
The - Formulary .dS,,% , I . Model ., 1 . -+.,. --<%,&- for

Access Control and Privacy
- - C C S . .--- % ,-..-* - ,--.-UhI , ,lp,-.-,.L.IC.II ' *= ,-,..

in Computer Systems _ .**.I--- e.ll -*..--*=acy,*.>

SLAC i?qxW Mo. Ilt

wrm

AEC C a m AT(MI-516

STANFORD LINEAR ACCELERATOR CENTER
Stanford University Stanford, California

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

THE FORMULARY MODEL FOR ACCESS CONTROL AND

PRIVACY IN COMPUTER SYSTEMS

LANCE J. HOFFMAN

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY

Stanford, California 94305

-

PREPARED FOR THE U. S. ATOMIC ENERGY

COMMISSION UNDER CONTRACT NO. AT(04-3)-515

1 ,-LEGAL N O T I C E - - t

Reproduced in the USA. Available f r o m the Clearinghouse f o r Federa l Scientific
and Technical Information, Springfield, Virginia 2215 1.
Pr i ce : Full s i ze copy $3.00; microfiche copy $. 6 5 .

, .

May 1970
i ,
! ,
I

Thla replrc W. premred as aa nccounl 01 Mvcmmeot splnaored work. Nsttbar (be unlw
Sutos. MI Lh. Cammlsston. nor MY Dram nsung an behall of tbs ~amrmsa~on;

A. Make* n n y v n r r ~ t y orrepressntnuon.cipreaaed or ~ m p ~ ~ e d , ~ 4 t h reawct w tbr? ncnl-
IPCYS c4mulchv=. , nr ~ - f - ! v ? o *I Ua I..(*P-uYII C Y ~ ~ ~ I Y ~ LII UUH remrt. b? ~ h . 1 (be

01 _ idorm._ m y l p*P.. Y ~ I w e d 1. us my -1 1 d r 4 . PII".,toIY o w e d Wts; or
B. Asnrmea my Ilnbllluea vttb reapecl to lha uaa of. or l o r &megee r e a u l t q from tba

uzu of m y LnIormUor.. swab. ulelhxl. or m e s a d l u l o s ~ lo u s reporb
Aa used h (be .hove. "Ferao. mUq oo behallof lha Cammlaaloa" eludes m y em-

hoyoe or comtmc~~r of the Commlsalon. o r employee of such contractor u, tba anent lhat
euch employee or eontractor of Lh. Commlaa l~ , rr employee 01 such cd.tr.ctor preprres
dlsaomlnnrsa, or pmvldea mcCeaa O. M y In lormUoa w a - t u, hla employmeal or eontms;

wltb lbe Camrmsaloo. o r hls employment M tb such eoatrscrr.

,

,

i

ABSTRACT

This thesis presents a model for engineering the user interface for large

data base systems in order to maintain flexible access controls over sensitive

data. The model is. independent of both machine and data base structure, and

is sufficiently modular to allow cost-effectiveness studies on access mechanisms.

Access control is based on sets of procedures called formularies. The decision

on whether a user can read, write, update, etc. , data is controlled by programs

(not merely bits or tables of data) which can be completely independent of the

contents or location of raw data in the data base.

The decision to grant or deny access can be made in real time at data access

time, not only at file creation time as has usually been the case in the past.

Indeed the model presented does not make use of the concept of "files, " though

a specific interpretation of the model may do so. Access control is not restricted

to the file level or the record level, although the model permits either of these.

fi desired, however, access can be controlled at arbitrarily lower levels, even

at the bit level. The function of data addressing is separated from the function

of access control in the model. Moreover, each element of raw data need appear

only once, thus allowing considerable savings in memory and in maintenance

effort over previous file=orient;ed sy steras.

Examples of the use of formularies in a system currently running on the

IBM 360/67 are given. One recent cost study using the model is also described.

ACKNOWLEDGEMENTS

The author i s deeply indebted to Professor William F. Miller for his

encouragement and advice during the research and writing of this dissertation.

The research environment he has provided at the Stanford Linear Accelerator

Center (SLAC) Computation Group makes i t a pleasure to work there. Even

more important is the warmth and interest he shows in all his students. His

advice has been, at the same time, timely, competent, and unobtrusive.

Many other members of the Stanford Computer Science Department and the

Stanford Linear Accelerator Center have also contributed their ideas and help,

in particular, John Levy, Robert Russell, and Victor Lesser. I wish to thank

Professors Harold Stone, Edward Feigenbaum, and Jerome Feldman for their

constructive readings of this thesis. Henry Bauer was very helpful with the

interactive programs. The formulary idea was initially suggested by the use

of syntax definitions ("field formulariesn) for input/output data descriptions,

a s described in (~astleman[l967]).

I
Pa r t of the excellent research environment a t SLAC is due to the very

helpful and competent technical staff. My thanks go ta the SLAC library for

tracking down articles, both technical and nontechnical, on the topics involved,

and to the SLAC Technical Information Department for translating chicken-

scratches into meaningful illustrations. I appreciate the interest and assis-

tance of Jorge Bruguera at the Stanford Computer Science Department library.

I wish to thank Kathleen Maddern for her innumerable retypings of this dis-

sertation, Linda Lorenzetti, SLAC Program Librarian, and Carla West, the
I

Executive Secretary of the SLAC Computation Group.

This research was supported in part by the United States Atomic Energy

Commission, the Cowell Student Health Service of Stanford University, and the

Stanford University Computer Science Department. '

A companion report, llThe engineering of access control mechanics in physics

data bases, " (SLAC Report No. 118) is in preparation.

TABLE OF CONTENTS

Chapter Page

. . I. INTRODUCTION. 1

11. ACCESSCONTROLMETHODS 3

A. Access Control in Existing Systems 3

B. Access Control in Proposed Systems 5

C. Desirable Characteristics f o r an Access Control Method . 6

m. THE FORMULARY METHOD OF ACCESS CONTROL 7

A. Definitions and Notation 9

B. The ACCESS Procedure 10

C. TALK, The Application-Oriented Storage and

. Retrieval Procedure 11

D. Formularies - What They A r e 11

E. Simultaneous Use of One Formulary by Multiple Users . . 18

F. Building a Formulary 18

G. The Attachment P rocess - The Method of Linking a

Formulary to a User and Terminal - 18

H. Subdivision of Data Base into Files Not Required. 20

I. Concurrent Requests to Access Data - The LOCKLIST . . 20

J. The TALK Procedure - Details 22

K. The ACCESS Procedure - Details 23

L. FETCH and STORE Primitive Operations 36

IV. USE OF FORMULARIES I N A WORKING MEDICAL SYSTEM. . 38

A. Storing and Retrieving Information in the Current

SHS System . 39

DTSTRTBUT~ON 0.F THIS IIOCUMENT LS UNLIMITED

Chapter Page

B . Attaching to the SHS Formulary 41
C . Formulary Building . 41
D . The TALK Procedure 42

E .. Procedures of the SHS Formulary 44
F . Primitive Operations 46

. G . Realization of the ACCESS Procedure 46

V . A NOTE ON THE COST OF SOME PRIVACY SAFEGUARDS 47

. B Future Work . 51
REFERENCES . 52

APPENDIX A: EXAMPLES OF PROCEDURES USED BY A PARTICUMR

INSTALLATION . 55

APPENDIX B: A COST EXPERIMENT : 67
APPENDIX C: THE ACCESS PROCEDURE . "NO PARALLELZSM"

VERSION . 75

LIST OF TABLES

Paffe
. I. Procedures Supplied by the Installation. 8

. 11. Timing Results of Cost Experiment 48

. III. Average Timing Results of Cost Experiment 48

- vii -

LIST OF FIGURES

Page

. 1 . Use of computer storage in file systems 4

. 2 . ~ser /data base interface 10

. 3 . A sample CONTROL procedure 17

4 . Concealment of the fact that a data base contains certain

. ir~forrnatlon 23

5 . Cowell Student Health Service statistical shcct 40

6 . Skeleton of terminal-initiated job to compute and extract

. summary data 43

7 . User dialogue with TALK procedure 45

. viii .

CHAPTER I

INTRODUCTION

This thesis presents a model for engineering the user interface for large data

base systems in order to maintain flexible access controls over sensitive data,

The model is independent of both machine and data base structure, and is suf-

ficiently modular to allow cost-effectiveness studies on access mechanisms.

Access control is based on sets of procedures called formularies. The decision

on whether a user can read, write, update, etc., data is controlled by programs

(not merely bits or tables of data) which can be completely indcpendent of the

contents or location of raw data in the data base.

The decision to grant or deny access can be made in real time at data access

time, not only at file creation time as has usually been the case in the past. .
/

Indeed the model presented does not make use of the concept of "files, though

a specific interpretation of the model may do so. Access control is not restricted

to the file level or the record level, although the model permits either of these.

If desired, however, access can be controlled at arbitrarily lower levels, even
4& 7

at the bit level. The function of data ad@ressikjTs.separated from the function

of access control in the modeL Moreover, each element of raw data need appear

only once, thus allowing considerable savings in memory and in maintenance

effort over previous file-oriented systems.

Specifically not considered in the model a re privacy problems associated

with communication lines, electromagnetic radiation monitoring, physical

security, wiretapping, equipment failure, operating system software bugs, per-

sonnel, or administrative procedures. Cryptographic methods are not dealt with

in any detail, though provision is made for inclusion of encrypting and decrypting

operations in any particular interpretation of the model.

Specific interpretations of the model can be implemented on any general-

purpose computer; no special time-sharing or other hardware i s required. The

only proviso is that 'all requests to access the data base must be guaranteed to

pass through the data base system.

CHAPTER II

A.CCESS CONTROL METHODS

A. Access Control in Existing Systems

In most existing file systems which a r e concerned with information privacy,

passwords (Crisman [1965], Babcock [1967]) a r e used to provide software pro-

tection for sensitive data. password schemes generally permit a small finite

number of specific types of access to files. Each file (or user) has an associated

password. In order to access information in a file, the user must provide the

correct password. These methods, while acceptable for some purposes, can

be compromised by wiretapping, electromagnetic radiation monitoring, , and other

means. Even if this were not the case, there a r e other reasons (Lampson [1969])

why password schemes, a s implemented to date, do not solve satisfactorily the

problem of access control in a large computer data base shared by many users.

One of these reasons is that passwords have been associated with files. In -
most current systems, information is protected a t the file level only - i t has

been tacitly assumed that all data within a file is of the same sensitivity. The

real world does not conform to this assumption. Information from various sources

is constantly coming into comm,on data pools, where i t can be used by all persons

wit.h access t.n t h a t pool. .A. problem arises when oertain information in a filo

should bc available to some but not all authorized users of the file.

In the 'MULTICS system (Corbato and Vyssotsky [1967]) for example, if a

user has a file which in part contains sensitive data, he just cannot merge all -
his data with that of his colleagues. He often must separate the sensitive data

and save that in a separate file; the common pool of data does not contain this

sensitive and possibly highly valuable data. Moreover, he and those he permits

to access this sensitive data must, if they also wish to make use of the nonsensitive data,

create a distinct merged file, thus duplicating information kept in the system; if

some of this duplicated data must later be changed, i t must be changed in all

files instead of only one. Figure 1, taken from Hoffman's survey 0% computers

and privacy (Hoffman [1969]), graphically illustrates this situation by depicting

memory allocation under existing systems and under a more desirable system.

EXISTING FlLE SYSTEM DESIRABLE FlLE SYSTEM

B I
Unnecessari ly Duplicated Access Cont 1-01

Information Information

FIG. 1--Use of computer storage in file systems

The file management problcms presented and the memory wastage (due to

duplication of data) tend to inhibit creation of large data bases and to foster the

development of smaller, less efficient, overlapping data bases which could, were

the privacy problem really solved, be merged.

*
A simple cost model for information systems is presented in (Amas [I96811 p. 34.
He there derives a simple rule to determine when it is more efficient to consolidate
files and when i t is more efficient to distribute copies of them.

Several years ago Bingham (Bingham [1965]) suggested the use of User's

Control Profiles to associate access control with a user rather than a file., This

'allows users to operate only on file subsets for which they are authorized and to

some extent solves the memory wastage problem. Weissman has recently

described a working system at SDC which makes use of security properties of

users, terminals, and files (Weissman [1969]). He presents a set-theoretic

model for such a system. His model does not deal with,access control below the

file level.

Hsiao (Hsiao [1968]) has recently implemented a system using authority items

associated with users. Hsiaols system controls access a t the record level, one

step beneath the file level. In it, access control information is stored independently

of raw data, and thus can be examined or changed without acutally accessing the

the raw data. Hsiao's system and the TERPS system at West Sussex County in

England (Stone [1968]) a re the first working systems which control access at a

level lower than the file level.

B. Access Control in Proposed Systems

Some other methods have been proposed for access control, but not yet

implemented. These include a scheme which essentially assigns a sensitivity

level to each program and data element in the system (Graham [1968]), another

' which allows higher-level programs to grant access privileges to lower-level

programs (Dennis and Van Horn [1966]), and still others which place access '

control at &e segment level via machine hardware and llcodewordsfl (Iliffe [1968]

kvans and LeCierc [1967]). These methods may prove acceptable in many contexts.

However, they a re not general enough for all situations. If distinct sensitivity

levels cannot be assigned to data, as is sometimes the case, Graham's scheme

cannot be used. The other methods, while working in principle on a computer

, with hardware segmentation, seem unfeasible and uneconomical on a computer

with another type of memory structure such a s an associative memory.(Feldman

[1965], Ewing and Davies [1964], Gall [1964], McAteer [1964], Raffel [1964]) or

a Lesser memory (Lesser [1968]). These objections a re covered in more detail

in (Hoffman [1969]).

C. Desirable Characteristics for an Access Control Method

It seems desirnblo to dovise a method Qf access control. which does not impose

an arbitrary constraint (such a s segmentation or sensitivity levels) on data or

programs. This method should allow efficient control of individual data elements

(rather than of files o r records only). Aso , it should not extract unwarranted

costs in storage or elsewhere from the user who wants only a small portion of

his data protected. The method should be independent of both machine and file

structure, yet flexible enough to allow a particular implementation of i t to be

efficient. Finally, i t should be sufficiently modular to permit cost-effectiveness

experiments to be undertaken. We would then finally have a vehicle for exploring

the often-asked but never-answered question about privacy controls, "How much

does technique X cost?"

We now present such a method.

THE FORMULARY METHOD OF ACCESS CONTROL

We now describe the ' Y ~ r m u l a r y ~ ~ method of access control. Its salient
. ,

features have been mentioned in Chapter I. The decision to grant or deny access

is made at data access time, rather than at file creation time, as has generally

been the case in previous systems. This, together with the fact that the decision

is made by a program (not by a scan of bits or a table), allows more flexible

control of access. Data-dependent, terminal-dependent, time-dependent, and

user response-dependent decisions can now be made dynamically at data request

time, in contrast to the predetermined decisions made in previous systems, which

are, in fact, subsumed by the formulary method. Access to individual related

data items which may have logical addresses very close to each other can be ,

controlled individually. For example, a salary figure might be released without

any identification of an employee or any other data.

For any particular interpretation, the installation must supply the procedures

listed in Table.1. These procedures can all be considered a part of the general
' . .. 1.: :

accessing mechanism, each performing a specific function. By clearly delimiting

these functions, a degree of modularity is gained which enables the installation to

experiment with various access control methods to arrive at the modules which

best suit its needs for efficiency, economy, flexibility, etc. This modularity

also results in access control becoming independent of the remainder of the

operating system, a desirable but elusive goal (Weissman [1969]). While the

formulary model and its central ACCESS procedure remain unchanged, each

installation can supply and easily change the procedures of Table I a s desirable.

They are all specified in the body of this paper, and examples a re given in

, Appendix A.

TABLE I

Procedures Supplied by the Installation

FOR EACH INTERPRETATION, l NSTALLATION MUST SUPPLY

AT LEAST ONE TALK .PROCEDURE

CODING FOR THE ACCESS ALGORITHM

@ PRI MITIVE OPERATIONS
@ FETCH

STORE

AT LEAST ONE FORMULARY, CONSISTING OF
CONTROL PROCEDURE
VIRTUAL PROCEDURE
SCRAMBLE PROCEDURE (may be null)

9 UNSCRAMBLE PROCEDURE (may be null)

The basic idea behind the formulary method is that a user, a terminal, and

a previously built formulary (defined below) must be linked together, or attached,

in order for a user to perform information storage, retrieval, and/or manipulative

operations. At the time the user requests use of the data base system, this

linkage is effected, but only if the combination of user, terminal, and formulary

is allswsd. Thc gcncral linkihg prooooE i~ dosoribed in Section G of this chapter. '

Virtual memory mapping hardware is - not required to implement the model,

but the model does handle systems equipped with such hardware. It is assumed

that enough virtual addressing capacity is available to handle the entire data base.

Virtual addresses a re mapped into the physical core memory locations, disc

tracks, low-usage magnetic tapes, etc., by hardware and/or by the FETCH and

STORE primitive operations (sec Scction L of this chapter) for a particular

implementation.

A. Definitions and Notation

The internal name of a datum is its logical address (with respect to,the

structure of the data base). The internal name of a datum does not change during

continuous system operation.

Examples :

1) A "tree namef1 such a s 5.7.3.2 which denotes field 2 of branch 3 of

branch 7 of branch 5 in the data base

2) llAssociative memory identifiers" such as (14, 273, 34) where 14

represents the 14th attribute, 273 represents the 273rd object, and 34

represents the 34th value, in a memory similar to the one described in

(Rovner and Feldman [1968]).

A User Control Block, or U J , is space in primary (core) storage allocated

during the attachment process (described in Section G). It contains the user

identification, terminal identification, and information about the VIRTUAL,

CONTROL, SCRAMBLE, and UNSCRAMBLE procedures of the formulary the

user is linked to.

Usually this information is just the virtual address of each of these procedures.

The virtual addresses a re kept in primary storage in the UCB since' a formulary,

once linked to a user and terminal, ' w i l l probably be (oft-) used very shortly. The

f i rs t reference to any of these addresses (indirectly through the UCB) will trigger

an appropriate action (e. g., a page fault on some computers) to move. the proper

program into primary storage (if it is not there already). It will then presumably

stay there a s long as it is useful enough to merit keeping in high-speed memory.

The virtual addresses of procedures of a formulary cannot change while they a r e

contained in any UCB. This constraint is easy to enforce using the CONTROL

procedure described below which controls operations on any datums, including

formularies. Each UCB always is in high-speed primary storage in the data

a rea of the ACCESS procedure.

- 9 -

B. . The ACCESS Procedure

All control mechanisms in the formulary model a re invoked by a central

ACCESS procedure. This ACCESS procedure is tihe only procedure which directly

calls the primitive FETCH and STORE operations and which performs locking- and

unlocking operations on data items in the data base. All requests for operations

on the data base must go through the ACCESS procedure.

The ACCESS procedure is a very important element of the formulary model.

It is described in full detail in Section K, and its algorithm is supplied there.

Thcuocr oommunioates ody insbrectlywith ACCESS, The hrldgr. (see Fig. 2)

between the system-oriented ACCESS prooodure and tho zpplisatiori-srrieuted user

is provided by the (batch or conversational) storage and retrieval program, TALK.

t
TALK, THE CONVERSATIONAL STORAGE AND RETRIEVAL PROCEDURE

>

!

t ? I formulerv J

- -- .

ACCESS SYSTEM PROCEDURE - -

REQUESTS

CONTROL
a"d other procedures

of the attached I-

I 1 DATA I I DATA

- -- - - - -

PRIM IT IVE OPERATIONS

FIG. 2--~ser /data base interface

- 10 -

C. TALK, The Application-Oriented Storage and Retrieval Procedure

To access a datum; the user must call upon TALK, the (nonsystem) application-
'

oriented storage and retrieval procedure. TALK converses with the user (or the

user's program) to obtain, along with other information, (1) a datum description

in a user-orien.ted language, and (2) the operation the user wishes to perform on

that datum. TALK translates the datum description in the user-oriented language

into an internal name, thus providing a bridge between the user's conception of

the data base and the system's conception of the data base. The TALK procedure

is described in more detail in Section J.

D. Formularies - What They Are

A formulary is a set of procedures which controls access to information in

a data base. These procedures a re invoked whenever access to data is requested.

They perform various functions in the storage, retrieval, and manipulation of

information. The set of procedures and their associated functions are the essential

elements of the formulary model of access control.

Different users will want different algorithms to carry out these functions.

For example, some users will be using data which is inaccessible to others; the

name of a particular data element may be specified in different ways by different

users; some users will manipulate data structures - such a s trees, lists, sparse

files, ring structures, arrays, etc., - which a re accessed by algorithms specifi-

cally designed for these structures. Depending on how he wishes to name, access,

and control access to elements of the data base, each user w i l l be attached to a ,

formulary appropriate to his own needs,

1. Procedures of a Formulary

In this subsection, we describe the procedures of a formulary. These pro-

cedures determine the accessibility, addressing, structure and interrelationships

of data in the data base dynamically, at data request time. They can be arbitrarily

complex. In contrast, earlier systems usually made (only table-driven static

determinations, prespecified at file makeup time. By use of the formulary method,

these advantages a re gained:

1) flexibility and changeability of data base organization to reflect current

needs

2) capability to perform access control at request time as well a s at file

creation time

3) more efficient use of storage

Each procedure of a formulary should, if possible, run from execute-only

memory, which is alterable only under administrative control. The integrity of

the system depends on the integrity of the formularies and therefore the procedures

of all formularies should be written by llsystemfl programmers who a r e assumed

honest. These procedures should be audited for program errors, hidden "trap

doors, l1 etc. , before being inserted into the (effective) execute-only memory

under administrative control. Failure to do this may result in the compromising

of sensitive data, since an unscrupulous programmer of :a formulary codd cause

the formulary to "leakf1 sensitive information to himself or to his agents.

A formulary has four procedures : VIRTUAL, SCRAMBLE, UNSCRAMBLE,

and CONTROL. The first three a re relevant but not central to access control;

the decision on whether to grant the type of access desired is made solely by the

CONTROL procedure. The f i rs t three procedures a re explicitly included in each

formulary for three reasons :

1) to centralize in one place all functions dealing with addressing and

access control;

2) to give the model the generally necessary to model existing and proposed

systems ; and

- 12 -

3) to provide well-delimited modules for cost/effectiveness studies and for

experimentation with different addressing schemes and access control

schemes.

a. The VIRTUAL procedure. VIRTUAL translates an internal name into the

virtual address of the corresponding datum.. VIRTUAL is a procedure with two

input parameters:

l), the internal name to be translated

2) a cell which will sometimes be used to hold "other information" as

described in Section Dld below.

VIRTUAL returns

1) the resulting virtual address

2) a completion code (1 if normal completion)
A * .

Recall that enough virtual addressing capacity is assumed available to handle

the entire data base. Virtual addresses a re mapped into the physical core memory

locations, disc tracks, low-usage magnetic tapes, etc., by hardware and/or by

the FETCH and STORE primitive operations for a particular implementation.

b. The SCRAMBLE procedure. SCRAMBLE is a procedure which transforms

raw data into encrypted form. (In some specific systems, SCRAMBLE may be

null.) SCRAMBLE has two input parameters:

1) the virtual address of the datum to be scrambled

2) the length of the datum to be scrambled

SCRAMBLE has three output parameters :

1) a oompletion code (1 if normal completion)

2) the virtual address of the scrambled datum

3) the length of the scrambled datum

Note that if an auto-key cipher (one which must access the start of the cipher-text,

whether or not the information desired is at the start) is used, - all of the information

encrypted using that cipher, be it as small a s a single field or as large 'as an

entire llfile, l1 - must be governed by the same access control privileges. Therefore,

some applications may choose to use several (or many) auto-key ciphers within

the same "file. l f It is fnefficient and usually undesirable to scramble data items

at other than the internal name level, e. g. , .scrambling as a block (to effectively

increase key length) the data represented by several internal names. In cases

where internal names represent data which fits into very small areas of storage,

greater security may be obtained by other methods (e. g., use of nulls).

We do not discuss encrypting schemes in this paper. Yhe interested reader

is referred to (Shannon [1949]), (Kahn [1967]), and (Skalrud [19~9]).

1 .
c. The UNSCRAMBLE procedure. UNSCRAMBLE is an unscrambling procedure

which transforms encrypted data into raw form. (In some specific systems,

UNSCRAMBLE may be null.) UNSCRAMBLE has two input parameters:

1) the virtual address of the datum to be unscrambled

2) the length of the datum to be unscrambled

UNSCRAMBLE has three output parameters :

1) a oornpletion aode (1 if normal completion)

2) the virtual address of the unscrambled datum

3) the length of the unscrambled datum

d. The CON'I'ROL procedure. CONTROL is a procedure which decides whether

a user is allowed to perform the operation he requests (FETCH, STORE,

FETCHLOCK, etc.) on the particular datum he has specified. CUN'I'KOL may

consider the identification of the user and/or the source of the request (e. g . , the

terminal identification) in order to arrive at a decision. CONTROL may also

converse with the requesting user before making the decision.

CONTROL has two input parameters and two output parameters. The two

input parameters are:

1 the internal name of the datum

2) the operation the user desires to perform

The two output parameters are:

. I) 1 if access is allowed; otherwise an integer greater than 1

2) "other information" (explained below).

In some specific systems, data elements may themselves contain access

control information. Consider three examples :

Example 1.

DATUM 1 R I W I 30 bits of actual data

If bit R is on, DATUM is readable.

If bit W is on, DATUM is writeable.

Example 2.

SALARY I $25,000 1
Reading or writing of salaries of $25,000 or over requires special checking.

CONTROL must inspect the SALARY cell before i t can do further capability

checking and eventually return 1 or some greater integer as its first output

parameter (see Fig. 5). Note that return of an integer greater than 1 actually

transmits some information to the user; if he knows that he will not be allowed

to alter salaries which are $25,000 or over, a denial of access actually tells him

that the salary in question is at least $25,000. In the formulary model, CONTROL

can only make a yes or no decision about access to a particular datum. Any more

complex decisions, such as one involving release of a count which is possibly low

enough to allow unwanted identification of individual data (e. g. , ''Tell me how

many people the Health Physics Group treated for radiation sicknesses last year"),

can only be made by a suitably sophisticated TALK procedure. More on pitfalls

involved in using counts while protecting sensitive data is given in (Miller and

Hoffman [1969])'.

In order to not give out any information to the unauthorized user, the instal-

lation must decide to give up the capability provided by the formulary model to

make decisions which depend on values of sensitive data. 1

The m e of thrcat monitoring (Hoffman [1968]) in conjunction with the CONTBOIl

procedure wi l l help the installation pinpoint rapidly unauthorized attempts to access

data.

Example 3.

Record N

Record N-1 R Record N+l
I I I

I 347 I 346 storage units of actual data

The record contains i ts own length (and, therefore, also points to its suc-

cessor). This type of record would appear, for example, in variable length

sequential records on magnetic tape md in some list-processing applications.

In systems of this type, CONTROL might often duplicate VIRTUAL'S function

of transforming the internal name of a datum into that datum's virtual address..

To achieve greater efficiency, CONTROL can (when appropriate) return the

datum's virtual address a s "other information. " VIRTUAL, which is called

after CONTROL (see the ACCESS algorithm in Section K)', can then examine ---.

this "other information. " Xf a virtual address has been put there by CONTROL,

VIRTUAL will not duplicate the possibly laborious determination of the datumis,

virtual address, since this has already been done. VIRTUAL will merely pluck

the address out-of the "other information" and pass it back.

Note that CONTROL can be a s sophisticated a procedure a s desired; i t need

not be merely a table-searching algorithm.. Because of this, ,CONTROL can

consider many heretofore ignored factors in making its decision (see Fig. 3).

For example, it can make decisions which a re data-dependent and time-dependent.

It can require two keys (or N keys) to open a lock. Also it can carry on a lengthy
, . . .

dialogue with the user before allowing (or denying) the access requested.

INTERNAL NAME \

OPERATION -.
CONTROL + YES or No

START

YES -

ACCEPT
PASSWORD

ACCEPT
PASSWORD YES

ACCEPT .
OPERATOR IZATION

AUTHORIZATION
SOUND
ALARM NO

AND NO
RETURN A

NOTE : I. TIME - DEPENDENT
2. FEEDBACK LOOPS 4 4 4 4
3. TWO - KEY SYSTEM

1 1 1 1

FIG. 3--A sample CONTROL procedure

CONTROL is not limited to use at data request tfme. In addition to being

used to monitor the interactive storage, retrieval, and manipulation of data, it

can also be used at ii-itial data base makeup time for data edit picture format

checking, data value validity checking, etc. Of, a l t e r m t ~ v e ~ ~ , uue cuuld Ilavt!

- 17 -

two procedures CONTROL1 ~ ~ ~ C O N T R O L B , in t i o different formularies, F1 and

F2. F l 'could. be attached at data input time and F2 at' on-line storage, retrieval,
1

manipulation, and modification time.

E . Simultaneous Use of one Formulary by Multiple ~ s e f s .. .
6 .

Note that the same formulary can be used simultaneously by several different

users with different access permissions. This is possible because access control

is determined by the CONTROL procedure of the attached formulary. This

procedure can grant different privileges to different users.

Building a Formulary . -

Before a formulary can be attached to a user and a terminal, the procedures

it contains must be specified. This is done using the system program

FORMULARY BUILDER. FORMIJLARY BUILDER converses with the systems
4.

programmer who is building a formulary to learn what these procedures are, and

then retrieves them from the system library and enters them a s a set into a

formulary which the user names. The specifics of FORMULARY BUILDER depend

on the pa.rtic1d.a.r system., *

G. The Attachment Process - .The Mett~od of Linklxg a Formulary- to a User

In order to allow information storage and retrieval operations on the data

k s e to take place, a user, a terminal, and a formulary which has been previously

built using FORMULARYBUILDER.must be linked together. This Linking process

is done in the following manner.

*
An extension to FORMULARYBUILDER which would allow a user to grant capa-
bilities to other users, and then allow these users to grant' capabilities to still
other users, ,etc., has,,been proposed by Victor Lesser and will be investigated
further in the future.

At the.first time ACCESS is called (by TALK) for a given user and terminal,

it wi l l only permit attachment of a formulary to the user and terminal (i. e. , it

will not honor a request to fetch, store, etc.). The attachment is permitted only

if the CONTROL program of the default formulary allows. The default formulary,

like all other formularies, contains VIRTUAL, CONTROL, SCRAMBLE, and

UNSCRAMBLE procedures. For the default formulary, they act as follows:

CONTROL CONTROL takes the internal name representing the

formulary and decides whether user U at terminal T is

allowed to attach the formulary represented by the internal

name. U and T are maintained in the UCB and passed to

CONTROL by ACCESS.

VIRTUAL ' VIRTUAL takes the internal name representing. the

formulary and returns the virtual address of the formulary.

SCRAMBLE No operation.

UNSCRAMBLE No operation.

The ATTACH attempt, if successful, causes information about the formulary

specified by the user to be read into the UCB (which is located in the data area of

the ACCESS procedure). ACCESS then uses this information (when it is subsequently

called on behalf of this userherminal combination) to determine which CONTROL,

VIRTUAL, SCRAMBLE, and UNSCRAMBLE procedures to invoke.

1. Independence of Addressing and Access Control

After the attachment process, the User Control Block (UCB) contains the

user identification U, terminal identification T, and information about (usually

pointers to) the VIRTUAL, CONTROL, SCRAMBLE, and UNSCRAMBLE pro-

cedures of a formulary. Whether the user can perform certain operations on a

given datum is controlled by the CONTROL program. The addressing of each

datum is controlled by the VIRTUAL program. Addressing of .data items is

now completely independent of the access control for the data items.

2. ' Breaking an Attachment

An existing attachment is broken whenever

1) the user indicates that he is finished using the information storage. and

retrieval system (either by explicitly declaring so or implicitly by logging

out, removing a physical terminal key, reaching the end-of-job indicator

in his input card deck, etc.), or

2) the user, via his TALK program, e.xploitly detaohes him~olf from a

formulary .

H. Subdivision of Data Base into Files Not Required

Note that while the concept of a data set (or a "filef1) MAY be used, the

formulary method does not require this. This represents a significant departure

from previous large-scale data base systems which were nearly all organized with

files (data sets) as their major subdivisions. Under the formulary scheme, access

to information in a data set is not governed by the data set name. Rather, it is

governed by the CONTROL procedure of the attaohed f ormulnry. Similarly,

addressing af data in a data set is governed by the VIRTUAL procedure and not

by the data set name. Subdividing a data base into data sets, while certainly

permitted and often desirable, is not required by the formulary model.

I. Concurrent Requests to Access Data - The LOCKLIST

The problem of two or more concurrent requests for exclusive data access

necessitates a mechanism to control these conflicts among competing users. This

problem has been &scussecl, a d sululiuns proposed, in (Dijkstra [1965]),
\

(Hsiao [1968]), and (Shoshani and Bernstein [1969]). In the formulary model,

data can be set aside (locked) dynamically for the sole use of one user/terminal

combination in a manner similar to Hsiaols flblockinglf (Hsiao [1968]), using a

mechanism known as the LOCKLIST.

The locking and unlocking of data to control simultaneous updating is an

entirely separate function from the access control function. Access control takes

into account privacy considerations only. Locking and unlocking a re handled by

a separate mechanism, the LOCKLIST. The LOCKLIST is a list of triplets main-

tained by the ACCESS program and manipulated by the FETCHLOCK, STORELOCK,

UNLOCKFETCH, and UNLOCKSTORE operations. Each triplet contains (1) the

internal name of a current item, (2) the identification of the user/terminal combi-

nation which caused it to be locked, and (3) the type of lock.(fetch or store). Any

datum represented by a triplet on the LOCKLIST can be accessed only by the user/

terminal combination which caused it to be locked.

Data items which can be locked a re atomic, i. e. , subparts of these data items

can - not be locked. This implies, for example, that if a user wishes to lock a

tree structure and then manipulate the tree without fear of some other user

changing a subnode of the tree, either

1) The tree must be atomic in the sense that its subnodes do not have

internal names in the data base system, or

2) each subnode must be expl.icitly locked by the user and only after all of

these are locked can he proceed without fear of another user changing

the tree. *

*
A more general and elegant method of handling concurrent requests to access
data is being developed by R. D. Russell as part of a general resource allocation
method. Much of the housekeeping work currently done in the formulary model
can be handled by his method.

J. . The TALK Procedure - Details

To access a datum, the user must effectively call upon TALK, the (nonsystem)

application-oriented storage and retrieval procedure. TALK converses with the

interactive user and/or the user's program and/or the operating system to obtain

(1) a datum description in a user-oriented language

(2) the operation the user wishes to perform on that datum

(3) user identification and other information about the user and/or the

terminal where the user is located.

Depending on the particular system, the user explicitly gives TALK zero, one,

two, or all three of the above parameters. TALK supplies the missing parameters

(if any), converts (1) to an internal name, and then passes the user identification,

the terminal identification, the internal name of the datum, and the desired

operation to the ACCESS procedure, which actually attempts to perform the

operation.

Note that one system may have available many TALK procedures. A user

requests invocation of any of them in the same way he initiates any (nonsystem)

program. SophistiCated users will require only "bare-bones" TALK procedures,

while novices may require quite complex tutorial TALK procedures. They may

both be using the same data base while availing themselves of different datum

descriptions. As an example, one TALK procedure might translate English "field

namesf1 into internal names, while another TALK procedure translates French

"field namesf1 into internal names. This ability to use multiple and user-dependent

descriptions of the same item is not available with such generality in any system

the author is aware of, though some systems allow lesser degrees of this (Jones

Different TALK procedures also allow concealment of the fact that certain

information is even in a data base, a s illustrated in Fig. 4.

... .

USER 1 -
WHAT PROGRAM? talk1
TALK1 HAS BEGUN E.XECUTION.

WHAT DATA WOULD YOU LME TO SEE?

salary of robert d. jones

YOU ARE NOT PERMITTED READ ACCESS

.TO ,THE SALARY FIELD.

CONTROL determined that the user was not

, permitted read access, causing this reply
to be given by TALK1.

USER 2
; '

WHAT PROCXUIVI? tslk2

T A W HAS BEGUN EXECUTION.

WHAT DATA WOULD YOU LIKE TO SEE?

salary of mbert d. @nee

NO FIELD NAMED .SALARY.

TALK2 intentionally returned this reply
to the user. '

FIG. 4--Concealment of the fact that a data base contains

certain information

The above remarks about using different TALK procedures also apply if a

system uses only one relatively sophisticated TALK procedure which takes actions

dependent on the person or terminal using i t a t n given time. . *

K. The ACCESS Procedure - Details

ACCESS uses the VIRTUAL, CONTROL, UNSCMMBLE, and SCRAMBLE

procedures specified in the UCB t o carry out information storage and retrieval

functions. Its input parameters are:

(1) information about the user, terminal, etc. , defined by the installation.

This information is passed by the procedure that calls ACCESS;

(2) internal name of datum;
. .

(3) an area which either contains or will contain the value of - the datum

specified by (2);

- 23 -

.(4) the length of (3); . .

(5) operation to perform - FETCH, FETCHLOCK, STORE, STORELOCK,

and STORELOCK lock datums to further fetch or store accesses respec- . .
. . .

tfvely (except by the user/terminal~combimtion for which the lock 'was

put on). UNLOCKFETCH and UNLOCKSTORE unlock these locks.

ATTACH and DETACH respectively create and destroy user/terminal/

formulary attachments.

(6) a variable in which a completion code is returned by ACCESS.

ACCES3 itself handles all opcrationo of (5) exoept FETCH and STOHE. For

FETCH and STORE operations on the data base, it invokes the FETCH and STORE
. , .

primitives specified in Section L.

An ALGOL algorithm for the ACCESS procedure follows. This procedure is

quite important and should be examined carefully. The comments in the algorithm

should not be skipped, as they often suggest alternate methods for accomplishing

the same goals. An example of the actual coding in use at one particular instal-

lation is given as Exhibit l of Appendix A. Note that some mealis must be provided

to determine which formulary is attached so that the CONTROL, SCRAMBLE,

UNSCRAMBLE, and VLRTUAL procedures of that particular formulary can be

jnvoked. The program in Exhibit 1 transfers this responsibility to those procedures

themselves, which determine which formulary is attached by examining common

data set up previously by the ACCESS procedure. An alternative method, if

ACCESS were written in a more powerful language or in assembly language,

would be to use a transfer vector.

Note that two procedurco and their oorresponding calls can be removed fsnm

ACCESS if no user will ever have to lock out access to a datum which ordinarily

can be accessed by several users at the same time or if the installation wishes

to use another method to control conflicts among users competing for exclusive

access to datums; this makes the procedure considerably shorter. Such a "no

parallelismjt version of the ACCESS algorithm i s given in Appendix C.

The ACCESS Algorithm

procedure access (info, intname, val, length, opn, compcode);

integer arrayinfo, val; integer, length, opn, compcode;

begin comment If OPN = FETCH, VAL is set to the value of the datum

represented by INTNAME .
'If OPN = STORE, the value of the datum represented by

INTNAME is replaced by the value in the VAL array.

If OPN = FETCHLOCK or STORELOCK, the datum is locked to

subsequent FETCH or STORE operations by other users or from

other terminals until an UNLOCKFETCH or UNLOCKSTORE operation,

whichever is appropriate, is performed.

If OPN = UNLOCKFETCH or UNLOCKSTORE, the fetch lock or store

lock previously inser1;ed by a FETCHLOCK or STORELOCK opera-

tion is removed.
/

If OPN = A'I"I'ACH, the formulary represented by internal name

INTNAME is attached to the user and terminal described in the

INFO array.

If OPN = DX'LACH, the formulary represented by internal name

INTNAME is detached from the user and terminal described

in the INFO array.

VAL is LENGTH storage elements long.

Note that a BETCII (BTBRE) operatioil w i l l auludly uttcmpt

to fetch (store) LENGTH storage elements of information.

It is the responsibility of the TALK procedure to handle

sorambling or unscrambling algorithms that return outputs

of a different length than their inputs.

- 26 -

ACCESS returns the following integer completion codes in
\

COMPCODE :

1 normal exit, no er ror

2 unlock operation requested by user or terminal .

who/which did not set lock

3 operation permitted but gave er ror when attempted

4 attempt to unlock datum which is not locked in given

manner

5 cannot handle any more User Control Blocks (would

cause' table overflow)

6 attempt to detach nonexistent user/terminal/formulary

combination

7 operation permittcd for this uscr and terminal but

could not be carried out since datum was locked (by

another user/terminal) to prevent such an operation

8 cannot put lock on as requested since LOCKLIST is full

9 datum already locked by this user and terminal

10 er ror return from VTRTUAL procedure

11 operatfon on the datum represented by INTNAME not

permitted by CONTROL procedure of the attached formulary

12 end of data set encountered by FETCH operation.

Note that by the time the user has left the ACCESS routine, the data may

have been changed by another user (if the original user did not lock it). Note that

ACCESS could be altered to allow scrambling and unscrambling to take place at

external devices rather than in the central processor.

Important: ACCESS expects the following to be available to it. The installation

supplies these in some way other than a s parameters to ACCESS (for example, a s

global variables in ALGOL o r COMMON variables in FORTRAN) -
(1) BTDUCB the default User Control Blook. Its length is NUCB .

storage units.

(2) NUCB see (1).

(3) UCB a list of User Control Blocks (UCB1s) initialized outside

ACCESS to ucb (1 , l) = -2,

ucb (i, j) = anything when -(i = j = 1)

UCB is declared a s i- ar ray (l:maxusers, 1:nucb).

(4) MAXUSERS the maximum number of users which can be actively

connected to the system a t any point in time.

(5) ITALK the length of the INFO array (which is the first ,

parameter of ACCESS) - INFO contains information about

the user and terminal which is used by ACCESS and also

passed by ACCESS to procedures of the attached formulary.

INFO(1) contains user idehtification.

(6) LOCKLET a liat of locks (each element of the LOCKLIST array

should be initialized outside ACCESS to -1).

LOCKLIST is declared a s integer array (1:4, 1:maxllist).

(7) MAXLLIST the.maximum length of the LOCKLIST

(8) CS1 a semaphore to govern simultaneous access to the c r i t i cd

sectj.on of the ACCESS procedure (initialized to' 1 outside ACCESS).

ACCESS assumes that the variables FETCH, STORE, FETCHLOCK, STORELOCK,
I

UNLOCKFETCH, UNLOCKSTORE, ATTACH, and DETACH have been initialized

globally and a r e never changed by the installation;

integer array iucb [l:nucb] , reslt [l:length] ;

integer i , ii, islot, j, yesno, other, n, datum;

integer procedure testandset (semaphore); integer semaphore;

begin comment TESTANDSET is an integer'function designator. It returns -1

if SEMAPHORE was in the state LOCKED on entry to TESTANDSET. Otherwise,

TESTANDSET returns something other than -1. In all cases, SEMAPHORE is in

state LOCKED after the execution of the TESTANDSET procedure, and must be

explicitly unlocked in order for it to be used again.

TESTANDSET is used to implement a controlling mechanism to prevent

conflicts among users competing for the same resource, as discussed in

(Dijkstra [1965]). It will - not prevent "deadly embraces" (Hahermann [1969]). No

explicit code is given here, since the function is machine-dependent. The manner

in which TESTANDSET is implemented for a particular machine, the IBM 360/67,

is shown in the listing of'the TESTSE procedure in Exhibit 1 of Appendix A. .- . -9

This procedure can be removed if no user will ever have to lock out access

to a datum which ordinarily can be accessed by several users at the same time

, or if the installation wishes to use another method to control conflicts among users

competing for exclusive access to datums;

< code >

end testandset; -

integer procedure idxll (intname, opn); integer intname, opn;

begin comment IDXLL, given an internal name INTNAME, returns the relative

position of INTNAME on the LOCKLIST if the datum represented by INTNAME is

locked in a manner affecting the operation OPN. Otherwise, IDXLL returns

the negation of the relative location of the first empty slot on the, LOCKLIST. If

the LOCKLIST is full and the INTNAME/OPN combination is not found on it,

IDXLL returns 0.

'l'his procedure can be removed if no user will ever have to lock out access

to a datum which ordinarily can be accessed by several users at the same time

or if the installation wishes to use another method to control conflicts among

users competing for exclusive access to datums;

integer firstempty;

j : = - if opn = FETCH ,r opn = UNLOCKFETCH g opn = FETCHLOCK -- then 1 else 2 ;

I idxll : = firstempty : = 0; .

for i : = 1 step 1 until maxllist do - -
begin ii := -i;

if locklist [I, i] = -1 then firstempty : = i - -
else if locklist El, i] = intname and locklist [2, i] = j then begin idxll := i; -- - -

p o R E T

end; -
end; -

if firstempty # 0 then idxll : = -firstempty; - -
RET :

end idxll; -

procedure ret (i); integer i;

begin comment RET sets the completion code compcode to i and then causes

exit from the ACCESS procedure;

c o q c o d e i = i ; go to PIN

end ret; -

c ompcode : = 1 ; . .

.. . .

comment first let's see if we recognize the user/terminal combination

in INFO;

islot := 0;

for i :.= 1 step 1 until - maxusers - do -
begin ii : = i ;

if ucb [i, 11 = -2 then begin comment end of list. of ucb's; - -
if islok0 then begin if i i # maxusers then ucb [ii+l, 11 : = - 2 ; - - -

go to XFER;

end -
else go to PRESETUP; -
end -

else if uc b [i, 11 =- 1 then islot : = ii -- -
comment remember this slot if vacant;

else begin - for j : = 1 step 1 - until italk - do

if ucb [i, j]#info[j] then go to ILOOPND; -

go to SETUPPTRS

end; -
ILOOPND:

end i loop; -
if islot = 0 then re t (5); comment cannot handle any more UCBs; - -
PRESETUP:

ii := islot;

XFER:

for k : = 1 step 1 until italk do ucb [ii, k] : = infolk] ; - - -
for k : = italk + 1 1 until nucb do ucblii, k] : = istducbb]; - - -

for i : = 1 1 until nucb do iucb[i] : = ucb[ii, i]; - - -
comment set up pointers to appropriate user control block for particular

implementation. Note well: Setting up pointers to appropriate user control blocks

is quite dependent on the particular system. For an example of one implementation,

see Exhibit 1 of ~ ~ ~ e n d i x A;

' . comment We have now associated user and terminal with the user control block

(representing a formul&fg) iii relative position 1 of the UCB table;

if iuob[nucb] + intname opn = DETACH then ret (6); - -
comment attempt to detach user/terminal/formulary combination not currently

attached;

control (intname, opn, yesno, other);

if yesno > 1 then ret (11);

comment return 11 if CONTROL does not permit operation;

if opn = ATTACH then begin ucblii, nucb] : = intname; g o to FIN - -
end.

- 9

comment Note well: In many implementations, pointers to each procedure of

the formulary (obtained by having VIRTUAL transform intname into a virtual

address) might be put into the UCB upon attachment. In others, the philosophy

used here of only putting one pointer - to the formulary - into the UCB will be

followed. The deoision should take into aooount design parametors suoh as

implementation language, storage available, etc . ;
if opn = DETACH then begin comment detach formulary (this leaves an open - -

slot in the ucb array); ucb[ii, I] ;=-I; g o to FIN

end.
-9

if opn = UNLOCKFETCH or opn = UNLOCKSTORE then - - -
begin i : = idxll(intname, opn); comment find internal name on LOCKLIST;

if i 5 0 then ret(4); comment cannot find it; . . - -
for j : = 1 step 1 until italk do - - -

if locklist [2+j, i] # iucblj] then ret(2); ' - -
locklist [I, i] : = -1; comment undo the lock and mark slot in UCB array empty;

to FIN -
end &lock operation;' -

TRY:

if testandset(cs1) = -1 then go to TRY; - -
comment loop until no other user is executing the critical section below;

comment ACCESS should ask to be put to sleep if embedding system permits;

comment ----------- ;- ----- enter critical section for locking out datums --------;

i : = idxll(intname, opn) ;
I

comment get relative location of locked datum in locklist;

if i > 0 then begin comment datum found on.locklist so see if it was locked by - -
this user and terminal;

for j:=lstepl untili'talkdo , - -
if locklist [2+j, i] # iucb[j] then ret(7); - -
comment data already locked by another user or terminal;

if opn = FETCHLOCK or opn = STORELOCK then ret(9); - - -
comment datum already locked by this user and terminal,

so return completion code of 9;

end; -

if opn = FETCHLOCK or opn = STORELOCK then '

-
begin comment this is a lock operation;

if i = 0 then ret(8); comment connot set lock since locklist is full; -
locklist[2, i] : = g opn = FETCHLOCK then 1 2 ;

comment set appropriate lock;

for j : = 1 step 1 until italk do locklist[i'+j, i] : = iucqj] ; . - - -
comment place user and terminal identification iiik LOCKLIST;

locklist [1, i] : = intname; comment place internal name on LOCKLIST:

end lock operation; -
virtua'l,(intname, datum, other, compcodej;

comment VIRTUAL returns in datum the virtual address of the datum specified;

if compcode > 1 then ret(l0); comment e r ror return from VIRTUAL; - -
if opn = STORE then - -

begin comment store operation;

scramble (vnl, length, compcode, reslt, n);

if compcode > 1 then ret(3);

comment operation permitted but gave e r ro r when attempted;

comment now perform a physical write of n storage units to the block

starting at reslt;

store (datum, reslt, n, cornpaude);

if compcode > 1 then ret(3) -
end -

else -
begin comment fetch operation;

fetch (datum, reslt, length, compcode);

if compcode = 2 then ret(l2); comment end of data set encountered; - -
if compcode > 1 then ret(3); -
unscramble (reblt, length, compcode, val, n);

if comp'code > 1 then ret(3) ; - -
' - end .fetch operation;

FIN: . .

comment ---- ----------- Leave critical section for locking out datums ------------;

c s l : = 1;

end access; -

L . . FETCH and STORE Primitive Operations

The two primitive operations FETCH and STORE are supplied by the instal-

lation. These primitives actually perform the physical reads,and writes which

cause information transfer between the media the data base resides on and the

primary storage medium (usually, magnetic. core storage). They are invoked

only by the ACCESS procedure. Examples of FETCH and STORE primitives for

a particular implementation a re given in Exhibit 2 of Appendix A.

The primitive operations cannot be expressed in machine-independent furnr,

but rather depend on the specific system and machine Ued. They are defined

functionally below.

FETCH(ADDR, VALUE, LENGTH, COMP) - - .

This primitive fetches the value which is contained in the storage locations

starting at virtual address ADDR and returns i t .in VALUE. This value may be

scrambled, but if so unsorambling will be done later by UNSCRAMBLE (called

from ACCESS), and LENGTH is the length of the scrambled data. he value

comprises LENGTH storage elements. Upon completion, the completion code

COMP is set to:

1 if normal exit

2 if end of data set encountered when physical rend attempted

3 if length too big (installation-determined)

4 if illegal virtual address given to fetch from

5 if error occurred upon attempt to do physiurtl read

STORE(ADDR, VALUE, LENGTH, COMP)

This primitive stores LENGTH storage elements starting at virtual address

VALUE into LENGTH storage elements starting at virtual address ADDR. The

information stored may be scrambled, but if so the scrambling has already been

done by SCRAMBLE (called from ACCESS), and LENGTH is the length of the

scrambled data. Upon completion, the completion. code COMP is set to:

1 if normal exit

3 if length too big (installation-determined)
. .

4 if illegal virtual address given to store into

5 if e r ror occurred upon attempt to do physical write.

.IV. USE. OF FORMULARIES IN A W-G MEDICAL SYSTEM .

. a

This section describes a particular i&plernentatioh of the formulary model
. .

of access control and privacy. his implementation was &ed to insure privacy

for the computer-based records of individual patient visits at the Cowell Student
.

. .
Health Service of Stanford University.

The Cowell Student Health Service (hereafter referred to a s SHS) maintains

short records of each i n d i v i d ~ l patient visit (in addition to the mi re detailed

rneJica1 histariee whioh oaoh physicsian affiliated wjth the bmTS keeps). These short

records contain information which is used to review and make more efficient use

of physician services, nursing services, and office resources. They a re also

used to spot short and long term trends in causes for visiting the SHS, so that ..

specific trends can be planned for and/or arrested. Each record contains an

SHS-assigned number which identifies the particular patient.

The data which is kept for these short records was kept under fairly tight

control even before SHS adopted the formulary model. No 'lleaksfl had ever been

detected. But as a result of a general review of privacy control in the SHS
\

computer-based files, additional safeguards were implemented, including pro-

tection of privacy via the formulary scheme. All of these additional safeguards

could have been implemented without making use of the formuIary model. One

result of the use of the formulary model, however, has been the compartmentali-

zation and separation of scrambling, unscrambling, and access-granting decision

functions. These functions can now be easily chaqged or "tuned" to fit future

requirements. The SHS system is an example of a particular implementation of

the general formulary model. The system a s described here is nearly 100%

operationalat this time (though general use will be phased in as funds become

available).

A. Storing and Retrieving Information in the Current SHS System

Information on each patient visit is typed into the on-line computer file

system, WYLBUR (Riddle [1968]) by an employee of the SHS.. The input terminal,

commonly referred to as a WYLBUR terminal, is physically located in a secure

a rea at the SHS offices and access to i t is controlled there. Knowledge of the SHS

account number, its corresponding WYLBUR keyword, a valid user name, and i ts

password (assigned and maintained by SHS - - not the WYLBUR keyword) a r e all

necessary to input data to or output data.from the system.

Periodically (every academic quarter or so), a statistical summary is

requested from the terminal located at SHS. The program which prints the sum-

mary will do so only after it verifies that an authorized user is using his authorized

password. In addition, this program requires the user to give the operating

system both the SHS account number and i ts associated keyword. The summary

(which includes no patient names or patient identification numbers of any sort)

is printed out only a t the WYLBUR .terminal located at SHS.

Notice that the patient visit data (and associated patient identification number)

exists in only three places:

1) on the Cowell Student Health Service statistical sheet (Fig. 5), which is

made up for each patient visit to the Health Service, and i s kept in a

. physlcally secure area at the Student Health Service.
, .

2) on the paper in the WYLBUR terminal (an IBM 2741 Communications

Terminal) which is located in a controlled-access area a t SHS. The

paper i s kept under controlled access until it i s no longer useful and

then is destroyed.

3) on the tape at the campus facility of the Stanford University Computation

Center. The information is scrambled on the tape; i t is kept "in the

clearn only while the SMS statistical programs a r e actually being executed.

COWELL STUDENT HEALTH CENTER STAT?ISTICAL SHEET

STANFORD UNIVERSITY

--

I521 E Y E 1591 'm SURGERY i

1531 E l t~~~ I601 O I ~ s y c u .

123 UIII 'V~.CRSIT\' 154.1 'm b . u l&ll m r L . (i I

1551 q .oB,GY:N I621 : ~ ' O E N T ~ A L 1
PRIVIATE !s61 .MED

A NAME
L L S T

F I R S T " ' O D L E

I21 13) 14) 151 I61 I71 181

.. 1.0 1-1
11-81

C . SEX M A L E

Ig1 q F E M A L E

I N F I R M A R Y AND HOSPITAL

D STATUS
S T U D E N T
I101 OUNDERGRAD

OGRAD
NON-STUDENT

HINDUSTRIAL
rn FMP

O F A C ~ L T Y - S T A F F

E~VISITOR
ODEPENDENT
~ H A N S E N ~ S L A c
BSPECIAL
@JOTHER

'DIAGl10SlS
I --- .

I A . .CODE 2

C. T O T A L DAYS I N ' I N F I R M A R Y

.

,U. I U I AL U A Y S ' I N H O S P I T A L

E S I T E

I q SHS

q I N F I R M A R Y

HOSPITAL

E R

'B PAMC

HOUSE C A L L
F P E

112, lil T F a r H I N C :

q T R A N S F E R

EMPLOYMENT

a OTHER

--- (P'INRL

8 . CODE ii
m .PRESUMPT.IV:E

175)

W .F.I N,AL

FIG. 5--Cowell Student Health Service statistical sheet

G T Y P E O F VISIT

(' ' I APPOII\ IBMENT

q WALK-IN

s - 12

rn 12-9

@ WEEKEND

I N P A T I E N T

No card decks a r e keypunched by non-SHS personnel and then left in unsecured

bins to be picked up by couriers and transported to SHS. Human-readable input

and output is generated only a t the WYLBUR terminal in the secure area at SHS.

We believe that only persons with exceptional knowledge of the operating

system a t Stanford - and the SHS programs themselves the operating procedures

of the SHS can "breaktt this system to the extent that they obtain meaningful data

related to an identificable patient. While the system does not represent the

llultimate" in security, we feel the records a r e just a s secure a s those in physical

file cabinets at SHS and that the cost paid to maintain this degree of security is

not prohibitive.

B. Attaching to the SHS Formulary

Since WYLBUR provides password protection, only those persons knowing

both the charge number - and the keyword of the Student Health Service a r e permitted

to log in and attempt to use the SHS system. These people a r e limited to a few

' SHS personnel and two programmers responsible for maintaining the system. So,

in effect, only these people can be attached to the SHS formulary. * Attaching, in

'

this implementation, consists of two stages: (1) logging in successfully to the

WYLBUR system, and (2) successfully fetching and starting up an SHS TALK

' pruuedure.

C . Formulary Building

Since there a r e only three formularies in the system described, we decided

that it was not worthwhile to write a FORNPUURYBUILDER program; the formu-

laries were built manually, and their procedures were Linked to the already

*
This excludes possible compromise of the system by wiretapping, personnel
problems, etc., which a re explicitly not handled by the formulary scheme (see
Chapter I),

existing SHS statistical procedures. Clearly, such a FORMULARYBUILDER

procedure could be written.

D. The TALK Procedure

We shall now limit our discussion to the part of the SHS system which handles

requests for the computation and extraction of statistical summary data, though

the other parts operate in a similar manner. In particular, only the formulary

and TALK procedure relevant to that part of the SHS system will be discussed

here, though in fact other TALK procedures and formularies exist in that system.

The TALK procedure we shall discuss obtains user and terminal identification

from the operating system and user password and authentication sequences inter-

abtively from the user. Due to the system characteristics of the Campus Facility

of the Stanford Computation Center at the time the procedures were coded, * it
was decided to handle the authentication of users in both the TALK procedure and

in the CONTROL procedure. The TALK procedure handles interactive authenti- I

cation, and the CONTROL procedure, r W n g la the batch, pedurius a final user

and password authentication. Note that all of the code aeutr~sary to. iua.ke up a

formulary is broken out separately from the code that does the actual data manlpu-

lation and statistics gafheir'iiig (see Fig. 6). Thls 111akes il easy Lor systems pro-

grammers to replace or modify formularies without any modification of the actual

application program. In fact the code for the formularies was added to previously

existing SHS application programs with no change in these application programs.

The TALI< prmcdurc waE written in CYVYL, an on-live interactive 1a.npla.p;~

designed for user mainly in computer-assisted instruction applications. It engages

Y
At the time these procedures were coded, i t was relatively difficult for procedures
written in certain languages to communicate with procedures written in certain
other languages and with user terminals. This situation should disappear soon,
and then the authentication will be easily handled entirely by the CONTROL procedure.

Step 1:

TALK procedure to access
data base and procedures of
governing formularies

. .

, .

i

Steps 2-N:

Job steps which compute and
extract summary data (executed
only if formulary procedures
invoked in Step 1 allow the
requested access).

FIG. 6--Skeleton of terminal-initiated job to compute and extract summary data

. .. " . . . ,

the user in a dialogue to.verify an authentication sequence (see Fig. 7). TALK

also obtains printing parameters and an output heading.'from the user. It then

initiates the program which will fetch information from the data base and compute
. -

statistical summary data,. . ' . i . .

, .

E. Procedures of the SHS Formulary

Once someone is attached to the SHS formulary (i. e., has logged in successfully

to WYLBUR), he still must provide a valid user identification and the corresponding

password (not the one used to log in to WYLBUR) in order to put any information

into or get any information out of the system. This information is obtained and

checked by the Fortran subroutine CONTROL (Exhibit 3 of Appendix A) which is
. . , . . .,. - . .

invoked by the system ACCESS procedure and which serves as the CONTROL

procedure of the SHS formulary. This function is invoked at both data input and
, .. . ,

at data output times.

The Fortran subroutine 'SCRAMBLE (Exhibit 4 of Appendix A) scrambles the

data a t data input time. It serves a s the SCRAMBLE procedure of the SHS

formulary. a . ,

Tho Fortrnn oubroutino UNSCR~MBLE (Exhibit 6 of Appendix A) una~rambles
. .

the data when it is read in for use in statistical computations or for outputting

purposes. It serves as the UNSCRAMBLE prooedure of the SHS formulary.

VlRTUAL is generally used to map an internal name into a virtual address.

In the SHS system however, there is only one internal name associated with raw

patient data (as opposed to formularies). This internal lliln~e, NEXTRECORD, lu

the only one which is ever mapped . . into ,a virtual ,address by VIRTUAL. In the

SHS system, the virtual address is the same as the internal name. So VIRTUAL

is very simple in this system; i t is in fact, effectively, the identity function
. , ;. . . ' . ,

(Exhibit 6 of Appendix A).

. . . .

WHAT COURSE DO YOU WANT? rsubmlt
QUEUED .

QUEUED
S U S M I S S l O N PROCEDURE H A S 3EEFJ I N I T I A T E D . * W A I T !
USER I D O B T A I N E D FROM O P E 7 A T I N G SYSTEM-- W l L L i3E V A L S D A T E D L A T E R BY THE CONTROL, PROCEDURE.

' T E R M I N A L I D O S T A ~ N E D FROM O P E R A T I N G SYSTEM AND APPRCVED.
ACCBUNT NUMBER O B T A I K E D F?OM O P E R A T I N G SYSTEM AND APPRCVED.
YOU ARE P E R M I T T E D T O USE T:-iE SHS P'R0GRAt.I A T T H I S T I M E OF DAY.

WHAT I S YOUR H E A L T H S E R V I C E PASSWORD? 8811811111fl8111
PASSWORD \ G I L L BE V A L I D A T E D L A T E R BY T H E CONTROL PROCEDURE.

P L E A S E RESPOND TO A U T t l E N T l C A T t O N SEQUENCE:
8 2 1 3 -- ? RIE1ESa%MEE%IgB
4932 -- ? .PlglLBEaII%E%gXEP

'DO YOU W I S E TO P U L L I D NUMBERS? y e s .
I P L E A S E G I V E T H E A D D I T I O N A L I D NUMBER V A L I D A T I O N KEY: IHIIIIPHIIIPIWI

A U T H E N T I C A T I O N SEQUENCE V A L I D . A '

1 T A L K PROCEDURE APPROVES T H I S USER AND T E R M I N A L :

WHEN REQUESTED, PLEASE TYPE E A C H D L S E A S E NUMBEE YOU WISH TO PULL THE I D S FOR.
WHEN DONE, J U S T H I T " C A R R I A G E RETURN"..

- D I S E A S E NUMEER = ? 0 0 2 0
D I S E A S E NUMBER = ? y o 2 0
D I S E A S E NUMBER = ?

HOW MANY C O P I E S O F T H E P R I K T O U T DO 'YOU WANT? 1
WHAT QUARTER W l L L T H I S RUK COVER? f a l l 1 9 8 4
9 3 7 I S YOUR JOB.NUMBER.
YOUR J O B H A S BEEN S U B M I T T E D AND W l L L BE READY TOMORROW.
WE1'LL LOG YOU O F F FOR NOW. THANK YOU AND GOODBYE.
COMPUTE T I M E = 64 .36 SECONDS
MEMORY USAGE = 9 8 8 . 5 0 PAGE-SECONDS
I / @ A C T I V I T Y = 0 U N I T S
E D I T I N G T I Y E = 2 2 . 7 4 SECONDS
E L A P S E D T I Y E = 00 :23 :55
END OF S E S S I O N 155747

FIG. 7--User dialogue with TALK procedure

The Fortran subroutine CONTROL (Exhibit 3 of Appendix A) serves a s the

CONTROL procedure of the SHS formulary. The CONTROL procedure in this

implementation verifies the password of each user. It allows unlimited access

to certain users, provided that they give the proper password. Other users are'

restricted a s to the data they receive. (Note in Fig. 7, for example, the additional

authorization required to pull student identification numbers. This additional

authorization is currently checked by TALK but will eventually be handled by

CONTROL.)

F . .Primitive Operations

The FETCH and STORE' operations in the SHS system merely read and write

the next record on a sequential data set. Only the internal name NEXTRECORD

is acceptable to FETCH or STORE, FETCH and STORE in the SHS system are

shown in Exhibit 2 of Appendix A.

G . Realization of the ACCESS Procedure

The Fortran subroutine ACCESS (Exhibit 1 of Appendix A) is merely the

FORTRAN i i u p l e i ~ ~ e i a 01 l l~e ACCESS dgurilllm Iur this part?;icular system.

.. .

CHAPTER V

A NOTE ON THE COST OF SOME PFUVACY SAFEGUARDS

As mentioned in Chapter 11, a desirable property for an access control model

is that it be sufficiently modular to permit cost-effectiveness experiments to be

undertaken. In this way the model would serve a s a vehicle for exploring questions

of cost: with respect to various privacy safeguards. .. .
. .

Using the formulary model, an experiment was run on the IBM 360/91 com-

puter system at the SLAC Facility of Stanford University computation Center.

This experiment was designed to obtain figures on the additional overhead due to

using the formulary method and on the costs of encoding data (and conversely the

costs of decoding data).

A tape containing 10,001 80-character card images in clear (unscrambled)

format was first generated. Then 10,000 of the 80-character records were

.. sequentially read in, scrambled, and the (encoded) card images written out onto

a new output tape. Appendix B shows the FORTRAN used to do this job,

and also the printout of the timing results.

Three different scrambling algorithms were used: algorithm 0 - no scrambling

at all; algorithm 1 - simple exclusive+r operations with predetermined random

numbers which did not va'ry from one record to the next; m d algorithm 2 -

exclusive-or operations with the concatenation of four small pseudo-random

numbers which did vary over records. Each of these scrambling algorithms was

timed twice: first without going through the central ACCESS procedure of the

for,mulary model (and therefore without invoking the procedures of the, , attached ,
. . .

formulary which it calls), and,then using the centra1,ACCESS . . procedure and the

,formulary model.

Ten trials were run of the experiment. The timing results are shown in

Table 11, and the averages summarized in Table III.
. . . .

TABLE n

T l d x R c o v l ~ of Coat Ewarlrnsnl

N E Qnnnulary Melbd Used

F - Pormularlss Used . .

Note A: N o tima available, slncs Umer ovemmed at lbls Point.

Note 8: Time of 28.60 aeconde le not meaningful, alnce n tap wrlle ermr occurred and reewsry p m c e d u ~ ~ lor Lhls were also Invoked durlw lhls l rh l .

N F N F N F N F N F . N F N F N F N . F N F

TABLE III /

Average Timing Results of Cost' Experiment

n

1

2

MEAN VALUES

Scrambling Method No Formularies Formularies Used

0 19.00 sec (9 trials) , 19.51.ooo (10 triale)

1 19.55 sec (9 trials) 19.56 see (10 trials)

2 19.67 sec (10 trials) 19.58 sec (10 trials)

MEAN VALUE (58 trials) F 19.64 sec

We see from those tables that there was no'significant difference in the wallelwk

18.39 19.42

19.39 19.42

21.02 19.44

times needed to eficde 18,000 rcoordo, Thrd; i ~ , L11u lilrreb used .were about the

same regardless of which of the three scrambling algorithms were used and

regardless of whether the formulary method was used. Additional overhead caused

by use of the formulary method was all taken up by the input/output wait time.

We conjecture that this will be the case in general. All times are t0ta.l wall-clock

18.88 19,H

19.45 19.90

19.42 19.42

19,69 19.42

19.44 19.44

10.87 19.42

19.44 19.44

19.44 19.42

lU.4U 18.88.

20.58 19.42

19.42 10.42

19.40 10.88

NOW A 19.40

19.42 19.42

19.10 19.42

20.12 19.87

Note B 19.87

2OiCO 10.66

20.55 19.40

19.40 '19.42

10.40 20.78

19.87 19.42

20.57 19.42

19.40 19.40

19.40 19.87

19.40 19.81 .

19.40 19.40 -

times used from the time the first clear record was read in until the time the

last encoded record was written out onto the output tape. All waits for input/output,

etc., a r e included in these times. The times a re not directly related to central

processor cycles. They are wall-clock time 0n.a system where this was the only
. . .

job running in addition to the operating system (-/360), spooling subsystem(HASP),

and remote file management/job entry subsystem (CRBE). The experiment was

carried out in this manner in order to get a hi^& estimate of the incremental cost

involved in scrambling a large number of cards. In a multiprogramming system
. .

the actual time used in encoding could be overlapped with input/output tasks from

other jobs and therefore would not be nearly so costly. On the other hand,' if

CPU cycles are a major cost factor, another experiment should be carried out

to determine this incremental cost.

In this worst case we see that 10,000 cards were scrambled in an average of

19.64 seconds. We can put i t another way; the incremental cost of encoding (or

decoding) one card image on this system is 0.001964 seconds. Under the existing

rate structure at the Stanford Computation Center, it then costs approximately

one-twentieth of a cent to encode (or decode) each card image. Therefore, encoding

one card image (80 bytes of information) for each of the 20,000,000 residents of
'

the State of California wbuld take only 39,28 0 seconds (less than 11 hours) and

would cost under $11,000. These results seem to indicate that the incremental

cost of scrambling infork t ion in a large computer data base where fetch accesses

(and hence unscrambling qeratidns) a re infrequent is infinitesimal.

Clearly, i t will b e easy to use the formulary model to harry out various

other experiments as well, to ascertain the relative costs of diverse encoding

methods and data accessing schemes. W; expect to do more of this in the future.
. . . I

. ,

CHAPTER VI

CONCLUSIONS

A. Summary

We have defined . and . demonstrated a model of access control which allows

real-time decisions to . . be made about privileges granted to users of a data base.

Raw data need appear only once in the data base and arbitrarily complex access

control programs can be associated with arbitrarily small fragments of this data.

The desirable characteristics for an access control method laid out in

Chapter 11 are all present (though we have not yet run enough experiments to

make general statements about efficiency) :

1) No arbitrary constraint (such a s segmentation or sensitivity levels) is

imposed on data or programs.

2) .The method allows control of individual data elements. Its efficiency

depends on the specific system involved and the particular controls

used. As seen in Chapter V, very little performance degradation due

to increased overhead was added by the introduction of formularies to

the tape- based system in the example there.

3) No extra storage or time is required to describe data which the user

does not desire to protect.
I

4) The method is mnchine-independent and also independent of file structure.

The efficiency of each implementation depends mainly on the adequacy-
. . . .

of the formulary method fur the particular data structures and application

involvcd. . .

5) Chapters IV and V certainly demonstrate the modularity of the formulary

model and its ability to support cost-effectiveness experiments.

- 50-

B. Future Work

 ore experiments should be carried out to determine the amount of additional

system overhead introduced by user formularies. This will vary over data structures

and over data base systems. - In particular, actual costs in additional central

processor cycles should be determined for various hardware systems.

Criteria of system efficiency, degree of control required, etc., should be

developed to determine the extent of usefulness of the formulary method. Some

preliminary work has already been done in this area (Wortman and Hoffman [1969]).

Using the formulary method, cost measures for scrambling and unscrambling

techniques and for threat monitoring (Hoffman [1969]) subsystems can be developed

in the same manner that the cost measures of Section V were developed.

To observe the f u l l capabilities of the method and its potential for storage

efficiency, a system should be developed where quite a number of users' share

several formularies. Also, the problem of users granting limited capabilities to

other users, these new users granting even more limited capabilities to still

other users, etc., and all this being done while access control decisions a re

being made in real time by procedures, should be investigated in more detail.

Once this problem of granting limited privileges is solved, we will see much more

controlled sharing of mutually useful programs and data. The implications here

for proprietary software and for application-oriented data banks a re very great.

A. most promising area for future work is the development of a generalized

resource allocation system which incorporates the formulary model a s a first

stage and a sophisticated scheduler as a second stage. Such a system is currently

being investigated by R. D. Russell at SLAC.

Finally, since the central ACCESS procedure is fixed, hardware or micro-

programmed implementations of it could be built which would greatly decrease

the overhead in central processor cycles involved in using the formulary method.

- 51 -

REFERENCES

Arvas, Christer [I9681 . Joint Use of Databanks. Statistiska Centralbyran,

Stockholms Universitet, Ukas P5, Sweden, Report No. 6.

Babcock, J. D. [1967]. A brief description of privacy measures in the RUSH
. .

time-sharing system. Proc. AFIPS 1967 Spring Joint Comput. Conf.,

Vol. 30, Thompson Book Co., WashihgtoqD. C., 301-302.

Bingham, Harvey W. [1965]. Security techniques for EDP of multilevel classified

irmformaUun. Duuumeul RADC-TR-65-416, Romc Air Dcvolopmont Conter,

Griffiss Air Force Batle, N ~ W Yurk, B c . 19G5. (Unclassified)

Castleman, P. A. p967] . "User-defined syntax in a general information storage

and retrieval system, in Information Retrieval, The User's Viewpoint, An

Crisman, P. S. (ed.) [1965]. The Compatible Time-Sharing System - A Pro-

grammer's Guide (Second ed.). MIT Press , Cambridge, Massachusetts.

Dennis, J. B. and Van Horn, E. C. [1966]. Programming semantics for multi-

programmed computation. Comm. ACM - 9, 3(March 1966), 143-155.

Dijkstra, E. W. [1965]. Cooperating sequential processes. Department of

Mathematics, Technological University, Eindhoven, The Netherlands.

Evan, D. C. and Le Clerc, J. Y. [1967]. Address mapping and control of access

in an interactive computer. Proc. AFIPS 1967 Spring Joint Computer Conf.,

Vol, 30, Thompson Book Co. ,, Washington, D. C. , 23-30.

Ewing, R. C . and Davies, P. M. [I9641 . An associnti,ve processor. Proc.

IFIPS 1964 Fall Joint Computer Conference.

Feldman, J. A, [1965]. Aspects of Associative Processing, Technical Note

1985-13, Lincoln Laboratory, MIT, Cambridge, Massachusetts.

Gall, R. G. [1964]. A hardware-integrated ~ P ~ / s e a r c h memory. Proc. IFIPS 4

19 64 Fall Joint Computer Conference.

Giering, R. H. [19671. Information Processing and the Data Spectrum. Technical

'Note DTN-68-2, Data Corporation, Arlington, Virginia.

Graham, R. M. [I9681 . Protection in an information processing utility. Comm.

ACM - 11, 5 (May 1968), 365-369.

'Habermann, A. N. [1969]. Prevention of system deadlocks. Comm. ACM 12,

7 (July 1969), 373.

Hoffman, Lance J. [1969]. Computers and privacy: A survey. Computing

Surveys - 1, 2 (June 1969).

Hsiao, D. K. [1968]. A File system for a problem Solving Facility: Ph. D.

Dissertation in Electrical Engineering, Univ. of Pennsylvania, Philadelphia.

Basic Machine Principles, MacDonal'd and Co; (London).

Jones, R. S. [I9681 . DATA FILE TWO - A data storage and retrieval system.

Proc. SJCC 1968, 171-181.

Kahn, D. [I9671 . The Codebreakers. ~ a c m l a n , New ~ o ' r k .

Kellogg, C. H. [I9681 . A natural language compiler for on-line data management.

Proc. FJCC 1968, 473-492.

Lampson, B. W. [19691.. Dynamic ~ r o t e c t i o ~ Structures. Proc. AFIPS 1969

Fall Joint Computer conference, pp. 27-38.

Lesser, V. R. [19681. A multi-level computer organization designed to separate

data-accessing from the computation. Technical Report No. CS90. Computer

Science Department, Stanford University, Stanford, California, March 1968.

McAteer, J . -- et al. [1968]. A.ssociative Memory System Implementation and

Characteristics. Proc. IFIPS 1964 Fall Joint Computer Conference.

Miller, W. F. and Hoffman, L. 9. [I9691 . A method of extracting record-specific

information from lfstatisticalll data banks. CGTM-67, Stanford Linear

Accelerator Center, Computation Group, Stanford, California.

Raffel, J. I. and Crowther, T. S. [1964] . A proposal for an associative memory
<

using magnetic films. IEEE Trans. ion Electronic Computers, EC-13, No. 5.

Riddle, William E. [I9681 . WYLBUR, Stanford University computation Center

Text Editor, Appendix E to Users Manual, Stanford Computation Center Campus

Facility, Stanford, California.

Rower, P. D. and Feldrnan, J. A. [1968]. The Leap language and data structure.

Yroc. DIP Congress '1968, C7Y-C77.
-

Shannon, C. E. [19491. Communication theory of secrecy systems. Bell System
- .

Tech. J. 28, 656-715. -
Shoshani, A. and Bernstein, A. J. [1969]. Synchronization in a parallel-accessed

data base. Comm. ACM - 12, 11 (November 1969), 604-607.

Skatrud, R. 0. [19691. The application of cryptographic techniques to data

processing. Proc. AFIPS 1969 Fall Joint Computer Conference, 111-117.

Stone, M. G. [1968]. TERPS-file independent enquiries. Computer Bulletin -9 11

4 (March 1968), 286-289.

Weissman, Clark [1969]. Security Controls in the ADEPT-50 Time-Sharing

System. Proc. AFIPS 1969 Fall Joint Computer Conference, 119-133.

APPENDIX A

EXAMPLES OF PROCEDURES USED BY A PARTICULAR INSTALLATION

This appendix contains listings of procedures which are used in the Cowell

Student Health Service system which operates under .the O~/360 Operating System

on the IBM 360/67 at the Stanford University Computation Center Campus Facility.

Except for the ACCESS procedure, all of the algorithms and coding were supplied

by the Student Health Service. They supplied the coding for the ACCESS procedure,

but its algorithm was fixed, of course; its ALGOL version is given in Section K

of Chapter III.

Some data (including key privacy data) in named common areas a re intialized

in a BLOCK DATA subprogram (not shown) which is similar to the BLOCK DATA

subprogram in Appendix B. The subprogram shown there, however, does - not
. .

contain key privacy data for the SHS system or for any other system.

SUBROUTINE ~ C C E S S ~ I N F O I I N ~ N W E ~ V ~ L U E ~ L E W ~ T M ~ O W ~ C O M ~ O O E ~ OOS24500
C 0 0 5 2 4 6 0 0
c THIS P ~ O C E O U R E TAKES A S INPUT THE INTERNAL NAME INTNAME AND 0 0 5 2 4 7 0 0
C DOES THE FOLLOWING: 0 0 5 2 4 8 0 0
C 0 0 5 2 4 9 0 0
C I F IOPNmFETCHPt VALUE I S SET TO THE VALUE OF THE
C DATUM REPRESENTED B Y INTNAME.
c
C I F IOPN=STOREP. THE VALUE OF THE OATUM REPRESENTEO
C BY INTNAME BECOMES VALUE.
c .
C I F IOPNzFLOCKPv SLOCKPv UNLFEPv 0R.UNLSTPv THE OATUM
C REPRESENTED B Y INTNAME I S RESPECTIVELY LOCKEO TO FUTURE
C FETCHESI LOCKEO TO FUTURE STORES, UNLOCKED TO FUTURE
C FETCHESt OR UNLOCKED TO FUTURE STORES. I
C (LOCKING A DATUM LOCKS OUT A L L USER/TERMINAL COMBINATIONS
C EXCEPT THE ONE THAT SET THE LOCK.)
G
C T H E LENGTH OF VALUE I S LENGTH'.

I NORMAL E X I T , NO ERROR
2 UNLOCK OPERATION REQUESTED BY USERITERMINAL

C Y W / W H I C H 0 1 0 NOT SET LOCK 0 0 5 2 6 9 0 0
C 3 I O P N OPERATION PERMITTEO BUT GAVE ERROR WHEN ATTEMPTEO 0 0 5 2 7 0 0 0
C 4 ATTEMPT TO UNLOCK DATA WHICH I S NU1 L U L K t U I N GIVEN n A n n C R 0 0 ~ 2 7 1 0 0
C 5 CANNOT HANDLE ANY MORE USER CONTROL BLOCKS 0 0 5 2 7 2 0 0
C 6 ATTEMPT TO DETACH NONEXISTENT USER/TERMlNAL/FORMULARV 0 0 5 2 7 3 0 0
C COMBINATION 0 0 5 2 1 4 0 0
C 7 I O P N OPERATION PERMITTED BUT HAS UNABLE TO BE CARRIED OUT 0 0 5 2 7 5 0 0
C S INCF THE DATUM WAS LOCKED TO PREVENT SUCH AN OPERATION 0 0 5 2 7 6 0 0
C 8 CANNOT PUT ON LOCK AS REQUESTED S INCE LOCKLIST I S F U L L 0 0 5 2 7 7 0 0
C 9 OATUM ALREADY LOCKED BY T H I S USER AN0 TERMINAL 0 0 5 2 7 8 0 0
C 1 0 V I R T U A L PROCEDURE CANNOT TRANSLATE INTERNAL NAME I N T O 0 0 5 2 7 9 0 0
C V IRTUAL AOORESS 0 0 5 2 8 0 0 0
C 11 I O P N OPERATION NOT PERMITTED ON DATUM REPRESENTED 0 0 5 2 8 1 0 0
C B Y INTNAME; OETECTIOM CARRIED OUT BY THE CONTROL OOSZAZDO
C PROGRAM OF THE ATTACHED FORMULARY 0 0 5 2 8 3 0 0
C 1 2 END OF DATA SET ENCOUYTEREO ON FETCH ATTFMPT 0 0 5 2 8 4 0 b
L 0 0 5 2 0 5 0 0
C ' 0052B600
C 0 0 5 2 8 7 0 0
C FORMAT OF L O C K L I S T (L L I S T I I S : 0 0 5 2 8 8 0 0
C 0 0 5 2 8 9 0 0
C ENTRY 1 ENTRY 2 ... ENTRY N ENTRY N*L ... ENTRY 1 0 0 0 0 5 2 9 0 0 0
C INAME 0 0 5 2 9 1 0 0 - - -

C OPN
C USERITERMINAL INFORMATION
C
C OPERATIONS --
C I FETCH. 2 STORE* 3 BOTH F e T C H AND STORE
C INAM€=-1 I M P L I E S THAT SLOT ON L O C K L I S T I S EMPTY
C
C
c

I M P L I C I T I N T E G E R I A - 2 1

1 FORMI.FORMZI FORM31 0 0 5 3 0 4 0 0
2 NEXTALLsSAMEALL t 0 0 5 3 0 5 0 0
3 FETCHP. STOREP. UNLFEPvUNLSTP*FLOCKPs SLOCKPvATTACHPvOET4CHP 0 0 5 3 0 6 0 0

COMMON/UCB/ ISTDUCB 0 0 5 3 0 7 0 0
C O M H B N I O Y N I / U C B l v L L I S I s L S 1 00LI56bOO
INTEGER L L I S T ~ 4 v L O O l
INTEGER UCB1(1009 3 1

C ************* 1 0 0 I S MAXUSERS. NUCB I S 3 ' ~.
INTEGER 1 ~ ~ 0 ~ ~ 0 1 3 1 0 0 5 3 1 2 0 0
INTEGER INFO1 I T A L K I 0 0 5 3 1 3 0 0
INTEGER VALUE1 20.1 0 0 5 3 1 4 0 0

C **** DIMENSION I S LENGTH STORAGE ELEMENTS. I N T H I S CASE 8 0 0 0 5 3 1 5 0 0
C STORAGE ELEMENTS. T H I S MUST BE S P E C I F I E D AS 2 0 FORTRAN tL6MENTS nUE 0 0 5 3 1 6 0 0
C TO REQUlREMeNTS OF THE FORTRAN LANGUAGE. 0 0 5 3 1 7 0 0

INTEGER INTNAME.LENGTHvOPNsCOMPC00E 0 0 5 3 1 8 0 0
c UUY J I Y U U

INTFGER I U C B 1 3 l 0 0 5 3 2 0 0 0
C O l l l E N S l O N SHOULD BE NUCB BUT FORTRAN OOES NOT ALLOW.THAT C O N S T R U ~ ~ ~ O N 0 0 5 3 2 1 6 6

INTEGER R E S L T (Z 0) 0 0 5 3 2 2 0 0
1, 2-22 U l H f N j i O N I S LENGTH STDRAOC CLECILI~TSI 114 f l l l S C A S C 0 6 0 b ~ 3 2 3 0 0
C STORAGE ELEMENTS. T H I S MUST BE S P E C I F I E D AS 2 0 FORTRAN ELEMENTS DUE 0 0 5 3 2 4 0 0
C TO REOUIREMENTS OF THE FORTRAN LANGUAGE. 0 0 5 3 2 5 0 0
C 0 0 5 3 2 6 @ 6

Exhibit 1--FORTRAN Version of ACCESS Procedure

The ACCESS procedure has the fallowing characterietice:
a. only procedure which directly calls FETCH and STORE primitives.
b. only procedure whioh performs 1-king and unlocking operations.
c. all requests for operations on dala base must go through it.

Lines 5247-5284 abwe deecribe the operation of the ACCESS procedure.

COMPCOOE= 1
I SL!)T=O.

C' F I R S T TRY TO'RECOGNIZE USER/TER#INAL COMBINATION I N I N F O ARRAY ., . .-.
DO 1 I= l *MAXUSERS
I I = I
I F (U C B l (I 1 1 1 .EO. - 2) GO TO 2

C E N 0 L I S T OF UCBS
I F (U C B l (1 1 1 1 . € P a - 1) GO TO 3
DO 4 J = l r I T A L K '

I F (U C B l (I IJ) eNE. I N F O (J 1 1 GO TO 1
4 CONTINUE

GO TO 6
2 I F (I S L O T .NEe 0 1 GO TO 7

I F (1 1 .NE. MAXUSERS1 U C B l (I I + l r l) = - 2
GO TO 1 6

3 I S L O T = I I '
c REMEMBER THIS SLOT IF VACANT

1 CONTINUE
I F (ISLOT .EQ. 0) GO TO 8 0 5

C CANNOT HANDLE ANY MORE UCBS
7 I I = I S L O T

1 6 DO 5 K = l * I T A L K
5 U C B l (I I I K I = I N F O (K J

K l = I T A L K + l
DO 8 K = K l r N U C B

8 U C B l (I I ~ K) = I S T O U C B (K J
6 00 9 I = l * N U C B
9 I U C B (11=UC81(11.1 1

C SET UP POINTERS TO APPROPRIATE USER CONTROL BLOCK
C USER AND TERMINAL NnW ASSOCIATED WITH P U S I T I O N I 1 OF UCB TABLE.

I F ((I U C B (N U C B) .NE. 1NTNAME)-AND. (OPN .EQ. DETACHPI) GO TO 8 0 6
C ATTEMPT TO DETACH USER/TERMINAL/FORMULARY COMBINATION NOT CURRENTLY
C ATTACHED

CALL CONTROL(INTNAME*OPN*YESNO*OTHERJ
I F (YESNO .GT. 1) GO TO 8 1 1

c RETURN 11 IF CONTROL DOES NOT PERMIT OPERATION
I F (OPN .EQ. ATTACHP) GO TO 1 0
I F (OPN .EQ. DETACHP) GO TO 11
I F ((0 P N .NE. UNLFEP) .AND. (OPN .NE. UNLSTP)) GO TO 1 2
I=IOXLL(INTNAME ,OPNI

C F I N O INTERNAL NAME OM LOCKL IST
I F (I .LE. 0) GCI TO 8 0 4

C CANNOT F I N O I T I F I .LE. 0
00 1 3 J Z l r I T A L K
I F (C L I S T (Z + J * I I .NE. I U C B (J 1) GO TO 8 0 2

C JUMP I F UNL'OCK REQUESTED BY USER/TERMINAL WHO/WHItH D I D NOT SET LOCK
1 3 CONTINUE

L L I S T (1 e I t - - 1
C UNDO THE LOCK AND MARK SLOT I N UCB ARRAY EMPTY

GO TO 8 0 1
1 2 I F (T E S T S E (L S ~ ~ .EQ. - 1 1 GO TO 1 2

c--
C ENTER C R I T I C A L SECTION FOR LOCKING OUT DATUMS c--

I = I D X L L (1NTNAME.OPNt
c GET RELATIVE LOCATION OF LOCKED DATUM IN LOCKLIST

I F (1 .LE. 0) GO TO 14
C I F DATUM NOT LOCKED TO T H I S OPNI GO TO 1 4

I

Exhihit 1--FORTRAN Version of ACCESS Prmedure (conttd.)

C NOW SEE I F DATUM FOUND ON L O C K L I S T LOCKED BY T H I S USER AN0 TERMINAL 0 0 5 3 8 5 0 0
DO 1 5 J x l r I T A L K 0 0 5 3 8 6 0 0
I F (L L I S T (Z + J t I) .NE. I U C B (J)) GO TO 8 0 7 0 0 5 3 8 7 0 0

1 5 CONTINUE 0 0 5 3 8 8 0 0
I F ((0 P N .EQ. F L O C K P) .OR. (OPN .EQ. S L O C K P)) GO TO 8 0 9 0 0 5 3 8 9 0 0

14 I=-I 0 0 5 3 9 0 0 0
I F ((O P N .NE. F L O C K P) .AND. (O P N .NE. S L O C K P)) GO TO 1 8 0 0 5 3 9 1 0 0

C JUMP I F NOT A LOCK O P E R A T I O N 0 0 5 3 9 2 0 0
I F (I .EQ. 0) GO TO 8 0 8 0 0 5 3 9 3 0 0
K 1 = 2 0 0 5 3 9 4 0 0
I F (OPN .EQ. FLOCKPJ K l = l 0 0 5 3 9 5 0 0
L L I S T t 21 I) = K 1 0 0 5 3 9 6 0 0

C S E T APPROPRIATE LOCK 0 0 5 3 9 7 0 0
DO 2 0 J f l r I T A L K 0 0 5 3 9 8 0 0

2 0 L L I S T (Z + J t I I = I U C B (J) 0 0 5 3 9 9 0 0
C P L A C E USER AND TERMINAL I D I N T O L O C K L I S T 0 0 5 4 0 0 0 0

C L I S T (&r I J=INTNAME 0 0 5 4 0 1 0 0
C P I ACF TNTERNAI. NAME n N I . n C K L I ST 0 0 5 4 0 2 0 0

GO t n oos40?00
C 0 0 5 4 0 4 0 0

18 C A L L V I R T U A L (INTNAMEtOATUMIOTHERtCOMP 1 0 0 5 4 0 5 0 0
C V I R T U A L RETURNS I N DATUM THE V I R T U A L ADDRESS OF THE DATUM S P E C I F I E D 0 0 5 4 0 6 0 0

I F (COMP .GT. 1) GO TO 8 1 0 0 0 5 4 0 7 0 0
C JUMP I F ERROR RETURN FROM V I R T U A L 0 0 5 4 0 8 0 0

I F (OPN .EQ. STOREP) GO TO 2 1 0 0 5 4 0 9 0 0
C A L L F E T C H (D A T U M t R E S L T t LENGTH sCOMP) 0 0 5 4 1 0 Q O
IF (COMP .EB. 2) GO TO 0 1 2 I)U5411uu

C JUMP TO 8 1 2 I F END OF DATA SET ENCOUNTERED 0 0 5 4 1 2 0 0
I F (COMP mGT. 1) GO TO 8 0 3 0 0 5 4 1 3 0 C
C A L L U N S C R A H B L E (R E S L T I L E N G T H ~ C O M P ~ V A L U E ~ N) 0 0 5 4 1 4 0 0
I F (COMP .GT. II GO TO 8 0 3 0 0 5 4 1 5 0 0
GO TO 801 0 0 5 4 1 6 0 0

2 1 C A L L S C R A M B L E (V A L U E t L E N G T H t C O M P * R E S L T I N l 0 0 5 4 1 7 0 0
I F (COMP .GT. 1) GO TO 8 0 3 0 0 5 4 1 8 0 C

C OPERATION P E R M I T T E D BUT GAVE ERROR WHEN ATTEYPTEO 0 0 5 4 1 9 0 C
e 00§'1200ff
C NUW PERFORM A P H Y S I C A L WRITE OF N STORAGE U N I T S TO THE BLOCK S T A R T I N G 0 0 5 4 2 1 0 C
C AT R E S L T 0 0 5 4 2 2 0 0

C A L L STORE(DATUM9 R E S L T r NtCOMP) 0 0 5 4 2 3 0 0
I F (COMP .GT* 1) GO TO 8 0 3 0 0 5 4 2 4 0 0
GO TO 801 U O S ~ L ~ O O

10 U C B l (I I tNUCBJ=INTNAME 0 0 5 4 2 6 0 C
GO TO 8 0 1 0 0 5 4 2 7 0 0

11 U C B l I I I v l) = - ! O Q 5 4 2 8 0 0
C DETACH FORMULARY 0 0 5 4 2 9 0 0
C (T H I S LEAVES AN OPEN SLOT I N THE UCB T A a L E) 0 0 5 4 3 0 0 0

GO TO 801 U U 5 4 3 1 0 0
C 0 0 5 4 3 2 0 0

8 1 2 COMPCODE=COMPCODE+l 0 0 5 4 3 3 0 0
8 1 1 COMPCODE=COMPCODE+l 0 0 5 4 3 4 0 0
810 COMPCODE=COMPCOOE+l 0 0 5 4 3 5 0 0
8 0 9 COMPCODE=COMPCODE + 1 0 0 5 4 3 6 0 0
8 0 8 COMPCOOE=COHPCOOE+l 0 0 5 4 3 7 0 0
807 COMPCODE=COMPCODE+l 0 0 5 4 3 8 0 0
8 0 6 COMPCODE=CD#PCODE+l 0 0 5 4 3 9 0 0
8 0 5 COMPCODE=COMPCOOE+l 6 6 5 4 4 0 0 0
8 0 4 COMPCODE=COMPCODE+l 0 0 5 4 4 1 0 0
8 0 3 COMPCODE=COMPCODE + 1 0 0 5 4 4 2 0 0
8 0 2 COMPCODE=COMPCODE+l 0 0 5 4 4 3 0 0
801 C S l = l 0 0 5 4 4 4 0 C

c - 0 0 5 4 4 5 0 0
C L E A V E C R I T I C A L S E C T I O N FOR LOCKING 6UT DATUMS 0 0 5 4 4 6 0 0
c .. 0 0 5 4 4 7 0 0

RETURN OC5448CO
E N 0 0 0 5 4 4 9 0 0

. Exhibit 1--FORTRAN Version of ACCESS Procedure (oontfd.)

INTEGER FUNCTION I D X L L (INTNAME, OPY I
I V P L I C I T INTEGERlA-2)
INTEGER INTNAME 9 OPN

C I O X L L t GIVEN AN INTERNAL NAME INTYAM AND AN OPERATION OPNt
C RETURNS THE RELATIVE P [S I T I O N OF IVTNAM ON THE' LOCKLIST I F
C I T I S LOCKED I N A MANNER AFFECTING OPERATION OPN. OTHERWISEt
C IDXLL RETURNS THE NEGATION OF THE F IRST EMPTY .RELATIVE LOCATION
C ON THE LOCKLIST. I F THE LOCKLIST I S FULL AND THE INTNXM/ OPN
C COMBINATION I S NOT FOUND* I D X L L RETURNS 0.
C '

COMMON/CONSTANTS/NUCB t N F O R M t M A X U S E R S t M A X L L I S T . I T A L K t
1 FORM1 ,FORMZ,FORM3,
2 NEXTALL, SAHEALLt
3 FETCHPtSTOREP~UNLFEPtUNLSTP,FLOCKP*SLOCKP~ATTACHP~DETACHP

C
CflMMON/OWNl/UCBl t L L I STrCS1
INTEGER L L I S T d ' t r 1 0 0)
INTEGER UCBl (1 0 0 93)
J = 2
I F ((OPN .EQe FETCHP) .OR. (OPY .EQ. UNLFEPI .OR. (OPN .EQ. FLOCKPI

1 1 J = l
F IR STEHPTV=O
ID%LL=O
DO 1 I = l t Y A X L L I S T
IIQI
K = L L I S T (1.1)
I F (K .EU.-1) FIRSTEMPTY=I
I F ((K .EQ. INTNAME) . A N D . I L L I S T (2 t I) .EQ. J I I GO TO 4

1 CONTINUE
2 I F (FIRSTEMPTY .NE. 0) IDXLL=-FIRSTEMPTY

P.E T W.LI
4 I D X L L = I I
5 RETURN
" END

1 TESTSE START 0
2 TESTSE I S AN INTEGER FUNCTION .DESIGNATOR CALLASLE FROM FDRTRAN
3 V I A THE CALL
4 J=TESTSE(I)
5 * I I S A VARIABLE OF TYPE INTEGER*4- J CONTAINSw ON RETURN*
6 * -1 ONLY I F THE CONDITION CODE WAS 1 AFTER EXECUTING THE IS OPERATION
7 ON 1. THE LEFTMOST BVTE OF I I S SET TO ALL ONES ON
8 * RETURN FROM TESTSE.
9

1 0 THANKS TO JOHN EHRMAN FOR THE COOING OF THIS.
11
1 2 L l r D (O 9 l I
1 3 TS 0 1 1)
1 4 BALR 0 9 0
1 5 SLL 0.3
1 6 SRA 0.31
1'1 BR 1 4
1 8 END

SUBROUT I)(E F C T C M (I I O O R I I V L L U E . LENGTH. I C O M P L I
C
C -- F E T C H P R I M I T I V E --
C T H I S P R I M I T I V E F E T C H E S THE V A L U E WHICH I S C O N T A I N E D I N THE
C STORAGE L O C A T I O N S S T A R l l N G A 1 V l H l U A L AODRESS I A O D R AND RETURNS
C T H E L E N G T H STORAGE E L E M E N T S I B V T E S I T H l S V A L U E TAKES I N VALUE.
c UPON COMPLETION. THE COMPLETION CODE 1 c o n P L IS SET TO:
r
C 1 I F YORMAL E X I T
C 2 E N D O F D A T A SET ENCOUNTEREO WHEN P H Y S I C A L R E A D A T T E M P T E D
C 3 I F L E N G T H T O 0 B I G (> 8 0 B Y T E S F O R T H I S I M P L E M E N T A T I O N I
C 4 I L L E G A L V I R T U C L AOORESS T O F E T C H FROM
C 5 ERROR WHEN A T l E C P T I N G TO 00 P H Y S I C A L READ
C
C ******* C E R T I F I E D 2 0 MAY 1 9 6 9
C

I M P L I C I T I N T E G E R I A - Z l
C O M M O N I C O N S T A N T S / N U C ~ ~ ~ ~ O R N ~ M A X U S E R S I M A X L L I S T ~ I T A L K ~

1 FORM l.FORMZ.FOLM3r
2 N E X T A L L I SAMEALL,
3 F E T C H P l S T O R E P I U N L F E P I U N L S T P , F ~ Y C L P ~ S A N D L P ~ A T T A C H P ~ O E T A C H P

C
I N T E G E R I V A L U E I L E N G T H)
I F ((L E N G T H .GT. 8 0) .OR. (L E N G T H .LT. 0) I GO T O 3
I c o M P L = 1
I F l I A n I l R .NF. N F I T A I I I Cn Tn k
I F I L E N G T I I .EQ. 0 1 R E T U R N

t N E X T RECORD I S D E S I R E C SO P H V S I C A L L V REAO I T FROM C A T A BASE (U N I T 8)
R E A D 1 8.16.ENO-2 ,ERR=5) l VALUE

1 6 FORMATI 2 0 b 4)
RETURN '

2 ICOCIPL=2
'RETURN

3 I C o M P L = 3
RETURN

4 I C O C P L = 4
RETURN

5 I C O M P L = 5
RETUPY
E N 0

SUBROUT I N E S I O Y E t I A U D V I V A L U E . L E N G T H * I C O M P L)
C
C -- STORE P R I M I T I V E --
C T H I S P R I M I T I V E S T O R E S L E N G T H STORAGE E L E M E N T S (B Y T E S) S T A R T I N G AT
C V I R T U P L ACORESS I V A L U E I N T O L E N G T H STORAGE E L E M E N T S S T A h T I Y G A T
C V I P T U A L A D D R E S S I A D O R . U P O h C O M P L E T l D N t T H E C O M P L - T I O N 'ODE I C O M P L
c I S SET TO:
C
C 1 I F NORMAL E X I T
C 3 I F L E N G T H TO@ B I G l > R O B Y T E S FOR T H I S I M P L E M E N T A T I O N)
C 4 I L L E G A L V I P T U A L A D D R E S S T O STORE I N T O
C. 5 ERROR WHEN A T T E M P T I N G TO bO P H V S l C b L W R I T E
C I II.(PO~~IDL~ TO G E T C C T U l l N G F U q i r n R ~
C
C *****+* C E R T I F I E D 2 0 MAY 1969
C

I M P L l C 1 T I N T E G E G (A - Z l
r.

C P H M ~ l N / C O N S T A N T S / N U C B t N F G C M ~ M A X U S E R S ~ ~ A X L L l S T ~ I T A L K ~
- . - ..

2 N € X T A ~ L ~ S A M E P L L .
3 FE TCHP .STOREP .UNLFEPIUNLSTP,FANDLP,CANOLP,ATTACI~P~DETACW

I N T E G E R I V A L U E I L E N G T H 1 I
I F ((L E N G T H .GI . 80: .OR. (,LENGTH .LT. 0) I GI? T O 3
I C O P P L - 1
I F I IAOOR .NE. N E X T I L L) GO TO 4
I F (L E N G T H .EO. 0) R E T U R N

C kOW P H Y S l C A L L Y . W P I T E P u t R t C O R D TO D A T A 6 A S E (U N I T 8 1
W R I T E I R . I L I I V A L U t

16 FORHAT(2 0 1 4 1
RETURN

3 I C @ M P L = 3
4ETUGY

4 I C O ~ P L - ~
RETURN
END

Exhibit 2--FETCH and STORE Primitive Operations in the SHS System

The FETCH and STORE primitive operations actually perform the physical
reads and writes which cause information transfer between the media the
data base resides on and the primary storage medium (usually, magnetic
core storage).

S U B R O U T I N E C O N T R O L 1 I N A N E , I f I P N v I Y E S N O , I O T H E R J
C
C CONTROL I S C A L L E D T O D E T E R M I N E WHETHER
c THE USER IS PERMITTED TO PERFORM OPERATION IOPN ON THE DATUM
C S P E C I F I E D BY, I N T E R N A L NAME I N A M E .
C I Y E S N O I S S E T T O 1 B Y C O N T R O L I F THE O P E R A T I O N I S
C P E R M I T T E D AND 2 O T H E R W I S E . I N T H I S l M P L E H E N T 4 T I O N ,
C "OTHER I N F O R M A T I O N " I S M E A N I N G L E S S .
C ' '

I M P L I C I T I N T E G E R I A-Z J
D A T A B L A N K / ' ' /
D A T A O L M l / ' ; ' /
C O M M O N / C U R U C B / I U C B
C O M H O N / A D D L l / ~ I R A N D ~ 1 R P T ' t P A S S W D ~ U S E R l t A R D A ~ P W T B L ~ I P W T B L v U T B L
COMHON/CONSTANTS/NUCB1NFORNtMAXUSERSlnAXLL I S 1 9 I T A L K v

1 F O R M l , FURM2,FORM3v
2 N E X T A L L I S A M E A L L ,
3 FETCHP,STOREPvUNLFEPvUNLSrPIFANOLPtSANDLP,ATTACHP,OETACHP

I N T E G E R P A S S W D I 10) w U S E R I 10) . P W T B L l 1 0 , l O J t U T B L l l O ~ l O l
I N T E G E R IRPTI4J,CARDAlBO)~IRAN0(26)
I N T E G E R C A R D (0 0)
I N T E G E R I U C B I 3 1

L
c ...
c -------------- ' FORMULARY SELECTOR -------------
c ------ ------ ------ ------- -------- ----
C '

I 1 I = I U C B (3)
GO TO l 6 0 0 , 6 0 1 . 6 0 2 J r 1 1 1

C
c ------- -- ----- - -------- --------- - ------
c ..
C
C ..

6 0 2 C O N T I N U E
C CONTROL PROCEOURE FOR FORMULARY 3
C
c THIS PROCEDURE CURRENTLY A L L O W S ONLY FETCHES OF T H E NEXT RECORD OR
C D E T A C H I N G OF F O R M U L A R I E S . NO STORE O P E R A T I O N S ARE P E R W I T T E O .
C *************t**t*****************t****9**~******k*~****************

I F (I I O P N .EQ. FETCWPl .AND.1 I N A M E .EQ. N E X T A L L I J GO T O 2 0
I F I I O P N .EQ. O E T A C H P) GO TO 2 0

C ALLOW D E T A C H M E N T OF FORMULARY
e. 2 I Y E S N O = 2

C O P E R A T I O N NOT A L L O W E D
R E T U R N

2 0 I Y E S H O = l
C O P E R A T I O N I S ALLOWED

R E T U R N

C . ,
c ...

601 C O N T I N U E
c CONTROL PROCEDURE FOR FORMULARY z
C
C T H I S PROCEDURE C U R R E N T L Y ALLOWS O N L Y STORE O P E R A T I O N S OF T H E N E X T
C RECORD AND D E T A C H I N G OF F O R M U L A R I E S . NO F E T C H O P E R A T I O N S A R E
C P E R M I T T E D .
C **,***0****************P***

I F I . I I O P N .EQ. S T U R E P J .AND. I I N A M E .EQ. N E X T A L L)) GO T O 2 0
I F I I O P N .EQ. D E T A C H P) GO TO 2 0

C ALLOW DETACHMENT OF FI)P.MULARY
GO T O 2 -

1557811

Exhibit 3--A CONTROL Procedure in the SHS System

The CONTROL procedure decides whether a user is allowed to perform the
operation he requests on the particular datum he has specified. The s u b
routine i l lu~trated here actually contains the CONTROL procedures for
formularies 1, 2, and 3 in the SHS system. Formulary 3 allows only fetches
of the next record in the data set or detaching of formularies; no STORE
operations a re permitted. Formulary 2 allows only STORE operations of
the next record and detaching of formularies; no FETCH operations a r e
permitted. Formulary 1 is the system formulary; it allows only detaching
of fnrmularies nr at$ar.hrnent of formulary 1, 2, or 3. Before any attach-
ment is made, a user identification and password check is carried out.

Exhibit 3--A CONTROL Procedure in the SHS System (contld.)

C
C ...
C C O N T R O L PROCEDURE FOR S Y S T E M F O R M U L A R Y (F O R M U L A R Y 1)
C
C T H I S PROCEDURE C U R R E N T L Y A L L O W S O N L Y D E T A C H I N G OF A FORMULARY OR
C ATTACHMENT T O F O R M U L A R Y 1, F O R M U L A R Y 2 9 OR FORMULARY 3 .
c ******+*************************++**********************+***********

600 I F ((I U P N ONE. A T T A C H P) .AND. (I O P N .NE. D E T A C H P)) GO TO 2
I F ((I N A M E .NE. F O R M I) *AND. (, INAME ONE. F O R M 2 1 .AND*

1 (I N A M E .NE. F O R M 3) 1 GO T O 2 .
c ONLY ALLOW A T T A C H OPERATION ON THE DESIRED D A T A i 4 FORMULARY

I F (I O P N .EQ. D E T A C H P) GO T O 2 0
C ALLOW D E T A C H M E N T OF FORMULARY

R E A D (5 r l B r E N D = 2 r E R R = 2) CARD
C R E A D I N C A R D W I T H A C C E S S CONTROL I N F O R M A T I O N ON I T

1 8 FORMAT (8 0 A l)
C a s s T H I S CODE R E A D S A CARD I M A G E AND
C C H E C K S THE USER I D 4 N D PASSWORD I T F I N D S T H E R E A G A I N S T
C P R E S T O R E D I N F O R M A T I O N . I F THE U S E R I D AND PASSWORD MATCH
c.-.T,HOSE I N , JpE. P.ROGRAM, CONTROL S E T S I Y E SNO TO 1 r S I G N l F Y 1 , N G
C T H A T T H E USER H A S P A S S E 0 A P R I V A C Y C H E C K AND 1s A L L O W E D f d USE
C T H E SYSTEM. O T H E R W I S E *
C CONTROL S E T S I Y E S N O T q 21 S I G N I F Y I N G T H A T HE H A S NOT.
C

I = I S C A N (C A R D * l p B L A N K * B O * O 1
C H U N T FOR F I R S T NON-BLANK

I F (I r G T r 801 G3 TO 990
C GO TO 990 I F S C A N R A N O F F E N D O F CARD

L A S T = I
I = I S C A N (C A R D * I * D L M l r B O r 1)

C H U N T F O R S E M I C O L O N (L E F T T O R I G H T - S C A N)
I F (I .GT. 80) GO TO 990

C GO TO 990 I F S C A N R A N OFF E N D O F C A R D
C A L L C L R T O H A S H (C A R D * L A S T - 1 . 1 - L A S T r U S E R)

C WE SCRAMBLE T H E (C L E A R) USER I D B E F O R E T E S T I N G FOR A MATCHI S I N C E
C T H E M A T C H I N G T E S T I S MADE U S I f J G SCRAMBLED PRESTORED I N F O R M A T I O N
C (N E E D H A M ' S D E V I C E)

I a I S C A N (C A R D w I + l r B L A N K * 8 O r O I
C H U N T F O R F I R S T NON-BLANK

I F I I -GT. 801 GO TO 990
C GO TO 990 I F S C A N R A Y O F F E N D O r C A R D

L A S T = I
I = I S C A N (C A R D r I w D L ~ l ~ B O ~ I)

C HUNT F O R SEYICOLUN (L E F T T O R I G H T - S C A N)
I F (I .GT 8 0) GO TO 990

C GO TO 990 I F SCAN R A Y O F F E N D O F CARD
C A L L C L R T O H A S H (C A R D r L 4 S T - L r I - L 4 S T * P A S S W D)

C WE SCRAMBLE T H E (C L E A R) PASSWORD I D BEFORE T E S T I N G F O R A MATCH* S I N C E
C T H E M A T C H I N G T E S T I S MADE U S I N G SCI?AH8LED P R E S T O R E D I N F O R M A T I U N
C (N E E D H A M ' S D E V I C E)

DO 9 5 0 J = l r I P W T B L
00 9 5 1 I = l r 1 0
I F (P W T B L (I I J) .NE. P A S S W O (1)) GO TO 950

9 5 1 C O N T I N U E
C I F YE G f T t i E R f p A M A T C l i ON PASSWORD H A S B E E N FOUND ,
C B U T NOT N E C C E S S A R I L Y FOR THE CORRECT USER

DO 9 5 2 I = l r L O
I F (U T B L (I r J J .NE. . U S E R (I)) GO TO 9 5 0

952 C O N T I N U E
C M A T C H E X I S T S FOR USER/PASSWORD C O H B I N A T f O N

GO T O 20
C P E R M I T F E T C H I N G OF FORMULARY

9 5 0 C O N T I N U E
GO T O 2

990 W R I T E L 6 . 7 9 3)
793 F O R M A T (' +** A C C E S S CONTROL ERROR - S C A N R A N O F F C A R D ')

GO TO 2
E N D

-
l5s~a11

- 62 -

. .

... Exhibit 3--A. C.(3NTBBL hrocdm.e in.the .SHS System (contld.)

INTEGER FUNCTION ISCAN(BUF *NIDLH~MAX(K)
C I.SCAN SCANS THE BUFFER BUF* WHICH CONTAINS ONE CHARACTER PER WORQI
C STARTING AT RELATIVE LOCAT.ION N OF I T . I T SCANS OVER TO THE NEXT
C CHARACTER OR -P TO DLM.. AND RETURNS AS I T S VALUE .THE INDEX OF THE
C BUF BUFFER AT THAT PLACE. THE SCAN I S TERMINATED AT RELATIVE .
C LOC.ATION MAX'OF BUFFER BUF I F NO MATCH (OR NON-MATCH) HAS BEEN .
C FOUND UP TO OR INCLUDING THAT POINT; I N T H I S CASE* AN INTEGER > MAX
C I S RETURNED*
c K = 1 IF THE SCAN SHOULD STOP WHEN A C H A R A C T ~ R EQUAL T O DLH IS FOUND.
C K = 0 I F THE SCAN SHOULD STOP WHEN A CHARACTER UNEQUAL TO OLY I S
C FOUND*

INTEGER BUF (8 0
INTEGER DLM

C
I=N

902 I F (I eGTe M A X) GO TO 9 0 1
I F (((RUF(I I .EQ. DLM) .AND. (K .EQ. 1) t *OR.

1 . ((B U F (1) .NE. DLH l *AND. (K .EQe 0)) 3
2 ' GO TO 9 0 1

1st + l
, ... - GO TO 9 0 2

9 0 1 .ISC AN= I
RETURN
EN 0

SUBROUT 1 NE SCRAMBLE(C L R B U F ? I C L R L E N ? ICOMPL 9 S C R B U F t I S C R L E N I
c THIS SUBROUT IFIE SCRAMBLES THE' UNSCRAMBLED DATUM' WHICH
C I S I C L R L E N CHARACTERS LONG S T A R T I N G I N C L R B U F (1) t AND I S
C STORED FOUR CHARACTERS .PER. WORD. I T L E A V E S THE

'

C SCRAMBLED OATUM I N THE F I R S T I S C R L E N B Y T E S OF THE SCREUF
C ARRAY (A N D RETURNS I S C R L E N TO THE , C A L L I N G , R O U T I N €) o .

. C T H I S SURROUTINE STORES A C O M P L E T I O N CODE I N ICOMPL .
C O ' C I S C R L E N < 8 1 AN0 0 . < . I C L R L E N < 81.
C

. .

C C O M P L E T I O N CODES STORED I N ICOMPL:
C 1 NORMAL E X I T . .

c 2 SCRAMBLE OPERATION NUT PERMITTED BY THIS FORMULARY
c 3 I L L E G A L , L E N G T H OF DATUM T O SCRAMBLE
C '
C ******* C E R T I F I E D 8 MAY 1969 ****a
C
C . ' . , . .

COMMUN/ CURUCB/ I UC R
C O M M O N / C O N S T A N T S / N U C B , N F O R M ~ M A X U S E R S ~ MAXL L IST? I T A L K ?

I FORM19 FORM29FORM3r
2 N E X T A L L ? SAME A L L 9

3 FETCHP S T O R E P ? U , N L F E P ~ U N L . S T P ~ F A N D L P ~ SANDLP;ATT'ACHP~DETACHP
I N T E G E R SCRBUF(2 0) r C L R R U F (2 0) p I U C B (3)
COHMUN/ADDL l/ I R A N D ? I R P T v P A S S W D ~ U S E P . ? C A R D A ? P N T B L 9 I P W T B L ? U T B L
I N T E G E R PASSWD(1 6) * U S E R (10) p P H T B L (l o ? 1 0 1 9 U T B L (l O t 1 0)
I N T E G E R I R P T (Q j r e A R D A (B O) i I R A N D (2 0)

c -- ...
c -------------- FORMULARY SELECTOR -------------
c ------ ------ ------ ------- -------- ----
C.

I I I = I U C R (3)
GO TO (3 , 1 $ 3) 9 1 1 1

C
c -------- ------- --------- --------- -------
c ..

1 I F ((I C L R L E N .GTm 8 0 1 .OR. (I C L R L E N o L T o 1)) GO T O 4
I S C R L E N = (I C L R L E N - 1) / 4 + 1
DO 2 I=l? I S C R L E N

2 SCRBUF(I)=LGCI lXR(C L R B U F (. I 1 ? I R A N D (I) I
I SCRC EN= I CL RL EN
I COMPL= 1
RETURN

3 I C O M P L = Z
RETURU

4 I C O M P L = 3
RETURPI
END

Exhibit 4--A SCRAMBLE hocedure in the SHS System

SCRAMBLE transforms raa, data into encrypted form.

S U B R O U T I N E UNSCRAMRLE.(SCRBUF~ ISCRLEN* ICOMPL r ~ ~ ~ ~ ~ ~ r ICLRLEN)
c THIS SUBROUTINE UNSCRAMBLES THE SCRAMBLED DATUM WHICH
C I S I S C R L E N C H A R A C T E R S L O N G S T A R T I N G I Y S C R B U F (1) r A N D I S
C S T O R E D FOUR C H A R A C T E R S P E R WORD. I T L E A V E S T H E U N S C R A M B L E D
C D A T U M FOUR C H A R A C T E R S P E R WORD I N T H E F I R S T I C L R L E N
C B Y T E S O F T H E C L R B U F A R R A Y (A N D R E T U R N S I C L R L E N T O T H C
C C A L L I N G R O U T I N E) .
C T H I S S U B R O U T I N E S T O R E S A C O M P L E T I O N C O D E I N I C O M P L .
C 0 < I C L R L E N < 8 1 AND 0 < I S C R L E N < 81.
C
C C O M P L E T I O N C O D E S S T O R E D I N I C O M P L :
C 1 NORMAL E X I T
C 2 U N S C R A M B L E O P E R A T I O N N O T P E R M I T T E D B Y T H I S F O R M U L A R Y
C 3 I L L E G A L L E N G T H OF DATUM TO U N S C R A M B L E
C
C
C ******* C E R T I F I E D 8 M A Y 1969 *****
C
C

C O M M O N / C U P U C B / I U C B
C O M M O N / C O N S T A N T S / N U C B ~ , N ~ F O R M ~ M A X U S E R S ~ M A X L L I S T * I T A L K .

1 F O R M l r F O R M Z , F O R M 3 *
2 N E X T A L L * S A M E A L L ,
3 FETCHPISTOREPIUNLFEP,UNLSTP,FANDLP~SANDLP~ATTACHP*DETACHP

I N T E G E R S C R B U F (201 , C L R B U F (2 0) r I U C B (3)
COMMUN/ADDL l/ I R A N D I I R P T * P A S S W D * U S E R 9.C ARDA pPWTf3L * I P W T B L 9 U T B L
I N T E G E R PASSWD(lO)rUSER(lO),PWTRL(l0~10), U T B L (1 0 ~ 1 0)
I N T E G E R I R P T (4) * C A R D A (80) I 1 R A N D (2 0)

c ...
c -------------- F O R M U L A R Y . S E L E C T O R -------------
c ------ ------ ------ ------- -------- ----
C

1.1 I = I U C R (3)

c --
1 I C O M P L = 2

R E T U R N
2 I F ((I S C R L E N .GT. 8 0) .OR. (I S C R L E N . L T o 1)) GO T O 4

I C L R L E N = (I S C R L F N - 1) / 4 + 1
00 3 l r l , I C L R L E N

3 CLRBUF(II=LGOlXR(SCRBUF(I)~IRAND(I))
I C L R L E N = I S C R L E N
I C O M P L = 1
R E TURN

4 I C O M P L = 3
R E T U R N
END

Exhibit 5--An UNSCRAMBLE Procedure in the SHS System

UNSCRAMBLE tranforms encrypted data into raw form.

- 65 -

C
C
C

C O H M U N / C U R U C B / I U C B
C O M M O N / C O N S T A N T S / N U C B , N F O R M t M A X U S E R S M L L I S T t I T A L K ,

1 F C 7 R M 1 , F O R M 2 t F O R M 3 r
2 N E X T A L L , S A M E A L L ,
3 F E T C H P ~ S T O R E P ~ U N L F E P ~ U N L S T P ~ F A N O L P ~ S A N D L P ~ A T T A C H P ~ D E T A C H P

I N T E G E R I U C B (3)
C
C ***4+****4*********** C E k T I F I E 0 6 'JUNE 1969
c ...
c -------------- FORMUL 4 R Y S E L E C T O R -------------
c ------ ------ ------ ------- -------- ----
C

I I I = I U C B (3)
GLJ TU (l ~ l t l ~ , I I I

c c -------- ------- --------- --------- -------
c ..

1 I A U D K = I N A M E
I C O M P L = l
P.ETURN
E N 0

Exhibit 6--A VIRTUAL Procedure in the SHS System

VIRTUAL transforms an internal name into the virtual address ob the corresponding
datum. In the .,SHS system, VIRTUAL i s the .identity transformation.

APPENDIX B

A COST EXPERIMENT

This appendix contains the source code and output relevant to the cost

experiment described in Chapter V. The UNSCRAMBLE, VIRTUAL, and CONTROL

procedures were essentially null and the ACCESS procedure of Exhibit 1, Appendix

A was used.

IJOV 60) 0 5 / 3 6 0 FORTRAN H

DMP I L E K O P i ' I O I J S - PiAhlE= MAII.J,OPT,=02 ,LIfJECEJT=SB,SOURCE t E B C D I C r N O L I S T * N O D E C K t L O A D t
I : 4PL IC I T I I \ ITEGER (A - 2)
CGMK@fI /CUf . l l /NCAi?3S ,CUE TWO, Z E k O t B L A N K t IKAP iD*

1 Nf XTKEC ,FET(. t lP, STORE PtF: LOCKPtSLOCK?,UNLFEPtUNLSTPt ATTACHP* DETAC l lP
INTEGER I f \ L N 3 (2 0)
I N T E G E R C A R D (2 0 1 * S C A R D (2 O I s I U C B l (2 I , T I M 1
REAL. T I M E

C NOTE P U N
D A T A b!Cl/ ' tl0 ' I

C
C 1= 2**Y
C 2 = 2 * * 1 h
C 3 = 2 * * 2 4
R E A D (5 ~ 9 1 0) N t ~ ~ R D S ~ l T R 1 E S

910 FURMAT(2 1 1 0 1
C F I R S T * C R E A T E A T A P E W I T H NCAhC'S 80-CHARACTER KE,CORGS

nCb1I t tD 3
UC 1 I = l . N C A R O S

1 U R I T t (8) CARD
NCARDS-NCARDS- 1
DO 2 0 0 N L t J O P = l r I T R I E S
R E H I N U U

R E W I N D 9
c
C GET T I M E J U S T TO READ I N P U T TAPE AND \ , I I \ ITE OUTPUT T A P E
C (N O FC:~RPiIJLARIES, NO S C R A M D L I N C)

W 4 1 ' r E (9 1 CAt!.D
C OPEN. D A T A S E T (U S E D TO SUBDUE J I T T E K I N T I S l I NG T E S T S)

K E A ~ (a l C A R b
C NECESSARY T f l I N S U R E R E W I N l i I S DONE &EFORE I N I T I A T I N G T IE I I I4G TEST

T I H L = C L f . l C K l (4)
DO 9 I: I t N C A R G S
R E A D (8 I C A R O

9 WP.1 T E (Y l SCASD
T I M E = (C L O C K 1 (4 l - T I M 2 l * 2 b / l O O r) O O O . O
K R I T E (6 , Y O l I NCARDS,Z,ERO,NO~' r I> lE
K E H I F i D U
RE;4 I N 0 $1

L
C NEXT , SCRAMPLE T H E T A P E U S I N G A L G O a I T H I 4 1 AN@ FiOT U S I N G T H E FORMULARY
C METHOD.

r i R i T E (9) C A W
C OPEN. DATP S E T (U S E 3 TO SUCDUE J I T T E R I N T I M I N G T E S T S I

K E A O (8 I CARD
c NECESSARY TO INSURE F?,EWIEILI IS BONE BEFOI~E INITIATII~IC T I t I I r , l c TEST

T I M Z = C L O C K 1 (4)
DO 2 l - l , F I Z A i 7 D t
READ(8) C A R D
a(? 3 J = l * Z O

3 S C A R D (J I = L G O l X R (C A R C ~ (J) ~ 1 R A N D (J l ' l
2 U H l T E (9) S C A R D

T I H E = (C L C ! C K l (4 l - T 1 M Z l * 2 6 / 1 0 0 0 0 0 0 0 0
W R I T E (b t 9 0 1 1 N C A R D S t O N b , N O t T l M E

9 0 1 F O R M A T (' T I M E USED F C R ' * l b s l CARDS W I T H A L G O R I T I I M ' v I l , A 4 ,
1 ' FOPMl l LARY METHO[! WAS ' 9 F 9 . 5 9 ' SECONDS.'

C
C N E X T * SCRAMBLE THE T A P E U S I N G A L G O R I T H M 2 AND NOT U S l F l G THE FORMULARY

C METHOD.
R E W I N D 8
REWIND 9
WRITE (91 CARD

C OPEN D A T A S E T (U S E D TO SUBDUE J I T T E R I N T I M I N G T E S T S 1
READ(8) CARD

C NECESSARY TO I N S U R E REWIND IS DONE BEFORE I N I T l A T I N G T I M I N G T E S T
T I M Z = C L O C K l (4)
C A L L RANZA (2 1 4 7 4 8 3 5)
DO 4 I=L ,NCARDS
R E A D (B I C A R D
DO 5 Jz1120
K l = M O D (R A N 2 (O) t 2 5 6)
K Z = M O D (R A N 2 (0) , 2 5 6)
K 3 = M O O (HANZ(0) ,256)
K ~ = M O O (R A N Z (O) , 1 2 8)

C G E T FOUR .SMALL .NGN-NEGATI VE PSEUDO-RANDOM NUMBERS
R A N D = C 3 * K 4 + C Z * K 3 + C 1 * K 2 + K l

C USE THEM TO M A K E ONE BIG PSEUDO-RANDOM NUMBER
5 SCARD(J) = L G O l X R (C A R D (J) ,RAND)
4 W R I T E (9) S C A R D

T1ME=(CLOCKl(~t)-TIMZ~*26/lOOOOOO.O
WRI T E t 6 , ? 0 1) NCARDS,TWOvNO,TIME

C
C NOW RUN T I M I N G S USING THE FORMULARY METHOD
C

DO 1 3 1 ~ 1 9 3
1 3 CALL S C R T I M (I I

2 0 0 CCNT[NIJE
RETURN
E NO

L N C V 6 8 1 0 S / 3 6 0 FORTRAN t I

COMP I L E K O P T I O N S - IIAME= , MAIN,OP.T=02, L INECNT=58 ,SOUkCE ,EECDI C , N U L I S T rNOOECKvLO,AD.t*
SUBROUTINE ' S C R T I M (F O R M K 1

C SCR.AM!ILE THE T A P E U S I N G A L G O R I T H M K AND U S I N G T H E FORMULXK.Y
C METHOD. P R I N T O U T T t i E T I M E T H I S TAKES.

I M P L I C I T I N T E G E K t A - Z l
C.OMMClN/COMl/NCARDS tO! lE TWO, ZERO, BLANK, IRC.ND,

1 NEXTREC ,FETCHPI STCREP,,FLOCK?rSLUCKPrUSLFEP,UNLSTP,ATTALHPrDETACHP~
I N T E G E R .CARD(ZOI ~ S C A R D ~ Z O l r 1 U C B l (Z I , T I M 1
I N T E G E R I R A N D (? O I
I t j T E G E R FORMK '
R E A L T I F I E
KEH I f J D d
R E W I N D 9
W R I T E (9 1 Cb.RD

C OPEN D A T A S E T (U S E D TO SUBDUE J I TTEP. I N T I N I N G TESTS b
R E A D (B) CARD

C NECESSARY TO I N S U R E R E W I N D I S DONE BEFORE I N I T I A T I I ~ I G T I M . I N G TEST:
T I M Z = C L C C K I (4 1
C A L L ACCESS(I U C U 1 r FORMKrCARO $ 8 0 , ATTAC)iP,COElPCOCE I

L A l IACH TO A P P R O P R I A T E FL1RWULAF.Y F U R S C R A t I D L I N C A L G O R I T H M K
LO 6 1-1 ,NCAKDS
R E A D (81CARD

6 C A L L A C C E S S (I U C i 5 l rNEXTkECvCAROrdOtSTUREP,LOMPCOCE~
C STORE D A T A (S L R A M R L E D I I N T O D A T A B A S E (I . E . 1 ONTO TI IE T A P E)

T I M E = (C L (# K l (4) - T I N 2 1 *2b / l 000OOC) .O
FORMKM=FORP!K- 1
W R I T E (6 , 9 0 1 1 t . (C A R D S ~ F O R l ~ l K M , R L A N K ~ T I M E

901 F O R M A T (@ TIME USED F O R 1 , 1 6 r 1 CARDS W I I H ALGUKI I H M 'IIL,AY,
1 ' FORMULAKY METtlGLa HAS ' r F 9 . 5 , ' SECONDS.' 1

RETURIJ
EGO

L NOV 6 8) O S / 3 6 0 FORTRAN H

COMPILER OPTIONS - NAME= f l A I N t O P T = O 2 t L I N E C N T = 5 d ~ S O U R C E t E B C D I C t N O L I S T ~ N 3 D E C K t L O A D t ~
SUBRDUTI NE S L R A M B L E I C L R B U F t I CLSLEN? ICOMPL tSCKBUF, I S C K L E N)
TMPLIC I T I N T E G E A I A - 2)
CCMM~N/CUkUCR/ IUCB
COMflOEI/COMl/NCAR DS,O.*IE , f W ~ l t Z E R n t BLANK, IRkND,

1 NEXTkEC rFETCHPr 5TUREPvF LOC-KPtSLOCK?,UNLFEPrUrJLSTl't ATTACHPt DETACHP
INTEGER SCRHUFl20)tCLROUFl2O)tIUCBI3)~IP,ANDl20)

c --------------..--
c ---------- FOtiMULARY SELECTOR ----------

I I l = I U C H l 3 1
GO 70 l l t 2 t 3) r 1 1 1 c --------.---

1 I C O M P L = l
KETUhN

2 DC 5 J = l t Z O
5 SCRRUF(J) = L G O l X R I C L l i B U F l J l t l R A N D (J))

ICL'I4PL= 1
RETURN

3 C1=2**8
C Z = 2 * * 1 6
C 3= 2 9 4 2 4
DO 6 J = l t Z O
K l = M O G (R A N 2 l O) t Z 5 6)
K 2 = M d L l R A N L (O) r 2 5 6)
K 3 = M O D l k A N 2 (O) t 2 5 6)
K 4 = M 3 D l R A N L l 0) , 120)

C GET FOUR SMALL NON-NEGATIVE PSEUDO-RANDOM NUMBERS
RAND=C3*K4*CZ*K3+C l * K L + K l

6 SCRBUFI J) = L G O l X R I CLRBUF I JI tP.ANU)
I C O M P L = l
RETURN
END

1 NOV 68) 05 1360 FORTRAN H

COMP ILEK OPTIONS -' NAME- MA1 FlcOPT=02 ,LIlr:ECNT=58,SOUKCE,EDCDIC, NOLIST~NODECK,L (?AD~HI
-blOl;K DATA . . 3 4 5 e
IMPLICIT INTEGEG(.A-zi 3 4 6 .
COMMON/COM~/NCARDS ,ONE ,TWO,ZER'~.BLANK, IRANU,

1 CIEXTREC pFETCHP t STOREP tF LOCK?,'SLOCKPiUNLFEPiUEILSTPtATTACHPtOETACHP
COHHQN/CONSTANTS/UC8~NFORM, t4AXUSERS~MAXL.L IST~ I T A L K .

' - COM#ON/05(N l /UCBI r L L I S T r C S 1 1 I STDUCB . . .
. .

IMTEGEK I.RI.ND(20) . :
I k f E G E f i U C B l (1 0 0 1 3)
DATA BLANK/ ' ~ / ,ONE/L / ,TWO/Z / , LER:I/O/ , .

. . DATA FETCHP/ l / ,STOREP./2/ ,UNLFEP/3/ ;UPILSTP/4/ 9 4 0 9 .
1 F L O C K P / 5 / 1 SLOCKP /6/.,P.TTACHP/7/ rDETACHP/t) / . 4 1 0 .

OATA ME'XTREC/ LOGO/
DATA IRAND/ - 1 4 3 2 9 5 C 3 7 , 1 2 4 9 8 3 3 1 9 , - 9 9 9 0 5 4 7 3 1 1 0 7 0 1 5 9 4 8 r . 3 5 9 .

. l. - 8 5 8 8 2 4 3 2 ' 1 1 3 7 3 7 3 d 9 1 ..-254817906., . .22705169'01 360.
2 . 267059188;-305496,183,13259818Ot-ltq3310762; ' '

3 , ~ 1 ~ 4 6 9 6 b ~ 9 9 ~ n 1 4 3 2 , 9 5 0 3 7 ~ Z 4 3 1 7 b b ~ ~ S ~ ~ Z 4 ~ l L l 7 9 7 9
4 1 9 9 8 3 2 0 0 6 , - 1 7 8 9 6 3 . 5 A I t . -2 lY9b.Li !27) -174003653/ . ,

- DATA N F O R M / ~ / 4 n 4 .

~ A X I J S E K S ..= MAX. NO. OF U S E R l T E R M I N A L ~OFIBI !AT IONS
P D 5 5 1 B L E AT ANY O I V E l d T I M F

INTECEk L ~ k s f (4.1.106:') /.400*-1/
THE ,LOCKLIST

~NTECER. ISTDUCL)(3.i/0,0,1/
STANOARD USER CONTROL. bLOCK lTEMPL,ATEI . ,

' W T A NLICR/31:
NUCB '= NO. OF WORDS I I J EACH USER. CONTROL. BLOCK
' DATA C S l / L / .
I N I T I P ' L I Z E TO C R I T I C A L SECTION OF ' ACCESS PROC. NOT CURRENTLY

DATA U C B l l I l l) / - 2 / .
I N I T I A L l Z E TO NU ACT1,VE ULER CJNTKUL ULUCKS '

DATA i4AXLL I S T / 5 /
MAXIMUM LENGTH OF L I S T OF LOCKED DATUMS M A I N T A I N E D BY ACCESS

DATA I T A L K / 2 /
LENGTH OF ARRAY PASSEO B V TALK PROGRAM. T O .ACCESS PKOGKAM

, END

I N USE
393 .
3 9 4 .

1k U S E D F 5 R
1E USEC: F5R.
IC' U S E D F L 2
I E U S E C F C R
li: U S E C ,FCR
!i I JSED FFh'
l i : ?ISED f.53
!II U S E D ?Pi(
lf' U S E D FOR
I? U S E D FOR
.? U S E D FGR
.E U S E D FDA
C U S E L FOP
c: U S E @ 'F9fc
:'. U S E D F P R
il U S E D F O R
2 U S E D . F O ?
:< U S E D FClP
r l U S E D F 3 h
1: U S E C i3H

. 2 U S E D FSk
i U S E 6 F3k
C U S E D F i j R
:i U S E D FOCR
E U S E 9 FOX
t! U S E D FD3
i: U S E @ . F O P
L: U S E D FOR
c U S E D F.02
k U S E D FCR
I: U S E C F O R
I' U S E D F D K
2 USEi: F i l k
L U S E G FCl2
I: U S E D F O R
.I. U S E C F O k

U S E D F 3 R

IOOOO C A W S w l ' r t i ALGGRITHM o NO
13000 C A K O S W I T t I A L G O R I T H M 1 N O
1 0 0 0 0 ; C A P D S W i T l l ALGORITHM.^ N O
10000 CAF..DS H I T t I A L G O R I T H M 0
10000 C A K D S U I T H A L G C R I THM 1
10000 C A K D S W I T t I A L G O R I T t i M 2
10000 C A R D S W I T l l A L G C R I THM 0 NO
10000 C A R D S W I T H A L G O R I T H M 1 N O
10000 C A R D S W I T H A L G O R I T H M 2 h O
1 0 0 0 0 CUk.OS W I T l l A L G O R I T H M 0
10000 .CAF:DS W I T H A L G l j R I T l l M 1
10000 CAR.DS W I T H A L G O R I T H M 2
10000 CAF.,DS W I T H ALGOR1Tt i I . I 0 N 3
1 0 0 0 0 C A k D S W I T H A L G C R I THM 1 N O
10000 C A R D S C I I T H A L G C : R I T I i M 2 N D
10000 C A P E S W I T H A L G O R I T t iM 0
1 3 0 0 0 i A k D : M I T l l A L G O R I TI114 1
1 0 0 0 0 C A R D S W I T H ALGC:RITt i f . I 2
1 0 0 0 0 C A R D S U I T i l ALGORITH! . l 0 1.10
10000, C A R E S H I T 1 1 A L G O R I T I i M 1 140
1 0 0 0 0 C A K D S W I T H A L G O R I TH!I 2 NO
10000 i A R D S X I T I i A L G O R I T H I ~ I 0
1 0 0 0 0 i l r l r . D S W L T l l A L G G R I T I i M 1
1 0 0 0 0 C A K D S W I T t i CLGC:RI T t I M 2
1 0 0 0 0 C A k D S WIT11 A L G O R I Tt lFI 0 NU
~ O O O U CAC.DS wI ' r I I P L G C ~ C I T H I ~ 1 NO
10000 C A F D S W I T H C . L G ~ R I T I I Y 2 N O
1 0 0 0 0 C A R E S W I ' i l l P L G O R I TI1M 0
1 0 0 0 0 CARS 5 H I T I i A L G O R I Tl i t4 1
1 0 0 0 0 C I i L G S d l T H A L G O R I T t I M 2
10000 C A F E S W I T l l A L G O R I Tt IM 0 N O
10000 C A R P S A I ' i l l A L G O P I TI1M 1 1.10
10000 CA&C S h'I T H A L C O R I T H l l 2 N O
1 0 0 0 0 C A R L h ' l T I I A L G C R I Tti14 0
10000 C A P O S W I T I I A L G C h I Tti1.I 1
10000 C A R D S W I T I i A L t i C R I T I I t I 2
10300 C A K D S d I T l i A L G O R I T t i M 0 NO

F G ~ M ~ J L A R Y M E T I I U D WAS 1 9 . 3 8 5 5 9 S E t D N O S .
F O K M U L A R Y METHOD HAS 1 0 . 3 8 5 5 9 S E C 3 N 3 S .
FORMULARY ME7tlOI)' K A S 2 1 . 0 1 6 3 1 SECCV3S.
FOli.ElULARY H E T H O D W;\S 1 9 . 4 1 8 8 7 SECONDS.
FORMVLARY H E T H O D HAS 1 9 . 4 3 5 5 2 SECON3S.
F O R M U L A R Y M E T t i O D WAS 1 9 . 4 3 5 5 2 SECDYDS.
F O R M U L A R Y M E T U 0 0 WAS 19 . . 8 8 4 8 0 .SECCNGS.
F O K M J L A R Y METHOD WAS 1 9 . 4 5 2 1 5 SECDVGS.
FClKMULARY M E T l l O l j t l A S 1 9 . 4 1 8 8 7 SECONDS.
F O R M U L A R Y METI IOD WAS 1 9 . 4 3 5 5 2 SECC'JDS.
F O ~ M J L A R Y M E T H i l D WAS 1 9 . 9 0 1 4 3 SECONDS.
F O R M U L A R Y METHOD WAS 1 9 . 4 1 8 8 7 SECONGS.
F O R M U L A R Y METHOD WAS 1 9 . 6 8 5 1 2 SECONDS
F O k M U L A I < Y M E T t i U b !JAS 1 9 . 4 3 5 5 2 .,SECONGS.
F O R M U L A R Y METHOD WAS 19 8 6 8 15 S E C C N GS.
F O I i I W L A R Y METHOD i4AS 1 9 . 4 1 8 $ 7 SECGNCS.
F O f i M U i A Z Y M E T r l U D W A S 1 9 . 4 3 5 5 2 SECCNDS.
F O h M U L A R Y M E T t l i l D W A S 1 9 . 4 1 8 6 7 SECONDS.
FGKMULAP.Y M E T l l l j D HAS 1 9 . 4 3 5 5 2 SECONDS.
F O R M U L A R Y M E T H O D WAS 19 - 4 3 5 5 2 S E i O h O S .
F-OP,%JLARY METHOD WAS 1 9 . 4 0 2 2 ; 4 SECOSJDS.
F O k M U L A R Y MEI 'HoD Wf, j 1 9 . 4 3 5 5 2 S E i O Y O S .
FORMclLARY MET1130 WAS 1 9 . 4 1 8 8 7 S E i i l N O S .
F JF.M!JiARY M E T t I O U WAS 1') . a 8 4 9 0 S E C L N D S .
FUF.MgLARY METHOD HAS 2 0 . 5 8 3 6 0 S E i i l l 4 O S .
FGf l . lUL l .RY MEYt iOO WAS 1 9 . 4 1 C d 7 SECChlGS.
f:OF.Y'JLAP.Y M E T ~ ~ L I D W A S 1 9 . 4 0 2 2 4 S E C O N O j .
F O R M U L A R Y METHOD WAS 1 9 . 4 1 0 3 7 SECONCS.
FbF.l.IIJLkf!Y METHOD WAS 19 . 4 1 d 8 7 SEC,bNDS.
F l lF~E l !JLPt !Y METI- IUD HAS 1 9 e 8 1 1 4 8 0 SECUNDS..
Ffll;MilLC,:..Y METt IOD UAS *%******* SECCNOS.
F O ~ N ~ J L C R Y METHOD IIAS 1 9 . 4 1 8 a . r SECONDS.
F O h ' l U L A k Y METHOD WAS 1 9 . 4 0 2 2 4 SECCNOS
F O R H J L A R Y M E T t 1 0 0 i l A S 1 9 . 4 0 2 2 4 3ECOYDS.
FUtiH:.JL/.KY METt1;lD W:S 1 9 . 4 1 8 8 7 SECCNDS.
F O l i l 4 i l L A E Y H E T I . i u D M4S 1 9 . 4 1 9 8 7 SECONDS. '

FORM3LAI;Y METHOD WAS 2 0 . 1 1 7 7 5 S E i O N G S .

2 1 8 1 F l 3 C S - I / O ERROR L J H C O S T S ? G O , O C l , T A , F T 0 4 F 0 0 1 r W 2 I T E , D A T A CHECK r OOOC

U F Y C L Q i K N X 0 N F 7 V = N 4 t 5 . U) 5 t O x ~ 3 r

= N 4 t 5 . Q 1 5 , C X Y O # F Y t L Q ; K N X 0 N F 7 V

t L Q ; K N X 0 N F 7 V =N 4 t 5 . Q 5 9 0 X Y O # F Y

3 5 r 0 X Y O # F Y r L Q ; K N X O NF7V = N 4 t S . Q

I K N X 0 N F 7 V = N * I & ~ . 9) 5 9 0 X Y O # F Y c L U ;

X Y O 8 F Y r L 61 ; K F I X 0 EIF7'J = N 4 C 5 . Q) 5 , 9
N F 7 V =IN 4 C 5 . Q) 5 0 X Y O f l F Y L a'; K N A

1 F Y t L Q ; K N X 0 N F 7 V = f l 4 C 5 . Q) 5 r 0 X Y O 6

r L 0 i K N X n NF7V z N 4 t 5 . Q) 5 r O X YOU F Y

9) 5 V O X YO# F Y V L U ; K N X 3 NF7V = N 4 & 5 . [

Q ; K N X 0 NF7V = b 4 t 5 . Q) 5 r O X YO# F Y r L Q ;

0 X YOU F Y * L Q ; K N X 0 NF7V =N 4&5. Q 1 5 r 0

YO$ ' F Y r L Q i K N X 0 ~ f t v - = & 4 C 5 .) 5 0 . x Y O #

I V = N 4 t 5 . Q 5 r C X YO# F Y , r L 0 ; K N X 0 NF7V

r L 9 ; K N X 0 NF7V m N 4 t 5 . Q) 5 . r O ' X Y 0 6 F Y
6

Q) 5 r O X YO# F Y r L Q i K N X u N F ~ V = ~ 4 ~ 5 . 0

Q ; K N X 0 NF7V = N 4 E 5 . Q l . 5 t o X V O U F Y r L Q :

X 0 NF7V =N 4&5. Q 1 5 ' r 0 X YO# F Y r L Q ; K V X

TRACEBACKFOLLOWS- RCUTINf ISN ReG. 1 4 kcG. 14 RtC. 0 RtG. 1

ENTRY POINT= 0018A808

STANDARD FIXUP
TIME USED FOR
TIME USED FOR
TIME USED FOR
TIME USED FOR
TIME USED FOR
TIME USED FOR
TIME USED FOR
TlME USED FOR
TIME USEO FOR
TIME USED FOR
TIME USED FOR
TIME USEO FOR,
TIME USED FOR
T lME USED FOR
TIME USED FOR
TIME USED FOR
TIME USED FOR
TIME USED FOR
TIME USED FOR
TIME USED FOR
TIME .USED FOR
TIME USED FOR
TIME USEO FOR

TAKEN r EXECUTIaJN CUhT
~ O O O O C A R D s w ITH ALGOP
10000 CARDS WITH ALGGR
10000 CARDS a I T H ALGOR
10000 CARPS WITH ALGOR
10000 C&P.DS WITH ALGOR
~ o o o o C ~ O S w ITn ALGOR
10000 CARDS. WITH ALGOR
10000 CAROS WITH ALGOR
10000 CARDS WITH ALGOR
10000 CARDS WITH ALGOR
10000 C M R ~ S WITH ALGOR
10000 CAROS WITH ALGOR
10000 CARDS WITH ALGOR
10000 CARDS WITH ALGOR
10000 C&RDS WITH ALGOR
10000 CARDS WITH ALGOR
10000 CARDS WITH ALGOR
10000 i t .KDS WITH ALGOR
10000 CARDS WITH ALGOR
10000 CARDS WITH ALGOR
10000 CARDS WITH ALGOR

NUING
THM 1 NO
THM 2 N J
THM 0
THM 1
7HM 2
THM 0 N3
THM 1 NO
THM 2 NO
THM 0
THM 1 .
THM 2
THM 0 NO
THM 1 NO
THM 2 NO
THM 0
THM 1
THM 2
THM 0 NO -
THM 1 NO
THM 2 NU
THM 0

ioooo CARDS WITH ALGORITHM 1
10000 CRRDS WITH ALGORITHM 2

FORMULARY MLTHOJ
FORYULAkY METHOD
FORMULARY ACTHOD
FORMULARY METHOD
FORMULARY METHOD
FORMULARY HETHOD
FORYULARY MiiTHOO
FORMULARY flZTHdD
FO?.MULARY METHOO
FORMULARY METHOD
FORMULARY NETHOD
FORMULARY METHOD
FORHIJLASY M f THUO
FOR4JLARY METHOD
FORMULARY diTtiOO
FORHULARY METHOU
FORMULARY METHOO
FORMULARY METHOD
FORMULARY METHOD
FORHULARY METHOD
FORMULARY METHOD
FORMULARY METHOD
FORMULARY METHOD

WAS
w AS
WAS
W 4s
W 4s
WAS
Y AS
Id AS
w a s
WAS
WAS
WAS
w AS
W A S
W AS
WAS
WAS
WAS
WAS
WAS
HAS -
WAS
WAS

28.60416 SECONDS.
20.28415 SZC3YDS.
19.86815 SLCONDS.
19.86815 ScCOYOS.
19.55199 SECOYDS.
20e55040 SECON3S.
19.40224 SECONDS.
19.40224 SLLOYDS.
19.40224 SECOYDS.
19.41887 StCOYDS.
20.78336 StCOYDS. ,

19.86815 S=CONOS.
20.56703 SkCOYDS.
19.40224 SECONDS.
19.4188'7 SCCOYbS.
19.41887 SECCNOS.
19.40224 StCUYDS.
19.40224 SECOY 0s.
19.40224 SLCOYDS.
19.40224 StCONDS.
19.86815 SCSOVDS.
19;-66-815 sfcoluos.
19.40224 SECOYDS .

APPENDIX C

THE ACCESS PROCEDURE - "NO-PARALLELISM" VERSION

This appendix presents a version of the ACCESS algorithm which can be used

when no user will ever have to lock out access to a datum which ordinarily can be

accessed by several users at the same time or if the installation wishes to use

a method other than the one given in Section K of Chapter III to control conflicts

among users competing for exclusive access to datums.

procedure access (info, intname, val, .length, opn, compcodel) ;

integer array info, val; integer intname, length, opn, compcode;

begin comment If OPN = FETCH, VAL is set to the value of 'the datum

represented by INTNAME.

If OPN = STORE, the value of the datum represented by INTNAME

is replaced by the value in the VAL array.

If OPN = ATTACH, the formulary represented by internal name

INTNAME is attached t; the user and t e r k n a l described

in the INFO array.

In OPN = DETACH, the formulary represented by internal ,name

INTNAME is detached from the user and terminal described

in the INFO array.

VAL is LENGTH storage elements long.

Note that a FETCH (STORE) operation will actually attempt

to fetch (store) LENGTH storage elements of information.

It is the responsibility of the TALK procedure to handle

scrambling or unscrambling algorithms that return outputs
I

of a different length than their inputs.

ACCESS returns the following integer completion codes in

COMPCODE:

1 normill exlt, no e r ro r

3 operation permitted by CONTROL procedure gave e r ro r

when attempted

5 cannot handle any more User Control Blocks (would cause

table uverfluw)

6 attempt to detach nonexistent user/terminal/formulary

combination

. . 10 er ror return from VIRTUAL procedure

11 operation on the datum represented by INTNAME not

permitted by CONTROL procedure of the attached formulary

12 end of data set encountered by FETCH operation.

Note that by the time the user has left the ACCESS routine, the data may

have been changed by another user. Note that ACCESS could be altered to allow

scrambling 'and unscrambling to take place at external devices rather than in the

central processor.

Important: ACCESS expects the following to be available to it. The installation
I

supplies these in some way other than parameters to ACCESS (for example, as

global variables in ALGOL or COMMON variables in FORTRAN) -

(1) ISTDUCB the default User Control Block. Its length is NUCB

storage units.

(2) NUCB see (1).

(3) UCB a list of User Control Blocks (UCBs) initialized outside

ACCESS to ucb(1,l) = -2,

ucb(i, j) = anything when - (i= j= 1)

UCB is declared a s integer array (1: maxusers, 1: nucb).

(4) MAXUSERS the maximum number of users which can be actively

connected to the system at any point in time.

(5) ITALK the length of the INFO array (which is the first

parameter of ACCESS) - ~ F O contains information

about the user and terminal which is used by ACCESS

and also passed by ACCESS to procedures of the

attached formulary. INFO(1) contains user identification.

ACCESS assumes that the variables FETCH, STORE, FETCHLOCK, S'TORELOCK,

UNLOCKFETCH, UNLOCKSTORE, ' ATTACH, and DETACH have been initialized

globally and a r e never changed by the installation;

integer array iucb (l:nucb), reslt (1:length);

integer i , ii, islot, 4 , yesno, other, n, datum;

procedure re t (i); integer i ; . . I

begin comment RET sets the completion code compcode to i and then causes
I' '

exit from the ACCE89 procedure; . .
, .

curnpcode : = i; gu to FIN

end ret; -
I '

compcode := 1;

comment first let's see if w e recognize the user/terminal combination

in INFO;

islot : = 0;

for i : = 1 step 1 until maxusers do - - -
begin ii : = i ;

if ucb [i, 11 = -2 then & comment end of List of ucbls; - - . -

i f i.slnt.= f l then hegin if ii mnanlRg.r,q then - - -
ucb [ii-I- 1,1] : = -2; g o to XFER

end -
else go to PRESETUP; -

end -
else if ucb [i, 11 = -1 then islot : = ii -- -

comment remember this islot if vacant;

else begin for j : = 1 1 until italk do - - - -

if ucb [i, j] # info [j] then go to ILOOPND; - - -
. I go to SETUPPTRS

end- -'

ILOOPND:

end i loop; -
if islot = 0 then re t (5); comment cannot handle any more UCBs; - -
PRESETUP:

for k : = 1 step 1 until italk do ucb [ii, k] : = info{kj; - - -
for k : = = italk + 1 seep 3. until. nucb do ucb[ii, k] : = istducb[k] ; - - -
SETUPPTRS:

for i : = 1 step 1 until nucb & iucbfi] : = ucb[ii, i]; -
comment set up pointers to appropriate user control block for particular

implementation. Note well: Setting up pointers to appropriate user control

blocks is quite dependent on the particular system. For an example of one

implementation, see Exhibit 1 of Appendix A;
';

comment We have now associated.user and terminal with user control block

(representing formulary) in relative position ii of the.ucb table;

if iucb[nucb] # intname & opn = DETACH then re t (6) ; - -
comment attempt to detach user/terminal/formulary combination not currently

attached;

control (intname, opn, yesno, other);

if yesno > 1 then ret (11); .-- ->a*-

comment return 11 if CONTROL does not permit operation;

if opn = ATTACH then begin ucb[ii, nucb] : = intname; g o to FIN - -
end; -

comment Note well: In many implementations, pointers to each procedure of the

formulary (obtained by having VIRTUAL transform intname into a virtual address)

might be put into the UCB upon attachment. In others, the philosophy used here

of only putting one pointer - to the formulary - into the UCB w i l l be followed.
-

The decision should take into account design parameters such a s implementation

language, storage available, etc. ;
I

if opn = DETACH then begin comment detach formulary (this leaves an open - -
slot in the ucb array); ucb(ii, 1) : = -1; go to FIN

end; -
virtual (intname, datum, other, 'compcode);

comment VIRTUAL 'returns in datum the virtual address of the datum specified;

if cornpcode >1 ret (10); comment e r ror return from VIRTUAL; -

if opn = STORE then - -
begin comment store operation;

scramble (val, length, compcode, reslt, n);

if compcode >1 then ret (3); - -
comment operation permitted but gave e r ro r when attempted;

comment now perform a physical write of n storage units to the block

starting a t reslt;

store (datum, reslt; n, compcode); ' '

if compcode > 1 then ret (3) -
end -

else -
begin comment fetch operation;

fel;olr (dal;uiu, reslt, length, conlpcode) ;

if compcode = 2 then ret (12); comment end of data set encountered; - -
if compcode > 1 then ret (3); -

unscramble (reslt, length, compcode, val, n);

if compcode > 1 then ret (3); -
end fetch operation; -

FIN:

end access; -

