
/| 2
m

was computed. Re is described in detail in section 3.5.

In that section it was pointed out that wvalues of the.fixed
parameters which tend to minimize Re tend to reduce the
measurement errors.

5. Two sets of fixed parameters were chosen such that one
set yielded a relatively large value of Re and the other set
yielded a relatively small value of Re. It is expected that

the "good" set (small Re) will give measurements which are less
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sensitive to noise than the "poor" set (large Re). No attempt
was made to find a best set. It was felt that values of Re
which were less than the noise to signal ratio (equation 5.3-1)
should give tolerable errors.

The "good" and'"poor" sets were also chosen such that the
parameters of the reference fixed system (al, bl) were the same
for both sets. This restriction assured a basis for comparison
between 'sets since, in the absence of noise, both sets should
yield the same measurements.

6. A simulation was run for each set of chosen fixed
parameters. Additional simulations were then run with other
noise to signal ratios for both sets.

7. A constraint (section 4.1) was used in the simula-
tion. The constraint was imposed as follows:

If |D (t)] <V, when t; < t < t,; then

o’
the measurement was constrained by setting

ax(t) = ax(;)

I = ¥ H
bX(t) = bX(t,) 5 bt <t<t

)| 2

For each noise to signal ratio and set of fixed para-

meters, the quantity

was computed. 1In all but one pair of simulations (per set



61

of given conditions) V was set equal to d; where 4, of course,

depended on the noise to signal fatio used in the particular

similation. At the high noise to signal ratio of 0.1, a pair
of simulations was run with V = d and also with V = 4/4. The
latter choice of V was included because the measurements tend-
ed to be constrained for considerable time at the high noise
to signal ratio, and consequently averages across time of

the errors tenmded to be severly attected by the vulues that

the errors had when the constraint was imposed. Lowering the

value of V tended to remove this effect.

8. Measurements were made every /240 seconds; i.e.,
2400 measurements of a; and b; were made over 1l0m seconds.
For each simulation, the mean.and rms velues of ag and bg
were computed .

9. The percent of time that the measurements were not
constreinad (P) was also computed.

10. During each simulation a§ and b; were passed through
1ow pass filters with transfer functions 1/(1+s) to examine
the filtered outputlas discussed in section 4.2. The rms
values of the filtered ag and bg were computed.

In all, forty simulationé were run. Two undetermined systems
were examined, each with two input spectra. For easy reference:each
similation has been assigned a code. The code consists of a letter
to indicate the undetermined system and input spectrum, followed by a
number to indicate the set’ of fixed parameters used, followed by another

nunber to indicate the noise to signal ratio and value of V used.



The undetérmined systems and input spectra are listed in Table 1.

TABLE 1
W C a b input
A-- 1.0 0.3 1.0 0.6 X(n) = 1.0
B-- 1.0 0.3 1.0 0.6  X(n) = 1.112/(1+.0kn°) ’
C-- 1.0 1.0 1.0 2.0 X(n) = 1.0
D-- 1.0 1.0 1.0 2.0  X(n)= 1.112/(1+.04n°)

The 1.112 appears in the numerator of the input for sets B
and D so that the rms value of the input to these sets will be equal
to the rms value of the input to sets A and C. |

The.sets of fixed parameters were chosen at noise to signals

of 0.1 (L=0.1). The choices are indicated in Table 2.

TABLE 2. (L = 0.1)

! G % Co a* ¥ Re .
Al- 0.9 0.1 1.2 0.1 -.2346 3778 . 060k
A2- 0.9 0.1 1.2 1.h - .1889
Bl- 1.2 1.1 0.4 0.7 1667  -1.233 .0985
B2- 1.2 1.1 0.8 0.2 ) 1321
Cl- 0.8 1.2 1.2 1.2 -.5625 -1.300 2077
c2- 0.8 1.2 1.2 0.2 .3752
Dl- 0.7 0.7 1.1 0.7 -1.0508 0.0 2419

D2- 0.7 0.7 1.1 0.2 2607
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The noise to signal ratios.and values of V used are indicated in

Table 3.

TABLE 3

L v
--1 0.1 a
-—2 0.1 , a/k
--3 0.05 d
-k 0.025 - a

-=5 0.005 d

The results of the simulations are in the next. section.

5.4t Results of the Simulations

Figures F5.4-1 fhrough F5.4-10 are plots of the errors in a*m'
and b; versus time for case A. A smooth curve connects each plotted
poinf, which is the average of 48 computed points. These plots are
constructed so that an easy comparison can be made between cases Al
and A2. Error versus time was computed for the other cases also, but
the results of these simulations will not be presented in as much de-
tail as the results of case A.

It can readily be observed that the errors are considerdbly
smaller for the "good" set of fixed parameters (Al) than for the
"poof" set (A2), at all noise to signal ratios. Of the four cases
examined, case A offers the most striking evidence of the usefulness

of the criterion that Re be minimized.
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At the high noise to signal ratio of 0.1 it can be seen that
the measurements are constrained more often with A2 than with Al;
hence, Al is actually measuring the undetermined parameters over more
time than A2.

Figures F5.4-11 through F5.4-18 are plots of the rms and average
values of the unfiltered errors versus noise to signal ratio and the
rms Qalues of the fiitered errars versus noise to signal ratio.

Examination of these plots qf the rms errors for cases A, B
anrd C show thaﬁ at almost every noise to signal ratio the rms errors are
less for the "good" set of fixed parameters than for the "pooi" set.

The decrease in rms errors is particularly evident at high noise to
signal ratios.

In case D, the reducing of rms error is found in the measure-
ment of az but not in the b;. It may be seen, however, that the rms
errors'in b: are essentially equal for both D1 and D2.

The rms errors in b; are generally greater than the rms errors
in a: in all cases. This situation could have been changed by weighting
Re such that the b: portion of the evaluation of Re contributed more
than the a: portion.

No generalization appears possible concerning the mean value
of the errars beyond the fact that these errors temd to be less for
small noise to signal ratios, as might be expécted1

The plots indicate the filtering reduces the rms error in all
cases examined. Improvement is especially notable in the high noise to

signal ratio regions.
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Table 4 is a compilation of the mean and rms errors in tabu-
lar form. The quantity P, which represents the percent of time that
the measurement is not constrained, is also listed. It may be seen
that P is greater for the "good" séts of fixed parameters than the
"poor" sets for all cases considered.

5.5 Conclusions from the Simulations

1. The errors are lessened if L, the noise to signal
ratio, 1s lessened. This intuitively obvious.conclusion
makes it evident that at the limiting condition of L = O,
no error exists; and hence, the system does indeed measure
the parameters of the undetermined system.

2. In general, the erfors are less for smaller Re.
In particular, the rms values of the errors are reduced
with smaller Re. This phenomena is especially cvident for
conditions A, B, and C. |

3. It was mentioned in section 5.3‘that values of
Re which are less than the associated value of L should
yield relatively small errors. It is noted that for con-
ditions C and D, the chosen values of Re are consistehtly
greater than the associated values of L. This phenomena
is due to the fact that the undetermined systems used in A
and B amplify the signal in a frequency range (about 1.0
rad/sec) while conditions C and D do not amplify the signa;.
It was therefore possible to choose the fixed parameters

in cases A and B to take advantage of this amplification,
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while in cases C and D no such advantage appeared.

It therefore appears that the method can be used to greater
advantage with a lightly damped undetermined system and
essentially flat noise and input spectra than a highly
damped undetermined system. The relatively low errors in
case D seem to contradict this statement, but it appears
that in this case fhe phasing of the noise and signal has
been a significant contribution in error reduction. If

the noise and signal had been random, the phasing could

not contribute as heavily to error reduction.

4. It appears that for values of L greater than
.05, the errors are high enough to render the method not
feasible, at least for the conditions used in this simu-
lation.

5. Filtering in general makes a significant con-
tribution in reducing the errors, especially for Lhe cases
where L is large. Unfortunately, filtering alone cahnot
reduce the'mean errors, which are generally not zero. It
is evident that if a filter with a lower cut-off frequency
had been used, & further reduction of rms error would have
occurred .

6. The method exhibits highly non-linear proper -
ties; that is, conclusions drawn from one set of conditions
cannot be extended to another set of conditions related to 2
the original set by a simple magnification or attenuation

of the frequency scale.



TABLE 4

Unfiltered Filtered
2 3 = %3 ﬁ ﬁ

Re a’e e ae be a'e be d P
A1l .060k4 2022 1298 .0318 .0568 .1608 - .0988 2.304T 79.6
Al2 L0604 2145 2633 .0243 L0817 1154 1726 2.3047 98.8
Al3 .030L .0904 1236 .0086 .0k16 .0558 .0850 1.2301 95 .4
ALk .0150 .O4T5 .0612 L0048 020k .0255 .0k16 .6369 98.8
Al5 .0030 .007T .0117 .00k .00k1 .0055 0084 .1320 99.8
A2l .1889 2723 2733 1261 -.0164 .1983 .2036 .9083 2.5
A22 .1889 .5010 173 0128 -.0633 2540 .3949 .9083 88.0
A23 .0883 1755 1626 .0111 -.0212 .1360 11Tk RSN 58.3
A2h . .0428 1214 1762 .0123 -.0385 -.0691 .1018 .2357 85.9
A25 .008% o7k9 L0817 .0051 -.0136 .0192 .0326 .0k80 98.1
Bll .0985 293k 2212 .0535 -.0499 .2330 .1758 .1379 79.6
Bl2 .0085 2582 3677 .0400 -.0298 .1948 2823 .1379 100.0
B13 .0488 1376 149k 035k -.0123 .1075 1146 .0650 95.6
Blk L0243 .0648 0760 0124 -.0090 .0k99 0575 .0316 100.0
B15 .0062 o140 0165 .0030 -.0043 .0105 .0118 .0048 100.0
B21 1321 .1999 .2193 .0313 -.0811 A577 1615 .8965 57.5
B22 1321 -.5970 .3912 .0303 -.0354 2117 1710 8965 98.8
B23 L0642 2191 1467 .0151 -.0093 .1170 0924 4380 89.9
B2k .0317 1667 .0866 .0019 -.0150 L0697 - .0399 .2167 96.9
B25 L0433 L0646 .0315 .006 *-.00T1 .0176 .0118 .0063 99.8

L9



TABIE k4, Cont'd.

%2 *2 K K3 e %2
e ae be ae be ae e d P

Cl1 2077 .5602 .5529 .3344 2425 4693 .3870 L0117 33.0
cle 2077 .T699 .7503 .0371 -.0104 2531 .2588 L0117 59.5
C13. .1037 .3054 .3188 L0734 .0l458 L1487 1433 .0056 h1.5
c1lh .0522 .2603 2824 .0363 .0013 .0750 .0910 .0026 63.8
C15 .0107 1322 .139% .000L .0049 .0192 .0327 .0006 9k.1
c21 .3752 .5804 4795 -.1006 - 2624 4905 4280 1160 26.8
cz2 .3752 .0527 1.4938 21435 .3896 .7928 .1938 1160 ha
ce3 1935 L2713 .3725 .0706 .1035 .3059- .3110 .0562 33.2
cab .0983 .3330 <3101 .0178 .O7hS A67T7 2367 L0277 42.3
c25 .0202 .0985 .128L -.0043 .0238 .C268 .0856 .0056 84.3
D11 2419 2403 A3 -.2061 -.1156 2391 131% .0659 38.1
D12 .2k19 .2033 .3173 -.05Th .0291 .1638 2229 .0659 9k.0

13 .1204 1031 .1C03 -.0187 .0089 .0865 .0640 .0312 7.3
D14 .0599 .0536 .07T19 -.0182 .00kL .09 L0481 .0152 95.5
D15 .0121 .0133 L0163 -.00T1 -.0005 011k .0089 .003D 100.0
D2l .2965 5497 1975 .3640 .0859 .5202 .1710 .1952 35.7
D22 .2965 .3563 .3012 -.0253 .0289 ATTH .2010 .1952 95.7
D23 .1512 1337 .0900 -.0050 -.0057 .081L .0590 .0933 70.8
D2k .0760 .0857 .0680 -.0083 .O0kT LO4T3 L0436 .0458 96.3
D25 .0155 L0214 .0ik2 L0047 .0105 .0105 .008% .0091 99.5

89
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APPENDIX A&
OVERDETERMINATION AND LEAST SQUARES (5]

It is generally true that when the coefficients of a set of linear
equations are subject to random errors, "overdetermination" is use-

ful in reducing the errors in the solutions.

Let there be n equations in the m unknowns {xj, =1, ..., m}
ViE.

[}
o

a.llxl + ... + almxm 1

a + ... + a = ¢
nlxl nm*m n

If n > m, the set is sald to be "overdetermined.” The
generally most useful and practical way to solve the set is in the

"least squares" sense; that is, defining

is minimized.

The minimization is accomplished by differentiating S with

regpect to each of the unknowns and setting.each of the partial deriva-



tives to iero, yielding the m equations

Q—S— = = i= .
o ii;aiJRJ 0 j=1,...,m (A-1)

Equations (A-1) represent m simultaneous linear equations which may
be solved for the m unknowns.
This approach may be used to solve (2.1-4) as follows:

Let there be-m fixed systems
Hi; i=l,ouu,m; m>»2

We write the following two -equations in the two unknowns a¥* and b¥*

{ and oY
m m '
o1 :(z;)gﬂ’f Z-; 2324 = Z(yi’y‘(al'ai)zz'{"(bl‘bi )24 )2
iz i= =
(a-2)

m m m ’
* "o S % Z 2 = — - s "_ - Mt ),
&1 ;ziziﬂ’l 1=1.(zi) ;(yi y(ay-a; )y ~(bp-b, )z Jug

b

The solutions of (A-2) are generally less sensitive to

errors in the y, andAzgn) than the solutions of (2.1-4).

.
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APPENDIX B
STATISTICAL THECRY

To illuminate the material of Chapters III and IV a brief
description of certain statistical relations useful in this paper
is given in this appendix. All relationships are given without
proof. A more extensive tréatment can be found in many references.

(2, 3] The material here is essentially from Lanning and Battin. [31

Property 1

If x and y are random variables of two statistically inde-

pendent random processes, then

Elxy] = E[x]E[y]

where E[z] denotes the expected velue (average value) of the vari-

able [z].

In the body of the paper extensive use.is made of the notion
of a sample function of a stationary‘ergodic random process. Such

a process is defined as follows:

Definition 1

A random process is ergodic (or possesses the ergodic prop-
erty) if averages across the ensemble of random variables describing
the process may be replaced with averages taken across time from a

sample function (representitive ramiom varieble) of the process

Definition 2

A random process i1s stationary if its statistical properties



are invariant with translations in time.

The Power Spectral Density and the Cross Spectral Density

Let g(t) be a sample function of a random process. The

auto-correlation function of g(t) is given as

Definition 3

B.(t1,t,) = Ela(t, Ja(t,)]

In particular, if the random process is stationary and ergodic,

thé autocorrclation function is a function of the difference to-tl.

With v = t

o=t1s ¢g(7) can be expressed as

Definition k4

T
Bolr) = gluda(err) = o2 gp | a(eda(or) at

Definition 5

If g(t) and y(t) are sample functions of two stationary
ergodic random processes, the cross-correlutlon function is defined
as

T
y = _ lim. 1
Boy(1) = Ela(thy(t+r )1 = ;70 5 . g(t)y(t+r) at

Definition 6

The power spectral density (PSD) is the Fourier transform

of the autocorrelation function, vis.,
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Gg(w) = ;—t—jm ¢g(7) exp (-jwt) ar ; # =1

Definition T

The cross spectral density (CSD) is the Fourier transform
of the cross correlation function
(-]

Gy (W) = 5 L B (7) exp(-gur) ar

The PSD and CSD exhibit the following important properties:

Property 2 The PSD is always real and non-negative. Also, the PSD

is an even function of w.

Gg(w) >0 and Gg(w) = Gg( .-w)

for all w.

Property 3 If g(t) is a sample function of a random process, the

mean square value of g(t) is given by

@ 0

g(t)’ = -2]:[_‘” Gg(w)dw =j; Gg(w)dw

Property 4 The mean value of the product of two functions g(t)

and y(t) is given by

IR T 5 [ Ot e
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In particular, if Gg is an even function of w,

Y

TowE = [ Celn e

(o]

Property 5 1If Gg(w) is the PSD of the input to a linear, time
invariant system whose transfer function is K(s), the PSD of the

output (y) is
6y(w) = K(3w (=56, () = [K(5w)] %o ()

Property 6 If Gg is the PSD of the input to a linear, time invar-
jant system whose transfer function is K(s), the CSD of the input

and output is

Gay(¥) = K(3w)ag(w)

Property 7 If g(t) and y(t) are sample functions of two independent

random processes With FSD Gg(w) and Gy(w) respectively, the PSD of

the sum of g and y is
G(g_,.y)(v) = Gg(w) + Gy(W)

Gaussian Random Variables

Definition 8

A random variable (g) is gaussian if its probability density

function is given as



2
)= L . (gm)”
p(g fz_rT- u = 2u2

vwhere m = E[g1 amd W = E[g2].

In particular, if g(t) is a sample function of a stationary
ergodic gaussiaen random process with zero mean, the probability

density function of the function is described by

) o
2u

plg) =

where u° = E[g(t)z].

Theoren 1

If y(t) is a sample function of the output of a linear sys-
tem whose input is a sample function of a gaussian précess, y(t)
is also a sample function of a gaussian process; or more briefly,

y(t) is gaussian.

Theorem 2
if g(t) and y(t) are gaussian random variables, then the

sum of g and y' is & gaussian random varigble.

.

Theorem 3
'Let g(t) be the gaussian input to n linear filters, and

let {y;; 1=1,...,n} be the outputs. The functions y,(t) possess a

joint gaussian distribution; that is, .
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1

n n
¥y seesy, ) = exp | - %Z& ;mﬁyiyk' ‘
(2n)%2 /| =l k=

The quantity IMI is the determinant of the so-called mament matrix

m]-l o0 niln
M= :
mnl LI IR mnn

where the m,, are given by

myy = Ely; %]
The mlg are the elements of the inverse of the moment matrix.

Theoren 4

If the functions ¥; possess & joint gaussian distribution,

then _

_ rl'. ... Ol
: [ )- XN

qq

2q = er H rj integers

where the summation represents all permutations and combinations
of the products such that rl of the indices (ilkl...iqkq) are unity,

r2 of them are two, etc. The formula above obviously becomes very

9k

/;‘,5
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unwieldy for even small q.

Fortunately, we are only concerned with two simple results

of the formula asbove; namely,

Ely)vpysy,] = Elyyv,1Elyoy, ] + Ely; v, 06Dy, 3,0 + Ly v, 06Dy, y.]

and (B-1)

E[y{l fx;n'j =0 it er 18 odd.
J .



APPENDIX C

EVALUATION OF (Na_-a*D_ )2 AND (Nb_-b*D_ )

The expressions for the mean square values of Nae-a*De
and Nbe-b*De can be evaluated by the methods of section 3.5. These
expressions are necessary in the evaluation of Re (equation 3.5-1).

The signal and noise are assumed to be sample functions of two in-

_ _de{(;r-dent, ergodic, stationary Gadssian random processes with zero- -

mean and knvwn PSD. Let the PSD of x(t) be G, &nd the PSD of e(t)

be G_.
e

We define

G. = G_MG (c-1)
Y X e

where.

M) = ()2 = B (e (-30) 5 £=a  (c)

The expressions for Nac, Nbe , and De are given in equation

96

(3.3-3). Expand (Nza.e-a:)"De )2 and (I\Ibex-‘n'lfDe‘)2 and average these quanti-

ties. Note the following properties of the expansion and averaging
process:

1) Each term of the expansion contains four functions.

2). The average value of any term containing two noise

functions and two signal functions is the product of the

average of the noise functions and the average of the sig-

nal functions, by virtue of the independence of signal

and noise (Theorem 1).

-

T



97

3) The average value of any term containing three noise
functions and one signal function is zero, because the
average value of each i.ndividua.l signal (and noise)

4 : | " term is zero.
~ 4) The average velue of any term containing four noise
functions can be evaluated (B-1) in the same fashion

that (3.5-&‘) was derived from (3.5-3).

If we define, for 1 =1, 2; k =1, 2;

2v)
]

[aiakwh+(bibk-ai oy )"2+l] MM (i)

L 2 ]
[aa.iw +(bbi-a-a.i W+L MMi

o
il

-
|

ik = ki T [(aibk'bi‘»"k)"2+bi'bk] M (1) (C-3)

N W [bR+(a.w2-l )Iik] ivliMk (1#x)

L
U

Q"'k ;,2 ['R(aw? -1 ) + AWZink ] MiMk (i'le )

L

we may write the desired averages as

z'i’z;; = I ” thdew (i#x) : (1) (c-k)

o]

.-

2z = j qu M. dw (2)
v i
o

11l



[

—

o

e

O

G R.dw
x i

o

RG dw
X

-]

M ti&w

(¢}

- -]
j G wob.M.dw
y ii

o 2, 2
G w (aw -1
J e

(o]

(1]
f GyQ, ikdw

(i)

(i#k)

(i#k)

)Midw
(i#k)

(i#k)

(3)

(%)

(5)

(6)

(1)

(8)

(9)

(10) .

(1)

(12)

(13) .
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-]

v.z! = j G wbM, dw (1k) (C-4 Cont.) -
i"i Yy i
: o]
® 2, 2
"o -
v,z = I Gyw (aw 1)Midw (15)
o]
® 2
! 3
ezl jo G b WM dwv (16)
® 2, 2
1" - _ )
ez, = ] Gew (aiw l)Midw (17)
(o}
z".z2" = jm G thdw (i#k) (18)
ei’ek e 1
(o]

Z .
el el

2" " f“ GeWhMidW (19)
(o]

- (-]
2
T Lt = s
20 %ok f G W Raw (i#x) ~ (20)
[o]
" 6 P
[ =
Z2i%0 wa aw (21)
(o]
R
" (] =
2zl f 6T dw  (ifk) (22)
(o]
t N = .
Zei%ei 0] (23)

If Gx and Ge are each the ratio of polynomials (as is often

the case) all the integrals above are closed -form integrable via partial



fraction expansion. The partial fraction expansion can be quite com-
plicated, however, and the use of a high-speed digital computer to

perform & numerical integration may be generally more practical. The
minimization of Ré (equation (3.5-1)) appears to be most easily found

by a four dimensional search far &), a8y bl, and b2.
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