U

r
|

1
|
“

UUUUUUUUUUUUUUUUU

NAANNNANNNNNNNNNRA

STANFORD LINEAR ACCELERATOR CENTER

Stanford University -+ Stanford, California

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

SLAC-117_
. uc-32
(MISC)

THE FORMULARY MODEL FOR ACCESS CONTROL AND

PRIVACY IN COMPUTER SYSTEMS

LANCE J. HOFFMAN
STANFORD LINEAR ACCELERATOR
'STANFORD UNIVERSITY

Stanford, California 94305

CENTER

PREPARED FOR THE U.S. ATOMIC ENERGY

COMMISSION UNDER CONTRACT NO. AT(04-3)-515

May 1970

LEGAL NOTICE —
This report was prepared as an account ol Government sponsored work. Netther the United
States, nor the Commission, nor any person acting on behalf of the Commisafon:

A. Makes any warranty or Teprescatation, expressed or implied, with respect to the arru-
FOCY, ¢oNlalelrurss, nr neafulnnog of (ag biforiallun vontalued in dus report, of that the use
of nny tnformation, apparatus, method, or process disclosed in this report may not Iafringe
privately owned rights; or

B. Assumes any liabilities with respect to ths usé of, or for damages resulting from the

use of any taforantion, spparatus, wethod, or process disclosed (n this report.
;. Ae used in the above, “‘person acting on behslf of the Commlasion tncludes any em-
ployce or of the or of such contractor, to the extent that
such or. of the C or of such contractor prepares,
disscminates, or provides nccess to, any Information pursaant to his employment or contract
with the Commisalon, or his employment with such contractor, :

Reproduced in the USA. Available from the leearinghciuse for Federal Scientific
and Technical Information, Springfield, Virginia 22151. .

Price:

Full size copy $3.00; microfiche copy $.65.

OCUMENT 15 UNLIMITED

mSTRTBUTION OF THISD }7

~ ABSTRACT

This thesis presents a model for engineering the user interface for large
data base systems in order to maintain flexible aécess controls over sensitive
data. The model is independent of both machine and data base structure, and
is sufficiently modﬁlar to allow cost-effectiveness studies on access mechanisms.
Access control is based on sets of procedures called formularies. The decision
on whether a user can read, write, update, etc., data is controlled by programs
(not merely bits or tables of data) which can be comﬁletely independent of the
.contents or location of raw data in the data base.

The decision to grant or deny access can be made in real time at data access
time, not only at file creation time as has usually been the case in the past.
Indeed the model presented does not make use of the concept of 'files, !’ though
a specific interpretation of the model may do so. Access control is not restricted
to the file level or the record level, although the model permits either of these.
If desired, however, access can be controlled at arbitrérily lowér levels, even
at the bit level. The function 6f data addressing is separated from the function
of access control in the model. Moreover, each element of raw data need appear
only once, thus allowing considerable savings in memory and in maintenance
effort over previous file=oriented systeins.

Examples of the use of formularies in a system currently running on the

IBM 360/67 are given. One recent cost study using the model is also described.

- ii -

]

'ACKNOWLEDGEMENTS

The author is deeply indebted to Professor William F. Miller for his
enc,ouragement and; advice during the research and writing of this dissertation.
The research environment he has provided at the Stanford Linear Accelerator
Center (SLAC) Computation Group makes it a pleasure to work there. ' Even
more important is the warmth and interest he shows in all his students. His
advice has been, at the same time, timely, competent, and unobtrusive.

Many other members of the Stanford Computer Séience Departmgant and the
Stanford Linear Accelerator Center have also contributed their ideas and help,
in particular, John Levy, Robert Russell, and Victor Lesser. I wish to thank
Professors Harold Stone, Edward Feigenbaum, and Jerome Feldman for their
constructive readings of this thesis. Henry Bauer was very helpful with the)
interactive programs. The formulary idea was initially suggested by the use
of syntax definitions (''field formularies') for input/output data des‘criptions,
as described in (Castleman[1967]). |

Part of the excellent research environment at SLAC is due to thé very,
helpful and competent technical staff. My thanks go to the SLAC library for
tracking down articles, both technical and nontechnical, on the topics involved,
and to the SLAC Technical Information Department for translating chicken-
scratches into meaningful illustrations. I appreciate .the interest and assis-
tance of Jorge Bruguera at the Stanford Computer Science Department library.
I wish to thank Kathleen Maddern for her innumerable retypings of »th.i‘s dis-
sertation, Linda Lorenzetti, SLAC Program Librarian, and Carla West, the

Executive Secretary of the SLAC Computation Group.

- iii -

' This research was suf)ported in part by.the United States Atomic: Eﬁergy
Commission, the Cowell Student Health Service of Stanford University, and the
Stanford University Computer Science Department. :

A corﬁpanion report, '""The engineering of access control mechanics in physics

data bases, ' (SLAC Report No. 118) is in prepara.tion.‘

- iV -

TABLE OF CONTENTS

Chapter Page
J. INTRODUCTION. ©: + & ¢ ¢ o ¢ o o o o o o o o o o o o o o 1

II. ACCESSCONTROL METHODS ¢« « ¢ ¢« « o o o o & 3

A. Access Control in Existing Systems 3
B. Access Control in Proposed Systems « 5
C. Desirable Characteristics for an Access Control Method . 6

M. THE FORMULARY METHOD OF ACCESS CONTROL 7
A. Definitions and Notation » . + « « « « + o v o o . o . . 9
B. The ACCESS Précedure. e e e e e e SRR 10
C. TALK, The Application-Oriented Storage and

- Retrieval Procedure« « « « v ¢« ¢« ¢ ¢ o o . & 11

Formularies — What They Are ¢« o . o . 11

Simultaneous Use of One Formulary by Multiple Users . . 18

BuildingaFormulary 18

The Attachment Process — The Method of Linking a

o = om oy

Formulary to a User and Terminal 18

H. Subdiyisiop of Data Base into Files Not Required. 20

1. Concurrent Requesté to Access Data — ‘The LOCKLIST . . 20

J. The TALK Procedure — Details - . « « . « 22

K. The ACCESS Procedure — Details o 23

L. FETCH and STORE Primiti\}e Operations 36

IV. USE OF FORMULARIES IN A WORKING MEDICAL SYSTEM. . 38
A. Storing and Retrieving Information in the Current

SHSSystem ¢« ¢ ¢ v ¢ v ¢ o o o o o 0 e 0o 3

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

Chapter

S S

G.

Attaching to the SHS Formulary. «

Formulary Building ¢ v v v v v o v o v o o

Thé TALK Procedure .
Procedures of the SHS Formulary.
Primitive Operations

Realization of the ACCESS Procedure .

V. A NOTE. ON THE COST OF SOME PRIVACY SAFEGUARDS

VI. CONCLUSIONS . + v v v oe e e o s e o,

A. Summary. . . .
B. 'Future Work .
REFERENCES. . + + v v v v e e et e e e

APPENDIX A: EXAMPLES OF PROCEDURES USEDBY A PARTICULAR

INSTALLATION . « « + o o v o v v ..

APPENDIX B: A COST EXPERIMENT. . . . « « v « « . .

APPEND]X C: THE ACCESS PROCEDURE — '""NO PARALLELISM"

VERSION. . & . .« v v v v v vt e v e e e e s

-vi -

42
44
46
46.
47
50
50
51

52

55

67

75

I

IIO

m.

LIST OF TABLES

Procedures Supplied by the Installation.
Timing Results of Cost Experiment

Average Timing Results of Cost Experiment

- vii -

b&"

48

48

LIST OF FIGURES

Use of computer storage in file systems.
User/data base interface

A sample CONTROL procedure.

Concealment of the fact that a data base contains certain

information

Cowell Student Health Service statistical sheet. .

Skeleton of terminal-initiated job to compute and extract

summarydata 0 0 .

User dialogue with TALK procedure

- = viii -

.

.

']

4

.

10

17

23

40

43

45

&

&

CHAPTER1I

INTRODUCTION

Thié thesis presents a model for engineering the user interface for large data
base systems in order to maintain flexible access controls over sensitive data.
The model is independent of both machine and data base structure, and is suf-
ficiently modular to allow cost-effectiveness studies on access mechanisms.
Access control is based on sets of procedures called formularies. The decision
on whether a user can read, write, update, etc. ,‘ data is controlled by programs
(not merely bits or tables of data) which can be completely independent of the
contents or location of raw data in the data base.

The decision to grant or deny access can be made in real time at data a;:cess
time, not only at file creation time as has usually been the case in the past.
Indeed the model presented does not.make use of the éoncept of "files, ! though
a specific interpretation of the model may do so. Access control is not restricted
to the file level or the record level, although the model permits either of these.

If desired, however, access can be controlled at arbitrarily lower levels, even

at the bit level. The function of dat‘afaddressifrtmg,fir§?~s;eparatéd from thekfunctionAf

of access céntrol in the model. Moreover, each element of raw data need appear
only once, thus allowing considerable savings in memory and in maintenance
effort over previous file-oriented systems.

Specifically not considered in the model are privacy problems associated
with communication lines, electromagnetic radiation monitoring, physical
security, wiretapping, equipment failure, operating system software bugs, per-
sonnel, or administrative procedures. Cryptographic methods are not dealt with
in any detail, though provision is made for inclusion of encrypting and decrypting

operations in any particular interpretation of the model.

~ Specific interpretations of the model can be implemented on any geﬁeral—
purpose computer; no special time-sharing or other hardware is required. The

only proviso is that all requests to access the data base must be guaranteed to

pass through the data base system.

n

.l

(®

CHAPTER II

ACCESS CONTROL METHODS

A. Access Control in Existing Systems

In most existing file systems which are concerned with information privacy,
passwords (Crisman [1965], Babcock [1967]) are used to ‘provide software pro-
tection fér sensitive data. Password schemes generally permit a small finite
number of specific types of access to files. Each file (or user) has an associated
password. In order to access information in a file,A the user must provide the
correct password. These methods, while acceptable for some purposes, can
be compromised by wiretapping, electromagnetic radiation monitoring, and other
means. Even if this were not the case, there are other reasons (Lampson [1969])
why password schemes, as implemented to date, do not solve satisfa:ctorily the
problem of access control in a large computer data base shared by many users.

One of these reasons is that passwords have been associated with files. In
most current systems, information is protected at the file level only — it has
been tacitly assumed that all data within a file is of the same sensitivity. The
real world does not conform to this assumption.” Information from various sources
is constantly coming into common data pools, where it can be used by all persons
with access ta that poal. A problem arises when gertain information in a filo
should be available to some but not all authorized users of the file.

In the MULTICS system (Corbato and Vyssotsky [1967]) for example, if a
user has a file which in part contains sensitive data, he just cannot merge all
his data with that of his colleagues. He often must separate the sensitive data
and save that in a separate file; the common pool of data does not contain this
sensitive and possibly highly valuable data. Moreover, he and those he permits

to access this sensitive data must, if they alsowishto make use of the nonsensitive data,

create a distinct merged file, thus duplicating information kept in the system; if
some of this duplicated data must later be .changed, it must be changed in all
files instead of only one. Figure 1, taken from Hoffman's survey of computers
and privacy (Hoffman [1969]), graphically illustrates this situation by depicting

memory allocation under existing systems and under a more desirable system.

EXISTING FILE SYSTEM DESIRABLE FILE SYSTEM

.

B
B Unnecessarily Duplicated [_JAceess Control
Information Information o

FIG. 1--Use of computer storage in tile systems

The file management problems presented and the memory wastage (due to
duplication of data) tend to inhibit creation of large data bases and to foster the
development of smaller, less efficient, * overlapping data bases which could, were

the privacy problem really solved, be merged.

¥ .
A simple cost model for information systems is presented in (Arvas [1968]) p. 34.
He there derives a simple rule to determine when it is more efficient to consolidate
files and when it is more efficient to distribute copies of them.

Several years ago Bingham (Bingham [1965]) suggested the use of User's

Control Profiles to assbciate accéss control with a user rather than a file. This

‘allows users to operate only on file subsets for which they are authorized and to
some extent solves the memory wastage problem. Weissman has recently
described a working system at SDC which Mes use of security properties of
users, terminals, and files (Weiésman [1969]). He presents a set-theoretic
model for such a system. His model does not deal with access control below the
file level.

Hsiao (Hsiao [1968]) has recently implemented a system using authority items

associated with users. Hsiao's system controls access at the record level, one
step beneath the filé level. In it, access control information is stored independently
of raw dai:a, and thus éa_tn be examined or changed without acutally accessing the

the raw data. Hsiao's system and the TERPS system at West Sussex County in
England (Stone [1968]) are the first x;vorkigg systems which control access at a

level lower than the file level.

B. Access Control in Proposed Systems

Some other methods have been broposed for access control, but not yet
implemented. These include a scheme which essentially assigns a sensitivity
level to each program and data element in the system (Graham [1968]), another
"~ which allows higher-level programs to grant access privileges to lower-level
programs (Dennis and Van Horn [1966]), and still others which place access '
control at the segment level via machine hardware and ""codewords" (Iliffe [1968)]
kvans and LeClerc [1967]). These methods may prove acceptable in many contexts.
However, they are not general enough for all situations. If distinct sensitivity

levels cannot be assigned to data, as is sometimes the case, Graham's scheme

cafmot be used. The other methods, while working in principle on a computer
, with hardware segmentation, seem unfeasible and uneconomical on a computer
with another type of memory structure such as an aésociative memory (Feldman
[1965], Ewing and Davies [1964], Gall [1964]), McAteer [1964], Raffel [1964]) or
'a Lesser memory (Lesser [1968]). These 6bjections are covered in more detail

in (Hoffman [1969]).

C. Desirable Characteristics for an Access Control Method

It seems desgirable to dovise a method of access Aco.ntro], which does not impose
an arbitrary const;raint (such as segmentation or sensitivity levels) on data or
programs. This method should allow efficient control of individual data elements
-(rather than of files or records only). Also,‘ it should not extract unwarranted
costs in storage or elsewhere from the user who wants only a small portion of
his data protected. The method should be independent of both machine and file
structure, yet flexible enough to allow a particular implementation of it to be
efficient. Finally, it should be sufficiently modular to permit cost-effectiveness
_experiments to be undertaken. We would then finally have a vehicle for exploring
the often-asked but never—answe}'ed question about privacy controls, "How much
does technique X cost?"

We now present such a method.

CHAPTER III

. THE FORMULARY METHOD OF ACCESS CONTROL

We now describe the "formulary! method of access control. Its salient

features have been mentioned in Chapter I. The decision to grant or deny access

is made at data access time, rather than at file creation time, as has generally
been the case in previous systems. This, together with the fact that the decision
is made by a program (not by a scan of bits or a table), allows more flexible
control of access. Data-dependent, terminal-dependent, time-dependent, and
user response-dependent decisions can now be made‘ dynamically at data request
time, in contrast to the predetermined decisions made in previous systems, which
are, infact, subsumed by the formulary method. Access to individual related
data items which may have logical addresses very close to each other can be
controlled individually. For example, a salary figure might be released without '
any identification of an eﬁnployee or any other data.

For any particular interpretatiop, the installation must supply the procedures
listed in Table I. These procedures can all be considered a part of the general
accessing mechanism, each performing a specific function. By cleérly_delimiting
these functions, a degree of modularity is gained which enables the installation to
experiment with various access control methods to arrive at the modules which
best suit its needs for efficiency, economy, flexibility, etc. This modularity
also resplts in access control becoming independent of the remainder of the
operating system, a desirable but elusive goal (Weissman [1969]). While the
formulary model and its central ACCESS procedure remain unchanged, each
installation can supply and easily change the procedures of Table I as desirable.

They are all specified in the body of this paper, and examples are given in

. Appendix A.

TABLE I

Procedures Supplied by the Installation

FOR EACH INTERPRETATION, INSTALLATION MUST SUPPLY

® AT LEAST oNE TALK PROCEDURE
® CcoDING FOR THE ACCESS ALGORITHM

& PRIMITIVE OPERATIONS

® FETCH
® STORE

® AT LEAST oNe FORMULARY, CONSISTING OF

@ CONTROL PROCEDURE
® VIRTUAL PROCEDURE
® SCRAMBLE PROCEDURE (may be null)
® UNSCRAMBLE PROCEDURE (may be null)

® A FORMULARYBUILDER PROCEDURE

The basic idea behind the formulary method is that a user, a terminal, and
a previously built formulary (defined below) must be linked together, or attached,
in order for a user f:o perform information storage, retrieval, and/or manipulative
operations. At the time the user requests use of the data base system, this
" linkage is effected, but only if the combination of user, terminal, and formulary
is allowed. Thec general linking procose ie degoribed in Section G of this chapter.

Virtual memory mapping hardware is not required to implement the model,
but the model does handle systems equipped with such hardware. It is assumed
that eﬁough virtual addressing capacity is available to handle the entife data base.
Virtual addresses are mapped into the physical core memory locations, dise
tracks, low-usage magnetic tapes, etc., by hé.rdWare and/or by the FETCH and
STORE primitive operations (sec Section L of this chapter)'for a particular

implementation.

A. Definitions and Notation

~The img'gn_a,l_ name of a datum is its logical address (with respect to-the
structure of the data base). The internal name of a datum does not change during

continuous system operation.

Examples:

1) A "tree name’ such as 5.7.3.2 which denotes field 2 of branch 3 of
branch 7 of branch 5 in the data base

2) T'"Associative memory identifiers" such as (14, 273, 34) where 14
representé the 14th attribute, 273 represents the 273rd object, and 34
represents the 34th value, in a memory similar to the one described in
(Rovner and Feldman [1968]).

A User Control Block, or UCB, is space in primary (core) storage allocated

during the attachment process (described in Section G). It contains the user
identification, terminal identification, and information about the VIRTUAL, |
CONTROL, SCRAMBLE, and UNSCRAMBLE procedures of the formulary the
user is linked to. |

Usually this information is just the virtual address of each of these procedures.
The virtual addressés are kept in primary storage in the UCB since a formulary;
once linked to a user and terminal, will probably be (oft-) used very shortly. The
first reference to any of these addresses (indirectly through the UCB) will trigger
an appropriate action (e.g., a page fault on some computers) to move the proper
program into primary storage (if it is not there already). It will then presumably
stay there as long as it is useful enough to merit keeping in high-speed memory.
The virtual addresses of procedures of a formulary cannot change while they are
contained in any UCB. This constraint is easy to enforce using the CONTROL
procedure described below which controls operations on any datums, including
formularies. Each UCB always is in high-speed primary storage in the data

area of the ACCLSS procedure.

B. The ACCESS Procedure

All control mechanisms in the formula{ry model are invoked by a central
ACCESS procedure. This ACCESS procedure is the. only procedure which directly
calls the primitive FETCH and STORE operations and which performs locking-and
unlocking operations on data items in the data base. All requests for operations
on the data base must go through the ACCESS procedure.

The ACCESS procedure is a very important element of the formulary model.
It is described in full detail in Section K, and its algorithm is supplied there.

Thc uoscr communioates only indire;ctly with AC!C‘-ESS. The hridge (see Fig. 2)
between the system-oriented ACCESS procedurse und the applicativn-oriented user

is provided by the (batch or conversational) storage and retrieval program, TALK.

USER OR USER'S PROGRAM [+

i

TALK, THE CONVERSATIONAL STORAGE AND RETRIEVAL PROCEDURE

i CONTROL

ACCESS SYSTEM PROCEDURE |+— and other procedures |
of the attached

formulary

FETCH STORE
REQUESTS REQUESTS

DATA DATA

() DATA BASE ()

D PRIMITIVE OPERATIONS '
1275C9

FIG. 2~-~User/data base interface

-10 -

C. TALK, The Application-Oriented Storage and Retrieval Procedure

To access a datum, the user must call upon TALK, the (nonsystem) application-
oriented storage and retrieval procedure. TALK converses with the user {or the
user's program) to obtain, along with other in:form;ation, (1) a datum description
in a useér-oriented lang'uage, and (2) the operation the user wishes to perform on
that datum. TALK translates the datum description in the user-oriented language
into an internal name, thus providing aAbridge between the user's conception of
the data base and the system's conception of the data base. The TALK procedure

is described in more detail in Section J.

D. Formularies — Whaf Tﬁey Are
" A’formulary is a set éf procedures which controls access to information in
a data base. These procedures are invoked whenever access to data is requested.
They perform various functions in the storage, retrieval, and manipulation of
information. The set of procedures and their associated functions are the essential
elements of the formulary model of access control.

Different users will want different algorithms to carry out tﬁese functions. . '
For example, some users will be using data which is iné.ccessible to others; the
name of a particular data element' may be specified in different ways by different
users; some users will manipulate data struétures — such as trees, lists, sparse
files, ring structures, arrays, etc., — which are accessed by algorithms specifi-
cally designed for these structures. Depending on hoW he wishes to name, access,
and control access to elements of the data base, each user will be attached to a .
formulary appropriate to his own needs,
1. Procedures of a Fdrmulary

In this subsectioﬂ, we describe the procedures of a formulary. These pro-

cedures determine the accessibility, addressing, structure and interrelationships

- 11 -

of data in thé data base dynamically, at data request time. They can be .arb‘itrar.ily
complex. In contrast, earlier systems usually made only table-driven static
determinations, prespecified at file makeup time. By use of the formulary method,
these advantages are gained:
1) flexibility and changeability of data base organization to reflect current
needs
2) capability to perform access control at request time as well as at file
creation time
3) more efficient use of storage
Each procedure of a formulary should, if possible, run from execute-only
memory, which is alterable only under administrative control. The integrity of
the system depends on the integrity of the formularies and therefore the procedures
of ~a1i formularies should be written by '"'system'' programmers who are assumed
honest. These procedures should be audited for program errors, hidden "'trap
‘doors, " etc., before being inserted into the (effective) execute-only memory
under administrative control. Failure to do this may result in the compromising
of sensitive data, since an unscrupulous programmer of @ for»mu.-lary could cause
the formulary to "leak" sensitive information to himself or to his agents.
A formulary has four procedures: VIRTUAL, SCRAMBL’E, UNSCRAMBLE,
and CONTROL. The first three are relevant but not central to access control;
the decision on whether to grant the type of access desired is made solely by the
CONTROL procedure. The first three ‘proqedures are explicitly included in each
formulary for three reasons:
1) to centralize in one place all functions dealing with addressing and
access control;
2) to give the model the generally necessary to model existing and prcposed
systems; and

- 12 -

~ 3) to provide well-delimited modules for cost/effectiveness studies and for
experimentation with different addressing schemes and access control

schemes.

a. ' 'I“lie- VIRTUAL procedure. VIRTUAL translates an internal name into the

| virtual address of the corresponding datum. VIRTUAL is a procedure with two
input pa;rameters:

1) the internal name to be translated

2) a cell which will sometimes be used to hold "other information' as

described in Section D1d below.

VIRTUAL returns

1) the resulting virtual address

2) a completion code (1 if normal completion)

Recall that enough virtual addressing capacity is assumed available to hancﬁe
the entire data base. Virtual addresses are mapped into the physical core mem;)ry
locations, disc tracks, low-usage magnetic tapes, etc., by hardware and/or by

the FETCH and STORE primitive operations for a particular implementation.

b. The SCRAMBLE procedure. SCRAMBLE is a procedure which transforms
raw data into encrypted form. (In éome specific systems, SCRAMBLE may be
null.) SCRAMBLE has two input parameters:
1) the virtual address of the datum to be scrambled
2) the length of the datum to be scrambled
SCRAMBLE has three output barameters:
1) a completion code (1 if normal completion)
2) the virtual address of the scrambled datum
3) the length of the scrambled datum
Note that if an auto-key cipher (one which must access the start of the cipher-text,

whether or not the information desired is at the start) is used, all of the information

- 13 -

encrypted uéing that cipher, be it as small as a single field or as large as an
entire 'file, ! must be governed by the same access control privileges. Therefore,.
some applications may choose to use several (or many) auto-key ciphers within
the same 'file.” It is inefﬂciept and usually updesirable to scramble data items
at other than the internal name level, e.g., scrambling as a block (to effectively
increase key length) the data represented by several internal names. In cases
where internal names represent data which fits into very small areas of storage,
greater secufity may be obtained by\ other methods (e.g., use of nulls).

We do not discuss encrypting schemes in this paﬁer. 'The interested reader

is referred to (Shannon [1949]), (Kahn [1967]), and (Skalrud [1969]).

) .
c. The UNSCRAMBLE procedure. UNSCRAMBLE is an unscrambling procedure

- which transforms encrypted data into raw form. (In some specific systems,
UNSCRAMBLE may be null.) UNSCRAMBLE has two input parameters:

1) the virtual address of the datum to be unscrambled

2) the length of the datum to be unscrambled
UNSCRAMBLE has three output parameters:

1) a oompletion code (1 if normal completion)

2) the virtual address of the ﬁnscrambled datum

3) the length of the unscrambled datum

d. The CONTROL procedure., CONTROL is 4 procedure which decides whether

a user is allowed to perform the operation he requests (FETCH, STORE,
FETCHLOCK, etc.) on the particular datum he has specifie&. CONTRUL may
consider the identification of the user and/or the source of the request (e.g., the
terminal identification) in order to arrive at a decision. CONTROL may also

converse with the requesting user before making the decision.

- 14 -

CONTROL has two input parameters and two output parameters. The two
input parameters are;
1) the internal name of the datum
2) the operation the user desires to perform
The two output parameters are:
. 1) 1 if access is allowed; otherwise an integer greater than 1

2) 'other information' (explained below).

In some specific systems, data elements may themselves contain access
control information. Consider three examples:

Example 1.

DATUM R w 30 bits of actual data

If bit R is on, DATUM is readable.

If bit W is on, DATUM is writeable.

Example 2. _
SALARY | $25,000 |

Reading or writing of salaries'of $25, 000 or over requires special checking.
-CONTROL must inspect the SALARY cell before it can do further capability
checking and eventually return 1 or some greater integer as its first output
parémeter (see Fig. 5). Note that return of an integer greater than 1 actually
transmits some information to the user; if he knows that he will not be allowed
to alter salaries which are $25, 000 or over, a denial of access actually tells him
that the salary in question is at least $25, 000. Inthe formulary model, COi\ITROL
can only make a yes or no decision about access to a particular datum. Any more
complex decisions, such as one involving release of a count which is possibly low

enough to allow unwanted identification of individual data (e.g., '"Tell me how

- 15 -

many peop‘le-.the Health Physics Group treated for radiation sicknesses last year"),
can only be made by a suitably sophisticated TALK procedure. More on pitfalls
involved in using counts while protecting sensitive data is given in (Miller and
Hoffman [1969]).
- In order to not give out any information{to the unauthorized user, the instal-
lation must decide to give up the capability provided by the formulary model to:
make decisions which depend on values of sensitive data. \
The usc of thrcat monitoring (Hoffman [1968]) in conjunction with the CONTROT.

procedure will help the installation pinpoint rapidly unauthorized attempts to access

data.
Example 3.
' Record N A
) A
Record N-1 - N Record N+1
347 | 346 storage units of actual data |

The record contains its own length (and, therefore, also points to its sue-
cessor). This type of record would appear, for example, in variablg length
sequential records on magnetic tape and in some list-processing applications.

In systems of this type, CONTﬁOL might often duplicate VIRTUAL's function
of transforming the internal name of a datum into that datum's. virtual address.
To achieve greater efficiency, CONTROL can (when appropriate) return the.
datum's virtual address as "other information.'" VIRTUAL, which is called
after CONTROL (see the ACCESS algorithm in Section K), can then examine
this "other information." If a virtual address has been-put there by CONTROL,
VIRTUAL will not duplicate the possibly laborious determination of the datum's.
virtual address, since this has already been done. VIRTUAL will merely pluck

the address out of the "other information' and pass it back.

- 16 -

Note that CONTROL can be as sophisticated a procedure as desired; it need
not be merely a table-searching algorithm. Because of this, CONTROL can
consider many heretofore ignored factors in making its decision (see Fig. 3).

For example, it can make decisions which are data-dependent and time-dependent.
It can require two keyé (or N keys) to open a lock. Also it can carry on a lengthy

dialog"ue'v'v:ith the user before allowing (or denying) the access requested.

INTERNAL NAME

orerarion — CONTROL — YES or No |

START

SALARY>
$ 24,999

YES

YES YES

YES

PASSWORD
oK P

NO

ACCEPT | YES
PASSWORD [

NO-MUST BE WRITE

ACCEPT YES

PASSWORD
TIME OF DAY
oKP

NO

ACCEPT -
OPERATOR
AUTHORIZATION

SOUND
ALARM
AND

RETURN ¢

i. TIME - DEPENDENT

NOTE: |.
- 2. FEEDBACK LOOPS ‘ ‘ ‘ ‘

3. TWO KEY SYSTEM 2730

FIG. 3--A sample CONTROL procedure

CONTROL 1s not limited to use at data request time. In addition to being
used to monitor the interactive storage, retrieval, and manipulation of data, it
can also .be used at initial data base makeup time for data edit; picture format

checking, data value validity checking, etc. Of, alternativ rely, vue could have

- 17 -

two procedures CONTROLI and >CONTROL2, in two different formularies, F1 and
F2. F1l could be attached at data input time and F2 at on-line storage, retrieval,

manipulation, and modification time.

E. S1mu1taneous Use of One Formulary by Multlple Users

Note that the same formulary can be used simultaneously by several dlfferent
users with different access permss1ons. This is possible because access control
is determined by the CONTROL procedure of the attached formulary. This

procedure can grant different privileges to different users.

F. Building a Formulary . -

ﬁefore a formulary can be attached to a user and a terminal, the procedures
it cohtains must be epecified. This is done using the system program
FORMULARYBUILDER. FORMULARYBUILDER converses with the systems
f)rogrammer Who is- buildiﬁg a formulary to learn what these procedures are, and
then retrieves them from the system library and enters them as a set into a
formulary which the user names. The specifics of FORMULARYBUILDER depend

on the particular system, *

G. The Attachment Process — The Method of Linking a Formulary to a User

In order to allow information storage and retrieval operations on the data
base to take place, a user, a terminal, and a formulary which has been previously
built using FORMULARYBUILDER must be linked together. This linking process

is done in the following manner.

An extension to FORMULARYBUILDER which would allow a user to grant capa-
bilities to other users, and then allow these users to grant capabilities to still
other users, etc. has been proposed by Victor Lesser and will be mvest1gated
further in the future

- 18 -

At the'ﬁfst time ACCESS is called (by TALK) for a given user and terminal,
it will only permit attachment of a formulary to the user and terminal (i.e., it
will not honor a request to fetch, store, etc.). The attachment is permitted only
if the CONTROL program of the default formulary allows. The default formulary,
like all other formularies, contains VIRTUAL, CONTROL, SCRAMBLE, and
UNSCRAMBLE procedures. For the default formulary, they act as follows:

CONTROL CONTROL takes the internal name representing the

formulary and decides whether user U at terminal T is
allowed to attach the formulary represented by the internal
name. U and T are maintained in the UCB and passed to
CONTROL by ACCESS.

VIRTUAL " VIRTUAL takes the internal name representing the

formulary and returns the virtual address of the formulary.

SCRAMBLE No operation. -

UNSCRAMBLE No operation.

The ATTACH attempt, if successful, causes information about the formulary
specified by the user to be read into the UCB (which is located in the data area of
the ACCESS procedure). ACCESS then useé this information (when it is subsequently
called on behalf of this user/terminal combination) to determine which CONTROL,
VIRTUAL, SCRAMBLE, and UNSCRAMBLE procedures to invoke.

1. Independence of Addressing and Access Control

After the attachment process, the User_ Control Block (UCB) contains the
‘user identification U, terminal identification T, and informatidn about (usually
pointers to) the VIRTUAL, CONTROL, SCRAMBLE, and UNSCRAMBLE pro-
cedures of a formulary. Whether the user can perform certain operations on a

given datum is ‘controlled by the CONTROL program. The addressing of each

- 19 -

datum is controlled by the VIRTUAL program. Addressing of -data items is
now completely independent of the access control for the data items.
2. Breaking an Attachment
An ekisting attachment is broken whenever
1) the user indicates that he is finished using the information storage and
retrieval system (either by explicitly declaring so or implicitly by logging
out, removing a physical terminal key, reaching the end-of-job indicator
in his input card deck, etc.), or
2) the user, via his TALK program, explioitly 'deta,ohes himeolf from a

formulary.

H. Subdivision of Data Base into Files Not Required

Note that while the éoncept of a data set (or a "file"') MAY be uéed, the
formulary method does not require this. This represents a significant departure
from previous large-scale data base systems which were nearly all organized with
files (data sets) as their major subdivisions. Under the formulary scheme, access
to information in a data set is not governed by the data set name. Rather, it is
governed by the CONTROL procedure of the attached formulary, Similarly,
addressing of data in a data set is governed by the VIRTUAL procedure and not
by the data set name. Subdividing a data base into data sets, while certainly

permitted and often desirable, is not required by the formulary model,

I. Concurrent Requests to Access Data — The LOCKLIST

The problem of two or more concurrent requests for exclusive data access
necessitates a mechanism to control these conflicts among competing users, This
problem hag been discussed, and solulions ,propose\d, in (Dijkstra [1965]),

(Hsiao [1968]), and (Shoshani and Bernstein [1969]). In the formulary model,

- 20 -

data can be set aside (locked) dynamically for the sole use of one user/terminal
combination in a2 manner similar to Hsiao's ""blocking (Hsiao [1968]), using a
mechanism known as the LOCKLIST.

The locking and unlocking of data to control simultaneous updating is an
entirely separate function from the access control function. Access control takes
into account privacy considerations only. Locking and unlocking are handled by
a separate mechanism, the LOCKLIST. The LOCKLIST is a list of triplets main-
tained by the ACCESS program and manipulated by the FETCHLOCK, STORELOCK,
UNLOCKFETCH, and UNLOCKSTORE operations. Each triplet contains (1) the
internal name of a current item, (2) the identification of the user/terminal combi~-
nation which caused it to be locked, and (3) the type of lock (fetch or store). Any
datum represented by a triplet on the LOCKLIST can be accessed only by the user/
terminal combination which caused it to be locked.

Data items which can be locked are atomic, i.e., subparts of these data items
can not be loqked. This implies, for example, that if a user wishes to lock a
tree structure and then manipulate the tree without fear of some other user
changing a subnode of the tree, either |

1) The treei must be atomic in the sense that its subnodes do not have

internal names in the data base system, or

2) each subnode must be explicitly locked by the user and only after all of

these are locked can he proceed without fear of another user changing.

the tree. *

*A more general and elegant method of handling concurrent requests to access
data is being developed by R. D. Russell as part of a general resource allocation
method. Much of the housekeeping work currently done in the formulary model
can be handled by his method.

- 21 -

J. - The TALK Procedure — Details

To access a datum, the user must effectively call upon ATALK, the (nonsystem)
"application-oriented storage and retrieval procedure. TALK converses with the
" interactive user and/or the user's program and/or the operating system to obtain
(1) a datum description in a user-oriented language
(2) the operation the user wishes to perform on that datum
(3) user identification and other information about the user and/or the
terminal where the user is located.
Depending on the particular system, the user explicifly gives TALK zero, one,
ﬁvo, or all three of the above parameters. TALK supplies the missing parameters
(if any), converts (1) to an internal name, and thén passes the user identiﬁcatidn,
the terminal identification, the internal name of the datum, and fbe desired
operation to the ACCESS procedure, which actually attempts to perform the
operation.

Note that one system may have available many TALK procedures. A user
requests invocation of any of them in the same way he initiates any (nonsystem)
program. Sophisticated users will require only ”bareebbnes" TALK procedures,
while novices may require quite complex tutorial TALK procedures. They may
both be using the same data base while avai.ling themselves of different datum
descriptions. As an example, one TALK procedure might translate English *field
names' into internal names, while another TALK procedure translates French
""field names'' into internal names. This ability to use multiple and user-dependent
descriptions of the same item .is not available with such generality in any s&stem
the author is aware of, though some systems allow lesser degrees of this (Jones
[1968], Glering [1967]).

Different TALK procedures also allow concealment of the fact that certain

inforination is even in a data base, as illustrated in Fig. 4.

-22 -

USER 1 . USER 2

WHAT PROGRAM? talkl WHAT PROGRAM? talk2
TALK1 HAS BEGUN EXECUTION. TALK2 HAS BEGUN EXECUTION.
" WHAT DATA WOULD YOU LIKE TO SEE? WHAT DATA WOULD YOU LIKE TO SEE?

salary of robert d, jones salary of robert d. jones

YOU ARE NOT PERMITTED READ ACCESS NO FIELD NAMED SALARY.
“TO ‘THE SALARY FIELD, '

CONTROL determined that the user Awas not TALK?2 intentionally returned this reply

permitted read access, causing this reply to the user,

to be given by TALK1.
HGBAl

FIG. 4--Concealment of the fact that a data base contains

certain information

The above remarks about using different TALK procedures also apply if a

system uses only one relatively sophisticated TALK procedure which takes actions

dependent on the person or terminal using it at a given time.

K. The ACCESS Procedure — Details

ACCESS uses the VIRTUAL, CONTROL, UNSCRAMBLE, and SCRAMBLE
procedufes specified in the UCB to carry out information storage and retrieval

functions. Its input parameters are:
(1) information about the user, terminal, etc., defined by the installation.
This information is passed by the procedure that calls ACCESS;
kZ) internal name of datum

(3)‘ an area wh1ch either contains or will contain the value of the datum

specified by (2)
- 23 -

‘(4) the length of (3);

(5) operation to perform — FETCH, FETCHLOCK, STORE, STORELOCK,
UNLOCKFETCH, UNLOCKSTORE, ATTACH, or DETACH. 'FETCHLOCK
and STORELOCK lock datums to further fetch or store accesses respec-
tively (éxcept by the user/terminal combination for which the Iock was
put on). UNLOCKFETCH and UNLOCKSTORE unlock these lc;cks.
ATTACH and DETACH respectively create and destroy user/terminal/
formulary attachments.

(6) a variable in which a completion code is returned by ACCESS.

ACCESS itself handles all opcrationo of (5) exoept FETCH and STORE. For
FETCH and STORE operatlons on the data base, it mvokes the FETCH a.nd STORE
pr1m.1t1ves specified in Section L.

An ALGOL algorithm for the ACCESS procedure follows. This procedure is
quite important and should be examined carefully. The comments in the algorithm
should not be skipped, as they often suggest alternate methods for accomplishing
the same goals. An example of the actual coding in use at one particular instal-
lation is given as Exhibit 1 of Appendix A. Note that some means mﬁst be provided
to determine which formulary is atfached so that the CONTROL, SCRAMBLE,
UNSCRAMBLE, and VIRTUAL procedures of that particular formulary can be
invoked. The program in Exhibit 1 transfers this responsibility to those procedures
themselves, which determine which formulary is atté.ched by examini‘ng common
data set up previously by the ACCESS procedure° An alternatwe method 1f
ACCESS were written in 2 more powerful language or in assembly 1anguage
would be to use a transfer vector.

Note that two procedures and their oorresi)onding ca]ls can be .:re.moved from
ACCESS if no user will ever have to lock out access to a datum Wthh ordmamly

can be accessed by several users at the same time or if the 1nstallat10n w1shes

- 24 -

to use another method to control conflicts among users competing for exclusive
access to datums; this makes the procedure considerably shorter. Such a 'no

parallelism' version of the ACCESS algorithm is given in Appendix C.

- 25 -

The ACCESS Algorithm

prdcedure access (info, intname, val, length, opn, compcode);

integer arrayinfo, val; integer, length, opn, compcode;

begin comment If OPN = FETCH, VAL is set to the value of the datum

representéd by INTNAME. |

If OPN = STORE, the value of the aatum represented by

INTNAME is replaced by the value in the VAL array.

If OPN = FETCHLOCK or STORELOCK, the datum is locked to
subsequerit FETCH or STORE operations by other users or from
other terminals until an UNLOCKFETCH or UNLOCKSTORE operation,
whichever is appropriate, is performed. .
If OPN = UNLOCKFETCH or UNLOCKSTORE, thefetch lock or store
lock previously inserted by « FETCHLOCK or STORELOCK opera-
tion is removed. '

If OPN = A'1"I'ACH, the formulary represented l;y internal name
INTNAME is attached to the user and terminal described in the
INFO array.

If OPN = DETACH, the formulary represented by internal name
INTNAME is detached from the user and terminal described

in the INFO array.

VAL is LENGTH storage elements long.

Note that a PETCII (STORE) operation will autuully uttempt

to fetch (sto-re) LENGTHAstorage elements of information.

It is the responsibility of the TALK procedure to handle
scrambling or unscrambling algorithms that return outputs

of a different length than their inputs.

-26-

ACCESS returns the following integer completion codes in

AY

COMPCODE:
1 normal exit, no error
2 unlock operation requested by user or terminal .
| who/which did not set lock
3 operation permitted but gave error when attempted
4 attempt to unlock datum which is not locked in given
manner |
5 cannot handle any more User Control Blocks (would
cause table overflow)
6 attempﬁ to detach nonexistent user/ términal/formuléry
combination |
| 7 operation permitted for this user and terminal but
couid not be carried out since datum was locked (by
another user/terminal) to prevent such an operation
8 cannot put lock on as requested since LOCKLIST is full
9 datum already locked by this user 'and terminal |
10 error return from VIRTUAL procedure
11 operation on the datum represented by INTNAME not
permitted by CONT ROL procedure of the attached formulary
12 eﬁd of data set encountered by FETCH operation. | .

Note that by the time the user has left the ACCESS routine, the data may

have been changed by another user (if the original user did not lock it). Note that

ACCESS could be altered to allow scrambling and unscrambling to take place at

external devices rather than in the central processor.

- 927 -

Important: ACCESS expects the following to be available to it. The installation

supplies these in some way‘ other than as paraméters to ACCESS (for example, as

global variables in ALGOL or COMMON variables in FORTRAN) — .

(1)

(2)
(3)

)

(5)

(6)

(7)
(8)

ISTDUCB

NUCB

UCB

MAXUSERS

ITALK

LOCKLIST

MAXLLIST

Cs1

the default User Control Block. Its length is NUCB .
storage units. _
s_ée (1).
a list of User Control Blocks (UCB's) initialized outside
ACCESS to uch (1,1) = -2,

ucb (i, j) = anything when ~(i=j=1)
UCB is declared as jnteger array (1:maxusers, 1l:nucbh).
the maximum number of users which can be actively
connected to the system at any point in time.
the length of the INFO array (which is the first
parameter of ACCESS) — INFO contains information about
the user and terminal which is used by ACCESS and also
passed by ACCESS to procedures of the attached formulax;y,.
INFO(1) containg user identification. '
a list of locks (each element of the LOCKLIST array
should be initialized outside ACCESS to -1).
LOCKLIST is declared as integer array (1:4, 1l:maxllist).

the maximum length of the LOCKLIST

a semaphore to govern simultaneous access to the critical

section of the ACCESS procedure (initialized to 1 outside ACCESS).

ACCESS assumes that the variables FETCH, STORE, FETCHLOCK, STORELOCK,

UNLOCKFETCH, UNLOCKSTORE, ATTACH, and DETACH have been initialized

globally and are never changed by the installation;

- 28 -

integer array iucb {1l:nucb], reslt- [1:length] ;

integer i, ii, islot, j, yesno, other, n, datum;

integer procedure testandset (semaphore); integer semaphore;

begin comment TESTANDSET is an integer function designator. It returns -1

if SEMAPHORE was in the state LOCKED on entry to TESTANDSET. Otherwise,
TESTANDSET returns something other than ~1. In all cases, SEMAPHORE is in
state LOCKED after the execution of the TESTANDSET procedure, and must be
explicitly unlocked in order for it to be used again.

TESTANDSET is used to implement a controlling mechanism to prevent
conflicts among users competing for the same resource, as' discussed in
(Dijkstra [1965]). It will not prevent ""deadly embraces' (Habermann [1969]). Noy
explicit code is given here, since the function is machine-.degendent. The manner
in which TESTANDSET is implemented for a particular machine, the IBM 360/67,
is shown in the listing of the TESTSE procedure in Exhibit 1 of Appeqdﬂi_x_A.

This procedure can be removed if no user will ever have to lock out access
to a datum which ordinarily can be accessed by several users at the same time
or if the installation wishes to use another method to control conflicts among users
competing for exclusive access to datums;

< code >

end testandset;

integer procedure idxll (intname, opn); integer intname, opn;

-begin comment IDXLL, given an internal name INTNAME, returns the relative

position of INTNAME on the LOCKLIST if the datum represented by INTNAME is

locked in a manner affecting the operation OPN. Otherwise, IDXLL returns

-29 -

the negation of the relative location of the first empty slot on the LOCKLIST. If
the LOCKLIST is full and the INTNAME/OPN combination is not found on it,
IDXLL returns 0. - .

This procedure can be removéd if no user will ever have to lock out access
to a datum which ordinarily can be accessed by several users at the same time
cr if the installation wishes to use another method to control conflicts among
users competing for exclusive access to datums;
integer firstempty; |
j:=if opn = FETCH or opn = UNLOCKFETCH or opn = FETCHLOCKgigg_l else 2;
idxll := firstémpty := 0; ' .
for i :=1 step 1 until maxllist do

begin ii := -i;

if locklist [1,i} = ~1 then firstempty :=i
else if locklist [1,i] = intname and locklist [2, i] = j then begin idxll :=1i;

go to RET
end;

end;
if firstempty # 0 then idx1l := -ﬁrsfempty;
RET:
end idxll;

procedure ret (i); integer i;

begin comment RET sets the completion code compcode to i and then causes

exit from the ACCESS procedure;
compcode :=i; go to I'IN

end ret;

- 30 -

compcode :=1;
comment first let's see if we recognize the user/terminal combination
in'INFO;
islot :=0; -
for i:=1 step 1 until maxusers do
begin ii :=i;

if ueb [i, 1] = -2 then begin comment end of list-of ucb's;

if islot=0 then begin if ii # maxusers then ucb [ii+1, 1]:=-2;
go to XFER; |
end
else go to PRESETUP;
end
else if uchb [i, 1] =-1 then islot :=ii
comment remember this slot if vacant;
else begin for j :=1 step 1 until italk do
if ucb [i, j]#info[j] then go to ILOOPND;
go to SETUPPTRS
end;
ILOOPND:
end i loop;
if islot = 0 then ret (5); comment cannot handle any more UCBs;
PRESETUP:
ii := islot;
XFER: .
for k :=1 step 1 until italk do-uchblii, k] : = infolk];

for k :=italk + 1 step 1 until nucb do ucblii, k] : = istducb(k];

- 31 -

SETUPPTRS:
for i:=1 step 1 until nucb do iucb(i] : = uebl[ii, i];
comment set up pointers to appropriate user control block for particular -
implementation. Note well: Setting up pointers to appropriate user control blocks
is quite dependent on the particular system. For an example of one implementation,
see Exhibit 1 of Appexidix A;
comment We have now associated user and terminal with the user control block
(representing a formulary) in relative position i of the UCB table;
if jucb[nucb] # intname and opn = DETACH then ret (é); ‘
comment attefnpt to detach user/terminal/formulary combination not currently
dttached:
control (intname, 'opn, yesno, other);
if yesno > 1 then ret (11);
comment return 11 if CONTROL does not permit operation;
if opn = ATTACH then begin ucblii, nucb) : = intname; go to FIN

| end: .
comment Note well: In many implementations, pointeré to each prbcedure of
the formulary (obtained by having VIRTUAL transform intname into a virtual
address) might be put into the UCB upon attachment. In others, the philosophy
used here of only putting one pointer — to the formulary — into the UCB will be
followed. The decision should take into account design parameters such as
implementation language, storage available, ete.;

if opn = DETACH then begin comment detach formulary (this leaves an open

slot in the ucb array); ucblii, 1] :==1; go to FIN

end;

- 32 -

if opn= UNLOCKFETCH or opn = UNLOCKSTORE then
begin i := idxll(intname, opn); comment find internal name on LOCKLIST;
if i < 0 then ret(4); comment cannot find it;
for j:=1 step 1 until italk do
if locklist [2+4], 1] # iucb[j] then ret(2);
locklist{l,i] :=-1; comment undo the lock and mark slot in UCB array empty;
go to FIN |
end unlock operation;
TRY:
if testandset(csl) = -1 then go to TRY;
comment loop until no other user is executing the critical section below;
comment ACCESS should ask to be put to sleep if embedding system permits;
commenf ——~——~———e—teee-- enter critical section for locking out datums ------—-;
i :=idxll(intname, opn); '

comment get relative location of locked datum in locklist;

if i > 0 then begin comment datum found on.locklist so see if it was locked by

this user and terminal;
for j:=1 step 1 until italk do .

- if locklist [2+j, 1] # iucb(j] then ret(7);

- comment data already locked by another user or terminal;
if opn = FETCHLOCK or opn = STORELOCK then ret(9);
comment datum already locked by this user and terminal,
so return completion code of 9;

end;

- 33 -

i:=-i;
if opn = FETCHLOCK or opn = STORELOCK then

begi}x comment this is a lock operation;

if i = 0 then ret(8); comment connot set lock since locklist is full;
locklist[2, i] :=if opn = FETCHLOCK then 1 else 2;
comment set appropriate lock;
for j :=1 step 1 until italk do locklist[2+], i] : = iuch{j];
comment place user and terminal identification into LOCKLIST;
locklist'[l, i] := intname; comment place internalAname on LOCKLIST:
go to FIN;
end lock operation;
virtual (intname, datum, other, compcodé);
comment VIRTUAL returns in datum the virtual address of the datum specified;
if cofnpcode > 1 then ret(10); comment error return from VIRTUAL;
if opn = STORE then

begin comment store operation;

scramble (val, length, compcode, reslt, n);

if compcode > 1 then ret(3);

comment operation permitted but gave error when attempted;
comment now perform a physical write of n storage units to the block
starting at reslt;

store (datum, reslt, n, compcoude);

if compcode > 1 then ret(3)

end

else

begin comment fetch operation;

fetch (datum, reslt, length, compcode);

- 34 -

1

if compbode =2 _tl_l_eé ret(12); comment end of data set encountered;
if compcode > 1 then ret(3);
unscramblel (reslt, length, compcode, val, n);
if compcode >1 then ret(3);
" énd fetch operation;
FIN:
comment —-——=--——m-mmon Leave critical section for locking out datums ~=—======e-=- ;
Tesl:=1;

end access;

- 35 -

L. FETCH and STORE Primitive Operations

The two primitive operations FETCH and STORE are supplied by the instal-
lation. These primitives actually perform the physical reads,énd writes which
cause'information transfer between the media the data base resides on and the
primary storage medium (usually, magnetic. core storage). They are invoked
only by the ACCESS procedure. Examples of FETCH and STORE primitives for .
a particular implementation are given in Exhib_it 2 of Appendix A.

The primitive operations cannot be éxpressed in machine-independent form,
but rather depend on the specific system and machiné used. They are defined

functionally below.

FETCH(ADDR, VALUE, LENGTH, COMP)
'i‘his primitive fetches the value which is contained in the storage locations
starting at virtual address ADDR and returns it'in VALUE. This value may be
scrambled, but if so unscrambling will be done later by UNSCRAMBLE (called
from ACCESS), and LENGTH is the length of the scrambled data. The value
comprises LENGTH storage elements. Upon completion, the completion code
COMP is set to:

1 if nérmai exit

2 if end of data set encountered when physical read attempted

3 if length too big (installation-determined)

4 if illegal virtual address given to fetch from

5 if error occurred upon attempt to do‘physioa.l read

STORE(ADDR, VALUE, LENGTH, COMP)

This primitive stores LENGTH storage elements starting at virtual address

VALUE into LENGTH storage elements starting at virtual address ADDR. The

- 36 -

information stored may be scrambled, but if so the scrambling has already been

done by SCRAMBLE (called from ACCESS), and LENGTH is the length of the

scrambled data. Upon completion, the completion code COMP is set to: |

1
3

4

if normal exit
if length too big (installation-determined)
if illegal virtual address given to store into

if error occurred upon attempt to do phys_ical write.

=37 -

IV. USE OF FORMULARIES IN A WORKING MEDICAL SYSTEM

Tms sectlon descnbes a part1cu1ar 1mp1ementat10n of the formulary model
of access control and pr1vacy Th1s 1mp1ementat10n was used to 1nsure pr1vacy
for the computer-based records of individual patient visits at the Cowell Student
Health Service of Stanford UmverS1ty - B

The Cowell Student Health Serv1ce (hereafter referred to as SHS) maintains
short records of each individual patient visit (in addj.fion to the more detailed
medical histories which each physician affiliated with the SHS keeps). These short
records contain information which is used to review and make more efficient use
of physician services, nursing services, and office resources. They are also
used to spot short and long term trends in causes for visiting the SHS, so that
specific trends can be planned for and/or arrested. Each record contains an
SHS-assigned number which identifies the particular patient.

The data which is kept for these short records was kept under fairly tight
control even before SHS adopted the formulary model. No ''leaks' had ever been
detected. But as a result of a general review of privacy control in the SHS
eomputer-bafsed files, additional safeguards were implemented, including pro-
tection of privacy via the formulary scheme. All of these additional safeguards
could have been implemented without making use of the formulary model. One
result of the use of the formulary model, however, has been the compartmentali-
zation and separation of scrambling, unscrambling, and access-granting decision
functions. These functions ¢an now be easﬁy 'chauged or ""tuned’ to fit future
requirements. The SHS system is an example of a particular implementation of
the general formulary model. The system as described here is nearly 100%
operational atthis time (though general use will be phased in as funds become
available).

- 38 -

A. Storing and Retrieving Information in the Current SHS System

Information on each patient visit is typed into the on-line computer file
system, WYLBUR (Riddle [1968]) by an employee of the SHS.. The input terminal,
commonly referred to asA a WYLBUR terminal, is physically located in a secure
area at the SHS offices and access to it is controlled there. Knowledge of the SHS
accoun'tinuml:)er, its corresponding WYLBUR keyword, a valid user name, and its
password (assigned and maintaixied by SHS — not the WYLBUR keyword) are all
necessary to input data to or output daté from the system.

Periodically (every academic quarter or so), a statistical summary is
requested from the terminal located at SHS. The program which prints the sum-
mary will do so only a.ftef it verifies that an authorizéd user is using his authorized
password. In addition, this program requires the user to give the operating
system both the SHS account number and its associated keyword. The summary
(which includes no patient names or patient identification numbers of any sort)
is printed out only at the WYLBUR terminal located at SHS.

Notice that the patient visit data (and associated patient identification number)
exists in only three places:

1) on the Cowell Student Health Service statistical sheet (Fig. 5), which is
made up for each patient visit to the Health Service, arid is kept in a
physically secure area at the Student Heulth Service.

2) on the paper in the WYLBUR terininal (ari IBM 2741 Communications
Terminal) which is located in a controlled-access area at SHS. The
paper is kept 'under controlled access until it is no longer useful and
then is destroyed.

3) on the tape at the campus fécil.ity of the Stanford University Computation
Center. The information is scrambled on the tape; it is kept '"in the

clear' only while the SHS statistical programs are actually being executed.

-39 -

‘COWELL STUDENT HEALTH CENTER STATISTICAL SHEET

STANFORD UNIVERSITY

OFFICE
! D. STATUS E. SITE G. TYPE OF VISIT
1A, NAME S THDENT TR (1] APPOINTMENT |
) LasT ! MunoERGRAD & inFIrRMARY @ waLk-IN ;
lerap B HosPiTaL B s-92 ;
FIRST miooLE NON-STUDENT @ er [12-9 ;
(1@ (3) (&) 15 _(6) 7 18 | - EmousTrrac IAPAMC ~ 3 weexeno
le 1o - - | @empe - ;P:gt')uss CALL 8 inPaTIENT
(1-'8) BlFacuLTy-sTarF t12) M TrarsinG
)] BvisiTor @ TransFeR !
]c- 5(5))((@ mave DEPENDENT EMPLOYMENT
@ rFemaLs B HANSEN’S.L.AC. | ‘OTHER
‘ BsreciaL
W@oTHeR

TA. GENERAL ‘B. INJECTIONS TD. IMMUNIZATIONS)
(14 1] PHYSICAL CARE 19 1] peNICILLIN 125 1] oveERSEAS 301 i TyPHOID
Joss 00 poel] 14 other 30 [1] rvenus
t16) [.assisT M.D. (zo) [0 acTn (26) 0 b.7T. (320 [J cHoLERA
0o O e 7. zn @ rLam TET. 33 Junrrueraa
t18) [0 arp'T. REFERRAL [421 [0 sEDATIVE | ze)[M TaT 0 @M. 6. '
: @ e k. 6. , {12911 smaLLPox «3sy (1] .poLi0
! B miniFiLm
4 N
PHV.SICI AN SERVICES
[A ExaminaTiON B. TREAT ~ To. REFERRAL E. SPECIALTY]
36 [sproT Hx J1avw - o sme 129y M pamc S0 [) aLLerGy 57 (1) NEYRO
COMPLETE HX 1420 [0 prescriBE 151 [Toerm 1s8) [J.orTHO
(37) (0 ParTIAL ExAM 430 [surGery SHS (522 [0 eve 599 T surcery |
COMPLETE ‘EX AM <. DISPOSITION =3y Denr «(&0) @ PsyeH.
138) 0] sPEGIAL ExAM @e) [amsuratony B urversrty { e © u-v wy Deas
t39) 1) oB‘GYN tas) [ADHIT A TIRKARY ss) [0 omrevn (620 (DoENnTAL
ta0) [.counseLing ADMIT HOSP. @ private | ise) ‘[meo ;
Jtae) ‘EI MED LEAVE FUMB o em 65)
; {a7) [mMED CLEARANCE ' , .
l @e) [0 orop course '
‘DIAGNOSIS N
A CODE thnt TR0 TRR) &0y mlpﬂESUM'PTlve - ‘—!
(70}
= J & [wan s
i74) 172} 173} 174) m-PRESUMPT.IV:E
8. CODE & 1751 |
: o 12) FinaL |
INFIRMARY AND HOSPITAL
: (76)___ (77)
C. TOTAL DAYS IN INFIRMARY
{78) (79) (80
D. 1UIAL DAYSIN HOSPITAL

FIG. 5--Cowell Student Health Service statistical sheet

- 40 -

;

Novcard decks are keypunched by non-SHS personnel and then left in unsecured
bins to be picked up by couriers and transported to SHS. Human-readable input
and output is generated only at the WYLBUR terminal in the secure area at SHS.
We believe that only persons with exceptional knowledge of the operating

system at Stanford and the SHS programs themselves and the operating procedures
of the SHS can !'break’’ this system to the extent that they obtain meaningful data
rélated to an identificable patient. While the system does not represent the
"altimate' in security, we feel the records are just as secure as those in physical
file cabinets at SHS and that the cost paid to maintain this degree of security is

not prohibitive.

B. Attaching to the SHS Formulary

Since WYLBUR prov.ides password protection, only those persons knowingr
both the charge number and the keyword of the Student Health Service are perﬁﬁtted
to log in and attempt to use the SHS system. These people are limited to a few
SHS personnel and two programmers responsible for maintaining the system. So,
in effect, only these people can be attached to the SHS formulary.* Attaching, in'
this implementation, consists of two stages: ‘(1)- logging in successfully to the
WYLBUR system, and (2) successfully fetching and starting up an SHS TALK

procedure.

C. Formulary Building

Since there are only three formularies in the system described, we decided
that it was not worthwhile to write a FORMULARYBUILDER program; the formu-

laries were built manually, and their_procedures were linked to the already

*
This excludes possible compromise of the system by wiretapping, personnel
problems, etc., which are explicitly not handled by the formulary scheme (see
Chapter I),

- 41 -

existing SHS statistical procedures. Clearly, such a FORMULARYBUILDER.

procedure could be written.

D. The TALK Procedure

We shali now limit our discussion to the part of the SHS system which handles:
requésts for the computation and extraction of sfatistical éummafy data, though
the other parts operate in a similar manner. In pé.rticular, only the formulary
and TALK procedure relevant to that part of the SHS system will be discussed
here, though in fact other TALK procedures and formularies exist in that system.
The TALK procedure we shall discuss obtains user and terminal identification
from the operating system and user password and authentication sequences inter-
alctively from the user. Due to the system characteristics of the Campus Facility
of the Stanford Computation Center at the time the procedures were coded,'* it
was decided to handle the authentication of users in both the TALK procedure and
in the CONTROL procedure. The TALK procedure handles interactive authenti-
cation, and the CONTROL procedireé, running in the batch, perfuorms a final user
and password authentication. Note that all of the code nevessary tu make up a
formqlary is broken out separately from the code that does the actual data manipu-
lation and statistics gathering (see Fig. 6). Thls mukes il casy for systems pro-
grammers to replace or modify formularies without any modification of the actual
application program. In fact the code for the formularies was added to previously
existing SHS application programs with no change in these application programs.

The TALK procedurc wae written in CYVYL, an on-lipe interactive langnage

designed for user mainly in computer-assisted instruction applications. It engages

—
At the time these procedures were coded, it was relatively difficult for procedures
written in certain languages to communicate with procedures written in certain
other languages and with user terminals. This situation should disappear soon,
and then the authentication will be easily handled entirely by the CONTROL procedure.

AY

- 49 -

Step 1:

TALK procedure to access
data base and procedures of
governing formularies

Steps 2-=N:

Job steps which compute and ' .
extract summary data (executed
only if formulary procedures

~ invoked in Step 1 allow the

X requested access).

FIG. 6--Skeleton of terminal-initiated job to compute and extract summary data

- 43 -

the user in a dialogue to verify an authentication sequence (see Fig. 7).' TALK
also obtains printing parameters and an output heading'ffi'om the user. It then
initiates the program which will fetch information from the data base and compute

statistical summary data.

E. Procedures of the SHS Formulary

Once someone is attached to the SHS formuléry (i.e., has logged in successfully
to WYLBUR), .he still must provide a valid user identification and the corresponding
passwad (not‘ the one used to log in to WYLBUR) in order to put any information
into or get any information out of the system. This information is obtained and
checked by the Fortrap sgbfoutine CONTROL (Exhibit 3 of _Appéndix A) which is
invoked by the S_ystem ACCESS procedure and which serves as the CONTROL
procedure of thé SHS formulary. This function is invoked at both data input and
at data output times. |

The Fortfan subroutine SCRAMBLE (Exhibit 4 of Appendix A) scrambles the
data at d:ita iﬁput time. It serves as the SCRAMBLE procedﬁre of the SHS
formulary.

Tho Fortran‘ .subroultino UNSCRAMBLE (uExhibit b of Appendix A) unscrambles
the data when it is read in t"of use ih;tati.sti'c:al computations or for outputting
purposes. It serves as the UNSCRAMBLE procedure of the SHS formulary.

VIRTUAL is generally used to mab an internal name into a virtual address.

In the SHS sy'stem however, there is only one internal name associated with raw
patient data (as opposed to formularies). This internal name, NEXTRECORD, is
the only one which is ever mapped into a virtual address by VIRTUAL. In the
SHS system, the virtual address is the same as the internal name. So VIRTUAL
is very simple in this system; it is in fact, effectively, the identjty function

(Exhibit 6 of AppendJ;.x A).

- 44 -

- gf._

WHAT COURSE DO YOU WANT? rsumet
QUEUED
QUEUED
SUBMISSION PROCEDURE HAS 3EEN INITIATED. WAIT!

USER 1D OBTAINED FROM OPEXATING SYSTEM-- WILL BE VALIDATED LATER BY FHE CONTROL PROCEDURE.

'TERMINAL ID OSTAINED FROM OPERATING SYSTEM AND APPROCVED.
ACCOUNT NUMBER OBTAINED FOM OPERATING SYSTEM AND APPRCVED.
YOU ARE PERMITTEDTO USE T-HE SHS PROGRAM AT THIS TIME OF DAY.

WHAT IS YOUR HEALTH SERVICE PASSWORD? BRERERRERERRERE
PASSWORD WILL BE VALIDATED LATER BY THE CONTROL PROCEDURE.

PLEASE RESPOND TO AUTHENTICATION SEQUENCE
§213 == 7 RREREZARREITNER
4832 == 7 EERDRXRNEEXEERRN
DO YOU WISH TO PULL 1D NUMBERS? ves :
PLEASE GIVE THE ADDITIONAL D NUMBER VALIDATIGN KEY: BEREREURDERNRENE
AUTHENTICATION SEQUENCE VALID. .
TALKX PROCEDURE APPROVES THIS USER AND TERMINAL.

WHEN REQUESTED, PLEASE TYPE EACH DISEASE NUMBER YOU WISH TO PULL THE 1DS FOR,

WHEN DONE, JUST HIT "CARRIAGE RETURN".
DISEASE NUMBER ? 0020
DISEASE NUMBER ? y020
DISEASE NUMBER = ? '
HOW MANY COPIESOF THE PRINTOUT DO YOU WANT? 1
WHAT QUARTER W!ILL THIS RUN COVER? fall 1984
937 1S YOUR JOB 'NUMBER." : '
YOUR JOB HAS BEEN SUBMITTED AND WIiLL BE READY TOMORROW.
WE'"LL LOG YOU OFF FOR NOW. THANK YQU. AND GOODBYE.
COMPUTE TIME 64.36 SECONDS :
MEMORY USAGSE 888.50 PAGE~-SECONDS

1/0 ACTIVITY 0 UNITS
EDITING TIME 22.74 SECONDS
ELAPSED TIME 00:23:55

Z 0 o n

END OF SESSIO

FIG. 7--User dialogue with TALK procedure

I1I557A7

~ The Foftran subroutine CONTROL (Exhibit 3 of Appendix A) serves as the
CONTROL procedure of the SHS formulary. The CONTROL procedure in this
implementation verifies the péssword of each user. It allows unlimited access
to certain users, provided that they give the proper password. Other users are’
restricted as to the data they receive. (Note in Fig. 7, for example, the additional
authorization required to pull student identificatibn numbers. This additional
authorization is currently checked by TALK But will eventually be handled by

CONTROL.)

F. Primitive Operations

The FETCH and STORE operations in the SHS system merely read and write
the next record on a sequential data set. Only (;he internal name NEXTRECORD

is acceptable to FETCH or STORE, FETCH and STORE in the SHS system are

shown in Exhibit 2 of Appendix A.

G. Realization of the ACCESS Procedure

The Fortran subroutine ACCESS (Exhibit 1 of Appendix A) is merely the

FORTRAN implementation of the ACCESS algurithm fur this purticulur system.

- 46 -

CHAPTER YV

A NOTE ON THE COST OF SOME PRIVACY SAFEGUARDS

As mentioned in Chapter II, a desirable property for an access control model
is that it be sufficiently modular to permit cost-effectiveness experiments to be
undertaken. In this way the niodel would serve as a vehicle for exploi‘ing‘ questions
of cost:with respect to various privacy safeguards.

Using the formulary model, an experiment was run on the IBM 560/ 91 com-~
puter systein at the SLAC Facility of Stanford Univefsity Compufation Center.
This experiment was desig’hed to obtain figufes on the additioﬁal overhead due to
using the formulary method and on the costs of encoding data (and conversely the
costs of decoding data). ‘

A tépe containing 10, 001 80-character card images in clear (unscrambled)

- format was first generated. Then 10, 000 of the 80-character records were
sequentially read in, scfambled, and the (encoded) card images written out onto
a new output tape. Appendix B shows the FORTRAN program used to do this job,
and also the printout of the timing results. -

Three different serambling algorithms were used: algorithm 0 — no scrambling
at all; aIgofithm 1 — simple exclusive-or operations with predetermined random
numbers which did not vary from one record to the next; and algorithm 2 —
exclusive-or operations with the 'concatenati'on of four smail pseudo-random
numbers which did vary over records. Each of these scrambling glgorithms was
timed twice: first without going ti;rough the central ACC.ES‘-S procedure of the
.for:mulary model (and therefc.>re without invoking ‘the procedureé of ﬂle,attgched
formulary which it calls), énd,then using the c‘e'nt_rall'ACCES.S procedure and the

formulary model.

— 47 -

Ten trials were run of the experiment.

The timing results are shown in

Table II, and the averages summarized in Table III.

TABLE O

+ Timing Reoulto of Cost Exporiment

N = Pormulary Method Not Used

F = Formularies Used

Elapsed Wall
Clock Time
(sec.)
Scrambling
Method
N F N F N F N F N F N F N F N F N - F N - F
n 19.39 19.42 { 19.88 19,44 | 19,69 19.42 | 19.44 19.44 | 20.58 19.42 | Note A 18.40 | 20.12 19,87 | 20.55 19.40 | 19.87 19.42 |190.40 19.87
1 19,39 19.42 | 19.45 19.90 | 19.44 19.44 | 19,44 19,42 |19.42 18.42 | 19.42 19.42 |Note B 18.87 | 19.40 19.42 | 20,57 19.42 |19.40 19.87
2 21.02 19.44 | 19.42 16.42 | 10.87 19.42 | 19.40 19.88 -| 19.40 19.88 | 19,40 19.42 | 20.£0 10.66 | 19.40 20,78 [19.40 19.40 | 19.40 19.40
Note A: No time , slnce timer at this point,

Note B: Time of 28.60 seconds |8 not meaningful, since o tape write error occurred and recovery procedun':s for this were also invoked during this trial.

TABLE IO {

Average Timing Results of Cost Experiment

MEAN VALUES

Scrambling Method No Formularies Formularies Used

0 19. 88 sec (9 trials) 19,51 sco (10 triale)
1 19,55 sec (9 trials) 19.56 sec (10 trials)
2 19.67 sec (10 trials) 19.58 sec (10 trials)

MEAN VALUE (58 (rials) = 19,64 sec

We see from those tables that there was no ‘significant difference in the wall<clock
times needed to encode 10, 006 rcoords. Thut is, the Limes uséd "\;iere about the
same regai‘dless of which of the three scrambling algorithms were used and
regardless of whether the formulary method was used. Additional overhead caused
by use of the forﬁlu]ary method was all taken up by the input/output wait time.

We conjecture that this will be the case in general. All times are total wall-clock

- 48 -

times used from the time the first clear record was read in until the time the

last encoded record was written out onto the output tape. All waits for input/output,

etc., are included in these times. The times are not directly related to central

processor cycles. They are wall-clock time on a system where this was the only

| job runmng in addiﬁon to the operating system (OS/ 360), spooﬁng subsystem (HASP),
and femote ﬁle management/job entry subsystem (CRBE). The experiment was
carried out in thié .manner in order to get a EE.}E estirriate of the incremental cost
invqlved in scrambliﬁg a large number of cards. In é multiprogrﬁnming system
the actﬁal time used in encoding could be overlapped W1th inpuf/ output tasks from
other jébs and therefore would not be néarly so costly. On thé other hax'ld,' if
CPU cycles are a major cost factor, another experiment sh;)uld be carried out
to determine this incrementai cost.

In this worst case we see that 10, 000 cards were scrambied in an average of

19.64 seconds. We can put it another way; the incremental cost of encoding (or

decdding) one card image on this system is 0.001964 seconds. Under the existing
rate étructure at the Stanford Computation Center, it then costs approximately
oﬁe-twentieth of a cént to encode (or decode) each card image. Thefefore, encoding
one card image (80 bytes of infofmétion) for each of the 20, 000, 000 residents of
the State of California would take only 39, 280 seconds (less than 11 hours) and
would cost under $_11, 000. These results seem to indicate that the incremental
cost of scrainblihg inférfnation ina iarge computer data béée where fetch accesses
(é.nd hence ﬁnscrémbling operatiohs) are in'f.requ'ent'is infinitesimal.

| Clearly, it will be"easy t§ use the formulary model to éarry out various
other experiments as well, to ascertain the relative costs of diverse encoding

" methods and data accessing schemes. We exbect to do more of this in the future.

. —-49 -

CHAPTER VI

CONCLUSIONS

A. Summary

We have defined and demonstrated a model of access cor;trol which allows
real-time decisions té be made about priviléges gra.ﬁted to users éf a' data base.
Raw data need appear .on‘_ly once in the dafa base an& arbitrarily éomplex access
contrél prograrﬂs caﬁ be associated with _arbitrarily small fragments of this data.

The desirable characteristics for an access‘ control method laid ouf: in .
Chapter II are all present (though we have not yet run enouérh eXperiments to
make general statéments 4aboﬁt efficiency): |

1) No arbitrary constraint (such as segmentation or sensitivity levels) is

imposed on data or programs.

2) The method allows control of individual data elements. Its efficiency
depends on the specific system invoived and the particular controls
used. As seen in Chapter V, very little performance‘d‘eg»radation due
to increased overhead was added by the introduction of formularies to
the tape-based system in the example there.

3) No extra storage or time is reqﬁired to describe data which the usér

does not desire to protéct. '

4) The methbd is machine—indc;pendent and alsq indepéndent of file structure.
The efficiency of each implementation de_pends f!}ainly on the adequacy_
of the formulary method for thé pafti;aulap data structures and application
involved.

5) Chapters IVandV certainly demonstrate the modularity of the formulary

model and its ability to support cost-effectiveness experiments.

- 50 -

B. Future Work

‘More éxpériments should be carried out to determine the amount of additional
system Qverhead introduced by user formularies. This will vary over data structures
and over data base systems. " In partic‘ular, actual costs in additional central
processor cycles should be determined for Avaridus hardware systems.

Criteria of system efficiency, degree of control required, etc., should be
developed to determine the extent of usefulness of the formulary method. Some
‘preliminary work has already been done in this area (Wortman and Hoffman [1969]).

Using the formulary method, cost measures for scrambling and unscrambling
techniques and for threat mbnitbring (Hoffman [1969]) subsystems can be developed
in the same manner that the cost measures of Section V were developed.

To observe the full capabilities of the method and its potential for storage
effiéiency, a system should be developed where quite a number of users share
éeveral formularies. Also, the problem of users granting limited ca;pé.bilities to
other usérs, these new users grantihg even more limited capabilities to still
other users, etc., and all this being done while access control decisions are
being made in real time by procedures, should be investigated in more detail.
Once this problem of granting limited privileges is solved, we will see much more
controlled sharing of mutually useful programs and data. The implications here
for propi‘ietary software and for application-oriented data banks are very great.

A most promising area for future work is the developmenf of a generalized
resource allocation system which incorporé;tes the formulary model as a first
stage and a sophisticated scheduler as a second stage. Such a system is currently
being investigated by R. D. Russell at SLAC.

Finally, since the cehtral ACCESS procedure is fixed, hardware or micro-

A programmed implementations of it could be built which would greatly decrease

the overhead in central processor cycles involved in using the formulary method.

- 51 -

REFERENCES

Arvas, Christer [1968]. Joint Use of Databanks. Statistiska Centralbyran,
- Stockholms Univeﬁitet, Ukas P5, Sweden, Rep;);'t No. 6.
Babcock, J. D. [1967]. A brief description of privacy measures in the RUSH
~ time-éhafing sysiem. Proc. AFIPS 1967 Spring Joint Comput. anf. ,
Vol. 30, Thompson Book Co., Washington, D.C., 301-302.

‘Bingham, Harvey W. [1965] . Security techniqués for EDP of multilevel classified
informution. Ducuweut RADC-TR-G5-416, Rome Air Devolopmont Conter,
Griffiss Air Force B:ise, New YUI;k, Dec. 1965. (Unclasgsified)

Castleman, P. A. 51967i . ':'User-defined syntax in a general information storage

and retrieval system, ' in Information Retrieval, The User's Viewpoint, An

Ald lu Desigu, International Information, Inc.

Crisman, P. S. (ed.) [1965]. The Compatible Time-Sharing System — A Pro-

- grammer's Guide (Second ed.). MIT Press, Cambridge, Massachusetts.

Dennis, J. B. and Van Horn, E. C. [1966]. Programming semantics for multi-
programmed computation. Comm. ACM 8, 3(March 1966), 143-155.

Dijkstra, E. W. [1965]. Cooperating sequential processes. Department of

' Mathem’a'tics, Technological University, Eindhoven, The Netherlands.

Evan, D. C. and Le Clerc, J. Y. [1967]. Address mapping and control of access
in an interactive computer. Proc. AFIPS 1967 Spring Joint Computer Conf.,
Vol, 30, Thompson Book Co., Washington, D.C., 23-30.

Ewing, R. G. and Da.-vieé, P. M. [1964]. An associative]{J-roc:essor. Proc.
IFIPS 1964 Fall Joint Computer Conference.

Feldrﬁan, J. A, .[1965]. Aspects of Associative Processing, Technical Note

- 196513, Lincoln Laboratory, MIT, Camhridge, Massachusetts.

Gall, R. G. [1964]. A hardware-integrated GPC/search memory. Proc. IFIPS

1964 Fall Joint Computer Conference.

- 52 -

Giering, R. H. [1967]. Information Processing and the Data Spectrum. Technical
" ‘Note DTN-68-2, Data Corporation, Arlington, Virginia. ’
Graham, R. M. [1968] . Protection in an information proces-sing utility. Comm.
ACM 11, 5 (May 1968), 365-369.
' 'Habermann, A. N. [1969]. Prevention of system deadlocks. Comm. ACM 12,
7 (July 1969), 373.

Hoffman, Lance J. [1969]. Computers and privacy: A survey. Computing

Surveys 1, 2 (June 1969).

Hsiao, D. K. [1968]. A File System for a Problem Solving Facility. Ph.D.
‘ Diséertation in Elecérical Engineering, Univ. of Pennsyivania, Philadelphia.

Iliffe; J. K. [1968] . Basic Machine Principles, MacDonald and Co. (London).

Jones, R. S. [1968]. 'DATA FILE TWO — A data storage and retrieval system.

Proc. SICC 1968, 171-181.

Kahn, D. [1967] . The Codebreakers. MacM'jllan, New York.

Kellogg, C. H. [1968] . A natural language compiler for on-line data management.
Proc. FICC 1968, 473-492, '

Lampson, B. W. [1969]. Dynamic Protection Structures. Proc. AFIPS 1969
Fall Joint Computer Conference, pp. 27-38.

Lesser, V. R. [1968]. A multi-level computer organization designed to separate
data-accessing from the computation. Technical Report No. CS90. Computer
Science Department, Stanford University, Stanford, California, March 1968.

McAteer, J. et al. [1968]. Associative Memory System Implementation and
Charécterisﬁcs. Proc. IFIPS 1964 Fall Joint Computér Conference.

Miller, W. F. and Hoffman, L. J. [1969] . A method of extracting record-specific
information from "'statistical’ data banks. CGTM-67, Stanford Linear

Accelerator Center, Computation Group, Stanford, California.

- 53 -

Raffel, J. 1. and Crowther, T. S. [1964]. A_.pro;‘)osal for an associative memory
using magnetic ﬁlms IEEE Trans. on Electronic Computers, EC-13, 'No.‘ 5.

Riddie, William E. [1968] . WYLBUR, Stanford University Cdmputation Center
Text Editor, Appendix E to Users Manual, Stanford Computation Center ;Qam_pus
Fécimy, Stanford, California. '

Rovner, . P. D. and Feldman, J. A. {1968]. The Leap langua.ge and data structure.

" broc. IFIP Congress 1968, CT3-CT7.

Shannon, C. E. [1949]. Corﬂmﬁnication theory of seérecy systems. Bell System
Tech. J. 28, 656-715. o

Shoshani, A. and Bernstein, A. J. {1969]. Synchronization in a parallel-accessed
data base. Comm. ACM 12, 11 (November 1969), 604-607.

Skatrud, R. O. [1969]. The applicatipn of cryptographic techniques to data
processing. Proc. AFIPS 1969 Fall Joint Computer Conference, 111-117.

Stone, M. G. [1968]. TERPS-file independent enquiries. 'Computer Bulletin 11,
4 (March 1968), 286-289. R

Weissman, Clark [1969]. .Security Controls in the ADEPT-50 'Time;Sharing
System. Proc. AFIPS 1969 Fall Joint Computer Conference, 119-133.

)

- 54 -

APPENDIX A

EXAMPLES OF PROCEDURES USED BY A PARTICULAR INSTALLATION

This appendix contains listings of procédures which are used in the Cowell
Student Health Servige system which operates under the OS/360 Operating System
on the IBM 360/67 at the Stanford Universify Computation Center Campus Facility.
Except for the ACCESS procedure, all of the algorithms and coding were supplied
by the Student Health Service. They supplied the coding for the ACCESS procedure,
but its algorithm was fixed, of course; its ALGOL version is given in Section K
of Chapter III.

Some data (including key privacy data) in named common areas are intialized
in a BLOCK DATA subprogram (not shown) which is similar to the BLOCK DATA
subpi'ogram in Appendix B. The subprogram shown there, however, does not

contain key privacy data for the SHS system or for any other system.

- 55 -

SU!&OU*!NE ACCESS{ INFO, INTNAME sVALUE s LENGTH ,OPN, CONMPCODE) 00524500

¢ . 00524600
C THIS PROCZDURE TAKES AS INPUT THE INTERNAL NAME INTNAME AND 00524700
C DDES THE FOLLOWING: 00524800
[00524900
C IF IOPNsFETCHP, VALUE IS SET TO THE VALUE OF THE 00525000
C DATUM REPRESENTED BY INTNAME. . 00525100
Cc 00525200
C IF IOPN=STOREP, THE VALUE OF THE DATUM REPRESENTED 00525300
C B8Y INTNAME BECOMES VALUE. ’ 00525400
C. 00525500
.C IF IOPN=FLOCKP, SLOCKP, UNLFEP, OR UNLSTP, THE DATUM 00525600
C REPRESENTED BY INTNAME IS RESPECTIVELY LOCKED TO FUTURE 00525700
C FETCHES, LOCKED TO FUTURE STORES, UNLOCKED TO FUTURE 00525800
C FETCHES, OR UNLOCKED TO FUTURE STORES. 00525900
C (LOCKING A DATUM LOCKS OUT ALL USER/TERMINAL COHBINATIONS 00526000
C EXCEPT THE ONE THAT SET THE LOCK.}) 00526100
G) 00526200
C YHE LENGTH OF VALUE IS LENGTH. 00526300
c ' 00526400
C ACCESS RETURNS IN COMPCODE THE FOLLOWING COMPLETION CODES: 00526500
c . . 00526600
c 1 NORMAL EXIT, NO ERROR 00526700
c 2 UNLOCK OPERATION REQUESTED BY USER/TERMINAL 00526800
4 WHO/WHICH OID NOT SET LOCK 00526900
C 3 10PN OPERATION PERMITTED BUT GAVE ERROR WHEN ATTEMPTED 00527000
4 4 ATTEMPT TO UNLOCK DATA WHICH IS NUI LULREU IN GivEN MANNEROOS27100
c 5 CANNOT HANDLE ANY MORE USER CONTROL BLOCKS 00527200
c 6 ATTEMPT TO DETACH NONEXISTENT USER/TERMINAL/FORMULARY 00527300
c COMBINATION 00527400
[7 10PN .OPERATION PERMITTED BUT WAS UNABLE TO BE CARRIED OUT 00527500
[4 SINCE THE DATUM WAS LOCKED TO PREVENT SUCH AN OPERATION 00527600
c 8 CANNOT PUT ON LOCK AS REQUESTED SINCE LOCKLIST IS FuLL 00527700
c 9 DATUM ALREADY LOCKED BY THIS USER AND TERMINAL 00527800
[10 VIRTUAL PROCEDURE CANNOT TRANSLATE INTERNAL NAME INTO 00527900
[# VIRTUAL ADDRESS 00528000
Cc 11 10PN OPERATION NOT PERMITTED ON DATUM REPRESENTED 00528100
[+ BY INTNAME; OETECTION CARRIED OUT BY THE CONTROL 00528200
€ PROGRAM OF THE ATTACHED FORMULARY . 00528300
[+ 12 END OF DATA SET ENCOUNTERED ON FETCH ATTEMPT 00528400
L 00520500
C 00528600
C 00528700
C FORMAT OF LOCKLIST (LLIST) IS: 00528800
Cc 00528900
C ENTRY] ENTRY 2 see ENTRY N ENTRY N+l ... ENTRY 100 00529000
C INANE) 00529100
C 'OPN 00529200
C USER/TERMINAL lNFORHATlON 00529300
[+ 00529400
C OPERATIONS -- 00529500
C 1 FETCH, 2 STORE, 3 BOTH FETCHM AND STORE 00529600
C INAME=-]1 IMPLIES THAT SLOT ON LOCKLIST 1S EMPTY 00529700
c 00529800
[+ 00529900
[# 00530000
IMPLICIT INTEGER(A-Z) 00530100
COMMON/CURUCB/JUCS 00530200
COMMON/CONSTANTS/NUCB/NFORM,MAXIISERS ¢ MAXLI. T ST TTALK, 00530300

1 FORML1,FORM2, FORM3, 00530400

2 NEXTALL,SAMEALL 00530500

3 FETCHP . STOREP, UNLFEP JUNLSTP, FLOCKP,SLDCKP.ATTACHP.DETACHP 00530600
COMMON/UCB/ ISTDUCB 00530700
COMNON/OWNL1/UCBL,LLLEST LS 00530800
INTEGER LLIST(4,100} 00530900
INTEGER UCB1(100,3) 00531000

£ s*sesssscesss 100 [S MAXUSERS, NUCB IS 3 00531100
INTEGER 1STOUCBI(3} 00531200
INTEGER INFO(ITALK) 00531300
INTEGER VALUE(20) 00531400

C ***% DIMENSION 1S LENGTH STORAGE ELEMENTS, IN THIS CASE 80 00531500
C STORAGE ELEMENTS. THIS MUST BE SPECIFIED AS 20 FORTRAN ELFMENTS NUE 00531600
C TO REQUIREMENTS UF THE FORTRAN LANGUAGE. 00531700
A INTEGER INTNAME,LENGTH, OPN, COMPCODE 00531800
c uus 31U
INTFGER TUCR(3} . ____ 00532000

C DIMENSION SHOULD BE NUCB BUT FORTRAN DOES NOT ALLOW THAT CONSTRUZTION 00532100
INTEGER RESLT{20) L 00532200

U ®ses PiMENSION IS LENGTH STORAGE BLEMENTSy IN Tuis CASC 00 00532300
C STORAGE ELEMENTS. THIS MUST BE SPECIFIED AS 20 FORTRAN ELEMENTS DUE 00532400
‘C TD REQUIREMENTS OF THE FORTRAN LANGUAGE. 00532500
c . 00532600

Exhibit 1--FORTRAN Version of ACCESS Procedure

The ACCESS procedure has the following characteristics:
a. only procedure which directly calls FETCH and STORE primitives.
b. only procedure which performs lncking and unlocking operations.
c. all requests for operations on da.a base must go through it.

Lines 5247~5284 above describe the operation of the ACCESS procedure.

- 56 -

Exhibit 1--FORTRAN Version of ACCESS Procedure (cont'd.)

COMPCODE=1
, ISLOT=0.
€' FIRST TRY TO RECOGNIZE USER/TERMINAL COMBINATION IN INFO ARRAY
" DO 1 I=1,MAXUSERS :
y _ 11=1
IF (UCBL(I,1) .EQ. -2) GO TO 2
C END LIST OF UCBS
IF (UCBL(I,1) .EQ. -1) GO TO 3
DO & =1, ITALK -
IF (UCBL(I,J) .NE. INFO(J)) GO TO 1
4 CONTINUE
GO T0 6
2 IF (ISLOT .NE. O) GO TO 7
IF (1T .NE. MAXUSERS) UCBL(II+1l,1)==2
G0 TO 16
3 [sLoT=I1" .
C REMEMBER THIS SLOT IF VACANT
1 CONTINUE
IF (ISLOT .EQ. 0) GO TO 805
C CANNOT HANOLE ANY MORE UCBS ‘
7 11=1SL07
16 DO 5 K=1, ITALK
5 UCBL(II,K)=INFO(K)
Kl=ITALK+1
DO 8 K=K1,NUCB
8 UCBL(II.K)=ISTDUCBI(K)
6 DO 9 I=1,NUCB
9 IUCB(I)=UCBL(II,I)

C SET UP PUINTERS TO APPROPRIATE USER CONTROL BLOCK
C USER AND TERMINAL NOW ASSOCIATED WITH POSITION II OF UCB TABLE.
- IF((IUCB(NUCB) .NE. INTNAME),AND. (OPN .EQ. DETACHP)) GO TO 806
C ATTEMPT TO DETACH USER/TERMINAL/FORMULARY COMB INATION NOT CURRENTLY
C ATTACHED
CALL CONTROL(INTNAME ,OPN,YESNO,0THER)

. IF (YESNO .GT. 1) GO TO 811
: C RETURN 11 IF CONTROL DOES NOT PERMIT OPERATION
IF (OPN .EQ. ATTACHP) GO TO 10
IF (OPN .EQ. DETACHP) GO TO 11
IF((OPN .NE. UNLFEP) .AND. (OPN .NE. UNLSTP)) GO TO 12
I=1DXLL (INTNAME ,OPN)
C FIND INTERNAL NAME ON LOCKLIST
IF (1 .LE. 0) GO TO 804
C CANNOT FIND IT IF I JLE. O
00 13 J=1,ITALK
IF (LLIST(2+4,1) NE. IUCB(J4}) GO TO 802
C JUMP IF UNLOCK REQUESTED BY USER/TERMINAL WHO/WHICH DID NOT SET LOCK
13 CONTINUE
LLISTUYsI}==1
C UNDO THE LOCK AND MARK SLOT IN UCB ARRAY EMPTY
GO TO 801 .
12 IF (TESTSE((L31) .EQ. -1) GO TO 12

I=I0XLL(INTNAME,OPN))

C GET RELATIVE LOCATION OF LOCKED DATUM IN LOCKLIST
IF{1 .LE. 0) GO TO 14

C IF DATUM NOT LOCKED TO THIS OPN, GO TO 14

- 57 -

00532700
00532800
00532900
00533000
00533100
€0533200
00533300
00533400
00533500
00533600
00533700
00533800
00533900
00534000
00534100
00534200

‘00534300

00534400
00534500
00534600
00534700
00534800
00534900
00535000
00535100
00535200
00535300
00535600
00535500
00535600
00535700
00535800
00535900
00536000
00536100
00536200
00536300
00536400
00536500
00536600
00536700
00536800
00536900
00537000
00537100
00537200
00537300
00537400

00537500

00537600
00537700
00537800
00537900
00538000
00538100
00538200
00538300
00538400

1957

Exhibit 1--FORTRAN Version of ACCESS Procedure (cont'd.)

C NOW SEE IF DATUM FOUND ON LOCKLIST LOCKED BY THIS USER AND TERHINAL

DO 15 J=1,1TALK
IF (LLIST(2+4,1) .NE. 1UCB(J)) GO TOD 807
15 CONTINUE
IF((OPN .EQ. FLOCKP) .OR. (OPN .EQ. SLOCKP)} GD TO 809
14 I=-1
IF ((OPN . NE. FLOCKP) .AND. (OPN .NE. SLOCKP)) GO TO 18
C JUMP IF NOT A LOCK OPERATION
IF (1 .EQ. 0) GO TO 808
Kl=2
IF (OPN .EQ. FLOCKP) Kl=1
LLIST(2,1)=K1
C SET APPROPRIATE LOCK
DO 20 J=1,1TALK
20 LLIST(2¢J,41)=1UCB(J)
C PLACE USER AND TERMINAL ID INTO LOCKLIST
LLIST(1 13=INTNAME
€ PLACE TINTERNAL NAMF 0N LOCKLIST
GQ TQ 8’0}

c .
18 CALL VIRTUAL(INTNAME yDATUM, OTHER,COMP)
C VIRTUAL RETURNS IN DATUM THE VIRTUAL ADDRESS OF THE DATUM SPECIFIED
IF (COMP .GT. 1) GO TO 810
C JUMP IF ERROR RETURN FROM VIRTUAL
IF (OPN .EQ. STOREP) GO TO 21
CALL FETCH{(DATUM,RESLT,LENGTH,COMP)
IF (COMP .EQ. 2) GO TO 812
C JUMP TD 812 IF END OF DATA SET ENCOUNTERED
IF (COMP .GT. 1) GO TO 803
CALL UNSCRAMBLE(RESLT,LENGTH,COMP, VALUEN)
IF (COMP .GT. 1) GO TO 803
GO TO 801
21 CALL SCRAMBLE(VALUE,LENGTH,COMP,RESLT,N)
IF (COMP .GT. 1) GO 7O 803

€ OPERATION PERMITTED BUT GAVE ERROR WHEN ATTEMPTED
c
€ NOW PERFURM A PHYSICAL WRITF OF N STORAGE UNITS TO THE BLOCK STARTING
€ AT RESLT
CALL STORE(DATUMsRESLT¢NyCOMP)
IF (COMP .GT. 1) GO TO 803
G0 TO 801
10 UCBL(II ,NUCB)=INTNAME
GO 70 801
11 UCBLITTIs1)==1
C DETACH FORMULARY
C (THIS LEAVES AN OPEN SLOT IN THE UCB TABLE)
GO TO 801
[4

812 COMPCODE=COMPCODE+1
811 COMPCODE=COMPCODE+1
810 COMPCODE=COMPCODET*]
809 COMPCODE=COMPCODE+1
808 COMPCODE=COMPCODE+1
807 COMPCODE=COMPCODE+1
806 COMPCODE=COMPCODE+1
805 COMPCODE=COMPCODE+]
804 COMPCODE=COMPCODE 1
803 COMPCODE=COMPCODE +1
802 COMPCODE=COMPCODE+1
801 CSl=1

C LEAVE CRITICAL SECTION FOR (OCKING OUT DATUMS

RETURN
END

- 58 -

00538500
00538600
00538700
00538800
00538900
00539000
00539100
005139200
00539300
00539400
00539500
00539600
00539700
00539800
00539900
00540000
00540100
00540200
00540300
00540400
00540500
00540600

00540700

00540800
00540900
00541000
0US41100
00541200
0054130¢C
00541400
00541500
00541600
00541700
00541800
0054190C
00542000
0054210¢C
00542200
00542300
00542400

V0542500 .

0054260C
00542700
00542800
00542900
00543000

00543100

00543200
00543300
00543400
00543500
00543600
00543700
00543800
0N%543900
00544000
00544100

00544200

00544300
00544400
00544500
00544600
00544700

00544800

00544900

Exhibit 1--FORTRAN Version of ACCESS Procedure (cont'd.)

INTEGER FUNCTION IDXLL(INTNAME, OPN)

IMPLICIT INTEGER(A-2)

INTEGER INTNAME,OPN
I0OXLLy GIVEN AN INTERNAL NAME INTNAM AND AN OPERATION OPN,
RETURNS THE RELATIVE P(SITION OF INTNAM ON THE LOCKLIST IF
IT IS LOCKED IN A MANNER AFFECTING OPERATION 0PN, OTHERWISE,
IDXLL RETURNS THE NEGATION OF THE FIRST EMPTY .RELATIVE LOCATION
ON THE LOCKLIST. IF THE LOCKLIST IS FULL AND THE INTNAM/ OPN
COMBINATION IS NOT FOUND, IDXLL RETURNS 0.

NOAOONO

COMMON/CONSTANTS/NUCB ¢y NFORMyMAXUSERS yMAXLLIST, ITALK,

1 FORM1,FORM2,FORM3,

2 NEXTALL,SAMEALL,

3 FETCHP,STOREP,UNLFEPyUNLSTPyFLOCKPsSLOCKP yATTACHP, DETACHP

COMMON/OWNL1/UCB1 4,LLIST,CS1
INTEGER LLIST{4,100)

INTEGER UCBL(10043)

J=2

IF({(OPN .EQ., FETCHP) .OR. (OPN .EQ. UNLFEP) .OR. (OPN .EQ. FLOCKP)
1) J=1

FIRSTEMPTY=0

IDXLL=0

DO 1 I=1,MAXLLIST

1I=1

K=LLIST(1,1)

IF (K .EQ.-1) FIRSTEMPTY=1

TF{(K .EQ. INTNAME) .AND.ILLIST(2,1) +EQ. J)) GO TO &
CONTINUE

IF (FIRSTEMPTY .NE. O) IDXLL==FIRSTEMPTY

RE TURN
4 IDXLL=I1
5 RETURN

" END

N -

TESTSE START O
TESTSE IS AN INTEGER FUNCTION DESIGNATOR CALLABLE FROM FORTRAN
VIA THE CALL
J=TESTSE(])
1 IS A VARIABLE OF TYPE INTEGER®*4., J CONTAINS, ON RETURN,
=1 ONLY IF THE CONDITION CODE WAS 1 AFTER EXECUYTING THE TS OPERATION
ON l. THE LEFTMOST BYTE OF I IS SET TO ALL ONES ON
RETURN FROM TESTSE.

VRN SWNM

L X 3K 3R B BE B BRI B 3

THANKS TO JOHN EMRMAN FOR THE COOING OF THIS.

12 L 1,0(0,1)

13 Ts 0(1l)

14 BALR 0,0

15 St 0s3

16 SRA 0,31 .

i: B:ND a : - leesaie

- 59 -

[a¥alaNaRale XX a¥aNa oo RaN ol el

OOCONONOA0A0ONO

D

SUBROUTINE FETCHUTAODR, IVALUE. LENGTH. LCOMPL)

== FETCH PRIMITIVE -~

THIS PRIMITIVE FETCHES THE VALUE WHICH IS CONTAINED IN THE
STORAGE LOCATIONS STARIING A1 VIRTUAL ADDRESS [ADDR AND RETURNS
THE LENGTH STORAGE ELEMENTS (BYTES) THIS VALUE TAKES [N VALUE.
UPON COMPLETION. THE COMPLETION CODE ICOMPL IS SET TO:

1 IF NORMAL EXIT '

2 END OF DATA SET ENCOUNTERED WHEN PHYSICAL READ ATTEMPTED
3 IF LENGTH TOO BIG (>80 BYTES FOR THIS IMPLEMENTATION)

4 ILLEGAL VIRTUsL ADDRESS TO FETCH FROM

S ERROR WHEN ATTEMPTING TO 00 PHYSICAL READ

sxsones CERTIFIED 20 MAY 1969

IMPLICIT INTEGER(A-Z)

COMMON/CONSTANTS /NUCB o NFORM, MAXUSERS,MAXLLIST,ITALK,
1 FORML1+FORM2.FORM3,
2 NEXTALL, SAMEALL, -
3 FETCHP 4 STOREP yUNLFEPUNLSTP ,FANCLP ,SANDLP ,ATTACHP,DETACHP

INTEGER IVALUE(LENGTH)
IF ((LENGTH .GT. B80) +OR. (LENGTH .iT. 0)) GO TO 3
IComMPL=1
IF {1annNR .NF. NFYTAIIY GO TN 4
IF (LENGTH .EQ. 0) RETURN :
NEXT RECORD IS DESIREL SO PHYSICALLY READ IT FROM CATA BASE (UNIT 8)
READ(By 16,ENO=2,ERR=5) '1VALUE
16 FORMAT(2044)
- RETURN
2 ICOMPL=2
RETURN
3 ICOMPL=3
RETURN
4 ICQMPL=4
RETURN
5 ICOMPL=5
RETURN
END

SUBROUTINE STORE(IADDF, IVALUE, LENGTH.'ICOHPLi

== STORE PRIMITIVE —-

THIS PRIMITIVE STORES LENGTH STORAGE ELEMENTS (BYTES) STARTING AT .
VIRTUAL ACORESS IVALUE INTO LENGTH STORAGE ELEMENTS STAKTING AT

VIRTUAL ADDRESS IADOR. UPON COMPLETION, THE -COMPLTTICON ~“ODE TCOMPL

1S SET TO:

1 IF NORMAL EXIT

3 IF LENGTH TOO BIG (>80 BYYES FOR THIS IMPLEMENTATION)

4 ILLEGAL VIKTUAL ADDRESS TO STORE INTO

5 ERROR WHEN ATTEMPTING T DO PHYSICAL WRITE
CIMPOSSIDLE TG OBTECT UMING PORTRAN)

ssxxdxs CERTIFIED 20 MAY 1969
IMPLICTT INTEGER (A-Z)

COMMON/CONSTANTS /NUCB ¢ NFGRM ¢ MAXUSERS yMAXLLIST ITALK,
1 FORM1,FORM2,FURM3,
2 NEXTALL,SAMEBLL,
3 FETCHP,STOREP ,UNLFEP,UNLSTP,FANDLP,SANDLP ATTACHP,DETACHP
INTEGER IVALUE(LENGTH) '
IF ((LENGTH .GV. B80: .OR. (LENGTH .LT. 0)) GO TO 3
1CoMPL=1 -
[F (1IADOR .NE. NEXTALL) GO T0 ¢ .
IF (LENGTH .EC. O) RETURN '
NOW PHYSICALLY-WRITE CU: RECORD TO DATA BASE (UNIT 8)
WRITE(B,16) IVALUC
16 FORMAT(20A4)
RETURN
3 ICOMPL=3
GETUEN
4 1CGMPL=4
RETURN
END 337810

Exhibit 2--FETCH and STORE Primitive Operations in the SHS System

The FETCH and STORE primitive operations actually perform the physical
reads and writes which cause information transfer between the media the
data base resides on and the primary storage medium (usually, magnetic
core storage).

- 60 -

e

-~

[aNeNalaNal [sNaNaNalal

SUBROUTINE CONTROL(INAME,INPN,IYESNO,IOTHER)

4
C CONTROL IS CALLED TO DETERMINE WHETHER .
C THE USER IS PERMITTED TO PERFORM OPERATION IOPN ON THE OATUM
C SPECIFIED BY INTERNAL NAME INAME.
C IYESND IS SET TO 1 BY CONTROL IF THE OPERATION IS
C PERMITTED AND 2 OTHERWISE. IN THIS IMPLEMENTATION,
C "OTHER INFORMATION"™ 1S MEANINGLESS.
c - .
IMPLICIT INTEGER(A-Z)
DATA BLANK/® '/
DATA DOLM1/°*3 v/
" COMMON/CURUCB/IUCSB
COMMON/ ADDL 1/ IRAND, IRPT,PASSWD , USER,CARDA,PWTBL, IPWTBL,UTBL
COMMON/CONSTANYS/NUCB,NFORM,MAXUSERS MAXLL IST, [TALK,
1 FORM1, FURM2,FORM3,
2 NEXTALL,SAMEALL,
3 FETCHP s STOREP ¢ UNLFEP yUNLSTPFANDLP y SANDLP ,ATTACHP, DETACHP
INTEGER PASSWD(10),USER(10),PWTBL(20,10),UTBL(10,10}
INTEGER IRPT(4),CARDA(80),IRAND(20)
INTEGER CARD(80)
INTEGER TUCB(3)
C
[mecmmmes e cmcm e m— e —m—m—me
C —-mmmeem—mma o FORMUL ARY SELECTOR -===cwe—wee—-
C ———=== cmccce crmcce cemmmme ceme———= ——
c ' .
ITI=1UCB(3)
GO TO (600,601,602}, II1I
LR A g L Y T P e T L T
602 CONTINUE
CONTROL PROCEDURE FOR FORMULARY 3
THIS PROCEDURE CURRENTLY ALLOWS ONLY FETCHES OF THE NEXT RECORD OR
DETACHING OF FORMULARIES. NO STORE OPERATIONS ARE PERMITTED. »
EEERABAREEE KK EEETEXG KRBT EEREE SRR RERE R KR EERE R AR A B RERKE AR R EE RR & DK

IF ({IOPN .EQ. FETCHP).AND.(INAME .EQ. NEXTALL)} GO TO 20
If (10PN .EQ. DETACHP) GO TO 20
ALLOW DETACHMENT OF FORMULARY
2 IYESNO=2
C OPERATION NOT ALLOWED
RETURN
20 IYESNO=1
C OPERATIUN IS ALLOWED
RETURN .

o

hadaddatd dd bl e I S E L T T T I
601 CONTINUE)
CONTROL PROCEDURE FOR FORMULARY 2

THIS PROCEDURE CURRENTLY ALLOWS ONLY STORE NPERATIONS OF THE NEXT
RECORD AND DETACHING OF FORMULARIES. NO FEYCH OPERATIONS ARE
PERM[TTED.
BREEXXBEXAE AR R SLRXT X SBEIERARAE KRR RE S RAB G AR RS RS SRR G SRR KE AR
IF ({IOPN .EQ. STOREP) .AND. (INAME .EQ. NEXTALL)) GO TO 20
IF (IOPN .EQ. DETACHP) GO TO 20
C ALLOW DETACHMENT OF FORMULARY
GO T0O 2 issTN

[XalaNaRaNel [aRgl

Exhibit 3--A CONTROL Procedure in the SHS System

The CONTROL procedure decides whether a user is allowed to perform the
operation he requests on the particular datum he has specified. The sub-
routine illustrated here actually contains the CONTROL procedures for
formularies 1, 2, and 3 in the SHS system. Formulary 3 allows only fetches
of the next record in the data set or detaching of formularies; no STORE
operations are permitted. Formulary 2 allows only STORE operations of
the next record and detaching of formularies; no FETCH operations are
permitted. Formulary 1 is the system formulary; it allows only detaching
of formularies or attachment of formulary 1, 2, or 3. Before any attach-
ment is made, a user identification and password check is carried out.

- 61 -

[aNeNaNeRalelel

O (a] OO0 (g (o]

[aNaXel (o TN ¢l

o (@} ﬁ(ﬂfiﬁK\ﬁCﬁﬁ o (@] (o]

Exhibit 3--A CONTROL Procedure in the SHS System (cont'd.)

HEREEEEREE R AR SRS KRR AR EERE IR AR AT KRBT EREE KRR R RER AR R KKK KRS KRR X KRR

CONTROL PROCEDURE FOR SYSTEM FORMULARY (FORMULARY 1)

THIS PROCEDURE CURRENTLY ALLOWS ONLY DETACHING OF A FORMULARY OR
ATTACHMENT TO FORMULARY 1, FORMULARY 2, OR FORMULARY 3.
U REE SR EEEE AR EE R EREKEBEEEESEREE RS G EER R R RE KRR E R EREXETEEBEXERE B K E
600 IF ((IOPN oNE. ATTACHP) ,AND. (IOPN .NE. DETACHP)) GO TO 2
If ((INAME .NE. FORM1) LAND. (INAME .NE. FORM2) .AND.
1 (INAME .NE. FORM3)) GO TO 2 . .
UNLY ALLOW ATTACH OPERATION ON THE DESIRED DATA (A FORMULARY)
IF (IOPN .EQ. DETACHP) GO TO 20
ALLOW DETACHMENT OF FORMULARY
READ(5+18,END=2,ERR=2) CARD
READ IN CARD WITH ACCESS CONTROL INFORMATION ON IT
18 FORMAT (80Al)
sss THIS CODE READS A CARD IMAGE AND
CHECKS THE USER ID AND PASSWORD IT FINDS THERE AGAINST
PRESTORED INFOURMATION. [IF THE USER ID AND PASSWORD MATCH

THOSE IN THE PROGRAM, CONTROL SETS IYESNO TO 1, SIGNIFYING

THAT THE USER HAS PASSED A PRIVACY CHECK AND IS ALLOWED TO USE
THE SYSTEM. OTHERWISE,
CONTROL SETS IYESNO TO 2, SIGNIFYING THAT HE HAS NOT.

I=ISCAN(CARD,1,BLANK,80,0)
HUNT FOR FIRST NON-BLANK
If (1 6T, 80) GJ TGO 990
GO TO 990 IF SCAN RAN OFF END OF CARD
LAST=1
I=ISCAN(CARD,1,0LM1,80,1)
HUNT FOR SEMICOLON (LEFY TO RIGHT-SCAN)
IF (I .GT. 80) GO TO 990
GO TO 990 IF SCAN RAN OFF END OF CARD
CALL CLRTOHASH(CARD,LAST-1,I-LAST,USER)
WE SCRAMBLE THE (CLEAR) USER ID BEFORE TESTING FOR A MATCH, SINCE
THE MATCHING TEST IS MADE USING SCRAMBLED PRESTORED INFORMATION
(NEEDHAM®*S DEVICE)
I=ISCAN(CARD,I+1,BLANK, 80,0)
HUNT FOR FIRST NON-BLANK
IF (I .GT. B80) GO TO 990
GO YO 990 IF SCAN RAN OFF END OF CARD
LAST=1
HUNT FOR SEMICOLUN (LEFT TO RIGHT-SCAN)
IfF {I .GT. 80) GO TO 990
GO TO 990 IF SCAN RAN OFF END OF CARD
CALL CLRTOHASH(CARD,LAST-1,I-LAST,PASSWD)
WE SCRAMBLE THE (CLEAR) PASSWORD ID BEFORE TESTING FOR A MATCH, SINCE
THE MATCHING TEST IS MADE USING SCRAMBLED PRESTORED INFORMAT 1 ON
(NEEDHAM'S DEVICE)
DO 950 J=1,1IPWTBL
00 951 I=1,10
IF (PWTBL(I,J) .NE. PASSWD(I))} GO TO 950
951 CONTINUE : A
IF WE GET HERE, A MATCH ON PASSWORD HAS BEEN FOUND
BUT NOT NECCESSARILY FOR THE CORRECT USER
00 952 I=1,10
IF (UTBL(I,J) .NE. .USER(I}) GO TO 9S50
952 CONTINUE
MATCH EXISTS FOR USER/PASSWORD COMBINATION
GO 70O 20
PERMIT FETCHING OF FORMULARY
950 CONTINUE
GO TO 2
990 WRITE(6,4793)
793 FORMAT (' =%% ACCESS CONTROL ERROR - SCAN RAN OFF CARD')
GO 70 2 e
END 1134 1]}

- 62 -

' Exhibit 3--A CQNTROL Procedure in the SHS System (cont'd.)

OOOOOOONOON

INTEGER FUNCTION ISCAN(BUF,N,DLMsMAX,K)
ISCAN SCANS THE BUFFER BUF, WHICH CONTAINS ONE CHARACTER PER WORD,
STARTING AT RELATIVE LOCATION N OF IT. IT SCANS OVER TO THE NEXT
CHARACTER = OR -~= TO DLM, AND RETURNS AS ITS VALUE THE INDEX OF THE
BUF BUFFER AT THAT PLACE. THE SCAN IS TERMINATED AT RELATIVE
LOCATION MAX OF BUFFER BUF IF NO MATCH (OR NON-MATCH) HAS BEEN
FOUND UP TO OR INCLUDING THAT POINT; IN THIS CASEs, AN INTEGER > MAX
IS RETURNED.)
K = 1 IF THE SCAN SHOULD STOP WHEN A CHARACTER EQUAL TO OLM 1S FOUND.
K = 0 IF THE SCAN SHOULD STOP WHEN A CHARACTER UNEQUAL TO OLM IS
FOUND,

INTEGER BUF(80)

INTEGER DLM

I=N . ‘
902 IF (I .6GT. MAX) GO TO 901
IF (({BUF(I) .EQ. DLM) .AND. (K .EQ. 1)} .OR.
1 . ((BUF(I) «NE. OLM) .AND. (K .EQ. O}})
2’ GO0 TO 901
I=1+1
GO TO 902

" 901 ISCAN=I

RETWRN
END . : 1465A18

- 63 -

SUBROUT INE SCRAMBLE(CLRBUF lCLRLEN,ICOMPL.SCRBUF'ISCRLEN)

C THIS SUBROUTIME SCRAMBLES THE UNSCRAMBLED DATUM WHICH
C IS ICLRLEN CHARACTERS LONG STARTING IN CLRBUF(1), AND IS
C STORED FOUR CHARACTERS PER WORD. IT LEAVES THE ’ '
C SCRAMBLED DATUM IN THE FIRST ISCRLEN BYTES OF THE SCRBUF
C ARRAY (AND RETURNS ISCRLEN TO THE CALLING ROUTINE)..
C THIS SUBROUTINE STORES A COMPLETION CODE IN ICOMPL.
C 0 < ISCRLEN < 81 AND 0 < ICLRLEN < 8l.
Cc
C COMPLETION CODES STORED IN ICOMPL'
C 1 NORMAL EXIT
C 2 SCRAMBLE OPERATION NUT PERMITTED BY THIS FORMULARY
o 3 ILLEGAL LENGTH OF DATUM TO SCRAMBLE
c "
C =%x%k&¥xkx CERTIFIED 8 MAY 1969 *%%x%xx%
C
C :
COMMUN/ CURUCB/IUCSB
COMMUON/CONSTANTS/NUCB ¢ NFORM,MAXUSERS, MAXLLIST ITALK9
L FORM]1,FORM2,FORM3,
2 NEXTALLy SAMEALL
3 FETCHP s STOREP gUNLFEPUNLSTP, FANDLP:SANDLP ATTACHP DETACHP
INTEGER SCRBUF(20),CLRBUF(20),IUCB(3)
COMMUON/ADDL LI/ IRAND,,IRPT ,PASSWD ,USER,CARDA,PWTBL s IPWTBL UTBL
INTEGER PASSWD(1G) USER(L1O) PWTBL(10,10), UTBL(10,10)
INTEGER IRPT(4),CARDA{80), IRAND(20)
C ——rmeec—cmcmecmecmccmcceee e —c——————m———————
C mmmmmmmem—e- FORMULARY SELECTOR ========-mmc-
C =—=mm= mmmeee cmccee cccmcen cemee——- ———
C
I1I=1UCB(3)
GO TD (391430 I11
C .
(m——cmmeee cmcmeee cemcmeeee e ceesee cecao——
[ettt L T

1 IF {(ICLRLEN .GT. 80) .OR. (ICLRLEN .LT. 1)) GO TO 4
ISCRLEN=(ICLRLEN-1)/4¢1
DO 2 I=1,ISCRLEN
2 SCRBUF(I)=LGOLIXR(CLRBUF(I),IRAND(I))
ISCRLEN=ICLRLEN
ICOMPL=1
RETURN
3 ICOMPL=2
RETURN
4 [COMPL=3
RETURM
END 1557413

Exhibit 4--A SCRAMBLE Procedure in the SHS System

SCRAMBLE transforms raw data into encrypted form.

- 64 -

A

i

SUBROUTINE UNSCRAMBLE(SCRBUF, ISCRLEN, ICOMPL 4CLRBUF, ICLRLEN)

C THIS SUBRODUTINE UNSCRAMBLES THE SCRAMBLED DATUM WHICH
C IS ISCRLEN CHARACTERS LONG STARTING IN SCRBUF(1), AND IS
C STORED FOUR CHARACTERS PER WORD. IT LEAVES THE UNSCRAMBLED
C DATUM FOUR CHARACTERS PER WORD IN THE FIRST ICLRLEN
C BYTES OF THE CLRBUF ARRAY (AND RETURNS ICLRLEN TO THE
C CALLING ROUTINE).
C THIS SUBROUTINE STORES A COMPLETION CODE IN ICOMPL.
C 0 < ICLRLEN < 81 AND 0 < ISCRLEN < 81,
c)
C COMPLETION CODES STORED IN ICOMPL:
Cc 1 NORMAL EXIT
c 2 UNSCRAMBLE OPERATION NOT PERMITTED BY THIS FORMULARY
C 3 ILLEGAL LENGTH OF DATUM TO UNSCRAMBLE
C
C
C *%x%xkxx CERTIFIED 8 MAY 1969 %¥x¥kx%k
C
C
COMMON/CURUCB/TIUCSE
COMMON/CONSTANTS/NUCB, NFORM,MAXUSERS, MAXLLIST'ITALKv
1 FORM1,FORM2,FORM3,
2 NEXTALLy SAMEALL
3 FETCHP ,STOREP,UNLFEP,UNLSTP, FANDLP,SANDLP,ATTACHP DETACHP
INTEGER SCRBUF(20),CLRBUF(20),1UCBI(3)
COMMON/ADDL 1/ IRAND,IRPT yPASSWDyUSER,C ARDA,PWYBL,IPWTBL,UTBL
INTEGER PASSWD(10),USER(1Q),PWTBL(10,10), UTBL(10,10)
INTEGER IRPT(4),CARDA(80),IRAND(20)
c _________________________________ - - - - -
C ~——remrcccer== FORMULARY. SELECTOR —==-recc—ee -
€ ————em mmmmce mmmece | mmmcce | e ———
Cc
“ITI=1uCB(3)
GO TO (1le1,2), II1
C <
C ———mmmem cmmceer mmccemmme emmmcm———= —m————
C ——
1 ICOMPL=2
RETURN

2 IF ((ISCRLEN .GT. B80) «OR. (ISCRLEN .LT. 1)) GO TO 4
ICLRLEN=(ISCRLEN=1)/4+1
DO 3 I=1,ICLRLEN
3 CLRBUF({I)=LGOLXR(SCRBUF(1),IRAND(I))
ICLRLEN=TSCRLEN
ICOMPL=1
RETURN
4 ICOMPL=3
RETURN 1557A14
END -

Exhibit 5--An UNSCRAMBLE Procedure in the SHS System

UNSCRAMBLE tranforms encrypted data into raw form.

- 65 -

SUBROUTINE VIRTUAL(INAME,JADDR,IOTHER, ICOMPL)

C
C
c
COMMON/CURUCB/ZIUCS
COMMON/CONSTANTS/NUCByNFORMyMAXUSERS yMAXLLIST,ITALK,
1 FORM1,FORM2,FORM3,
2 NEXTALLy SAMEALL,
3 FETCHP ySTOREPy UNLFEPyUNLSTP yFANDLP » SANDLP,ATTACHP,DETACHP
INTEGER TUCB(3)
Cc
C *xxxxkd&xgkxpxhkkkbkxxk CEKTIFIED 6 JUNE 1969
c ...
C —————wrmmercnn FORMULARY SELECTOR =wwwceccc—c--
c - -
C
I11I=1IUCB(3)
GU TU (L1elyl)eIIl
¢
C ..
c ..
1 IADDR=INAME
ICOMPL=1
RETURN _
ENOD ' 1557415

Exhibit 6--A VIRTUAL Procedure in the SHS System

VIRTUAL transforms an internal name into the virtual address of the corresponding
datum. In the SHS system, VIRTUAL is the identity transformation.

- 66 -

APPENDIX B

A COST EXPERIMENT

This appendix contains the source code and output relevant to the cost
experiment described in Chapter V. The UNSCRAMBLE, VIRTUAL, and CONTROL
procedures were essentially null and the ACCESS pfocedure of Exhibit 1, Appendix

A was used.

- 67 -

HOV 68) 057360 FORTRAN H

OMPILER OPTIONS - MAME= MAIN,0PT=02,LINECNT=58,SUOUKRCE ,EBCDIC,NOLIST,NODECK,LOAD,
[MPLICIT INTEGER(A-2)
COMMCH/COUML/NCARDS yCHE y THO, ZERD sBLANK, [RAND
L NEXTREC,FETCHP, STUREP yF LOCKP 3 SLOCKP yUNLFEP UNLSTP, ATTACHP ,DETACHP
INTEGER IRANC(20) .
INTEGER CARD(20) 4 SCARD(20) ,1UCBL(2),TIM1
REAL TIME
C NOTE PUM
DATA NO/® MO */

Cl=2%%3

C2=2%%16

C3=2%%24

READ(S,210INCARDS»ITRIES

910 FURMAT(2110}
C FIRST, CREATE A TAPE WITH NCAKRDS 80-CHARACTER RECURDS

RCWIND 3

DC L I=1,NCARDS

1 WRITH(8) CARD

NCARDS=NCARDS~1

DO 200 NLUOGP=1,ITRIES

REWIND 8
REWIND 9

GET TIME JUST TO READ INPUT TAPE AND WRITE OUTPUT TAPE
(NO FCRMULARTES, NO SCRAMBLING)
HRITEt(9) CAKD
OPEN DATA SET (USED TG SUBDUE JITTER IN TIMING TESTS)
READ(8ICARD ’
NECESSARY TU INSURE REWING IS DONE BEFORE INITIATING TIMING TEST
TIM2=CLOCKL{(%)
D0 9 1=1,NCARDLS
READ(81CARD
9 WRITE(9)SCARD
TIME=(CLOCKL1(4)~TIM2)%26/1000000,0
WRITE(6,901) NCAKDS,ZERO,NO, TIME
REWIND O
REWIND 9

(@) (o] e Nakal

NE X7, SCRAMELE THE TAPE USING ALGORITHM L ANO NOT USING THE FURMULARY
ME THOD .
WRITE(9) CARD
C OPEN DATA SET (USED TO SUBDUE JITTER IN TIMING TESTS)
READ(B) CARD
C MECESSARY TO IMSURE REWIND IS DOME BEFORE INITIATING TIMING TEST
TIM2=CLUCK1(4)
DU 2 1=1,NSARDE
KEAD(B)CARD
00 3 J=1,20
3 SCARD(J)I=LGOLXR(CARE(J), IRAND(J))
2 URITE(9)SCARD
TIME=(CLCCKL{4)~TIMZ)%26/1000000.0
WRITE (649010 NCARDS,ONE ,NO,TIME
901 FORMAT(® TIME USED FCR '416,' CARDS WITH ALGORITHM *,11,A4,
1 ¢ FORMULARY METHOD WAS ',F9.5,' SECONDS.*)

[aNeNat

C NEXT, SCRAMBLE THE TAPE USING ALGORITHM 2 AND NOT USING THE FURMULARY

N

e N aNe

METHOD .
REWIND 8

REWIND 9
WRITE(9) CARD
DPEN DATA SET (USED TO SUBDUE JITTER IN TIMING TESTS)
READ(8) CARD
NECESSARY TO INSURE REWIND IS DONE BEFORE INITIATING TIMING TEST
TIM2=CLOCKL{ 4)
CALL RAN2A(21474835)
DO 4 I=1,NCARDS
READ(BICARD
DO 5 J=1,20
K1=MOD(RAN2(0)4256)
K2=MCD (RAN2(01,4256)
K3=MCD(RANZ2(O0),256)
K4=MOD (RAN2(0),128)
GET FOUR ‘SMALL NCN-NEGATIVE PSEUDO-RANDOM NUMBERS
RAND=C3*K4+C2*K3+C L*K2+K]
USE THEM TO MAKE ONE BIG PSEUDO-RANDOM NUMBER
5 SCARD(J)=LGOLXR{CARD(J) ,RAND)
4 WRITE(9)SCARD
TIME=(CLOCK1{4)~TIM2)%*26/1000000.0
WRITE(6,901) NCARDS,TWOsNQ,TIME

NOW RUN TIMINGS USING THE FORMULARY HETHOD

DO 13 I=1,3
13 CALL SCRTIM(I
200 CONTINUE
RETURN
END

- 69 -

L NCV 68) . 0S/360 FORTRAN H

COMPILER OPTIONS ~ NAME= MAIN,OPT=02,LINECNT=58,SOURCE ,EBCDIC, NOLIST.NODECK:LOAD:
SUBROUTINE' SCRTIM{FORMK) - .
c SCRAMHLE THE TAPE USING ALGORITHM K AND USING THE FOURMULARY
C METHOD. PRINT OUT THE TIME THIS TAKES.
IMPLICIT INTEGER(A-Z)
COMMON/COM1/NCARDS yUNE + TWO, ZEROy BLANK, TRAND,
1 NEXTREC FETCHP» STORER,FLOCK? s SLOCKP yUNLFEPUNLSTP, ATTACHP, DETACHP .
INTEGER CARD(ZO),SCARD(ZO),[UCBI(Z):T!MI
INTEGER IRAND(20)
INTEGER FORMK
REAL TIME
REWIND 8
REWIND 9
WRITE(Q) CARD
C OPEN DATA SET (USED TO SUBDUE JITTER IN TIMING TESTS)

READ(8)} CARD
C NECESSARY TO INSURE KEWIND IS DONE BEFORE INITIATING TIMING TEST

TIM2=CLGCK1(4)
CALL ACCESS{IUCB1 ,FORMK,CARD +80sATTACHP, COMPCUDE)

C ATTAUH TU APPROPATIATE FURMULARY FUR JLRAHBLING ALGORITHM K
CO 6 I=1,NCARDS

READ(8)CARD
& CALL ACCESS{IUCBL sNEXTEEC,CARD80,STUREP,CCMPCOLE)

C STORE DATA {SCRAMBLED)INTO DATA BASE(I.E., ONTO THE TAFE)
TIME=(CLOCKL(4)~=TINZ2)%26/1000000.0 -
FORMKM=FORMK~1
WRITE(64901) NCARDS,FORMKM,BLANK,TIME

901 FORMAT(' TIME USED FOR 416" CARDS WLTH ALGUKRLIHM *¢ilsA4,

1 ' FORMULARY METHOL WAS 'yF9.5,' SECONDS.'}

RETURN .
END .
' o

*

-70 -

”

t NOV 681} 0s/360 FORTRAN H

COMPILER OPTIONS = NAME= MAIN,OPT=02,LINECNT=58,S0URCE,EBCDIC,NOLIST,NDDECK,LOAD,*
SUBROUTINE SCRAMBLE(CLRBUF + ICLRLEN, ICOMPL,SCRBUF, ISCRLEN)
IMPLICIT INTEGER{A-Z) '
’ . CGMMON/CURUCB /7 TUCS
COMMON/COML/NCAR DS »ONE » T, ZERD »BLANK, IRAND
1 NEXTKEC ,FETCHP y STUREP o F LOCKP » SLOCKP » UNLFEP s UNLS TPy ATTACHP DETACHP
INTEGER SCRBUF(29) ,CLRBUF(20),1UCB(3),I1RAND{20)

C ——mmommmmmene —— - .
€ =-mmmmmem- FORMULAKY SELECTOR ==m—c——e—-
[11=1UCB(3) : :
GO JO (1,243), 111
(R - ——— : -- - -~
1 1COMPL=1
RETURN

200 5 J=1,20
5 SCRBUF(Y)= LGOlXR(CLRBUF(J)oIRAND(J))
1conpL=1 - -
RETURN
3 Cl=24%8
C2=25%16
C3=24%24
DO 6 4=1,20
K1=MOD(RAN2(0),256)
K2=MUD (KAN2(Q)+256)
K3=MOD(KAN2(0),256)
K4=MOD(RAN2(0),128)
€ GET FOUR SMALL NON-NEGATIVE PSEUDD-RANDOM NUMBERS
RAND=C 3%K4+4C 23K 3+4C 1¥K2+K1
6 SCRBUF(J)=LGO1XRICLRBUF (J) ,RAND)
1COMPL=1
« KETURN
END

™

- 71 -

1 NOV 68) . 0S/360 FORTRAN H

COMPILER OPTIONS - ' NAME= MAIN,OPT=02,LINECNT= se.SOURcs,Eacoxc.NOLIST.NUDscK,LOAo.n,
‘BLOCK DATA , , 345,
IMPLICIT INTEGER(A-Z) , - : 346,
COMMON/CGML/NCARDS ;ONE s THO» ZERB s BLANK ¢ IRAND ' '
1 NEXTREC sFETCHP, STUREP sF LOCKP , $LOCKP yUNLFEP 3 UNLSTP 4 ATTACHP , DETACHP
COMMON/CONSTANTS /HUCB , NFORM, MAXUSERS s MAXLLIST» ITALK
- CDMMON/ONNI/UCBl.LLlSTyCSl.ISTDUCB
INTEGER IRAND(20) .-
INTEGER UCB1(100;3)

DATA BLANK/' '/.UNE/l/.TwD/I/'ZERQIO/ . ‘
DATA FETCHP/1/,STOREP/2/UNLFEP/3/ UNLSTP/4/, - : 409,
1 FLOCKP/S/.SLOCKP/b/:ATTACHP/?/.DETA»HP/B/ . o 410.
DATA NEXTREC/1000/
DATA IRAND/=143295C37, 12498331, -99905473. 107015948, _ 359.
1 =~85881432, 13737339, =254817906, .227051690, 360.
2 267059188,-305496183,132598180,-133310762y -
3 ~124696699,=143295037,243176905,~-240111797,
4 199832006+-17896356 1y ~2199612279~174003653/
" DATA NFORM/3/ : 404,
.C NUMBER OF FORMULARIES CURRENTLY IH THE 'SYSTEM. . oo : 405.
© . " DATA MAXUSERS 7100/ . : 397,
C MAXUSERS = MAX. NCU. OF USER/ TERMINAL COMBINATIONS 398.
C POSSIBLE AT ANY OIVEN TIME . 499.
" INTEGER LLIST(4yl00)/400%-1/ . - 366,
C THE LUCKLIST
INTEGER' ISTOUCB(%) /0,0,1/ ' . : 364,
C STANDARD USER CONTROL: BLOCK (TEMPLATE) : SR 365,
© DATA NUCB/3/ e .. 395,
C NUCB = NO. OF WORDS IM EACH USER CONTROL- BLOCK ‘ S T 396, .
- DATA CSL/1/ :
.C INITIALIZE TO CRITICAL SECTION OF ACCESS PROC. NOT CURRENTLY IN USE
’ DATA UCBLL1,1)/-2/ - - 393.
€ INITIALIZE TO NOU ACTIVE U3ER CONTRUL BLOCKS - 3194,
DATA MAXLLIST/S/
- C MAXIMUM LENGTH OF LIST OF LOCKED DATUMS MAINTAINEO BY ACCESS PGM 392,
. DATA ITALK/2/ . 389,
C LENGTH OF ARRAY PASSED BY TALK PROGRAM TO ACCE3S PROGRAM 390,

END _ £11.

-72 -

'Y‘./\

1 USED FGR 10000 CAKDS WITH ALGGRITHM O NO FGRMULARY METHOD WA
1€ USEC FOUR 10000 CARDS WITH ALGORITHM 1 NO FORMULARY METHOUD WAS
1€ USED FCR 10000 CAFDS WITIi ALGORITHM 2 NO FORMULARY METHOD WAS
\f USEC FCR 10000 CARDS VWITH ALGORITHM 0 FOFRMULARY METHOD WAS
¢ USED FGR 10000 CARDS WITH ALGCRITHM 1 FORMULARY METHOD WAS
‘¢ USED FORK 10000 CAKDS WITH ALGORITHM 2 FORMULARY METHOD WaS
1€ USED FGR - 10000 CARDS WITH ALGGRITHM O NO FORMULARY METHOO WAS
'z USED FOR 10000 CARDS WITH ALGORITHM 1 NO FORMJLARY METHOD WAS
It° USED FOR 10000 CAKDS WITH ALGORITHM 2 NO FURMULARY METHUL WAS
iZ USED FOR 10000 CAKDS WITH ALGORITHM 0O FORMULARY METHOD WAS'
£ USED FLR 10000 .CARDS WITH ALGURITHM 1 FORMJULARY METHOD WAS
£ USED FOR 10000 CARDS WITH ALGURITHM 2 FORMULARY METHOD WAS
£ USEL FOR 10000 CARDS WITH ALGORITHM O NO FORMULARY METHUD WAS
€ USED FOk 10000 CAKDS WITH ALGGRITHM)1 NO FOKMULARY METHOD WAS
£ USED FOR 10000 CARDS WITH ALGCRITHM 2 NJ FURMULARY METHOD WAS
i USED FOR 10000 CARDS WITH ALGORITHM O FORMULARY METHOD WAS
© USED FOR 10000 CAKDS WITH ALGCRITHM 1 FOKMULARY METHUD WAS
Z USED FOFP 10000 CARDS WITH ALGGRITHM 2 FORMULARY METHOD WAS
& USED FOR 10000 CARDS WITH ALGORITH!M O NO FGRMULAPY METHID Was
i USED FOR 10000 CARDS WITH ALGORITHM 1 NO FORMULARY METHOD WAS
i USED FURK 10000 CARKDS WITH ALGGRITHM 2 MO FORMJLARY METHOD WAS
F USED F3K 10000 CARDS WITH ALGURITHM 0 FOKMULARY METHOD WAS
T USED FUR 10000 CAKRDS WITH ALGORITHM 1 FORMULALRY METHOD WAS
i USED FOR 10000 CAKDS WITH ALGCRITHM 2 FORMULARY METHOD WAS
£ USES FOX 10000 CARDS WITH ALGORITHM O NO FURMULARY METHOD WAS
£ USED FOR 10000 CAFDS3 WITH ALGGRITHM 1 NO FCRMULLRY METHOD WAS
& USED FUR 10000 CAFDS WITH ALGORITHM 2 NO FORMULARY METHUD WAS
© USED FOR 10000 CARD3S WITH ALGORITHM O FUGRMULALRY METHOD WAS
¢ USED FOR 10000 CAKL S WITH ALGCRITHM 1 FORMULARY METHOD WAS
£ USED FGR 10000 CARDS WITH ALGORITHM 2 FURMULARY METHOD WAS
< USEC FCR 10000 CAFDS WITH ALGORITHM O NO FORMULA-Y METHID WAS
{ USED FOR 10000 CARCS WITH ALGGRITHM 1 NO FORMULLRY METHOD WAS
S USED FOK 10000 CARCS WITH ALGORITHN 2 NO FORMULARY METHOD WAS
t USEC FOR 10000 CARDS WITH ALGCRITHM O FORMULARY METHOD WAS
£ USED FOR 10000 CAKDS WITH ALGCRITHH 1 FURMIJLARY METHID WAS
2 USEC FORK 10000 CARDS WITH ALGCRITHM 2 FORMULARY METHID WaS
£ USED FOR 10000 CARDS WITH ALGORITHM O NO FOURMULARY METHOD WAS
2181 FIOCS - 1/0 ERROR LJHCOSTS,GO 10C1yTA,FTO9F001 yWRITE

X Y0¥ Y L Q3 KN X 0 NFTV
.U NFTV =M 485, Q) 5 , 0 X Yo £ Y
] FY oL Q ; KN X 0 NFTV =N 4E5. Q)

=N 4£5. Q) :r C X YO# Fy oL Q;
oL ; K N X D NFTV =N 485, Q) 5 +0

1) 5 X YO# F vy L Qs K #.X 0
; KN X 0 NF7V =N 465, Q) 5 , 0 X YO#

X YO# Fy L Qo KM X 0 NFTV

NFTV =N 455, Q)Y 5 , 0 X YO# F Y

¢ Fy oL Q; K N X 0 NFTV =l 4E&S. Q)

- 73 -

19.38559
19438559
21.01631
19.41887
19, 43552
19.43552
19.88480
19445215
19.41887
19.43552
19.90143
19.41887
19.68512
19.43552
19.86815
19.41887
19.43552
19.41887
19.43552
19.43552
19.40224
19.43552
19.41887
19.88480
20.58368
19.41887
19, 40224
19.41887
19.41887
19.88480
TR ELREER
19.41887
1940224
19.40224
19.41887
19. 41887
20.11775

1 DATA CHECK

=M 4654 Q)

s L Q3

r O

K N X

X YO#

NFTV

SECONOS,
SECUNDS,.
SECCNDsS.
SECONDS.
SECGNOS.
SECUNDS.
"SECCNDS .
SECONDS.
SECONDS .
SECCNCS .
SECONDS.
SECONGDS.
SECONDS.

SECONDS,

SECCNDS.
SECONDS.
SECCNDS.
SECUNDS.
SECONDS »
SECONDS .
SECONDS.
SECONDS.
SECUNDS .
SECCNDS.,
SECONDS
SECCNDS .
SECONDS.
SECONES.
SECONDS.
SECONDS”
SECCNODS.
SECONDS.
SECGNDS.,
SECGNDS,
SECCNDS.
SECONDS.
SECONDS.

+ 0007
5 » 0
KN X

X Yor

0 NFTV

FY

=N 4&5. Q

oL Q3
0

X YO+

x

YOo#
v

F

=N 4

[

=N 4

TRACEBACK FOLLOWS-

ENTRY POINT=

STANDARD FIXUP TAKEN

TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME
TIME

USED
USED
USED
USED
USZD
USED
USED
ustd
USED
USED
USED
USED
USED
USED
USED
USED
USED
USED
USED
USED
UsSED
USED
USED

€5 Q) 5 4 ¢C X YO# Fy T
L Qs KN X f NFTV =N 4E5. Q) 5 4, 0
v 0 X Yo# £y Qs KNX - u
KN X O NFIV =N 485, Q) 5 , 0 X YOH
X Yo Fy sl Q3 KN X 0 HFTV =N
NETY =N 45, Q) 5 4, 0 X YO# F v
v J Lo Qs KNX O NPTV =N&ts. Q)
€5, Q) 5 » C X YO# FY .ol Q3
L Qs KN X © NFTV =N4E5. Q) 5. , 0
y 0 X YO F v oL Q3 K N X u
K N X O NFTV =N 485. Q) .5 4 0 X YO#
X Yo# Fy L Qs K N X 3 NFTIV s
NFTV =N 465. Q) 5 , 0 X YO¥ F Y
Y N - I X N X 0 MNETV =N 4&5. Q)
85. Q) 5 4 0 & ocoo -
ROUT INE ISN REG. 14 ReG. 1S5 RIZG. O
IELOM A218AD00 O00LBC430 64BU0OAOC
MAIN 401677CC OOLBABO8 FFO000LB
0018A808
s EXECUTIJIN CONTINUING
FOR 10000 CARDS WITH ALGOFITHM 1 NO FORMULARY MZTHOO WAS
FOR 10000 CAKOS WITH ALGCRITHM 2 NJ FORMULAKY METHOO WAS
FOR 10000 CARUS WITH ALGORITHM 0 FORMULARY METHOD WAS
FOR 10000 CARCS WITH ALGORITHM 1 FORMULARY METHOD WAS
FOR 10000 CARUS WITH ALGORITHM 2 FORMULARY MZTHOD WAS
FOR 10000 CARCS WITH ALGORITHM O NI FORMULARY METHOD WAS
FOR 10000 CARGS WITH ALGORITHM 1 NO FORMULARY METHOU WAS
FOR 10000 CARDS WITH ALGORITHM 2 NO FORMULARY METHOD WAS
FOR 10000 CARDS WITH ALGORITHM 0 FORMULARY METHOD WAS
FOR 10000 CARDS WITH ALGORITHM 1 . FORMULARY MZTHUD WAS
FOR 10000 CARDS WITH ALGORITHM 2 FORMULARY METHOD WAS
FOR 10000 CARDS WITH ALGORITHM O NO FORMULARY METHOD WAS
FOR 10000 CARDS WITH ALGORITHM L NO FORMULARY METHOD wAS
FOR 10000 CARDS WITH ALGORITHM 2 NO FORMULARY METHOD WAS
FOR 10000 CARDS WEITH ALGORITHM 0 FORMULARY MZTHOD WAS
FOR 10000 CARDS WITH ALGORITHN 1 FORMULARY METHOD WAS
FOR 10000 CARDS WITH ALGORITHM 2 FORMULARY METHOD WAS
FOR 10000 CARDS WI(TH ALGORITHM O NO .. FORMULARY METHOD WAS
FOR 10000 CARDS WITH ALGORITHM L NO FORMULARY METHOD WAS
FOR 10000 CARDS WITH ALGURITHM 2 NO FORMULARY METHOD WAS
FOR 10000 CARDS WITH ALGORITHM 0 _FORMULARY METHOD WAS
FOR 10000 CARDS WITH ALGORITHM 1 FORMULARY METHOD WAS
10000 CARDS WITH ALGORITHM 2 FORMULARY METHOD WAS

FOR

- 74

’
-

KN X

X YO

0 - NF7V

FY

- NFTV =N 465.

Fy
465. Q)

oL Q3

K N X

X YO#

18 Q
5 +» 0

K N X

X YOo#

0 NETV

NF /v =N 4t5.

RZG.

1

0018BA9D4

001817F8

28 . 60416
20.28415
19.86815
19.86815
19.55199
2055040
19.40224
19.40224
19,40224
19.41887
20.78336
19.86815
20.56703
19.40224
19.41887
19.41887
19.40224
19.40224
19.40224
19.40224
19.86815
19.86815
19.40224

SECONDS.
SECONDS.
SECONDS.
ScCONDS.
SECONDS.
SECUNDS.
S£CONDS .
ScCONDS.
SECONDS.
SECONDS.
ScCONDS.
SECONDS.
SECONOS.
SECONCS.
SECONDS.
SECONDS.
SECONDS.
SECONDS.
SLCONDS.
SeCONDS.
SECONDS .
SECONDS .
SECONDS.,

RS

[

e~

APPENDIX C

THE ACCESS PROCEDURE — "NO -PARALLELISM’ VERSION

This appendix presents a version of the ACCESS algorithm which can be ﬁéed
when no user will ever have to lock out access to a datum which ordinarily can be
accessed by several users at the same time or if the installation wishes to use
a method other than the one given in Section K of Chapter II to control conflicts

among users competing for exclusive access to datums.

- 75 -

procedure access (info, intname, val, length, opn, compcode);

integer array info, val; integer 'in:mam.e, length, opn, ‘compcode;

begin comment

If OPN = FETCH, VAL is set to the value of the datum

represented by INTNAME

If OPN = S'1‘ORE the value of the datum represented by INTNAME

is replaced by the value in the VAL array.

If OPN = ATTA’CH, ‘the 'formulé.ry frepresen’te‘d by internal name
INTNAME is attached to thé user and terminal described

in the INFOQ array. |

In OPN = DETACH, the formulary represented by internal name
INTNAME is detached from the user and terminal described

in the INFO array.

VAL is LENGTH storage elements long.

Note that a FETCH (STORE) operation will actually attempt

to fetch (store) LENGTH storage elements of information. | | !
It is the responsibility ef the TALK procedure to hahdle

scrambling or unscrambling algorithms that return outputs

of a difflerent length than their inputs.

ACCESS returns the following integer completion codes in

COMPCODE:

1 notimal exit, ho érror

3 operation permitted by CONTROL procedure gave error

when attempted

. 5 cannot handle any more User Control Blocks (would cause

table overflow)
6 attempt to detach nonexistent user/terminal/formulary o

combination

- 76 -

o

10 error return from VIRTUAL procedure

11 operation on tile datum repx;eéented by INTNAME not
permitted by CONTROL proced1._1re of the attached formulary

12 end of data set encountergd by FETCH operation.

Note that by the time the user has left the ACCESS’ routine, the data may

- have been changed by another user. Note that ACCESS could be altered to allow

scraiﬁbling ‘and unscrambling to take place at external devices rather than in the
central processor.
Important: ACCESS expects the following to be available to it. Th’e installation
supplies these in some way other than parameters to ACCESS (foi' example, as
'global variables in ALGOL or COMMON variables in FORTRAN) —
(1) ISTDUCB the default User Control Block. Its length is NUCB
- storage units.
(2) NUCB see (1).
(3) UCB a list of User Control Blocks (UCBs) initialized outside
' ACCESS to ucb(1, 1)=-2, |
uch(i, j)=anything when ~ (i=j=1) -

UCB is declared as integer array (1: maxusers,‘ 1: nucb).

(4) MAXUSERS the maximurﬁ number of users which can be actively
connected to the system at any point in time. |

(5) ITALK the length of the INFO array (which is the first
parametér of ACCESS) — INFO contains information
about the user and ﬁerminal which is used by ACCESS
and also passed by ACCESS to procedu_res of the
attached fo;'mula.ry. INFO(1) contains user identification.

ACCESS assumes that the variables FETCH, STORE, FETCHLOCK, STORELOCK,

- 77 -

UNLOCKFETCH, UNLOCKSTORE, ATTACH, and DETACH have been initialized
globally and are never changed by the installation;

integer array iucb (1l:nucb), reslt (1:length);

integer i, ii, islot, j, yesno, other, n, datum;

procedure ret (i); integer i; -

begin comment RET sets the corhpletiop code compcode to i and then causes

exit from the ACCESS procedure;
compeode :=i; go to FIN

end ret;

compcode :=1; .
comment first let's see if we recognize the user/terminal combination '
in INFO;
islot :=0;
Af_ogi:=1§t_eB 1 until maxusers do
begin ii:=1i;

if uch i, 1)=-2 then begin comment end of list of uch's;

if islnt= n_f_hﬂm if i1 maxnaers then
ucb [ii+1,1]:=-2; go to XFER
end
else go to PRESETUP; |
else if ucb [i, 1] =-1 then islot :=ii
comment remember this islot if vacant;

else begin for j:=1 step 1 until italk do

- 78 -

if ucb [i, j]#info [j] then go to ILOOPND;
g0 to SETUPPTRS '
end;
ILOOPND:
end i loop;
if islot = 0 then ret (5); comment cannof haﬁdle any more UCBs;
PRESETUP:
ii :=islot;
XFER:
for k :=1 step 1 until italk do ueb [ii, k] : = infofk];
for k :==italk + 1 ﬁp 1 until nuch do uchlii, k] : = istduch[k];
SETUPPTRS:.
for i :=1 step 1 until nucb do jucbii] :=ueblii,il; e
comment set up pointers to appropriate user control block for particular
implementation. Note well: Setting up pointers to appropriate user control .
blocks is quite dependent on the particular system. For an example of one
implementation, see Exhibit 1 of Appendix A;
comment We have now associated user and terminal with user contrql block
(representing formulary) in relative position ii of the ucb table;
if iucb[nucb] # intname and opn = DETACH then ret (6);
comment attempt to detach user/ terminai/formulary combination not currently
attached; |
control (intname, opn, yesno, other);
if yesno >1 then ret (11);
comment return 11 if CONTROL does not permit operation;
if opn = ATTACH then begin ucblii, nucb} :=intname; go to FIN

end;

- 79 -

f

comment Note well: In mé.ny implementations, pointers to each procedure of the
formulary (obtained by having VIRTUAL transform intname into a virtual address)
might be put into the UCB upon attachment. In others, the philosophy used here

of only putting one pointer — to the formulary — into the UCB will be followed.

‘The decision should take into account design parameters such as implementation

language, storage available, etc.; |

if opn = DETACH then begin comment detach formulary (this leaves an opéh
slot in the ucb array); uch(ii, 1) :=-1; go to FIN |
end; | '

virtual (intname, datum, other, ‘compcode);

corhment VIRTUAL returns in datum the virtual address of the datum speciﬁed;

if compcode >1 then ret (10); comment error return from VIRTUAL;

if opn = STORE then

begin comment store operation;
scramble (val, lengfh,,' compcode, reslt, n);
if compcode >1 then ret (3);
comment operation permitted but gave error when attempted;
comment now perform a physical write of n storage units to the block
starting at reslt;
store (datum, reslt; n, compcode);
'if compcode >1 then ret 3) -
end
else

s

begin comment fetch operation;

fotoh (datum, reslt, length, compcode);
if compcode = 2 the}n‘ret (12); comment ‘end of data set encountered;

if compcode >1 then ret (3);

- 80 -

Y

)

unscramble (reslt, length, compcode, val, n);

if compcode > 1 then ret (3);

end fetch operation;

FIN:

end access;

- 81 -~

