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.ABSTRACT 

Recent interest in adaptive control systems has led to 

considerable investigation qf the problem of process identification; 

that is, the problem of describing the performance of an operating 

control system. 

In the case of a linear-lumped control system with slowly 

changing performance characteristic, the process identification 

problem can be solved by evaluating, as functions of time, the co­

efficients of the polynomials which constitute the transfer function 

of the "undetermined" control system. 

In this paper a method of estimating these coefficients is 

described and its advantages and limitations are discussed. The 

technique applies only to linear-lumped control systems whose zeros 

are known, and hence estimates only the poles of the system. In 

this technique the input and output of the undetermined system are 

fed into a set of fixed, known linear systems. These fixed systems 

may be designed so that they are isolated from the conditions which 

cause the coefficients {or parameters) of the undetermined system to 

change. The output of these fixed systems, along with the output of 

the undetermined system, is fed into a computer which estimates the 

unknown parameters. The method has three major advantages over other 

techniques in this area. 

1) No extraneous inputs are introduced into the 

undetermined system. 

2) The accuracy of the estimation does not depend 

on the time taken to evaluate the parameters. 



3) Only the input and output of the undetermined 

system need be available for measurement. No 

derivative of these signals need be taken. 

After a description of the method itself, a discussion is 

given concerning the accuracy of the estimation in the presence of 

noise. In particular, techniques are evolved to enable choice of 

the fixed systems to lessen any error in the estimation due to noise. 

Expressions are evolved for error estimation with gaussian noise and 

signals. Techniques are also discussed which fUrther lessen the 

errors in the estimation::; once the fixed system$ hnve been chosen. 

Finally, a computer simulation of the estimation met~od is 

presented for a few simple cases. Conclusions drawn from the simula­

tion indicate that the method does indeed measure the unknown parameter 

and yield good results for reasonable noise levels. The simul.ation 

also corroborates the error reduction techniques previously discussed. 
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CHAPI'ER I 

INTRODUCTION 

In recent years there has been an increasing interest in the 

so-called "adaptive" control systems. In general, the term adap­

tive is applied to systems which are capable of maintaining proper 

performance over a wide range of environmental conditions. Almost 

all feedback·control systems are somewhat adaptive in that they are 

not sensitive to small ~hanges in their syste111 parameters caused 

by a changing environment • However, the term adaptive is usually 

reserved for the more exotic systems in which a deliberate effort 

is made to overcome the effects of the environment on the system 

performance. 

Many different techniques have been proposed for designi.ng 

systems to be adaptive. One significant class of methods involves 

the continuing measurement of the system function, and on the basis 

of this information adjusts the compensation to bring the overall 

system performance within the design specifications. 

In this paper a technique for measuring the system function 

of an operating system is proposed and its advantages and limi ta­

tions are investigated. The technique is restricted to the analy­

sis of linear-lumped systems, or systems which can reasonably be 

approxi-mated by a linear-lumped system. The class of systems con­

sidered here is a very significant one . · 

The modification of the compensation in view of the infor­

mation provided by this measurement is not discussed in this paper 

as the two parts of the problem are qu:i te distinct. 



PROCESS IDENTIFICATION OF LINEAR -LUMPED SYsrEMS 

The problem of describing the performance of an operating 

* control system, often called "process identification/ [41 has been 

studied for many years and from many points of view. Even restric-

ting ourselves to linear-lumped time-invariant systems, we find 

that there are numerous functions which can be used to describe 

the system, and varied techniques for measuring the various f'unc-

tions and/or the parameters involved in them. 

Probably the three most common ways of describing a linear-

lumped, time-invariant system are the following: 

1. Differential Equation. 

where x and y represent, respectively, the input and the output of 

the system, and the a.i and 8 j are parameters which completely char­

acter:i.ze the system. 

2. Transfer Function {frequency response). 

H(s) = 

where the coefficients a.. and Bj again characterize the system, and . ~ 

are the same. parameters that appear in the differential equation. 

* Square brackets denote references. 

2. 



3· Impulse Response. For this restricted class of systems 

the output response of the system to an input of the form of an 

impulse can be written as 

h(t) = Ln -c . t -c . t 
(K OJ. + t K h + •.• + 

J.=o oi e lie 

The Ki and ci again completely characterize the system. 

In theory 1 all of theGe descriptions are equivalent, since 

any one of them can be derived from any other. When it comes to 

practical matters, however, there· is considerable difference in de-

termining. the system parameters from physical measurements. To il-

lustrate the sort of difficulties that arise in the practical ~eas-

urement of system parameters, three techniques are discussed in the 

examples below. These are not necessarily the best methods avail-

able, but are representative of the general approaches to the prob-

lem. 

Example 1 

The first method is based on the direct use of the differ-

ential equation describing the system. If the input.and output, to-

gether with pertinent derivatives, are measured at ~ set of points, 

tk' a set of linear simuitaneous equations can be set up 

m 

= h 
k = o, 1, ..• , n + m + 1 

The solution of this set of equations Will give the ai and S j 

.which characterize the system. 

3 
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The major disadvantage of this method is that it is generally 

very sensitive to any errors which might occur in the values of x, y, 

or their derivatives. This difficulty is compounded by the fact that 

the derivatives are not normally available, and when they are measured 

by differentiating the input and output signals, the noise may be am­

plified very seriously. 

The advarr~age:;> of this method o.re that it can use th~ j nput 

and output signals that occur naturally in the operation of the sys­

tem, and the evaluation of the p~~eters requires c>nly a finite, 

rather short, period of time. 

Example 2 

The second method involves a direct measurement of the fre­

quency response. A very common method of characterizing a system 

is to measure its steady-state response to applied sinusoids of dif­

ferent frequencies. The coefficients of the transfer function can 

then be dietermined from the oolution of a set of simultaneous linear 

equations; or, if the frequency response is measured as a continuous 

function u..r fi'equency, by certain technique£ for approxima.ting a curve 

by rational functions. 

The major disadvantage of this method is the use of a generally 

extraneous input signal, the sinusoid.. While this is often quit·e satis­

factory for a piece of equipment in the laboratory, it can be quite 

disconcerting to use such a test signal on an aircraft in actual 

flight. Also, as the sinusoidal response must be measured after the 

transients have decayed, the time required to perform a reasonably 

complete frequency response test is likely to be excessive for a sys­

tem whose characteristics can change moderately quickly, such as a 

rocket. 



Example 3 

The third method uses an autocorrelation technique. In a 

preceding paragraph we mentioned the general undesirability of intro-

ducing specific inputs to an operating control system. An input 

which is generally undesirable but _which tends to m:i.nimize the un- · 

desirable effect on the output is white noise. This characteristic 

of white noise leads to an interesting method described by Truxal [4], 

which uses white noise as folldws: 

It is well known that if ¢ (,.) represents the autocorrelation 
X 

function of a .stationary ergodic random process (Appendix B) which is 

the input to a linear-lumped time-invariant system whose weighting , 

function is_h(t), the cross correlation fUnction of the input, x(t), 

and the output, y(t), is given by 

t . 

¢xy( t) = J h( T )¢X( t-T) dT 

0 

The time-invariant property of the system has been chosen since we as-

sume the system parameters remain essentially constant over the period 

5 

of time that it takes to compute the weighting function of the undeter-

mined system with sui table accuracy. 

Now, if the input is white noi.se, 

¢ ( t-T) = K()( t-T );" 
X 

where o is the Dirac delta function. Hence, 

¢ ( t) = Kh( t) 
xy . 
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Consequently, if we introduce white noise into the input of the undeter­

mined system and perform the integration above, we may compute the 

weighting function of the system. Knowing the weighting function of the 

system, we have, at least in implicit .form, all desirable information 

as to system operation. 

Unfortunately, besides the existence of a generally undesirable 

output, this method involves an extremely difficult computation; namely, 

the computation of ~xy· To .compute ~xY infinite delay is theoretically 

necessal'."y, and hence considerable time delay may be necessary to yield 

reasonable accuracy. Consequently, we can eval.uate the system weighting 

function only at discrete, perhaps Widely spaced, times. SUfficiently 

accurate computation may therefore place serious restrictions on the 

maximum possible rate of change of the system parameters. 

Another objection to this method is that the decomposition of 

the weighting function, given in some analog or digital form as an 

explicit time function, into useful information may be an extremely 

difficult procedure. 

In View of the discussion of the above methods, one can list 

a number of desirable characteristics for a process identification method 

to be used in a system which is to adapt itself to significant changes 

in its operating environment. 

l. ~ extraneous inputs. The technique should make use of 

the normal input and output of the system while it is in 

actual operation. 

2. Finite evaluation-~· If changes in the system parameters 

are to be detected, the evaluation time must be shorter than 



' 

• 

• 
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the pericxl of time in which significant changes can occur. 

3. Reasonable accuracy. 

In the next chapter a new methcxl of process identification is 

proposed which attempts to meet these requirements. W·e call the process 

we desire to identify the 11 undetermined" system. Briefly, in this 

technique the input and output of the undetermined system are fed into 

a set of fixed, known linear systems. These fixed systems may easily 

be designed ruch that they are independent of the conditions which 

cause the parameters of the undetermined system to change. The outputs 
·, . 

of these fixed systems, along with the output of the undetermined sys-

tem are fed into a computer which generates a set of outputs which are 

estimates of the unknown parameters. A simplified block diagram of the 

process is shown in Fig. F 1. 

After a basic discussion of" the new methcxl and the derivation 

of the equations involved in the computation, the major part of this 

paper is devoted to the problem of selection of the fixed systems in 

order to minimize the error in the estimated parameter values. Be-

cause of ·the complexity of the computation and its basic nonlinear 

nature, an exact solution for the optimum choice of fixed systems was 

not obtained; however, criteria for selecting the fixed systems to 

· obtain"good" performance are presented. This proposed method was 

simulated on a computer, and. the results are presented in the final 

chapter • 
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CHAPI'ER II 

DESCRIPI'ION OF THE METHOD 

2.1 Statement of the Problem 

We assume that; we have an undetermined linear-lumped, un-

conditionally stable, ~perating control system whose transfer func-

tion H(s) is represented by 

H( s) ~ G(s)K(s) = G(s) 
1 

n . 
[cis~ 
~=o 

c I o n 
(2 .1) 

Since H(s) is a ratio of polynomials in s, the factoring of H(s) 

into G( s) and K( s ') is. always possible, and G( s) is a ratio of poly-

nomials in s. 

We restrict the discussion to those systems whose G(s) 

is known throughout the history of system operation, but that K(s) 

changes in a manner which can be suitably represented by varying 

at least some of the (ci} slowly with time in some unspecified 

fashion. In.effect, we have stated that all of the zeros, if any, 

of H( s) are known, but at least some of the poles are not known. 

It is our purpose here to develop a method for measuring 

the fci} throughout the history of system operation, while the un­

determined system is performing its control function. W.e shall call 

the r ci J the "undetermined parameters" of the undetermined system. 

2.2 The Second Order.System 

Although the method presented in this paper is applicable 

to any control. system which obeys the restrictions of section 2.1, 

9 



we shall first describe the method as applied to a simple second 

order undetermined system. A discussion of the mth order system 

will be found in section 2.3. A control system which is, or may 

be closely approximated by, a second order lumped-linear system 

is conunonly encountered in practice; and hence a detailed analy-

sis of the method as applied to such a system is of considerable 

im11ortance. Except ;for peotion 2.3 we shall devote thP. rf'.ma.inder 

of this paper to the second order system described in this section .. 

w:·e assume that the undetermfned system contain::; no zeros 

and that. the 7.P.rn frequency ga:i.n rema;i.ns constant at unity. The 

natural frequency, wn' and the damping factor, C; however, do vary 

in some manner. For such a system, G( s) -= 1, and the transfer 

function is given by 

1 
H( s) = 

as2 + bs + 1 

It is our purpose to measure a and b while the sys,tem is 

performing its control functions. Knowledge of the undetermined 

parameters a and b inunediately yield the ·natural frequency and 

damping factor via the simple relations 

1 
w = l/a2 

n 

C.=bw/2 "' n 

10 

• 
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Consider two other systems whose transfer functions are 

given by 

1 
H

1 
( s) = 2 + 1 ~ s + bl s 

a11a2 , bl=/b2 

1 
H

2
( s) ::: 

2 + 1 a
2

s + b2 s 

where ~' a2 , b
1

·, and b2 are known and fixed. We shall call these 

constants the "fixed parameters" and the systems represented by H
1 

and H
2 

the "fixed systems." l-Ie stipulate that the fixed systems 

are unconditionally stable. 

Let x( t) be the input to the undetermined system and let 

X( s) be the Laplace transform of this input . We .define 

Y( s ) = H( s )X( s ) 

We also formally define the quantities af, a~, bf, and b~ 

by the relationships 

a* + a. = a* + a = a 1 1. 2 2 

11 

(2.2-1) 

b* + b =·b* + b ~ b 1 1 2 2 
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Consider the differences Y1 - Y and Y2 - Y 

i=l, 2 

hence, 

y - y [~. s2~b. s+l 
l ] X = 

i as2+bs+l 
l. l. . 

[~i i~bi s+l 

1 .Jx = 2 + (b'¥-tb. ) (a*+a. )s 
i· l. ~ l. 

:0: 

a~s + b~s 
[ 2 ] 

(ais2+b:s+l)(a:2+bs+l) 
X 

In terms of the transfer functions defined previously, 

we have, 

y. - Y. 
J.. 

i=l, 2 (2.2-2) 

From ( 2.2-1) we may express a~ and b~ in terms oi' ay and 

b!, ~' 

b* = b* + b - b 2 . 1 1 2 

With these relationships we may rewrite, with some rearrange-

ment, equations (2.2-2) as the two equations 

,';... 



•· 

\ 

... 
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(2.2-3) 

It would now be advantageous to move to the time domain. 

Using the symbol L-l to denote the inverse Laplace transform, we 

define the following Laplace transform pairs: 

x( t) = L -l[X( s)] 

y(t) = L-1[Y(c)j 

yi(t) = L-
1
[Yi(s)J i=l,2 

that is, x is the input to the undetermined system, y is the output 

of the undetermined system, andy. is the output of the ith fixed 
]. 

system whose input is x. 

Equations (2.2-3) contai:n terms of the form sjHiY. We 

formally denote these expressions in the time domain as 

i=l,2; j-1,2 

that is, zij) is the output of the ith fixed s~stemwhose transfer 

function is sjH. and whose input is the output of the undetermined 
. ]. 

system. It is not without reason that the notation above implies 

differentiation. If the initial conditions on all time functions 

above were zero we could write 



If the measurement of the undetermined parameters is begun when all 

systems are at rest; i.e., when all signals (except perhaps x(t)) 

and all of their derivatives are zero, zero initial conditions are 

assured. If the initial conditions are not ~;~.11 zero, the stability 

of the fixed and undetermined systems assures that the effect of non-

zero initial conditions ,.,ill become negligible within a relatively 

short 

tions 

time in the history _of system operation. With these considera­

in mind we take z~j) to be the jth derivative of the function 
. ). 

7"'1( t) for the remainder of the paper. 

With this notation, equations (~.2-3) can "be -written in the 

time domain as 

y1 - y = a:iE"z" + b*z' ·.J.l 11 

a:iE"z" + b*z ' J. 2 1 2 

(2.2-4) 

Equations (2.2-4) represent two simultaneous linear alge-

braic equations in the two unknowns a! and bf. Once these unknowns 

have been found, the undetermined parameters a and b may be evaluated 

from equations (2.2-1). 

Solution of (2 .2-4) can be accomplished by Cramer's Rule, 

(1] yielding 

a*= 1 

b* = 1 

(2.2-5) 

14 

: ,. 
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It should be noted that similar equations could have been 

written for the unknowns a~ and b~ by a parallel development, but 

that either pair will allow calculation of a and b. 

A detailed discussion of the terms of (2.2-5) is now in 

order. The constants (a
1 

-a
2

) and (b1 -b
2

) are known and fixed. The 

:function y{ t) is the output of the undetennined system. The functions 

15 

y1{t) and y
2
{t) are the outputs of the two fixed systems whose trans­

fer functions are, respectively, H1 and H2 and whose input is the input 

to the undetermined system. The functions z]_, zi, z~, and z2 are 

the outputs of a set of fixed systems whose transfer functions.are, 

respectively, iHl' .sH1 , s2H
2

, and sH2 , and whose input is y( t ), 

the output of the undetermined system. The signal flow is diagram-

med in figure F2 .2-1. We observe that all of ·these signals are 

explicitly available. 

A question naturally arises as to the desirability of cal­

culating the derivatives of Y{t), as the operations sjH.Y seem to 
~ 

imply. Actually no differentiation as such takes place. The systems, 

sjHi, which appear to imply differentiation, never contain higher 

powers of s in the munerator than in the denominator. The important 

consequence of this fact is that the differentiation implied by sjH. 
·~ 

can be accomplished internal to the operation H. . A suggested analog 
~ 

circuit f~ H., j=l,2, is shown in figure F2.2-2. It is seen from 
~ 

this figure that the outputs, zij), of the systems represented by 

sjH. are all explicitly available in the one circuit represented by 
~ 

H.. It is to be observed that this circuit does not explicitly dif­
~ 

ferentiate the output of the undetermined system and hence does not 



generally tend to amplify any noise which may accompany y(t). We 

may now replace the portion of F2.2-l Within the dashed lines by one 

circuit and represent the signal flow by figure F2.2-3. 

In summation, equations (2 .2-4) are two simultaneous linear 

algebraic equations in the two unknowns at ani bt. Once these un­

knowns have been found, the undetermined parameters, and hence the 

transfer function of the undetermined system, may he evaluated from 

equations ( ~ .2-1). The signals x( t), y( t), y, ( t) and / j )( t )' can 
l. l. 

all be easily made explicitly a.vo.ilable f'or the comput.atj.on (?. .2-5). 

It must be emphasized that the fixed systems are independent 

of the undetermined system, and thus may be insulated from the condi-

tions which cause changes in the undetermined parameters. The fixed 

16 

systems can be relatively simple networks built from simple electronic 

components. Since the fixed parameters are parameters of the fixed 

systems only, these parameters may be held constant. 

The proposed method does indeed embody advantageous features 

mentioned in section 1.2. Only the input and output of the undetermined 

system is used as measurable information. .No extraneous inpuLs t::t.re 

introduced into the undetermined system. The evaluation of (2 .2-5) 

may be accomplished by continuous time analog devices or discrete 

time digital devices, or some combination of both. If a discrete 

· time implementation of the method is employed, the accuracy of the 

measurement is not affected by the time interval between measurements. 

Further advantages are available in using the method: No 

restriction has been made-on the input to the undetermined system. 

Since the fixed systems can be designed so that they do not "load" 

I 

"h ,, 
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.. 
the undetermined system, the independence of the control operation 

from the measurement is assured. 

After the derivation of the measurement equations for the 

more general undetermined system, in the following section, some 

of the pract-ical problems in the application of the method will be 
•· 

discussed. 

•. 

0. 
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2.3 The mth Order Undetermined System 

In this section we shall present a more general development 

of the material of section 2.2. For simplicity, certain algebraic 

manipulations and discussion material which seems redundant to section 

2.2 will not be presented. 

By the m th order undetermined system, we mean that the por-

tion of the transfer function of the undetermined system which con-

tains the undetermined parameters is of· order m. With this defini-

tion we write the transfer function of the undetermined system as 

1 
c :fo om 

'We specify that the undetermined system be unconditionally stable. 

The only restrictions we impose on G{s) is that it be linear, of 

finite order, and remain fixed throughout the history of operation 

of the undetermined system. The f c . } are the undetermined parameters. . OJ 

Let there be m+l other unconditionally stable fixed systems 

"'vi th transfer functions 

1 ------ ; 

t J=O 

j 
c .. s· 

l.J 

i=l, 2, ... , m+l 

The {c .. } are the fixed parameters. The only condition "I-re impose 
:LJ 

upon them, except finiteness, is that for any chosen j, cij = ckj 
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if and only if i=k. 

As before, we define the parameter ctj by the relation 

; i=l, 2, ... , rn+l; j=O, 1, •.. , m (2.3-1) 

th W.e also define the output of the i system 

i=O,l, •.. ,m+l 

where X( s) is the Laplace transform of the input, x( t), .to the 

undetermined system. 

w·e write the m+l differences 

[ c'!E" .sj 
1J 

= G( s )X( s) 

[~ cil] [~ 0ol] 
= I: crjsjK1GKuX 

i= 1, 2 , ·. . . , m+ 1 

j j=O,l, ... m 

thus, 

yl - y = [ c'!E".sjK.Y (2-3-2) 
0 j 1J 1 0 

We may therefore express equations (2.3-2) in terms of any one set 

of crJ. W!e may also assign any non-zero subscript to any of the 

transfer functions (Hi,Ki) of the fixed systems, provided no two 

r 

/; 

• 



.. 

' '/ 
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·H. or K. are assigned the· same subscript. Let Ul:> therefore express 
1 1 . 

all the crj in terms of the set cij· We have, for each j, 

·i=l, 2, •.. , m+l • 

Equations (2.2-2) now become, with a slight rearrangement 

(2 ·3-3) 

i=l, 2, ... ' m+l 

j=o, 1, ... , m 

Using the definitions of section 2.2, we expres~ (2.3-3) in the 

time domain as 

( c
1

. -c .. )zi( j ) 
J 1J 

i=l, 2, •.. ' m+l; 

( 2 .J-4) 

j=o, 1, ... , m 

Equations (2.3-4) are m+l linear, simultaneous, algebraic equations 

in the m+l unknowns cfj. All time functions need.ed to generate 

equations (2 ·3-4) are easily available from the undetermined ·system 

and the fixed systems. 

The only important point in this section, other than the 

extension to m+l unknowns, is that z~j) is defined to be the inverse 
1 

Laplace transform of (sjK.Y }; that is, the fixed systems whose input 
1 0 

is the output of the undetermined system do not contain G( s) in their 



transfer functions. This point was not brought out in section 2.1 

because G(s) was set to unity in that section. th Tne m order case 

is diagrammed in figure F2 .3. 

It should again be observed that no actual differentiation 

of y( t) takes place, as seemingly implied by the operation sjKi Y, 

since the order of the denominator of Ki(s) is always equal to or 

higher than j. 
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2.4 Difficulties with the Method 

The major difficulty with the .method is obviously the 

problem of accurate solution of equations (2 .2-4). Accurate solution 

of a set of linear simultaneous equations is often a difficult task, 

especially if the order of the equations is high. Computational 

errors such as round-off and errors in signal measurement due to 

noise phenomena may present problems. These errors are especially 

severe if' the signal level is small compared to the noise and com­

putational levels. 

The method does not preclude overdetermination and lea~t 

squares solution, a process which usually tends to alleviate the 

accuracy problem. W'e shall not discuss this procedure here, but a 

brief discussion of this approach can be found in Appendix A. 

The accuracy problem is particularly serious if the deter­

minant of the coefficient matrix is singular, or almost singular. 

When the system is at rest, the value of this determinant will be 

identically zero, in the absence of noise or computational erruL·, w.ul 

the equationc wil.l become ind.et.f:'rmi nR.nt. An indetermine,n.cy will 

also result if' the value of this determinant passes through zero 

{we have no reason to assume that this situation is not possible). 

The indeterminancy due to the rest condition is not surprising since 

no information about its performance ::.s available from a system at 

rest. 

In the presence of' computational and/or noise errors it 

is evident that our results will be virtually meaningless when the 



value of the coefficient determinant is near zero. It therefore 

appears imperitive that any implementation of the method·provide a 

procedure far alleviating this problem. 

It should be noted that, while all the systems involved 

are assumed linear, and the basic problem of method accuracy is the 

solution of a set of linear.algebraic equations, ·the computed values 

af and bf ( o:; cfj) are not linear with respect to the various coef­

ficients in the set of equations. In particular, the results of the 

computation depend in a nonlinear fashion on the input x(t), any 

noise that might be introduced into the system, and the set of fixed 

parameters chosen for the fixed systems. As will soon become ap­

parent, this fact of nonlinearity considerably complicates the 

problem of optimizing the accuracy of this method of parameter meas­

urement. 

The remainder of this paper will be devoted to the deter­

minant zero-crossing problem and accuracy of parameter measurement 

in the presence of noise. In order to. keep the complexity of the 

problem to a reasonable level, we shall restrict ourselves to the 

second order system; and hence to the accuracy of the computation 

descri.bed in equations (2.2-5 ). 
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CHAPrER III 

CHOICE OF .THE FIXED PARAMETERS 

3.1 General Remarks 

In this chapter we shall be concerned with choosing the 

fixed parameters so as to minimize errors in the computation (2.2-5) 

which are ca.u$ed. by noi. se. Und.er certain siiillllifying assumptions .• 

techniques will be developed which enable us to make a Judicious 

choice of the fixed parameters. 

The firct aecumption is that no error is causoo by e.ny Of?'­

vice used to perform the computation. In the final analysis, fac­

tors such as size, cost, etc. would determine the computational ac­

curacy in terms of hardware and computer sophistication. 

The second assumption is that the fixed systems generate no 

noise in themselves, and are unaffected by the environmental changes 

which affect the undertermined system. Since the fixed systems ~ 

o.nd H2 ca.n easily be icolated from the undete:nnined system, they 

may be designed to relatively severe specifications. 

Thirdly, we assume that the input to the undetermined system 

is also the input to the fixed systems vThich generate Y1 and Y
2

. Thus 

any noise that might be superimposed on the original input merely be­

comes part of the actual input and produces no error in the measure­

ment. It is of course possible that the input. to the undetermined 

system must be fed through a cable and/or transducer to provide input 

to the fixed systems. In this event, we assume that any noise caused 



. f 

), 

by this transmission is negligible. 

V.U th these restrictions on the noise we must assume that any 

and all noise is generated within or at the output of the undeter-

mined system. Since a 11perfect11 computer and 11 perfect11 (in the sense 

of zero noise generation) fixed systems have been assumed, it is 

evident that all noise must pass through the fixed systems which gen­

erate the z~j).r The order of the fixed systems is specified by the 
J. 

undetermined system. Consequently, once the input to the undetermin-

ed system, the undetermined system itself, and the noise have been 

specified, only the choice of the fixed parameters is available to 

attempt to reduce any error in the measurement. 

The importance of the fixed parameters with respect to er-

rar reduction may easily be seen from the fact that if the two fixed 

systems are chosen to be identical to each other, solution of (2.2-4) 

is not even possible. It is then at least intuitively evident that 

with specified input, noise, and undetermined system, there must 

exist sets of fixed parameters which allow less error in the measure-

ment than other sets of fixed parameters under the same set of given 

conditions. 

In order to make a suitable choice of the fixed parameters 

we must have some knowledge of the input to the undetermined system, 

x(t), and the noise •. In general, we may not specify the input and 

noise as known ftmctions of time, but it must be assumed that we have 

at least some statistical knowledge of these functions. Indeed, if 

the input and/or noise were known functions of time it is conceivable 
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that another, more generally accurate, method could be devised to 

measure the undetermined parameters. 

The computer and fixed systems have been eliminated as 

noise generators in the sense that if' any noise appears on their out­

puts it is wholly attributable to noise on their inputs. The input 

x(t) is not subject to noise for reasons discussed above. Conse­

quently, any ~oise in the overall system must be that noise. which 

appears at the output of the undetermined system. We shall there­

fore assume that the output of the undetermined system appears as 

y(t)+e(t), where e(t) is the noise and y(t) is the noiseless output 

of the undetermined system due-- to the input x( t) . 
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In the techniques-of error-r~uction discussed below it is 

often necessary :to specify the undetermined parameters. We are not 

begging the question by specifying what we wish to find, but are mere­

ly pointing out that the results found from error reduction compu­

tation are themselves functions of the undetermined parameters. In 

general, if a best (in the sense of error reduction) set of fixed 

parameters is chosen, this set is best only fo:r: a cerLain set of un­

determined parameters. Fortunately, this set should be a "good" 

set for relatively small variations in the fixed parameters. If 

the measurement is being used to control the undetermined parameters, 

no difficulties arise if the control is adequate, since the undeter­

mined parameters will always· be near some specified operating point •. 

In the remainder of this chapter we shall discuss the statis­

tical description of the signa~s and noise and present methods for 



choosing the fixed parameters which tend to m.:lnimize the error in 

-the measurement of the undetermined parameters. 

3.2 Statistical Descrtption of the Input and Noise 

In the analysis below we shall represent x(t) and e{t) as 

two sample functions of two independent stationary ergodic gaussian 

random processes with zero mean and known power spectral density. 

The above properties have been chosen because such processes are 

often reasonable approximations to the actual phenonema, and are 

mathematically tractable. Besides assuming that e( t) is independent 

of x(t), we assume that e(t) is independent of the overall system 

configuration; that is, e{t) is in no way dependent on H1 or H
2

, 

nor on the undetermined system, nor on any device used to solve 

(2.2-4). The ergodic property states that averages across the en­

semble; i.e., "across the process," may be replaced with averages 

across time of a sample function. The stationary assumption assures 

that the statistical properties of the processes will be independent 

of time. A gaussian process has been chosen because such a process 

is "highly random" and is capable of relatively simple analysis. 

Further discussion of these concepts may be found in Appendix B. 

The control designer often has little information about what 

functions his system will be subject to in the field beyond the fre­

quency content ·of the input and of the noise . When the power spec­

tral density (PSD) of the input and noise are specified it is not 

necessarily implied that these representations apply exactly to these 

fimctions.. What is implied is that this representation is the best 
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·-.r available. Also implied is that this representation defines the 

frequency region over which we desire the measurement of the unde-

termined parameters to be more accurate with respect to the choice 

of the fixed parameters. For instance, if we cut off these spectra 

at some frequency, we only imply that we are not particularly con-

cerned with (say) the high frequency portion of the spectra. 

We have chosen x(t) and e(t) to be sample functions of ran-
,. 

dom proces::;e::;. It theJ;"efore follm-rs that the outputs of the unde-

termined and fixed systems are also sample functions of random 
j 

processes, related to their inputs by linear transformations. Due 

to the statistical nature of the signals and noise, it is evident 

that some sort of averaging process must be used to evaluate, and 

hence attempt to reduce, the errors in the measurement of the un-

detei'mined parameters. In particular, we shall use the mean square 

error, or a sui table approximation to the mean square error, as a 

measure of the error in the estimation of the undetermined parameters. 

3·3 Some Notation 

In the folla\-Ting material all formulas for integration 

over a specturm will be given the limits ( 0, co) or ( ..4), co). This 

convention does not exclude the possibility ·of finite limits if the 

spectrum in question.is non-zero over only a finite range of fre-

quencies. 

It is advantageous at this point to introduce oome addition-

al notat;ion. We define 



(3.3-l) 

We have suppressed the argument (t) in (3.3-1) and shall continue 

to do so when 90 confusion would result. It should be noted now, 

however, that since the y
1 

and the ·zij) are functions of time, D, 

Na, and Nb are functions of time. 

The function D may be recognized as the denomi-nator and 

the functions Na and Nb as the numerators of the expressions in 

equations (2.2-5); therefore we may write 

a*= Na/D 

( 3 ·3-2) 
b* = Nb/D 

The subsr.r:i.pts on a* and b* have been suppressed for brevity. !:iiiiCe 

a* and b* each differ from the undetermined parameters only by an 

additive constant ( ~ and b
1

, respectively), a* and b* are fwH.: tions 

bf time only if the w1determined para.n1:eters are ftmct:Lons of time. 

Since the undetermined and fixed systems are linear, the 

principle of superposition applies; that is, if the input to any of 

these devices is composed of signal and additive noise, the output 

may be represented simply as the sum of the output of the system with 

·signal only as the input plus the output of the system with noise 

only as the input. This fact leads naturally to the follmring notation: 

'--· 

. 
' 
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lie shall use the previous notation to refer to the signal 

portion of the variables. The noise portion vr.lll be subscripted 

with the symbol "e." The subscript "m" will refer to the variables 

actually measured by the parameter estimation system; i.e., the sum 

of the noise and signal. We thus write 

y ( t) 
m 

= y( t ) . + y ( t) = y( t ) + e{ t ) 
e 

Noting that y1 and y
2 

include no noise terms, we write 

Although Na, Nb, and D are not generated by linear operations, 

it is possible to separate the signal and noise portions of these 

variables by collecting terms. We have 

D (t) = D(t) + D (t) m e 

Na (t) = Na{t) + Na (t) 
m e 

Nb (t) = Nb{t) + Nb (t) 
m e 

If, for brevity, we write 

u = y1 - y 



u = -e e 

Na and Nb can be written m m 

Thus, 

Na = Na -Na = uz' +u z'-vz' -v z'+u z' -v z' e m e2 e 2 el e 1 e e2 _ e el 

Nb = Nb -Nb = vz" +v z"-uz" -u z"+v z" -u z" 
e m el e 1 e2 e 2 e el e e2 

D = D -D = z"z' +z'z" -z'z" -z"z' +z" z' -z" z' e m 1 e2 2 el 1 e2 2 el el e2 e2 el 

The parameter measurement system computes the following 

variables 

a*( t) = Na ( t )/D ( t) = a* + o.*( t) 
m m m e 

b*( t) 
m 

Simple algebra yields 

a*= e 

b* = e 

Na - a*D e e 
D m 

Nb. - b*D e e 
D 

m 

b* + b*( t) e 

(3.3-3) 

(3.3-4) 



_; 

The quanti ties a*{ t) and b*( t) are the errors in the measurement e e 

of the undetermined parameters caused by noise. It should be ob-

served that a* and b* are somewhat complicated non-linear functions e e 

of the undetermined parameters, the fixed parameters, the input to 

the undetermined system, and the noise. It is the purpose of Chap-

ters III and IV to investigate techniques for reducing these errors 

in some sense • , 

3.4 The Possibility of an Exact Solution 

Initial reasoning would suggest that a possible approach 

toward reducing the error in a* and b* would be to find the fixed 

parameters, with x and e given and a and b given and fixed,. such 

that the magnitude of the quantity 

(3.4-1) 

be minimized; that is, the weighted sum of the mean square errors 

be minimized. The positive numbers <la, and ~ are arbitrary weights, 

chosen such that ~ + qb = 1. Unfortunately, such an approach is 

not feasible, for reasons stated in the remainder of this section. 

In the absence of an exact solution, it appears that an approximate 

solution must be used. Such an approximate oolution is discussed 

in the next section. 

The most serious difficulty in evaluating Ee is that there 

appears to be nothing inherent in the form of a* and b* (3.3-4) that e e 
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pre~ludes the possibility of Dm passing through zero in such a fashion 

that a* and b* have non-integrable singular! ties across time. Indeed, e e 



it is possible, and highly probable, that when D is zero, either m 

Na - a*D or Nb - b*D , the numerators of a* and b*, will not be e e e e e e 

zero. Since integration is not possible, averaging is not possible, 

at least in the sense that the mean square value of a* and b* will e e 

in general be non-finite. 

It may also be observed that the quantities Na - a*D , e e 

Nb'=' - b*D~ 1 and Dm. are all statisticaJ.ly mutually dependent. No 

general practical theory exists for generating the probability 

density function of the ratio of two statistically dependent func-

tions, and hence the probability density function of a* and b*, e e 

whether or not the ratio exhibits singularities. 

If the singularities did not exist, it would be possible to 

expand D about some point, say D , and write m m 

-a*D ) e 

co 

L: 
n=O 

(3.4-2) 

a similar expression holds for b*. W'i th x and e chosen to be the e 

Gaussian processes described in section 3 .2, it is possible to e-

valuate expressions of the form 

and hence evaluate 2 a* • e 

For large n, about 3 or 4, the terms of ( 3.4-2) become ex-



', 

ceedingly complicated; and thus, if the convergence of the series 

is not rapid, the tediousness of the computation would render the 

series essentially useless. 

It is possible to remove the singularities of a* and b* e e 

by imposing a constraint on D . Consider the following constraint. 
m 

Let 

where, for some positive V, 

D = D ; In I > v em m m 

D = -V ; 0 > D > -V em - m-

D =V;O<D <V em - m-

Although such a constraint is quite arbitrary, it will be ahown in 

section 4.1 that this constraint is very useful if V is judiciously 

chosen. The imposition of this constraint is important to the para-

meter measurement method described in this paper and it will be more 

fully discussed in section 4.1. 

We have ~emoved the. singularities in a* and b*, but the dis-e e 

continuous probability density function of D now makes the evalua­. em 

tion of a*2 and b*2. even more difficult. e e · The imposition of a con-

straint which allows the probability density function of Dcm to be 

continuous and yields a value of zero with zero probability would be 

virtually impossible to implement. 
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In view of the severe complications discussed above, it 

seems that some sort of approximation scheme must be used to deter-

mine the H1 and H2 which reduce the error in a~ and b~. 

Incidently, it may be considered that an advantage may be 

gained if a~ (b~) were computed in lieu of a{ (bf). It can be 

shown that by virt_ue of the f'act that a~ - a~ (b~ - b~) is 

constant, independent of signal and noise, the error in ~ 

{b~) is identical to the error in a:h (b:h). Hence, there is no 

advantage in choosing one set of fixed parameters over another set 

(all fixed parameters having been chosen, ) to use as the r-eference 

values. 

3·5 An Approximate Solution 

A first order approximation which tends to reduce the 

errors in the undetermined parameter measurements in the presence 

of noise is to choose the fixed parameters such that the quantity 

40 

R = e ( 3 ·5-1) 

is minimized, where ~ and ~ are weights chosen such that <Ia,+qb = 1. 

In minimizing R , it is implied that since a* ani b* are e e e 

both the ratio of two functions, these errors will tend to be small 

if their respective numerators are small with respect to their denomi-

'- .. · 

I 
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nator. Although minimization of R does not necessarily yield the 
e 

best choice of the fixed parameters, in the sense of mean square 

error reduction, it does offer a useful guide tcn•ards fixed para-

meter choice. 

Little error is introduced in the evaluation of R if the e 

constraint described in sections 3.4 and 4.1 is ignored, even though 

the constraint may be used in an actual implementation of the para­

me'Le.t· measurement method.. The constraint is onl.y useful. if ~ is 

2 small compared to Dm , and hence the replacement of D with D em m 

makes little difference in the evaluation of R . e 

We shall now evaluate R where x( t) and e( t) are each sample e 

functions of two independent stationary ergodic gaussian random 

processes with zero mean and known PSD. In order to perform this 

evaluation, we shall first show how the mean value of the product 

of the outputs of two linear-lumped filters with the same stationary 

ergodic process as input may be evaluated. 

Let g( t) be a sample function of a random process described 

above. Also, .let g be the input to two linear-lumped time invariant 

filters whose transfer functions are K1(s) and K
2
(s). Let r 1(t) 

and r
2
(t) l::!e the respective outputs. We may write (Property 4, 

Appendix B) 

'Where Oz. r ( w) is the CSD of r 1 ( t) and r 2 ( t). VIi th the a.id of 
1 2 

properties 5 and 6, the CSD of r 1 and r 2 can be written as 
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Since G r exhibits odd synunetry of its imaginary part and even 
rl 2 

synnnetry of its real part, we can write 

• 
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r
1

r
2 

~ i .· Real part of [JS_(-jw)K
2

(jw)Gg(w)}dw 

0 

( 3 ·5-2) 

Using the relation (3.5-2), R , as given in (3.5-1) can be 
e 

evaluated. In the remainder of this section we shall describe the 

evaluation of rD2 in some detail. 
m 

The evaluation of the numerators 

of R can be found in Appendix C • c 

We have defined 

D = z11 z' -z" z' 
m ml m2 m2 m.l 

Thus, 

D2 = z"2z,2 + n2 ,2 - 2z" z" z' ·z' 
m ml m2 zm2zml ml m2 ml rn2 

Since the average of a sum is the sum of the averages, 

(3·5-3) 

Since xis gaussian, y is gaussian (Theorem l). Since e is gaussian, 

y+e is gaussian (Theorem 2). Since y+e is the gaussian input to 

the filters which generate the functions z~j)(t), these functions are 
l. . 

jointly gaussian (Theorem 3). Hence, from (B-1), 

"' ! 
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+ ( Z li Z li ) ( Z 1 Z I )' + 2( Z li Z I )
2 

Ill2m2 mlml m2ml 
(3.5-4) 

-2 ( Zit Zit ) ( Z I Z I ) -2 ( Z li Z I ) ( Z if Z I ) 
mlm2 mlm2 mlml m2m2 

"'("I)(" I) ... , zml zm2 zm2znil 

In order to evaluate the means in (3.5-4) we must evaluate expressions 

of the form 

G (p) (n) 
zmi zmk 

i, k = 1, 2 and p; n = 1, 2 . 
' 

For convenience, we define 

W.ith the PSD· of x given as G , the PSD of y is 
X 

G = ID 
y X 

With the PSD of e given as G , we define e 

G=G =MG +G 
y+c x e 

We now write 

(3.5-5) 

( 3 ·5-6) 



44 

and therefore 

W'e now dei'ine 

(3.5-7) 

A few properties of R and I are apparent: 

1) Ri'k: = Rk:l. =R (i;'k) 

2) R .. = M. 
l.l. l. 

3) 1ik = -Iki 

5) R and I are even functions of w 

W'i th the new notation the required CSD is given by 

( 3 ·5-8) _.-....... 
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Using the stated properties of R and I, evaluating (3-5-8) 

for the indicated i, k, p, and n, and using these values in (3-5-4) 

yields 

(I) (I) . JCI) CIO 

D2 J Gw 
41\ dw J Gw

2
M2dw + 4 L Gw~1dw = Gw M

2
dw m 

0 0 0 

( 3-5-9) 
r [ f &'It 

4
r12dw] 2 

-2 r lr. { Gw~dw +6 Gw Rdw 

0 

where R and I are given by (3-5-7), G is given by (3-5-6), aid the 

Mi are given by (3.5-5). 

The expressions for the mean square values of Na -a*D and e e 

Nb -b*D can be derived by essentially the same methods. Expref':sinns e e ·· 

for these averages are found in Appendix C. If G and G are each x e 

the ratio of polynomials, as is often the case, all the integrals in 

( 3 . 5-9 ) and Appendix C are closed -form integrable via partial fraction 

expansion. The expansion can be extremely complicated, however, and 

the use of a high speed digital computer to perform a numerical inte-

gration rna~ be usually more expeditious. 

It is thus possible to express R as the ratio of functions e 

involving a1 , ~' b1 , and b2 , these functions also depending on the 

undetermined system H( s ) , and the PSD assumed for the input x( t ) 

and the noise e(t), with the aforementioned restrictions of x and e. 

The usual straightforward minimi.zatiori of R involves the differentia-
. . e 

tion of Re with respect to ~' a2, b1 , and b2 , setting these expressions 



equal to zero, and solving simultaneously for ~' a2 , b1 , and b2 . 

This is an extremely complicated procedure, however, and the minimum-

ization of R appears to be more easily accomplished using a four e 

dimensional search for a1 , ~' b1 , and b
2 

(assuming the availability 

of a high speed digital computer) . 

3.6 Choice of the Fixed Parameters with Unspecified Noise 

It is possible that the control system dP.signer will have 

knowledge of the input to the undetermined. system, but will not have 

su:ff'icient infol;"IIlB,tion available to adequately describe the noise. 

In this situation it is still possible to make a generally judicious 

choice of the fixed parameters. 

Consider the error terms 

a* = e 

Na - a*D e e 
D+D e 
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( 3.6-1) 

b* = e 

Nb - b*D · e e 
D + D e 

Without information about the noise it is not possible to compute 

averages of' Na , Nb , and D . It is possible, however, to compute e e e 

averages of D, since the input to the tmdetermined. system is assumed 

to be specified • 

Examination of' (3.6-1) shows that a* and b* will tend to be e e 

lessened if D is increased. It therefore seems reasonable, initially, 

that choosing the fixed parameters such that the mean square value of D 

is maximized would tern to decrease the mean square values of a* and b*. e e 
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Unfortunately, simply maximizing n2 does not appear to be a 

valid method. The quantity n2 may be increased by merely. increasing 

the mean square values of the z~n). Examination of (3-3-3) indicates 
. ~ 

that increasing the mean square values of the zin)Will also tend 

to increase Na , Nb , and D • It is therefore not evident that e e e 

this scheme would yield minimization, or even lessening, of a* and e 

b*· e 

Also, merely increasing the z~n) essentially amounts to 
r ~ 

multiplying the equations (2.1-4) through by a constant. In solving 

a set of simultaneous equations, no accuracy improvement can be 

achieved by this operation. 

vJ:'e may also consider the following argument against merely 

increasing the mean square value of the zin): It is evident that 

such an increase can be accomplished by setting b1 and b2 to zero; 

that is, by designing the fixed systems to have zero damping .. Zero-

damped fixed systems violate the unconditionally stable stipulation 

mentioned in Chapter II. Also, undampeid systems exhibit large out- · 

puts in only a relatively small range of frequencies, and lessening 

of the errors would be effected only over this small band, if at 

all. It would be generally more advantageous to lessen the errors 

over a broad input frequency range. 

the 

It therefore appears desirable to maximize n2 while keeping 

z~n) som~what small. This operation can be accomplished by 
l. 

"normalizing" D With respect to the zin) in some fashion. We choose 

here to maximize n2 with respect to the mean square value of some 

function of the 
(n) z. . 
~ 

A useful normalizing function is 
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( 3 .6-2) 

We therefore shall choose the fixed parameters such that the ratio 

( 3.6-3) 

is maximized. I 
The function ( 3. 7-2) was chosen because it ca.n be ahown tha.t 

---
for all (finite) zin), and consequently (3.6-3) is maximized if D2/D~ 

is unity. Evaluation of ( 3. 6-3 ) for given input, undetermined para-

meters, and fixed parameters will always yield a number between zero 

and one; and hence, an easily interpreted index of the degree of maxi-

mization is available. 

Using the results of section 3·5 it is possible to compute 

the mean sqUa.re values of D and Dn. 

00 

Gyw
4
f\dW 

00 00 

D2 = L L Gyw
2~dw + L Gyw4~dw J~Gyw2M:I_dw. 0 

( 3.6-4) 

[Jl~ Gyw
4
r 12aw] 

.-: 

-2 Joo . 4 00 2 
G w Rdw fo G w2adw + 6 y y --. 

0 
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If we consider the solution of (2.2-4) to be the intersection 

of two vectors, the maximization of (3.6-3) implies that the vectors 

are mutually orthogonal. In general, the errors in the solution of 

simultaneous linear equations tends to be relatively insensitive to 

et"l'Ol't:i :i.n the coefficients of the equations if the vcctoro repr'eoented 

by the equations are mutually orthogonal . 

In terms of.the theory of the solution of simultaneous linear 

equations, we have specified in this section that the fixed parameters 

be chosen such that the equations ( 2.2-4) be generally "well-conditioned;" 

that is, that the solutions of (2.2-4) be relatively insensitive to errors 

in the coefficients of the unknowns. If the solutions tend to be very 

sensitive to these errors, the equations are said to be "ill-conditioned." 

A common way of evaluating the condition of a set of simultan-

eo us linear equations is as follows: [1] 

Consider the set of equation 

~1~ + ... + alnxn = bl 

anl~ + ... a Xn = b nn n 
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The set is transformed by dividing the i th equation by 

and evaluating the magnitude of the coefficient determinant of the 
~. 

transformed equations. If this magnitude is near unity, the equations 
. . 

are well-contitioned. If this magnitude is small compared to unity, 

the equations are 111-cond.:i. tioned. 
( 

From the discussion above it is evident the values of the f~xed 

parameters which maximize ( 3. 6-3) Will tend to keep ( 2 .2-4) well-

conditioned across time. 
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CHAPrER IV 

ADDITIONAL METHODS OF REDUCING THE ERRORS 

4.1 Constraining the Measurement 

It was mentioned in section 2.4 that in order to avoid 

grotesque errors in the measurement of the undetermined parameters 

when Dm(t) is near zero, it is necessary to constrain the measure­

ment. in some fashion. Even in the absence of generally serious noise, 

little accuracy can be obtained when D is small. Indeed, if the 
m 

undetermined system is at rest, no computation is possible and any 

results from the measurements can be attributed wholly to noise. 

If the parameter measurement is to be used simply to 

yield a time history of the undetermined parameters, it is only 

necessary to provide a time history of D so that the parameter 
m 

measurement results may be properly assessed in any region of time. 

If the parameter measurement is to be used to provide a 

signal to control some device, it appears generally judicious either 

to delete the control function or to constrain the measurement to 

a reasonable level when D is near zero. m 

Whatever the application of the measurement, a simple and 

effective approach to this problem is to constrain the measurement 

whenever 

where V is some preassigned positive number. In preassigning V 

we do not preclude that V be a function of time, or any other variable 



which may be useful for this purpose. 

If the measurement is to be used to provide a signal to 

control some device and it is not feasible to remove the contro~ 

when the magnitude of D is less than V, a reasonable constraint m 

may be applierl as follovs: 

If at time t 1 , jDml becomes less than V, and remains less 

than V until time t 2 , we constrain the measurement by setting 

b*( t ) = b*( t ) m m 1 
(4.1-1) 

for all t such that 

Application of (4.1-l) tends to assure the absence of large errors 

in the measurement of the undetermined parameters when D is rela­
m 

tively small. 

'i:U th knowledge of UH:! noise and the input to the 'I.Uldeter .. 

mined system, it is a simple matter to choose a reasonable value 

of V. We note that when 

during the measurement, it is highly probable that the value of D 
m 

is composed allnost wholly of noise. Therefore, a judicious choice 

of V appears to b~ 
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V= H e 

With the techniques of section 3.5, it is easy to compute 

the value of D2 · vis., e, 

Cl) 

G w4Rdw 
Cl) Cl) Cl) 

G w4Rdw -2 l 1 Gew2ndw -2 i G w2Rdw i y y e 
0 0 

Cl) 

4 
Q) 

4 + 4 i Gyw r12dw L Gew I 12dw (4.1-2) 

Q) 4 Q) Q) 4 Q) 

+ 1 Gew M1dw i Gew
2
M2dw +l Gew M2dw 1 Gew,dw 

0 0 0 

Q) 

G w\dw 
Q) 

[{ Gii12dw] 2 
-2 1 L G w2Rdw + 6 e e 

It is conceivable that one is not particularly concerned 

53 

with the errors themselves in a* and b*, but _finds it generally more m m 



desirable to prevent the application of the constraint over as 

much time as possible without using an excessively small value of v. 

If this is the case, excellent results can be obtained by choosing 

the fixed parameters such that the ratio 

is minimized. Use of this criterion has the effect of' generally 

keeping a: and b: at reasonable levels and assures that the magni­

tude of Dm will be less than Vas infrequently as possible. 

If the noise is not known, V may still be estimated by 

choosing 

V=p fi 
where p is some positive number less than one. 

4 .2 Filtering the Computed Parameter Values 

In addition to choosing a "good" set of fixed parameters 

further reduction in the errors in the measurements can usually be 

obtained by passing the computed values of a~( t) and b:( t) through 

low pass filters. Since we have specified that a* and b* are slowly 

varying functions of time, it is evident that any relatively high 

frequency content in a* and b* must be due to noise. If a* ani b* m m m m 

were passed through low pass filters much of the high frequency noise 

would be reduced. 

Since the power spectra of the error functions a* and b* e e 

cannot easily be determined, the optimum low pass filter cannot be ,. 
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easily designed. However, almost any low pass filter will tend to 

reduce the errors. When this method of' parameter measurement is 

applied to an actual system, an appropriate low pass filter can be 

selected and the cutoff frequency determined on the basis of ex-

periment. In the simulation study described in Chapter V; such low 

pass filters were found to be generally effective in reducing the 

noise content of a* and b*. m m 



CHAPI'ER V 

A SIMULATION OF THE MErHOD 

5.1 Introduction 

A simulation of the proposed methcd of parameter evaluation. 

* was performed using a digital computer. The results of the simu-

lation are given in this chapter. The difficulties entailed in 

generating stationary Gaussian ramom variables with known PSD by 

the digital computer precluded using the exact inputs and noise de-

scribed in Chapter III in the simulation. As an approximation to 

these signals, a st:t of sinusoid& were uaed and the fixed and unde-

termined systems were assumed to be in the steady state.· These sinus-

oidal signals could be interpreted as random functions with rather 

specialized frequency spectra. The particular sinusoids used are 

described in Section 5-2. 

Although sinusoids can hardly be described as general signals, 

it was felt that insight into the behavior and accuracy of the method 

could be obtained with these signals. In particular, the strong de-

pendence of the accuracy of the method, in the presence of noise, upon 

·the fixed parameter could be clearly shown. It must be remembered 

that knowledge of the sinusoidal nature of the inputs and noise was 

not used per ~ in the simulation. 

The simulation is intended to give an indication of the opera-

tion and noise sensitivity of the method for a few simple cases. In 

particular, the aims of this simulation study were threefold: 

* Courtesy Sandia Corporation, Albuquerque, New Mexico 

I 
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1. To ind.icate that the methcxl does indeed measure the 

parameters of an operating (second order) linear-lumped 

control system. 

2. To .show the sensi ti vi ty of .the methcxl to noise and the 

choice of the fixed parameters. 

3. To offer evidence that use of the techniques discussed 

in Chapter III and Chapter IV does reduce the errors in 

the measurements. 

5.2 Input and Noise Signals 

I 
The input signal was chosen to be 

x(t) = ~ X(n) sin (0.2nt) 

and the noise 

e( t) = f sin ( 0 .2nt) 
n=l 

The X( n ) were determined by the shape and level of the PSD 

assumed for the input signal. In all cases, the noise spectrum was 

flat and E was determined by the chosen noise level. 

An advantage to using pericxlic noise and input, and assuming 

that the fixed and undetermined systems were in the steady state, is 

that the results repeat pericxlically. It thus becomes unnecessary to 

use excessive machine time. From the functions above, it may be seen 

that the measurements repeat every 10 TT seconds of simulation time. 



In the tw'o undetermined systems examined, the natural frequency 

of each undetermined system was chosen to be one rad ./sec.; consequent-

ly, the input and noise spanned the major operating frequency range of 

the undetermined system. 

5·3 Simulation Procedure 

Briefly, the procedure consists of two computational phases. 

An undetermined system, noise level and input spectrum were chosen. 

~th given noise, input, and undetermined system, the quantity R e 

(equation 3.5-1) was computed for different sets of 'fixed parameters. 

Based on the value of R , two sets of' 'fixed parameters were chosen, e 

a "good" set and a "poor" set. The "good'' set would presumably allow 

less errar in the measurement than the "poor" set . Under the given 

condition, simulations were then run using each set of the chosen 

'fixed parameters. Additional simulations were run with the same 

undetermined system and input :f\mction, but with different noise 

levels_, for both sets of fixed parameters. In all, four sets of 

undetermined parameters and input spectra were examined. 

Details of' the procedure are as 'follows: 

1. The natural 'frequency and damping 'factor of' a second 

order linear-lumped "undetermined system" 'were chosen. The 

natural 'frequency of the two undetermined systems examined 

here was taken to be 1 • 0 rad_. /sec • 

2. An input spectrwn was chosen, the 'frequencies them-

selves l?eing taken as described in section 5.2. The noise 

spectrum was taken to be flat for all cases. 
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3. The noise to signal ratio wa~:> chosen at the relatively 

high value of 0 .1. The noise to signal ratio is defined as 

(5.3-1) 

where e is the noise in the measurement system at the output 

of the undetermined system and y is the (noiseless) output 

of the undetermines system. The quantity L was defined 

With respect to the output of the undetermined system so that 

errors in the measurements at comparable noise to sigr:tal 

levels could be compared for different undetermined systems. 

4. For different sets of fixed parameters the quantity 

R = e 

was computed . 

+ fi b*D -Nb )2 
e e 

ff m 

R is described in detail in section 3·5· e 

In that section it was pointed out that values of the fixed 

parameters which tend to minimize R tend to reduce the 
e 

measurement errors. 

5. Two sets of fixed parameters were chosen such that one 

set yielded a relatively large value of R and the other set 
e 

yielded a relatively sma.ll value of R . It is expected that 
e 

the 11 good11 set (small R ) will give measurements which are less e 
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sensitive to noise than the "poor" set (large R ) . No attempt 
.· e 

was made to find a best set. It was felt that values of R 
e 

which were less than the noise to signal ratio (equation 5·3-1) 

should give tolerable errors. 

' 
The "good" and "poor" sets were also chosen such that the 

parameters of the reference fixed system ( ~, b1 ) were the same 

for both sets. This restriction assured a basis for comparison 

between ·sets since, in the absence of noise, both sets should 

yield the same measurements. 

6. A simulation was run for each set of chosen fixed 

parameters. Additional simulations were then run with other 

noise to signal ratios for both sets. 

7. A constraint (section 4 .1) was used in the simula-

tion. The constraint was imposed as follows: 

the measurement was constrained by settj.ng 

b*( t ) = b*( t ) 
m m 1 

For each noise to signal ratio and set of fixed para-

meters, the quantity 

was computed. In all but one pair of simulations (per set 



of given conditions) V was set equal to d; where d, of course, 

depended on the noise to signal ratio used in the particular 

simulation. At the high noise to signal ratio of. 0.1, a pair 

of simulations was run with V = d and also with V = d/4. The 

latter choice of V was included because the measurements tend-

ed to be constrained for considerable time at the high noise 

to signal ratio, and consequently averages across time of 

the errors tended to be severly a1'!'ected by the value::; that 

the errors had when the constraint was imposed. Lowering the 

value of V tended to remove this effect. 

8. Measurements were made every n/240 seconds; i.e., 

2400 measurements of a* and b* were made over lOTI seconds. m m 

For each simulation, the mean and rms values of a* and b* e e 

were computed . 

9. The percent of time that the measurements were not 

constraimi ( P) was also computed. 

10. During each simulation a* and b* were passed through m m 

low pass filters with transfer functions 1/(l+s) to examine 

the filtered output as discussed in section 4 .2. The rms 

values of the filtered a* and b* were computed. e e 

In all, forty simulations were run. Two undetermined systems 

were examined, each with two input spectra. For easy reference :each 

sinrulation has been assigned a code. The cede consists of a letter 

to indicate the undetermined system and input spectrum, followed by a 

number to indicate the set· of fixed parameters used, followed by another 

number to indicate the noise to signal ratio and value of V used. 



The undetermined systems and input spectra are listed in Table 1. 

TABLE 1 

w a b input 

A-- 1.0 0.3 1.0 0.6 X(n) = 1.0 

B-- 1.0 0.3 1.0 0.6 X(n) = 1.112/(1+.04n2 ) 

c-- 1.0 1.0 1.0 2.0 X(n) = 1.0 

D-- 1.0 1.0 1.0 2.0 X(n) = 1.112/(l+.04n2 ) 

The 1.112 appears in the numerator of the input for sets B 

and D so that the rms value of the input to these· sets will be equal 

to the rms value of the input to sets A and c. 

The sets of fixed parameters were chosen at noise to signals 

of 0.1 (L=O .1). The choices are indicated in Table 2. 

TABLE 2. (L = 0.1) 

wl '1 w2 (2 a* b* R e 

Al- ·0.9 0.1 1.2 0.1 -.2346 ·3778 .0604 

A2- 0.9 0.1 1.2 1.11 .1889 

Bl- 1.2 1.1 0.4 0.7 .1667 -1.233 .Q985 

B2- 1.2 1.1 0.8 0.2 .1321 

C1- o.8 1.2 1.2 1.2 -.5625 -1.300 .2077 

C2- 0.8 1.2 1.2 0.2 ·3752 

Dl- 0.7 0.7 1.1 0.7 -l.05o8 0.0 .2419 

D2- 0.7 . 0.7 1.1 0.2 .2607 

•. ) 
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The noise to signal ratios and values of V used are indicated in 

Table 3· 

TABLE 3 

L v 

--1 0.1 d 

--2 0.1 d/4 

--3 0.05 d 

--4 0.025 d 

--5 0.005 d 

The results of the simulations are in the next. section. 

L·4 Results of the Simulations 

Figures F5 .4-1 through F5 .4-10 are plots of the errors in a* m 

and b* versus time for case A. A smooth curve connects each plotted 
m 

point, which is the average of 48 computed points. These plots are 

constructed so that an easy comparison can be made between cases Al 

and A2. Error versus time was computed for the other cases also, but 

the results of these simulations will not be presented in as much de-

tail as the results of case A. 

It can readily be observed that the errars are considerably 

smaller for the "gooo" set of fixed parameters (Al) than for the 

"poor" set (A2), at all noise· to signal ratios. Of the four cases 

examined, case A offers the most striking evidence of the usefulness 

of the criterion that R be minimized. . e 
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At the high noise to signal ratio of 0.1 it can be seen that 

the measurements are constrained more often with A2 than with Al; 

hence, Al is actually measuring the undetermined parameters over more 

t;i.me than A2 • 

Figures F5.4-ll through F5.4-18 are plots of the rms and average 

values of the unfiltered errors versus noise to signal ratio and the 

rms values of the filtered errors versus noise to signal ratio. 

Examination of these plots of the rms errors for cases A, B 

and C show that at almost every noise to signal ratio the rms error's are 

les~ far the "good" sf:'t. nf' fixed par;-a,l'!leters than for the "poor" set. 

The decrease in rms errors is particularly evident at high noise to 

signal ratios. 

In caseD, the reducing of rms error is found in the measure-

* * ment of a· but not in the b . It may be seen, however, that the rms m m 

* errors in b are essentially equal for both Dl and D2. m 

* The rms errors in b are generally greater than the rms errors 
m 

* in a in all cases. This situation coUld have been changed by weighting m 

* R such that the b portion of the evaluation of R contributed more e e e 
* . than the a portion·. e 

No generalization appears possible concerning the mean value 

of the errors beyond the fact that these errors tend to be less for 

small noise to signal ratios, as might be expected .. 

The plots indicate the filtering reduces the rms error in all 

cases examined.· Improvement is especially notable in the high noise to 

signal ratio regions. 

f.: 
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Table 4 is a compilation of the mean and rms ~rrors in tabu-

lar form. The quantity P, which represents the percent of time that 

the measurement is not constrained, is also listed. It may be seen 

that P i·s greater for the "good" sets of fixed parameters than the 

"poor" sets for all cases concidered.. 

5·5 Conclusions from the Simulations 

1. The errors are lessened if L, the. noise to signal 

ratio, is lessened. This intuitively obvious. conclusion 

makes it evident that at the limiting condition of L = 0, 

no error exists; and hence, the system does indeed measure 

the parameters of the undetermined system. 

2. In general, the errors are less for smaller R . e 

In particular, the rms values of the errors ~e reduced 

with smaller Re. This :phP.nomena is er:;pecially evident for 

conditions A, B, and c. 

3· It was mentioned in section 5·3 that values of 

R which are less than the associated value of L should 
e 

yield relatively small errors. It is noted that for con-

ditions C and D, the chosen values of R are consistently e 

greater than the associated values of L. This phenomena 

is due to the fact that the undetermined systems used in A 

and B amplify the signal in a :frequency range (about 1 . 0 

rail/ sec ) while conditions C and D do not amplify the signal . 

It was therefore possible to choose the fixed parameters 

in cases A and B to take advantage of this amplification, 



while in cases C and D no such advantage appeared. 

It therefore api>ears that the method can be used to greater 

advantage with a lightly damped undetermined system and 

essentially flat noise and input spectra than a highly 

damped undetermined system. The relatively low errors in 

case D seem to contradict this statement, but it appears 

that in this case the phasing of the noise and signal has 

been a significant contribution in error reduction. If 

the noise and signal had been random, the phasing could 

not cont.rjbute as heavily to error reduction. 

4. It appears that for values of L greater than 

.05, the errors are high enough to render the method not 

feasible, at least for the conditions used in this simu­

lation. 

5. Filtering in general makes a significant con­

tribution in reducing the errors, espeCially fu1· Lht: cases 

where L is J 8-r.gP.. Unfortunately, filtering alone cannot 

red~ce the mean errors, which are generally not zero. It 

is evident that if a filter with a lower cut-off frequency 

had been used, a further reduction of rms error ~auld have 

occurred. 

6. The method exhibits highly non-linear proper-
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ties; that is, conclusions dra~ from one set of conditions 

cannot be extended to another set of conditions related to o 

the original set by a simple magnification or attenuation 

of the frequency scale. 

'• 

•.. 



All 

Al2 

Al3 
Al4 

Al5 
A21 

A22 

A23 
A24 

A25 

Bll 

Bl2 

Bl3 

Bl4 

Bl5 

B21 

B22 

B23 
B24 

B25 

' . 

R e 

.0604 

.0604 

.0301 

.0150 

.0030 

.1889 

.1889 

.o883 

.o428 

.oo84 

.Q985 

.Q985 

.0488 

.0243 

.0062 

.1321 

.1321 

.0642 

.0317 

.o433 

Unfiltered 

ff e ff e 

.2022 .1298 

.2145 .2633 

.OC)o4 .1236 

.o475 .0612 

.0077 .0117 

.2723 .2733 

.5010 ·7173 

.1755 .1626 

.1214 .1762 

.0749 .o817 

.2934 .2212 

.2582 ·3677 

.1376 .1494 

.0648 .0760 

. 0140 .0165 . 

.1999 .2193 

·5970 ·3912 
.2191 .1467 

.1667 .. o866 

.0646 .0315 

TABLE 4 

* * a b e e 

.0318 .0568 

-.0243 .o817 

- .oo86 .0416 

- .oo48 .02o4 

-.004 .0041 

-.1261 -.0164 

.0128 -.0633 

.0111 -.0212 

.0123 -.0385 

.0051 -.0136 

- ·0535 -.0499 
-.0400 -.0298 

-.0354 -.0123 

-.0124 -.0090 

-.0030 -~Oo43 

-.0313 -.o811 

-.0303 -.0354 

.0151 -.0093 

-.0019 -.0150 

-.006 -.0071 

Filtered 

!l V! d p 
e e 

.16o8 .Q988 2.3047 79.6 

.1154 .1726 2.3047 98.8 

.0558 ·.o850 1.2301 95·4 

.0255 .o416 .6369 98.8 

.0055 .Oo84 .1320 99.8 

.1983 .2036 ·9o83 42 ·5 

.2540 ·3949 ·9o83 88.0 

.1360 .1174 .4654 58.3 
-.0691 .1018 .2357 85.9 

.0192 .0326 .0480 98.1 

.2330 .1758 .1379 79.6 

.1948 .2823 .1379 100.0 

.1075 .1146 .0650 95·6 

.0499 .0575 .0316 100.0 

.0105 .0118 .0048 100.0 

.1577 .1615 .8965 57·5 

.2117 .1710 .8965 98.8 

.1170 .0924 .4380 89.9 

.o697 .. 0399 .2167 96.9 

.0176 .0118 .0063 99.8 
0\ 
-4 



TABLE 4, Cont'd. 

!::! N! * * I! R R a b d p 
e e e e e e 

C11 .2077 .5602 -5529 -3344 .2425 .4693 .3870 .0117 33-0 

C12 .2077 -7t$9 ·7503 .0371 -.0104 .2531 -2588 .0117 59·5 
C13. .1037 .3054 -3188 .0734 .o458 .1487 .1433 .0056 41.5 

C14 .0522 .2603 .2824 .0363 .0013 .0750 .OC)10 .0028 63.8 

C15 .0107 .1322 .1394 .0001 .0049 .0192 .0327 .ooo6 94.1 

C21 . ·3752 .5804 .4795 -.1006 .2624 .4905 .4280 .116o 26.8 

C22 ·3752 1.0527 1.4938 ~1435 -3896 -7928 1.1938 .116o 41.1 

C23 .1935 .4273 -3725 .0706 .1035 -3069· -3110 .0562 33-2 
C2~ .OC)83 ·3330 .3101 .0178 .0745 .1677 .2367 .0277 42.3 

C25 .0202 .OC)85 .1284 -.0043 .0238 .0268 .o856 .0056 84.3 

D11 .2419 .2403 .1431 -.2061 -.1156 .2391 .1314 .o659 38.1 

D12 .2419 .2033 .3173 -.0574 .0291 .1638 .2229 .0659 94.0 

Dl3 .1204 .1031 .1003 -.0187 .0089 .0865 .0640 .03l2 77·3 
D14 .0599 .0536 .0719 -.0182 .oo44 .0449 .0481 .0152 95·5 
D15 .0121 .0133 .0163 -.0071 -.0005 .Oll4 .Oo89 .003:> 100.0 

D21 .2965 ·5497 .1975 .3840 .o859 -5302 .1710 .195~ 35·7 

D22 ·2965 ·3563 .3012 -.0253 .0289 .1774 .2010 .195a 95·7 
D23 .1512 .1337 .()900 -.0050 -.0057 .oE14 .0590 .OCJ33 70.8 

D24 .0760 .o857 .0680 -.0083 .Oo47 .0473 .0436 .0458 96·3 

D25 .0155 .0214 .0142 .0047 .. 0105 .0105 .0084 .009l 99·5 0\ 
CX> 
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APPENDIX A 

OVERDETERMINATION AND LEAST SQUARES [5] 

.• - It is generally true that when the coefficients of a set of linear 

equations are subject to random errors, "overdeterrnination" is use-

ful in reducing the errors in the solutions. 

Let there be n equations in the m unknowns [xj, j=l, ••• , m} 

If n > m, the set is said to be ... overdetermined." The 

generally most useful and practical way to solve the set is in the 

"least squares" sense; that is, defining 

to find the unknowns such that 

is minimized. 

The rninimization·is accomplished by differentiating S with 

respect to each of the unknowns and setting.each of the partial deriva-



tives to zero, yielding the m equations 

j=l, ... ,m (A-1) 

Equations (A-1) represent m simultaneous linear equations which may 

be solved far them unknowns. 

This approach may be used to solve (2 .1-4) as follows: 

Let there be m fixed systems 

H.; i=l, ••• ,m; 
~ 

m>2 

W!e write the following two ·equations in the two unknowns at and b! 

t m m · 

a*
1 

(z'.' )2+b*
1 

) z'.'z! = L (yi-y-(a.. -a. )zi"-(b1 -bi )z! )z'.' 
i ~ f;t ~ ~ i=l ~ ~ ~ ~ 

(A-2) 

m m m 

a* ) z"z 1+b* L (zi f = 
1 f;t i i 1 i=l 

k.(yi -y..;{al-ai )z~-(bi-bi )zj_ )z.j_ 

The solutions of (A-2) are generally less sensitive to 

(n) ) errors in the yi and z. than the solutions of (2.1-4 . 
. ~ 
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APPENDIX B 

STATISTICAL THEORY 

To illuminate the material of Chapters III and IV a brief 

description of certain statistical relations useful in this paper 

is given in this appendix. All relationships are given without 

proof. 

(2, 3] 

A more extensive treatment can be found in many references. 

The material here is essentially from Lanning and Battin. [3J 

Property 1 

If x and y are random variables of two statistically ~­

~endent random processes, then 

E[xy] = E[x]E[y) 

where E[z] denotes the expected value (average value) of the vari­

able [z]. 

In the body of the paper extensive use.is made of the notion 

of a sample function of a stationary ergodic random process. Such 

a process is defined as follows: 

Definition 1 

A random process is ergodic (or possesses the ergodic prop­

erty) if averages across the ensemble of random variables describing 

the process may be replaced with averages taken across time from a 

sample function (representitive random variable) of the process 

Definition 2 

A random process is stationary if its statistical properties 
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are invariant with translations in time. 

The Power Spectral Density and the Cross Spectral Densitl 

Let g( t) be a sample function of' a random process. The 

auto-correlation function of' g(t) is given as ~ 

Definition 3 •c 

In particuJ.ar, if the random process· is stationary and ergodic, 

the autocorrelation function is a function of' the difference t 2-t1 . 

W,ith T = t 2 -t1 , ¢g(T) can be expressed as 

Definition 4 

T 

¢g(-r) = g( t )g( t+r) = lim. 1 
( g( t )g( t+'T) dt 

T..Q) 2T 1-T 

Definition ? 
If' g( t) and y( t) are sample functions of two stationary 

ergodic random processes, the cross-correla'Llun function i:J defined 

as 

T 

¢gy(T) = E[g(t)y(t+T)l = ~~~· ~ j[T g(t)y(t+T) dt 

Def'ini ti on 6 

The power spectral density (PSD) is the Fourier transform 

of' the autocorrelation function, ~., 

!-;"t 



c· 

• 

.-

. co 

G ( W ) = !. J ¢ ( T ) exp ( - jWT ) d T ; 
g TT g . J» 

l· = -1 

Definition 1 

The cross spectral density (CSD) is the Fourier transform 

of the cross correlation function 

co 

G (w) =!. 1 ¢ (T) exp(-jwT) dT 
gy TT J» gy 

The PSD and CSD exhibit the following important properties: 

Property 2 The PSD is always real and non-negative. Also, the PSD 

is an even function of w. 

G (w) > 0 
g -

and G(w)=G(-w) 
g g 

for all w. 

Property 3 If g( t) is a sample function of a random process, the 

mean square value of g( t) is ·given by 

2 1 Jco g( t ) = 2 G ( w )dw 
J» g 

co 

= ( G (w) dw Jo g 

Property 4 The mean value of the p:r;cxluct of two functions g( t) 

and y( t) is given by 

co 

g( t )Y( t) = ~ JJ» G gy( w) dw 

91 



In particular, if G is an even function of w, gy . 

00 

g( t )Y( t) = l G gy( w) dw 
0 

Property 5 If G ( w) is the PSD of the input to a linear, time 
g . 

invariant system whose transfer function is K( s ), the PSD of the 

output (y) is 

G (w) = K(jw)K(-jw)G (w) = IK(jw)j 2G (w) 
Y .e e 

Property 6 If Gg is the PSD of the input to a linear, time invar­

iant system whose transfer function is K(s), the CSD of the input 

and output is 

G ( v ) = K( jw )G ( w ) gy g 

Property 7 If g( t) and Y< t) are sample functions of two independent 

random processes With PSD G ( w) and G ( w) respectively, the PSD of g y 

tb.P. ~um of g and y is 

Gaussian Random Variables 

Definition 8 

A .random variable (g) is gaussian if its probability density 

function is given as 

92 
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.. 

p(g) = 1 
.fdiT u 

exp [-

In particular, if g( t) is a sample function of a stationary 

ergodic gaussian random process with zero mean, the probability 

density ~~ction of the function is described by 

exp [-p(g) = 1 

;;;u 

Theorem 1 

If y( t) is a sample function of the output of a linear sys­

tem whose input is a sample function of a gaussian process, y( t) 

is also a sample function of a gaussian process; or more briefly, 

y(t) is gaussian. 

Theorem 2 

If g(t) and y(t) are gaussian random variables, then the 

sum of g and y is a gaussian random variable. 

Theorem 3 

·Let g( t) be the gaussian input to n linear filters, and 

let (yi; i=l, .•. ,n) be the outputs. The functions yi(t) possess a 

joint gaussian distribution; that is, . 

93 



The quantity IMI is the determinant of the so-called moment matrix 

IMI = j ?1 

mnl 

where the mik are given by 

-1 The ~ are the elements of the inverse of the moment mati'ix. 

Theorem 4 

then 

If the fUnctions y. possess a joint gaussian distribution, 
l. 

[ rl rnJ E Yl , ... ,yn = rl\ ..• rn! 

2q = Lrj; 
j 

rj integers 

where the ~tion represents all permutations arid combinations 

of the products such that rl of the indices (i1~ ... iqkq) are unity, 

r2 of them are two, etc • The fornrula above obviously becomes very 

II 
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unwieldy for even small q. 

Fortunately, we are only concerned with two simple results 

of the formula ab CNe; nam~ly, 

and 

it" Lrj is Qdd. 
j 

(B-1) 



APPENDIX C 

EVALUATION OF (Na -a*D )2 AND (Nb -b*D )2 
e e e e 

The eXpressions for the mean square values of Na -a*D e e 

and Nb -b*D can be evaluated by the methods of section 3.5. These e e . 

expressions are necessary in the evaluation of R (equation 3 ·5-1). e 

The signal and noise are assumed to be sample functions of two in-
- -~- - ~ 

dependent, ergodic; statTonary Gaussian- random processes 'Vi th zero- · · - --- -

mean and known PSD. Let the PSD of x( t ) · be G a,nd t.hP. PSD of e( t ) 
X . 

be G • e 

where 

We define 

G = G M+G (C-1) 
y X e 

M
1

(w) = 1Hi(jw)l 2 = Hi(jw)H
1

(-jw) ; j2 = -1 (C-2) 

The expr-essions for Na • Nb , and D are cri ven in equation - - c"' e e o-

(::s.3-3). Expaucl (Na. -a*D )2 and (Nb ··b*D )2 and average t.hP.se qua.nti-e e e e 

ties. Note the following properties of the expansion and averaging 

process: 

1) Each term of the expansion contains four functions. 

2). The average value of any term containing two noise 

functions and two signal functions is the product of the 

average of the noise functions and the average of the sig-

nal functions, by virtue of' the independence of signal 

and noise (Theorem 1). 

~· "' 

f) 
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3) The average value o:f any term containing three noise 

:functions and one sign&l :function is zero, because the 

average value o:f each individual signal (and noise) 

(7 term is zero. 
4) The average value o:f any term containing :four noise 

:functions can be evaluated ( B-1) in the same :fashion 

that (3·5-4) was derived :from (3.5-3). 

I:f we de:fine, :for i = 1, 2; k = 1, 2; 

.. (irk) cc-3) 

2 [ 2 ] ' Qik = w . bR+(aw -l)Iik Mi~ 

we may write the desired averages as 

co . 

z"z" = J w4
G Rdw (irk) i k y . 

0 

(1) (c-4) 

z'!z'.' Jco 4 = w G M.dw 
l. l. y l. 

0 

(2) 

• 



co 

z'z' = l •iGYRdw (ilk) (3) i k 
0 

co 

z'z' = I 2., M d: (4) 'W'li .w \ i i y l. 

0 . 
I 

Cll 

4 z"z' = L w G I.kdw (ilk) (5) 
i k y l. 

z"z' = 0 ( 6) 
1 1 

co 

yyi = 1 G R.dw (7) 
X l. 

0 

co . 

yiyk = J RGxdw (ilk) (8) 

0 

co 

yiyi = J MiGxdw (9) ··/· 
'!IIi 

0 

yz' = J~ Gyw~1M1dw (10) . 
i 

0 

co 

yz" = J[ G w2(aw2 -1)M.dw (ll) 
1 y l. 

0 

a> 

ykzj_ = L GyQh_dw (ilk) (12) 

-
~~ 

co 

Y z" = J G Q" dw (ilk) (13) 
k 1 y 1k 

0 
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co 

y.z! = L G w~M.dw (14) ( c-4 Cont.) 
~ ~ y ~ 

co 

0 y.z'.' = L G w2(aw2 -l)M.dw (15) 
~ ~ y ~ 

~ 

ez 1 • foco 2 (16) = G biw M.dw 
e~ e ~ 

co 

ezu. = L G w2(a.w2-l)M.dw (17) 
e~ e ~ ~ 

co 

z".z" L 4 ( i:#k) (18) = G w Rdw 
e~ ek e 

co 

z" z". = L G w~.dw (19) ei e~ e ~ 

... 

;I co 

z I • z t = L G w2Rdw ( i:fk) (20) 
e~ ek e 

co 

z' ·z I = i G w~.dw (21) ei ei e ~ 

co 

z".z' L 4 ( i:fk) (22) = Gew Iikdw e~ ek 

0 (23) 

If G and G are each the ratio of polynomials (as is often 
. x e . 

the case) all the integrals above are closed -form integrable via partial 



:fraction expansion. The partial :fraction expansion can be quite com-

plicated, however, and the use of' a high-speed digital computer to 

perf'orm a numerical integration may be generally more practical. The 

minimization of' R (equation ( 3 ·5-1)) appears to be most easily f'ound e 

by a f'our dimensional search f'or ~, a2 , b1 , am b2 • 

100 
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