Monte Carlo simulation of the turbulent transport of airborne contaminants

PDF Version Also Available for Download.

Description

A generalized, three-dimensional Monte Carlo model and computer code (SPOOR) are described for simulating atmospheric transport and dispersal of small pollutant clouds. A cloud is represented by a large number of particles that we track by statistically sampling simulated wind and turbulence fields. These fields are based on generalized wind data for large-scale flow and turbulent energy spectra for the micro- and mesoscales. The large-scale field can be input from a climatological data base, or by means of real-time analyses, or from a separate, subjectively defined data base. We introduce the micro- and mesoscale wind fluctuations through a power spectral ... continued below

Physical Description

Pages: 28

Creation Information

Watson, C.W. & Barr, S. September 1, 1975.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A generalized, three-dimensional Monte Carlo model and computer code (SPOOR) are described for simulating atmospheric transport and dispersal of small pollutant clouds. A cloud is represented by a large number of particles that we track by statistically sampling simulated wind and turbulence fields. These fields are based on generalized wind data for large-scale flow and turbulent energy spectra for the micro- and mesoscales. The large-scale field can be input from a climatological data base, or by means of real-time analyses, or from a separate, subjectively defined data base. We introduce the micro- and mesoscale wind fluctuations through a power spectral density, to include effects from a broad spectrum of turbulent-energy scales. The role of turbulence is simulated in both meander and dispersal. Complex flow fields and time-dependent diffusion rates are accounted for naturally, and shear effects are simulated automatically in the ensemble of particle trajectories. An important adjunct has been the development of computer-graphics displays. These include two- and three- dimensional (perspective) snapshots and color motion pictures of particle ensembles, plus running displays of differential and integral cloud characteristics. The model's versatility makes it a valuable atmospheric research tool that we can adapt easily into broader, multicomponent systems- analysis codes. Removal, transformation, dry or wet deposition, and resuspension of contaminant particles can be readily included. (auth)

Physical Description

Pages: 28

Notes

Dep. NTIS

Source

  • Other Information: Orig. Receipt Date: 30-JUN-76

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LA--6103
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/4037984 | External Link
  • Office of Scientific & Technical Information Report Number: 4037984
  • Archival Resource Key: ark:/67531/metadc867092

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 1975

Added to The UNT Digital Library

  • Sept. 16, 2016, 12:32 a.m.

Description Last Updated

  • Sept. 20, 2016, 7:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 9

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Watson, C.W. & Barr, S. Monte Carlo simulation of the turbulent transport of airborne contaminants, report, September 1, 1975; New Mexico. (digital.library.unt.edu/ark:/67531/metadc867092/: accessed January 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.