ATOMICS INTERNATIONAL
A Division of North American Aviation, Inc.

NAA-SR-MEMO 5120

This document contains 12 pages
This is copy of ___ of ___ series ___

UNCLASSIFIED

Security Classification

NAA-SR-MEMOs are working papers and may be expanded, modified, or withdrawn at any time, and are intended for internal use only.

This report may not be published without the approval of the Patent Branch, AEC.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Recent use of the KEWB-B reactor as a calibration source for pulse detection instruments has created a need for the following three items:

1. Radial and axial distributions of fissions.
2. Number of fission seen by the detection instruments.
3. Materials seen by the detection instruments.

II. DESCRIPTION OF THE EXPERIMENTAL SET-UP.

The calibrations were achieved with the help of six transient runs. In each run, the instruments were exposed to the core through a 4 x 4 in. channel cut-out of the graphite reflector and centered around the auxiliary glory hole. A perspective view of the KEWB-B core installation is shown in Figure 1; the 4 x 4 in. channel is not shown, but the plug of the auxiliary glory hole is indicated. The loading during the first transient consisted of 1702 gm. of \(^{235}\text{U}\), 126 gm of \(^{238}\text{U}\) and a solution volume of 17.8 liters. After each run, a small amount of water is lost in the form of hydrogen-oxygen gases, the result being a slight decrease of the fuel solution volume. For the purposes of this study the volume change is negligible.

III. RADIAL AND AXIAL FISSION DISTRIBUTIONS

The radial and axial fission distributions were determined using two-group diffusion theory. Such problems are best handled on the AIM-5 code which solves one-dimensional multigroup diffusion theory problems. The core composition used to perform the calculations is reproduced in Table I. It was arrived at by treating everything inside the core, that is fuel solution, control and poison rod thimbles, cooling coils, cooling water and poison rod hole, as a homogenized solution. Further, this core composition corresponds
to a core loading as described above. The calculations were carried out in the following order.

1. Calculate with the aid of the Muft IV code (2) fast cross-sections for the core, core vessel and reflector regions.

2. Calculate with the aid of the Sofocate code (3) thermal cross-sections for the core. Use the option of averaging over a Wigner-Wilkins spectrum.

3. Calculate thermal cross-sections for core vessel and reflector regions. Use microscopic cross-sections from the Barn book averaged over a Maxwellian spectrum.

4. Perform with the aid of the AIM-5 code a radial flux search in cylindrical geometry and for a configuration as shown in Figure 2. Use a transverse buckling of 0.00771 cm. This buckling is derived from

\[
B^2 = \left(\frac{\mathcal{J}}{H + \sigma} \right)^2
\]

where

\[
B = \text{height of core, 27.24 cm. The bottom of the core is actually elliptical. To arrive at this value of } B, \text{ the core volume, that is fuel solution volume, cooling coils volume, etc., a total of 20,500 cm}^3, \text{ was divided by } \frac{\mathcal{J} R^2}{\mathcal{J}}, \text{ where } R = 15.5 \text{ cm, the inside radius of KEWB-B vessel.}
\]

\[
\mathcal{J} = \text{Reflector savings due to the reflector below the core, 10 cm.}
\]

From the results of this search, determine group dependent radial bucklings.

5. Perform with the aid of the AIM-5 code an axial flux search in slab geometry and for a configuration as shown in Figure 3. Use the group dependent radial bucklings of step 4 as transverse bucklings. From this search, determine group dependent axial bucklings.

6. Same as step 4 except that the group dependent axial bucklings of step 5 are used as transverse bucklings.

7. Same as step 5 except that the group dependent radial bucklings of step 6 are used as transverse bucklings.

The source distributions, i.e., fast fissions plus thermal fissions, obtained from steps 6 and 7 and normalized to a power of 1 watt are shown in Figures 4 and 5. Both of these flux searches yielded a \(k_{\text{eff}} \) value of 1.025. The experimental \(k_{\text{eff}} \) was 1.05. In the KEWB-B, the value of \(k_{\text{eff}} \) is quite sensitive to the fast transversal buckling. Thus a 10 to 20% change in transversal buckling causes a change of 1.5% in \(k_{\text{eff}} \). The shape of the source distribution is insensitive to the value of \(k_{\text{eff}} \). A change
of 3.5% in k_{eff} will cause a change varying from .5% at the center of the core to 5% at the edge of the core in the fission distribution. On the basis of these considerations, it is believed that the results of Figures 4 and 5 are accurate to within ± 5%.

A source of errors that should not be neglected is the assumption of treating everything inside the core vessel as a homogenized solution. However, the effect of poison hole, cooling coils, etc., is one of perturbation, that is the flux shape or source distribution is primarily affected locally. To properly account for these perturbations, a three dimensional multigroup diffusion code would be necessary.

For reference purpose the fast and thermal cross-sections for all regions are reproduced in Table II.

IV. NUMBER OF FISSIONS SEEN BY DETECTION INSTRUMENT

The number of fissions seen by the detection instruments was obtained using the relation

$$N = \frac{V_{fs}}{V_{fo}} \cdot \frac{\bar{S}_{as}}{\bar{S}_{a}} \cdot C \cdot v \tag{2}$$

where

- N = Number of fissions seen by the detection instruments \(\text{fiss/cm}^2\text{.sec}\)
- V_{fs} = Fuel volume seen by detection instrument, 1215 cm\(^3\).
- V_{fo} = This fuel volume is corrected for the cooling coils, control rod thimbles and glory hole.
- \bar{S}_{as} = The average axial fission distribution over a 4 x 4 in. sector centered around the auxiliary glory, \(2.62 \times 10^6 \text{fissions/watt\cdotsec\cdotcm}^3\)
- \bar{S}_{a} = The average axial fission distribution \(2.85 \times 10^6 \text{fiss/cm}^3\text{.sec watt}\) obtained from Figure 5.
- C = A constant, \(3.43 \times 10^{10} \text{fissions/watt\cdotsec}\). The reason for selecting such a value for C will be described later.
- v = Non-void fraction, 0.96. This number is arrived at by assuming a total void of 700 cc in the fuel volume of 17,800 cm\(^3\).

The evaluation of equation (2) gave for N a value of \(0.21 \times 10^{10} \text{fissions/sec watt.}\)
The value of 3.43 fissions/watt sec. for the constant C was chosen for the following reasons. In the KEWH-B, the reactor power calibration technique is based on calorimetry. That is, the heat extracted from the core while the reactor is operated at a few kilowatts is the measure of the actual power being dissipated. This power does not correspond directly to the total energy released, since all radiative energy is not deposited in the core. Therefore, it is necessary to obtain a correlation between reactor power and the absolute fission rate. The energy release per fission is 204 Mev and is distributed as follows:

168 Mev fission fragment kinetic energy
4.9 Mev fast neutrons
7.5 Mev prompt gamma ray
5.9 Mev fission product gamma ray
8.0 Mev fission product beta-ray
10.5 Mev neutrons

Of this energy, the following distribution is assumed to remain in the core while the rest leaks into the surrounding and is undetected.

168 Mev fission fragment kinetic energy
3.2 Mev fast neutron (approximately 35% of all fast neutrons leak out of the core)
6.0 Mev fission product beta's. It is assumed that half of all beta rays are emitted very short after fission occurrence and are absorbed in the core. Of the delayed beta's, only half of their energy is seen shortly after fission and therefore detected in the calorimetric procedure.
6.0 Mev gamma rays. Half of all gammas that are released shortly after fission are assumed to be absorbed in the core.

The total energy seen per fission is then, 183 Mev, which leads to a number of 3.43×10^{10} fissions/watt sec. The possible error in C is about ±3%. This corresponds to ±5 Mev in the energy seen per fission. In view of the 5% error in C, the error in N is therefore about ±8

V. MATERIALS SEEN BY THE DETECTION INSTRUMENTS

The materials in sight through a 4 x 4 in. duct centered around the auxiliary glory hole were found by examining the lay-out drawings. The following items can be seen:

1. Half of each of the four control rod thimbles. Each control rod thimble has an outer diameter of 11/8 in.
2. Two inlet coolant tubes for a height of 4 in. The outer diameter of an inlet coolant tube is 7/8 in. During operation these tubes are filled with water.
3. 68 in. of coolant coils. The outer diameter of the coolant coils is 1/4 in. During operation, the coolant coils are filled with water.

4. The upper part of the central expose tube for the poison rod. Nothing is seen of the poison rod.

REFERENCES

(2) MUFT IV - WAPD - TM - 72, Fast Neutron Spectrum Code for the IBM 704.

(4) D. J. Hughes and R. B. Schwartz, "Neutron Cross-sections" BNL 325, July 1, 1958.
TABLE I.

Core composition of a homogenized KEWB-B containing 17.8 liters of fuel solution with 1702 gm of ^{235}U and 126 gm of ^{238}U

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic density (atoms/cc) x 10^{-24}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.05856</td>
</tr>
<tr>
<td>O</td>
<td>0.03063</td>
</tr>
<tr>
<td>Fe</td>
<td>0.002895</td>
</tr>
<tr>
<td>S</td>
<td>0.0002245</td>
</tr>
<tr>
<td>^{235}U</td>
<td>0.0002090</td>
</tr>
<tr>
<td>^{238}U</td>
<td>0.00001556</td>
</tr>
</tbody>
</table>
TABLE II.

Nuclear Cross-section for Core, Pressure Vessel and Reflector.

<table>
<thead>
<tr>
<th></th>
<th>Core</th>
<th>Pressure vessel</th>
<th>Radial Reflector</th>
<th>Axial reflector below core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ_{α}</td>
<td>.003825 cm$^{-1}$</td>
<td>.01985</td>
<td>.0001204</td>
<td>.00019933</td>
</tr>
<tr>
<td>Σ_{r_1}</td>
<td>.038133 cm$^{-1}$</td>
<td>-</td>
<td>.003411</td>
<td>.0033973</td>
</tr>
<tr>
<td>D_1</td>
<td>1.378408 cm$^{-1}$</td>
<td>1.100</td>
<td>1.100</td>
<td>1.100</td>
</tr>
<tr>
<td>$\nu \Sigma_{f_1}$</td>
<td>.004558 cm$^{-1}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Σ_{α_2}</td>
<td>.12402 cm$^{-1}$</td>
<td>.23136</td>
<td>.00062502</td>
<td>.0015489</td>
</tr>
<tr>
<td>D_2</td>
<td>.2060 cm$^{-1}$</td>
<td>.31504</td>
<td>.8268</td>
<td>.82502</td>
</tr>
<tr>
<td>$\nu \Sigma_{f_2}$</td>
<td>.2181 cm$^{-1}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 1. Perspective View of the KEWB "B" Core Installation
Figure 2. Radial Configuration Used in Calculations

- Reflector, Graphite, $T = 68$ cm
- Core vessel, stainless steel, $T = 6.35$ cm
- Core, $R = 15.478$
Figure 3. Axial Configuration Used in Flux Search Calculation

- Core, \(H = 27.24 \) cm
- Core vessel, stainless steel, 0.635 cm
- Bottom reflector, graphite, 60.0 cm
- Air, 35.64 cm
Figure 4: Radial Fission Distribution in Kewb-13

Reactor Power: 1 Watt
Core Loading: 1702 g/mL
Fuel Solution Volume: 17,800 cm³
Core R/a = 1.025

Fission Distribution at a height of 11.6 cm above bottom of core.

Fission Distribution at center of 4x4 in. sector.

Distance from center of core, cm
Figure 5: Axial Fission Distribution in KEWB-B (along Z axis)

Reactor Power: 1 Watt
Core Loading: 1702 g
\(U^{235} \)
Fuel Solution Volume: 17,800 cm³
Core Lift = 1.025

Distance from Bottom of Core, cm