ETR GAMMA HEAT GENERATION
MEASUREMENTS FOR CYCLES 27, 33, AND 34

L. D. Weber
C. H. Hogg

May 31, 1961
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
PRICE $.75

Available from the
Office of Technical Services
U. S. Department of Commerce
Washington 25, D. C.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, “person acting on behalf of the Commission” includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Printed in USA
ETR GAMMA HEAT GENERATION
MEASUREMENTS FOR CYCLES 27, 33, AND 34

by

L. D. Weber
C. H. Hogg

PHILLIPS
PETROLEUM
COMPANY

Atomic Energy Division
Contract AT(10-1)-205
Idaho Operations Office
U. S. ATOMIC ENERGY COMMISSION
ETR GAMMA HEAT GENERATION
MEASUREMENTS FOR CYCLES 27, 33, AND 34

by
L. D. Weber and C. H. Hogg

ABSTRACT

The gamma heat generations in selected positions of the ETR were measured for Cycles 27, 33, and 34. The measurements for Cycle 27 include data for the clean core and depleted core.

Maximum gamma heat generation maps are presented for each cycle along with vertical traverses for all positions monitored.

The measurements were made using a graphite-CO₂ ionization chamber.
THIS PAGE
WAS INTENTIONALLY
LEFT BLANK
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>I Introduction</td>
<td>7</td>
</tr>
<tr>
<td>II Experimental Apparatus</td>
<td>7</td>
</tr>
<tr>
<td>III Experimental Procedure</td>
<td>7</td>
</tr>
<tr>
<td>IV Experimental Data</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

- Fig. 1 - Ionization Chamber 10
- Fig. 2 - Cycle 27 Maximum Heat Generation Values 11
- Fig. 3 - Cycles 33 and 34 Maximum Heat Generation Values 12

LIST OF APPENDICES

- Appendix I - Vertical Traverse Data 13 thru 34
ETR GAMMA HEAT GENERATION
MEASUREMENTS FOR CYCLES 27, 33, AND 34

by

L. D. Weber and C. H. Hogg

I. INTRODUCTION

The gamma heat generations in selected positions of the ETR were measured at the beginning (0 MWD) and end (4467 MWD) of Cycle 27, and at the beginning (0 MWD) of Cycles 33 and 34. Graphite-CO₂ ionization chambers were used in making the measurements. All of the measurements were made at low reactor power (~2 Mw) and the values extrapolated to a power of 175 Mw. Data for previous ETR gamma heat generation measurements can be found in Reference 1.

II. EXPERIMENTAL APPARATUS

The principle of ionization chambers is described fully in References 2 and 3. The graphite-CO₂ ionization chamber has a fast response. The neutron contribution to the heating is negligible. These chambers can be checked in the gamma facility against ceric dosimetry. A value of 32.5 ev per ion pair was used to calculate the energy absorption in CO₂ as applied in the Bragg-Gray Cavity Theorem[3]. Although this chamber may be gamma energy dependent when used in air, it is believed that this causes little error when used in the dense medium of the reactor lattice or reflector. The chamber wall was made thick enough to stop the Al^{28} betas from the facility liners. Since the ionization currents encountered are high, no difficulty was experienced in their measurement with a microammeter. The CO₂ flow rate through the 10 cc graphite chambers was about 200 cc per minute. Since the chamber is not sealed, corrections for temperature and pressure were made. Fig. 1 shows a pictoral view of the graphite-CO₂ ionization chamber used in the measurements.

III. EXPERIMENTAL PROCEDURE

The chambers were inserted into the desired experimental positions through empty aluminum tubes from the open top of the reactor. The chambers could then be raised or lowered in the tube to make a vertical traverse of the heat generation in each position.
Since the ETR core contains some residual heating, background (0 power) measurements were taken in each position and subtracted from the power measurements before extrapolation. At full power the residual heating is negligible. The measurements were made at a measurable power level of 2 Mw and were extrapolated from this level to 175 Mw.

IV. EXPERIMENTAL DATA

The results have been summarized in Fig. 2 for Cycle 27, and Fig. 3 for Cycles 33 and 34. These values are at the maximum (usually 3" to 4" below the reactor midplane). The Cycle 27 data include both a clean core (0 MWD) and a depleted core (4467 MWD) value. Vertical traverses of each position monitored are shown in Appendix I. The data have been arranged alphabetically by number.

Traverses taken in the F-10-NE facility during Cycle 6 are also shown.

A maximum value of 9.4 w/gm was measured in the K-6-NE position on April 22, 1959, with an aluminum calorimeter unit (described in Reference 1).
REFERENCES

FIG. 1
GRAPHITE - CO₂ WALL IONIZATION CHAMBER
ETR Cycle 27 Gamma Heat Generation
175 Mw

A B C D E F G H I J K L M N O P Q R

FIG. 2 Gamma heat generation extrapolated to a power of 175 Mw measured in the ETR on cycle 27 for a clean and depleted core. Units are in watts/gram of graphite.
ETR Cycle 33 & 34 Gamma Heat Generation
175 Mw

ABC DEFGHIJKLMNOPQR

1234567890

FACILITY

CONTROL SHIM

REFRIGILATING ROD

OO CYCLE 33 VALUE 0 MWD
(OD) CYCLE 34 VALUE 0 MWD

QUADRANI UR POSITION WHERE MEASUREMENT WAS TAKEN

FIG. 3 Gamma heat generation extrapolated to a power of 175 Mw measured in the ETR on cycle 33 and 34. Units are watts/gram of graphite.
Position: N-2-NE
Reactor: ETR
Date: 2-27-60
Cycle: 27
Unperturbed Power: 175

<table>
<thead>
<tr>
<th>Watts/gram of Graphite</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

GAMMA HEAT GENERATION
WATTS/GRAM OF GRAPHITE

MEASURED AT
Beginning of Cycle: 0 MWD
End of Cycle: 4467 MWD