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Abstract : A nonlinear two-dimensional theory is developed for thin mag-
netoelastic films capable of large deformations. This is derived directly from
the three-dimensional theory. Significant simplifications emerge in the de-
scent from three dimensions to two, permitting the self field generated by
the body to be computed a posteriori. The model is specialized to isotropic
elastomers and numerical solutions are obtained to equilibrium boundary-
value problems in which the membrane is subjected to lateral pressure and
an applied magnetic field.
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1. Introduction

There is considerable current interest among mechanicians in nonlinear
magnetoelasticity [1-5]. This is due to the development of highly deformable
magnetizable materials synthesized from elastomers infused with micro- or
nano-scopic ferrous particles [6]. Such materials are capable of large defor-
mations induced by magnetic fields. This property may be used to facilitate
controlled pumping of fluid, for example, via remote actuation. In the present
work we continue our development [7] of a membrane theory for thin films
composed of such materials. This is used to simulate membrane response to
an applied magnetic field and to a pressure transmitted to the material by a
confined gas.

Section 2 contains a summary of three-dimensional magnetoelasticity and
its specialization to isotropic elastomers. A corresponding membrane model
is derived in Section 3 directly from the equations of the three-dimensional
theory. It incorporates a constraint requiring the magnetization to remain
tangential to the film as it deforms. This is motivated by the fact such
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states are energetically optimal in thin films [8,9]. Likewise, we impose the
constraint of bulk incompressibility, and thus exclude dilational modes of
deformation that are energetically unfavorable in typical elastomers. How-
ever, unlike incompressibility, the constraint on magnetization is not of the
kind that requires a reactive Lagrange multiplier in the relevant constitutive
equation. Rather, it is a restriction involving the deformation, allowing local
membrane geometry to adjust in response to an applied field. Constraints
on the deformation of the Kirchhoff-Love type are typically imposed at the
outset in theories of thin magnetoelastic plates [10]. However, in general
such constraints impede the attainment of minima of the overall energy be-
cause, by confining attention to states of magnetization that are optimal at
any deformation, we effectively eliminate magnetization as an independent
variable. The bias induced by an applied field then yields deformations that
violate constraints of the Kirchhoff-Love type. Here, this is addressed via a
director field which emerges naturally from the underlying three-dimensional
theory in the manner described in [11] for the purely mechanical problem,
without restricting the nature of the deformation in thin bodies.

In Section 4 we use a finite-difference method to discretize the model
spatially and discuss the solution of the resulting equations by the method
of dynamic relaxation, in which equilibria are obtained as long-time limits
of solutions to an artificial dynamical system with viscosity. The method
is applied, in Section 5, to determine the deformation, magnetization and
magnetic field generated by a thin film in response to an applied dipole field
and pressure load.

Notation follows standard usage in nonlinear continuum mechanics [12].
Thus, boldface is used to denote vectors and tensors, bold subscripts are used
to denote derivatives with respect to the indicated tensor or vector variables,
the superscript t is used to denote transposition, and the superscripts −1 and
−t to denote the inverse and inverted transpose. The symbol ⊗ refers to the
tensor product of vectors. A dot between variables in bold face is used to
denote the standard Euclidean inner product, and |·| refers to the induced
norm.

2. Three-dimensional magnetoelasticity

The background material on continuum electromagnetism underlying this
work may be found in [9,13-17]. We apply this to the description of incom-
pressible magnetic elastomers undergoing large deformations. A summary of
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the relevant equations is given followed by discussions of restrictions associ-
ated with stable equilibria and the specialization of the theory to isotropic
materials.

Basic equations

The local equation of motion in the absence of electric fields or applied
(as distinct from electromagnetic) body forces is [9,17]

divT = ρÿ in R, (1)

where
T = ρ(ξF)Ft + µ0(h⊗ h− 1

2
|h|2 I) + µ0h⊗m− qI (2)

is the magnetoelastic Cauchy stress; ξ(F,m) is the free energy per unit mass;
ρ is the mass density (mass per unit current volume); h is the magnetic field;
m is the magnetization per unit current volume; F =Dχ is the gradient of
the deformation function y = χ(x, t), in which x is the position of a material
point in a fixed reference configuration κ and D is the gradient with respect
to x; superposed dots are used to denote material derivatives; R is the con-
figuration occupied by the body at time t; and µ0(> 0) is the free-space
permeability. Here I is the unit tensor, div is the spatial divergence based on
y and q is a Lagrange-multiplier field associated with the incompressibility
constraint.

Maxwell’s equations may be used [9] to show that

div{h⊗ (h + m)−1
2
|h|2 I} = (gradh)m, (3)

where grad is the gradient with respect to y, and thus furnish an equivalent
equation of motion:

div[ρ(ξF)Ft − qI] + µ0(gradh)m = ρÿ, (4)

which proves, for reasons discussed below, to be more convenient for our
purposes. Here we have suppressed time derivatives in Maxwell’s equations.
This is justified in the absence of electric fields if, as assumed here, there
are no free charges or currents and the body is not electrically polarized (see
[17]).

If ta is the applied (i.e, non-electromagnetic) traction acting on a part
∂Rt of the boundary ∂R, then [9]

ρ(ξF)Ftn− qn = ta + 1
2
µ0(m · n)2n on ∂Rt. (5)
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Typical boundary-value problems, including those considered here, entail the
assignment of y on the complement ∂R \ ∂Rt. This system is augmented by
the incompressibility constraint

ρ(χ(x,t),t) = ρκ(x); equivalently, J = 1, where J = det F. (6)

Our further considerations require equations involving a referential diver-
gence operator. For (4), this is easily achieved via the Piola transformation

P = [ρ(ξF)Ft − qI]F∗ = WF − qF∗, (7)

where
W (F,m) = ρκξ (8)

is the referential strain-energy density, and

F∗ = JF−t (9)

is the cofactor of the deformation gradient. Thus,

Jdiv[ρ(ξF)Ft − qI] = DivP, (10)

where Div is the referential divergence based on x; therefore, (4) is equivalent
to

DivP + µ0(gradh)m = ρκÿ (11)

in which J = 1 has been imposed. Further, we find the referential form of
the boundary condition (5) to be

PN = pa + 1
2
µ0(m · n)2F∗N on ∂κt, (12)

where ∂Rt = χ(∂κt), having used Nanson’s formula

αn = F∗N, (13)

where α = |F∗N| is the local areal dilation of ∂κt. Here,

pa = αta (14)

is the applied traction measured per unit area of ∂κt.
The magnetic field is the sum [9]

h = ha + hs (15)
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of an applied field ha, generated by remote sources, and the self field hs
generated by the magnetized body. In the present circumstances both satisfy
the relevant Maxwell equation without time derivatives; thus,

curlha = 0 (16)

in all of three-space, denoted by E , where curl is the spatial curl operation
based on y, whereas

curlhs = 0 (17)

in E\∂R. The self field and the magnetization are subject to the jump con-
dition [9]

[hs] = (n ·m)n on ∂R, (18)

where [·] is the difference between the exterior and interior limits of the
enclosed variable on ∂R, and to Maxwell’s equation [9]

divhs = −divm in R

= 0 in E\R̄. (19)

The field ha is assumed to be assigned as function that is continuously dif-
ferentiable everywhere in E except at a finite number of singularities in E\R̄.

In the examples discussed in Section 5 we study the response of the ma-
terial to an applied field generated by a dipole source with the poles aligned
along a fixed unit vector k. Accordingly [7],

ha(y) = D
`3

[3(a · k)a− k], (20)

where the (signed) constant D is the dipole strength, ` is the distance from
the source to the point with position y ∈ E , and

`a = y − yd, (21)

in which |a| = 1, is position measured from the source, located at yd. This
has an isolated singularity at the source. The associated gradient, required
in (11), is [7]

gradha = 3D`−4{[(a · k)I + a⊗ k]Π−[3(a · k)a− k]⊗ a}, where Π= I− a⊗ a,
(22)

and is symmetric in accordance with (16).
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From (17)-(19) we have

hs = −gradϕs, (23)

where the scalar-field ϕs satisfies

[gradϕs] = −(n ·m)n on ∂R (24)

and the magnetostatic equation

div (gradϕs) = divm in R

= 0 in E\R̄. (25)

At any given time the unique solution satisfying ϕs ∼ |y|−1 as |y| → ∞ is
[14,16]

4πϕs(y) =

∫
∂R

m(y′) · n(y′)

|y − y′|
da(y′)−

∫
R

divm(y′)

|y − y′|
dv(y′) for y /∈ ∂R.

(26)
The magnetization and magnetic field are related constitutively by [9]

Wm = µ0h =µ0(ha − gradϕs). (27)

Thus, if the constitutive function W (F, m) is known, eqs. (11)-(14) and
(23), (26), (27) yield a coupled integro-differential system to be solved for
the deformation and magnetization. This presents considerable analytical
and numerical challenges [8]. In [7] these were avoided by considering the
limit of a weakly magnetized body in the presence of a strong applied field.
In this limit the self field may be generated from (26) a posteriori, and plays
only a passive role in the analysis. Alternatively, a direct simulation of the
field may be based on a discretization of Maxwell’s equations in the space
surrounding the body [4,19]. In Section 3 we use a result derived in [8]
for thin films to show that the tractability of the formulation adopted in
[7] is retained when the magnetization and applied fields are comparable in
magnitude. This yields a conventional differential-algebraic system to be
solved on a reference surface associated with the thin film.

To facilitate subsequent analysis, we use a pull-back M of m defined by∫
s

m · nda =

∫
S

M ·NdA, (28)
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in which S ⊂ κ is an arbitrary orientable surface and s = χ(S, t) ⊂ R is its
image in the current configuration. Nanson’s formula then furnishes

M = JF−1m. (29)

In particular, this yields the convenient connections

αm · n = M ·N and Jdivm = DivM, (30)

which enable us to use, in place (12) and (26) respectively, the equivalent
expressions

PN = pa + 1
2
µ0α

−2(M ·N)2F∗N on ∂κt, (31)

and

4πϕs(y, t) =

∫
∂κ

M(x, t) ·N(x)

|y − χ(x, t)|
dA(x)−

∫
κ

DivM(x, t)

|y − χ(x, t)|
dV (x), for x /∈ ∂κ,

(32)
in which the role of time has been made explicit and incompressibility has
been imposed.

Stability and strong ellipticity

A magneto-mechanical energy balance may be derived from (11), (12),
(18) and (19). Thus [9,20],

d
dt
{K +

∫
R

ρξdv +M − µ0

∫
R

ha ·mdv} =

∫
∂Rt

ta · ẏda, (33)

where

K = 1
2

∫
R

ρ |ẏ|2 dv (34)

is the conventional kinetic energy and [3,9,15,16]

M = −1
2
µ0

∫
R

hs ·mdv (35)

is the magnetostatic energy of the self field. In this work we consider conser-
vative applied tractions for which∫

∂Rt

ta · ẏda = d
dt
L, (36)
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where L is a suitable load potential. We then have the conservation law

d
dt
E ′ = 0, where E ′ = K + E (37)

is the total magneto-mechanical energy in which

E =

∫
R

ρξdv +M − µ0

∫
R

ha ·mdv − L (38)

is the magnetoelastic potential energy. We remark that our energy balance
excludes certain terms that are present in the balance discussed in [20]. These
vanish collectively when the applied field is assigned as a stationary function
of y, as assumed here; that is, as a function which is independent of t in the
spatial description [9]. Further, the results of [9] may be used to show that
the static specialization of (11), in which inertia is suppressed, furnishes an
Euler-Lagrange equation for E.

In this work we consider pressure acting on a part ∂Rt of the boundary
formed by the union of two surfaces, ∂R+

t and ∂R−t , having no points in com-
mon. Uniformly distributed pressures, P+ and P− respectively, are acting
on these surfaces. Let S be a fixed orientable surface such that ∂S = C, the
curve bounding ∂R−t . We choose S such that its closure, and that of ∂R−t ,
intersect only in C, so that S ∪ ∂R−t encloses a well-defined volume V − ⊂ E .
In the applications of interest here, ∂R+

t and ∂R−t respectively are the ’upper’
and ’lower’ lateral surfaces of a thin sheet which, together with S, contains
a compressible gas that transmits a pressure P− to the lower surface. In
Section 5 we identify S with the reference plane for the sheet. The upper
surface is subjected to a fixed pressure P+ supplied by a large reservoir.

This loading is conservative, and the associated potential, modulo an
unimportant constant, is [9]

L =

∫ V −

P−(v)dv − P+(V + V −), (39)

where P−(V −) is the pressure-volume relation for the compressible gas and
V is the volume of the body in configuration R. In the present context, the
incompressibility of the magnetoelastic material allows us to suppress V on
the right-hand side. Further,

V − = −1
3

∫
∂κ−t

y · F∗NdA, (40)
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where ∂κ−t is the pre-image of ∂R−t in the reference configuration with exte-
rior unit normal N [9].

In a full thermodynamic treatment accounting for dissipative effects, the
energy balance (37) is replaced by the imbalance dE ′/dt ≤ 0 [20], so that if
a state with vanishing initial velocity tends asymptotically to an equilibrium
state, then the latter minimizes the potential energy E [5,20]; i.e., it furnishes
a value of the potential energy not exceeding that supplied by the initial
state. Because K is a positive-definite function of the velocity, it follows
that E ′ delivers a Lyapunov function for the dynamical system provided
that the potential energy is strictly minimized at the equilibrium state. The
considered equilibrium state is then stable. Without further qualification,
this claim applies rigorously only to finite-dimensional systems [21]. Thus,
we apply it only to the system that has been discretized for the purpose of
numerical analysis. This is the basis of a dynamic relaxation method for
computing equilibria (Section 5).

In particular, then, an asymptotically stable equilibrium state minimizes
the potential energy. In the purely mechanical setting, it is well known that
a minimizing deformation necessarily satisfies the (local) strong-ellipticity
inequality pointwise (see, for example, [22]). In the present setting this is
replaced by the magnetoelastic strong-ellipticity inequalities [5]

a ·A(b)a > 0 and c · (Wmm)c > 0, (41)

where A(b) is the acoustic tensor defined by

a ·A(b)a = a⊗ b · {WFF −WFm(Wmm)−1WmF}[a⊗ b]. (42)

These inequalities apply for all non-zero vectors a,b, c, with a and b subject
to the restriction

a · F∗b = 0 (43)

associated with incompressibility. The second inequality implies that Wmm

is invertible, as required by the first inequality. In terms of Cartesian com-
ponents, inequalities (41)1,2 are

Aij(b)aiaj > 0 and (∂2W/∂mi∂mj)cicj > 0, (44)

where

Aij(b) = {∂2W/∂FiA∂FjB−(∂2W/∂FiA∂mk)(Wmm)−1
kl (∂2W/∂ml∂FjB)}bAbB.

(45)
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They furnish pointwise restrictions on energy-minimizing states of deforma-
tion and magnetization jointly, which in turn play a central role in reducing
the three-dimensional theory to a two-dimensional membrane model (Section
3).

Reduced constitutive equations and isotropic materials

Balance of moment of momentum requires that the Cauchy stress tensor
be symmetric in the absence of electric fields [14,17]. Using (2), the symmetry
requirement may be reduced to the statement:

(WF)Ft +Wm ⊗m is symmetric, (46)

which is found, following [7], to be equivalent to the requirement:

W (F,m) =W (QF,Qm) for all rotations Q, (47)

and this in turn is satisfied if and only if [7]

W (F,m) = W̄ (C, M̄) (48)

for some function W̄ , where

C = FtF and M̄ = F
t
m. (49)

The latter is related to the pull-back M by (cf. (29))

JM̄ = CM, (50)

and so W may be written as a (different) function of C and M, if desired.
We make use of this function in Section 3.

We assume the material to be isotropic, with a center of symmetry, rela-
tive to the reference configuration κ. Then [7],

W̄ (C, M̄) = W̄ (RtCR,RtM̄) for all orthogonal R. (51)

For R = −I this yields W̄ (C, M̄) = W̄ (C,−M̄), which is satisfied if and
only if [9] W̄ (C, M̄) = Ŵ (C, M̄⊗ M̄) for some function Ŵ subject to the
restriction

Ŵ (C, M̄⊗ M̄) = Ŵ (RtCR,Rt(M̄⊗ M̄)R) for all orthogonal R. (52)
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For incompressible materials, standard representation theory [23] implies that
Ŵ = U(I1, I2, I4 − I6) for some function U, where

I1 = trC, I2 = 1
2
[I2

1−tr(C2)], I4 = C · M̄⊗M̄, I5 = C2·M̄⊗M̄, I6 = M̄ · M̄.
(53)

Proceeding as in [9] we then obtain

WF = 2F(SymW̄C) + m⊗ W̄M̄ and Wm = FW̄M̄, (54)

with

SymW̄C = (U1 − I1U2)I + U2C + U4M̄⊗ M̄ + U5[C(M̄⊗ M̄) + (M̄⊗ M̄)C]

and W̄M̄ = 2(U4C + U5C
2 + U6I)M̄, (55)

where Uk = ∂U/∂Ik.
To use this formalism we adopt a magnetoelastic extension of the classical

Mooney-Rivlin strain-energy function proposed in [5] and defined by

U = µ
2
{(C10+C11J1/M̄

2
s )(I1−3)+(C20+C21J1/M̄

2
s )(I2−3)+C01J1/M̄

2
s+C02J2/M̄

2
s+C∗01[cosh(J1/M̄

2
s )−1]},

(56)
where

J1 = I5 − I1I4 + I2I6 and J2 = I6 (57)

in which det F = 1 has been imposed. Here µ is the ground-state shear mod-
ulus, M̄s is the saturation value of magnetization per unit volume, and the
Cij are dimensionless constants. Numerical values of µ, Cij and µ0M̄s are
given in [5, Table 2], where µ0 is the free-space permeability. The symbols
J1,2 are used in [5] to denote invariants based on magnetization per unit mass.
These are recovered on dividing our invariants by ρ2

κ, and (56) takes this ad-
justment into account. Further, we have used (49)2 and (53) to express the
invariants adopted in [5], here based on magnetization per unit volume, in
terms of the Ik. In [5] it is claimed that (56) satisfies (41)1 without qualifi-
cation. This comports with the fact that the standard Mooney-Rivlin model
satisfies the purely mechanical strong ellipticity condition at all deformations
[24]. Inequality (41)2 was also shown in [5] to be satisfied over a substantial
range of strain.

3. Membrane approximation
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We consider a body whose reference configuration κ is a prismatic region
generated by the parallel translation of a simply-connected plane Ω with
piecewise-smooth boundary curve ∂Ω. The closure of κ is Ω̄ × [−h/2, h/2],
where Ω̄ = Ω∪ ∂Ω and h is the (uniform) thickness. Let l be another length
scale such as the diameter of a hole in Ω or a typical spanwise dimension.
We assume that ε

.
= h/l � 1, and, in the theoretical development, adopt l

as the unit of length (l = 1). We derive a two-dimensional membrane model
by estimating the equations of the three-dimensional theory to leading order
in ε. Further, we suppose the deformation to be C2 and the magnetization to
be C1 in the interior of the body, so that the local equations of the foregoing
theory apply almost everywhere.

With minor loss of generality we assume the dipole in (20) to be orthogo-
nal to the plane Ω, which is thus oriented by the unit vector k. The projection
onto the plane is

1 = I− k⊗ k (58)

and generates the orthogonal decomposition

P = P1 + Pk⊗ k (59)

of the Piola transform (7). Let ς be a linear coordinate in the direction of k,
and suppose ς = 0 on Ω. Equation (11) is then equivalent to

Div‖(P1) + P′k + µ0(gradh)m = ρκÿ, (60)

where (·)′ = ∂(·)/∂ς and Div‖ is the (referential) two-dimensional divergence
with respect to position u on Ω, where

x = u + ςk. (61)

This holds at all points in the interior of the body and therefore at ς = 0 in
particular. Thus,

Div‖(P01) + P′0k + µ0(gradh)0m0 = ρκ0ÿ0, (62)

where the subscript 0 identifies the values of functions at ς = 0; i.e., on the
plane Ω. For example,

P0 = WF(F0,m0)− q0F
∗
0 and µ0h0 = Wm(F0,m0) (63)

in which [11]
F0 = f + d⊗ k, (64)
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where
f = ∇r , (65)

r(u, t)(= y0) and d(u, t) are the restrictions to Ω of χ and χ′, respectively,
and ∇ is the two-dimensional gradient on Ω; i.e., the gradient with respect
to u. We note that r(u, t) maps Ω to the deformed membrane surface ω =
χ(Ω, t). Accordingly, f maps Ω′, the translation space associated with the
plane Ω, to Tω, the tangent plane to ω at the material point u ∈ Ω.

To accommodate the constraint of bulk incompressibility we impose

1 = det F0 = F∗0k · F0k =αn · d, (66)

where (64) and Nanson’s formula (13) have been used in the final equality.
Here, α is the local areal dilation of Ω and n is the orientation of the surface
onto which Ω is deformed; i.e., the unit normal to Tω. The general solution
is

d = α−1n + fe, (67)

where e ∈ Ω′ is arbitrary. Further, equations (13) and (64) yield

αn = fi1 × fi2, (68)

where iα ∈ Ω′ are subject only to the requirement that {i1, i2,k} be a
positively-oriented orthonormal set. Thus F0 is determined by f and e, re-
garded as independent variables. The associated Cauchy-Green deformation
tensor, C0 = Ft

0F0, is

C0 = c + ce⊗ k + k⊗ ce + (α−2 + e · ce)k⊗ k, where c = f tf (69)

and α is obtained by evaluating the norm of (68), yielding

α =
√

det c. (70)

The leading-order model

The foregoing equations, holding on Ω, are exact consequences of the
three-dimensional theory. Approximations arise in using them to represent
material response in Ω × [−ε/2, ε/2]. Let P± be the interior limits of P as
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ς → ±ε/2, where the exterior unit normals are N± = ±k. Their Taylor
expansions yield

P+N+ + P−N− = εP′0k + o(ε) and P+N+−P−N− = 2P0k + o(ε). (71)

On the left-hand sides we use (12) together with the estimates

(F∗N)± = ±(F∗)±k = ±F∗0k + (ε/2)(F∗)′0k + o(ε) (72)

and
α± = α0 ± (ε/2)α′0 + o(ε), (73)

where
α′0 = α−1

0 F∗0k · (F∗)′0k, (74)

which follows on differentiation of α = |F∗k| . After some algebra we obtain

P+N++P−N− = p+
a +p−a +εµ0α

−2
0 M0{[M ′

0−(α′0/α0)M0]F∗0k+1
2
M0(F∗)′0k}+o(ε)

(75)
and

P+N+ −P−N− = p+
a − p−a + µ0α

−2
0 M2

0 F∗0k +O(ε), (76)

where p±a are the applied tractions at the lateral surfaces and M = M · k.
The role of the latter suggests the decomposition

M = 1M +Mk, (77)

which yields
DivM = Div‖(1M) +M ′. (78)

It follows from (71) and (75) that (62) yields a well-defined differential
equation in the limit of small ε only if P′0k remains bounded. Further, (63)
implies that the deformation gradient and magnetization are bounded on Ω
only if P0 is bounded. From (75) and (76) it is therefore necessary that

p+
a + p−a = εp + o(ε) and p+

a − p−a = 2q + o(1), (79)

where p and q are of order unity in magnitude. It follows that, to leading
order in ε,

P′0k = p + µ0α
−2
0 M0{[M ′

0 − (α′0/α0)M0]F∗0k + 1
2
M0(F∗)′0k} and

P0k = q + 1
2
µ0α

−2
0 M2

0 F∗0k. (80)
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Estimate of the self field

Before proceeding we obtain an estimate of the leading-order self-field
potential (32). An elementary calculation based on (77) and (78) gives

4πϕs(y, t) = ε{
∫
∂Ω

1M0 · ν
|y − r|

dS −
∫

Ω

[Div‖(1M0) +M ′
0]

|y − r|
dA}

+

∫
∂κ+

M+

|y − χ+|
dA−

∫
∂κ−

M−

|y − χ−|
dA+ o(ε), (81)

where the superscripts ± identify the values of functions at the upper and
lower lateral surfaces ∂κ± = Ω×{±ε/2} and ν ∈ Ω′ is the unit normal exterior
to Ω. This is valid provided that y 6= r(u, t) for any u ∈ Ω̄. To estimate the
associated integrals we compute |v|′ = |v|−1 v ·v′, where v = y − χ(x,t) and
the derivative is with respect to ς at fixed y. Accordingly, v′ = −Fk, and
(64) gives

|y − χ|′0 = −(y − r)

|y − r|
· d. (82)

For y 6= r this yields

1

|y − χ|±
=

1

|y − r|
{1± ε

2

(y − r)

|y − r|2
· d}+ o(ε), (83)

which, when combined with

M± = M0 ± (ε/2)M ′
0 + o(ε), (84)

results in

4πϕs(y, t)/ε =

∫
∂Ω

1M0 · ν
|y − r|

dS+

∫
Ω

[
M0

|y − r|2
(y − r) · d−

Div‖(1M0)

|y − r|
]dA+o(ε)/ε,

(85)
provided that (83) is uniformly valid over the domain. This limitation effec-
tively restricts the use of (85) to points y whose distances from the membrane
are of order unity compared to ε; that is, to points in space whose minimum
distances from the deforming membrane surface are large compared to mem-
brane thickness. Accordingly, it may not be used to describe the self field in
the interior of the material.
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To characterize the magnetic state inside the film, we estimate (32) at
an interior point x̄ ∈ κ. For points x near x̄, the presumed differentiability
of the deformation implies that |ȳ − χ(x, t)| = O(|ξ|), where ξ = x̄− x and
ȳ = χ(x̄, t). The self field is obtained by computing the gradient of ϕs with
respect to y and evaluating the result at ȳ; thus, for x̄ /∈ ∂κ,

4πhs(ȳ) =

∫
∂κ

(M ·N)u

|ȳ − χ(x)|2
dA−

∫
κ

(DivM)u

|ȳ − χ(x)|2
dV, where u = (ȳ − χ(x))/ |ȳ − χ(x)| ,

(86)
in which t has been suppressed. The singularity is of order |ξ|2 , which is
integrable in κ. Therefore the volume integral makes a contribution of order
ε. The boundary integral includes a contribution from the surface ∂Ω ×
(−ε/2, ε/2), on which |ȳ − χ(x)| is strictly bounded away from zero for any
ε. Accordingly, this too contributes at order ε, leaving

4πhs(ȳ) =

∫
∂κ+∪∂κ−

(M ·N)u

|ȳ − χ(x)|2
dA+O(ε), (87)

in which M ·N = ±M± on ∂κ±, respectively. Thus,∣∣∣∣∫
∂κ+∪∂κ−

(M ·N)u

|ȳ − χ(x)|2
dA

∣∣∣∣ ≤ ∫
∂κ+∪∂κ−

|M±|
|ȳ − χ(x)|2

dA ≤ max
∂κ+∪∂κ−

∣∣M±∣∣ ∫
∂κ+∪∂κ−

1

|ȳ − χ(x)|2
dA.

(88)
The integrand in the final integral is dominated by its asymptotic behavior
near x̄; i.e., by |ξ|−2. For small thickness, the integral may then be shown to
be O(|ln ε|) in magnitude. In view of (84), the upper bound remains finite
in the limit only if maxΩ |M0| = 0, in which case it is of order |ε ln ε| . This
guarantees that |hs(ȳ)| is finite and vanishes with ε. In particular, then,

hs vanishes on Ω, at leading order. (89)

The alternative (M0 6= 0) yields an upper bound of order |ln ε|, which allows
the self field to grow without bound as thickness tends to zero. In this case
the magnetostatic energy, and therefore the potential energy, may become
unbounded. However, this alternative does not require the self field to become
unbounded, and so our analysis, while suggestive, is not conclusive. In other
words, we have only shown that the constraint:

M0 = 0 on Ω, (90)
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is sufficient for (89) and for boundedness of the magnetostatic energy. Using
(64) and (77), we then derive

m0 ∈ Tω on ω, at every u ∈ Ω. (91)

To explore this issue further, consider the part of the potential energy
involving magnetization. This is (cf. (35), (36) and (38))

Emag =

∫
κ

[W − 1
2
(h + ha) ·m]dV (92)

in which y and F are fixed, and reduces to

Emag =

∫
κ

(W − ha ·m)dV (93)

if the self field is negligible; i.e., if (91) holds. Here the magnetization is
obtained by solving (27) in which the self field is suppressed, so that Emag is
controlled entirely by the deformation. This effectively eliminates the mag-
netization as an independent variable. In the work of Gioia and James [8]
on non-deforming films it is proved that minimizers of (92) furnish energies
that converge to (93) as film thickness tends to zero. It was also proved that
optimal states of magnetization necessarily satisfy (91) and that the residual
self-field vanishes, in accordance with (89) (see also [9]). Further, in [8] it
is shown that there is no residual magnetostatic equation to leading order;
indeed, the solution (26) to (25) has already been used in the course of obtain-
ing (91) and therefore plays no further role. These results imply that (89) and
(91) characterize optimal states of magnetization in a sufficiently thin film, at
any fixed deformation. In particular, the magnetostatic energy is negligible
at leading order. The Euler equation for the deformation that emerges from
this leading-order approximation is given by (11) [9], but with gradh replaced
by gradha. This follows from the fact that the variational derivative of ha,
identified by a superposed dot, is purely convective; i.e., ḣa = (gradha)ẏ, if
the applied field is a stationary function of y. The claim then follows from
(16), which is equivalent to the symmetry of gradha. Strictly, these results
are known to be necessary only for optimal (energy-minimizing) states of
magnetization and so may not apply to dynamical states. However, in this
work we use dynamics solely to facilitate the computation of equilibria. We
do not model actual dynamic interactions. Accordingly, we restrict attention
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to states of magnetization that are energetically optimal at any deformation,
equilibrated or otherwise.

Equation (90) affords the important simplifications

P′0k = p and P0k = q. (94)

For points remote from the deforming film (85) is applicable and simplifies,
by virtue of (90), to

4πϕs(y, t)/ε =

∫
Ω

1M0 · ∇(
1

|y − r|
)dA+ o(ε)/ε, (95)

where ∇ is the two-dimensional gradient with respect to u ∈ Ω and Green’s
theorem has been used to combine terms. Proceeding as in the calculation
leading to (85), we put v(u, t) = y − r(u, t) and use (65) to derive

d(|v|−1) = − |v|−3 v · dv, where dv = −dr(u) = −f(du), (96)

yielding

∇(
1

|y − r|
) = |y − r|−3 f t(y − r) (97)

and

4πϕs(y, t)/ε =

∫
Ω

fM0

|y − r|3
· (y − r)dA+ o(ε)/ε. (98)

A straightforward computation based on (23) generates the scaled self field
in the surrounding space:

4πhs(y, t)/ε =

∫
Ω

G(fM0)dA(u)+o(ε)/ε, where G = 3
|y−r|5 (y − r)⊗ (y − r)− 1

|y−r|3 I

(99)
in which r(u, t) is the membrane position field at time t. Thus, the leading-
order model generates the dominant part of the self field in the surrounding
space (which is of order ε) a posteriori.

Loading

Turning now to the loading, suppose the lateral surfaces are subjected to
pressures P±. The applied tractions are

p±a = ∓(P±)(F∗)±k, (100)

18



and we assume that
P± = εp± + o(ε), (101)

where p± are of order unity. In this case q = 0 and

p =α(∆p)n (102)

in (94), where ∆p = p−−p+ is the net lateral pressure across the membrane.
Invoking (89) and the foregoing thin-film approximations, we find that

(62) reduces to

Div‖(P01) + α(∆p)n + µ0(gradha)0m0 = ρκ0r̈, (103)

to leading order, where (gradha)0 is evaluated using (21) and (22) with y
replaced by r, and

P0 = WF(F0,m0)− q0F
−t
0 . (104)

This is augmented by the algebraic constraints (63)2 and (94)2. Using (100),
(101) and y0 = χ(u,t) = r, the leading-order constraints are found to be

Wm(F0,m0) = µ0ha(r) and P0k = 0. (105)

Together with (64), (67), (77), (90) and (104), these furnish a system for the
determination of r(u, t), e(u, t), M0(u, t)(= 1M0) and q0(u, t). In practice
we solve the equation obtained on multiplying (103) through by ε. This yields
the equation of motion for the membrane, which in turn furnishes the leading-
order approximation to that for a thin sheet. Our preference for (4) over (1) is
due the availability of an explicit formula for the gradient of the applied field
(cf. (22)). From (105)1 and (64) it is clear that the constraint (91) imposes
a restriction, not only on the magnetization, but also on the deformation
and director fields r and e, and thus on the the geometry of the film in the
presence of an applied field. In particular, this allows the orientation of the
tangent plane to the membrane to adjust in response to the applied field.

The literature on magnetoelasticity in thin structures is typically based on
an a priori constraint of the Kirchoff-Love type (i.e., e = 0) on the director
field (e.g. [10]). However, in Section 5 below we find that solutions deviate
substantially from Kirchhoff-Love kinematics. Because we have confined at-
tention to states of magnetization that are optimal at any deformation, and
thereby eliminated magnetization as an independent variable, it follows by
relaxation of constraints that restrictions of the Kirchhoff-Love type impede
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the attainment of minima of the overall potential energy. Indeed, the analysis
of [7] indicates that the Kirchhoff-Love constraint is generally incompatible
with (91). Therefore the present model is optimal relative to formulations in
which such constraints are imposed at the outset. Kirchhoff-Love kinematics
obtain if the effects of deformation and magnetization are uncoupled in the
expression for the strain-energy function, as in weakly magnetized materials
subjected to applied fields of sufficient intensity [7].

Standard mixed traction/position problems consist in the specification of
r and the traction

τ = P01ν (106)

on complementary parts of the boundary curve ∂Ω. Here τ is the value on
∂Ω of the exact traction field acting on a part of the cylindrical generating
surface of the body where tractions are assigned. In this work we assume
position to be prescribed on ∂Ω × [−ε/2, ε/2] and thus assign r everywhere
on ∂Ω.

Solvability of the constraints

We demonstrate the solvability of the constraints (105)1,2 for M and e at
a given deformation r(u, t) of Ω. To ease the notation, here and henceforth
the subscript 0 is suppressed on the understanding that all fields discussed
are the restrictions to Ω of three-dimensional fields identified by the same
symbol. We impose (90) at the outset, and thus find it more convenient to
work with a formulation based on the use of F and M, rather than F and
m, as independent variables. To this end we invoke bulk incompressibility
and use (29) to define the function

W̃ (F,M) = W (F,FM) for M ∈ Ω′. (107)

Consider a one-parameter family of magnetizations M(u) ∈ Ω′. Using a
superposed dot to denote the derivative with respect to the parameter, we
derive W̃M · Ṁ = Wm · FṀ at fixed F, and therefore

[W̃M − Ft(Wm)] · Ṁ = 0 for all Ṁ ∈ Ω′, (108)

wherein W̃M ∈ Ω′. It follows that W̃M = 1Ft(Wm), where 1Ft = f t by virtue
of (64); eq. (108) then implies that

W̃M = µ0f
tha(r). (109)
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We regard this as an equation for M in which r, f and e (hence F) are
assigned. To investigate its solvability we compute another derivative, again
at fixed F, obtaining

(W̃MM)Ṁ = f t(Wmm)ṁ = [f t(Wmm)f ]Ṁ. (110)

Therefore,
Ṁ · (W̃MM)Ṁ = fṀ · (Wmm)fṀ, (111)

which is positive for all non-zero Ṁ by virtue of (41)2. Accordingly, W̃MM

is positive definite and W̃ (F, ·) is strictly convex. Equation (109) therefore
possesses a unique solution M̂ which minimizes W̃ at fixed F. This in turn
determines the magnetization m = fM̂, which furnishes the unique solution
to

Wm = µ0ha(r). (112)

Next, we fix f and define

G(e,m) = W (f + d(f , e)⊗ k,m), (113)

where d(f , e) is the function defined by (67), in which α and n are determined
by f via (68) and (70). Consider one-parameter families e(u) and m(u). The
former induces the one-parameter family F(u) of deformation gradients with
derivative Ḟ = f ė⊗ k (cf. (64) and (67)). Accordingly,

Ġ = ė · f t(WF)k + ṁ ·Wm, yielding Ge = f t(WF)k and Gm = Wm.
(114)

Using (104) and the invertibility of Ft, we find the constraint (105)2 to be
equivalent to

Ge = 0 and q = d · (WF)k. (115)

To address the first of these equations, we keep f fixed and compute

(Ge)· = f t{WFF[f ė⊗ k] + (WFm)ṁ}k. (116)

Here we regard m(u) as the magnetization induced by e(u) via (112); that
is, we use the unique solution M = M̂(e) to (109), associated with fixed r
and f , to generate m(u) = fM̂(e(u)). This satisfies (112) identically for all
e(u) with u in some open interval. It follows that

ṁ = −(Wmm)−1(WmF)(f ė⊗ k), (117)
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so that (116) reduces to

(Ge)· = f t{A(k)}(f ė), (118)

where A(·) is defined by (42).
With these results in hand, we define a function Γ(e) by

Γ(e) = G(e, fM̂(e))− µ0ha(r) · fM̂(e), (119)

at the same r and f . Inserting e(u) and evaluating the derivative, we find
from (112) and (114)2 that

Γ̇ = Ge · ė (120)

for all u in some open interval. Then,

Γ̈ = (Ge)· · ė +Ge · ë. (121)

The domain of Γ(·) is the linear space Ω′, a convex set. If e1,2 belong to
this domain, then so do all points on the straight-line path

e(u) = ue2 + (1− u)e1; u ∈ (0, 1), (122)

on which (121) reduces to

Γ̈ = f ė · {A(k)}(f ė); ė = e2 − e1 6= 0. (123)

Setting a = f ė ∈ Tω and b = k, we find that (43) is satisfied because
F∗k = αn is orthogonal to Tω (cf. (68)). Accordingly, the strong-ellipticity
inequality (41)1 is applicable and implies that Γ̈ > 0. Integration of this
result over (0, u) and then again over (0, 1) yields the conclusion that Γ(e) is
strictly convex; i.e.,

Γ(e2)− Γ(e1) > Γe(e1) · (e2 − e1) (124)

for all unequal pairs e1,2, wherein Γe = Ge by virtue of (120). Because strictly
convex functions possess unique stationary points, we conclude that (115)1

has a unique solution e∗. In particular, this solution satisfies Γ(e) > Γ(e∗)
for all e 6= e∗ and therefore furnishes the unique minimizer of Γ(e). With
this solution in hand, the unique magnetization field associated with a given
deformation r(u,t), and attendant gradient f , is given by m = fM̂(e

∗
).
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Lyapunov functions

We have shown that the constraints (109) and (115)1 possess unique so-
lutions e and M at fixed r and f . To obtain them, use may be made of the
Newton-Raphson method, for example. The convexity conditions established
in the foregoing ensure that the associated iterates converge to a unique so-
lution. Alternatively, we may embed (109) and (115)1 into the artificial
dynamical problems

mM̈ + cṀ + W̃M = µ0f
tha(r) and më + cė +Ge = 0, (125)

respectively, in which m and c are positive constants and the superposed dots
in the two equations now identify derivatives with respect to time-like pa-
rameters τ1,2, respectively. Equilibria of this system are precisely the unique
solutions to (109) and (115)1. Further, solutions to this system satisfy the
energy balances

d
dτ1

(1
2
m
∣∣∣Ṁ∣∣∣2 + W̃ ) = −c

∣∣∣Ṁ∣∣∣2 and d
dτ2

(1
2
m |ė|2 + Γ) = −c |ė|2 . (126)

Standard theory for ordinary differential equations then ensures the existence
of trajectories of (125)1,2 for arbitrary initial data on which

L1 = 1
2
m
∣∣∣Ṁ∣∣∣2 + W̃ and L2 = 1

2
m |ė|2 + Γ (127)

are strictly decreasing. Our results concerning the minimizing properties
of equilibria then imply that L1,2 furnish Lyapunov functions for (125)1,2 re-
spectively. All trajectories tend asymptotically to solutions of the constraints
(109) and (115)1, and these are stable equilibria of the dynamical system [21].
The implementation of these results is discussed in Section 4.

Finally, we use the energy balance (37) to construct a Lyapunov function
for the motion r(u,t). To this end we observe, using (34), (35), (36), (38) and
(39), that

K = εKM + o(ε), L = εLM + o(ε) and E = εEM + o(ε), (128)

where

KM = 1
2

∫
Ω

ρκ |ṙ|2 dA, LM =

∫ V

p−(v)dv − p+V

and EM =

∫
Ω

W (F,m)dA− µ0

∫
Ω

ha(r) ·mdA− LM , (129)
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respectively, are the leading-order (membrane) approximations to the kinetic
energy, pressure potential, and potential energy, in which

V = 1
3

∫
Ω

αn · rdA (130)

is the volume of the compressible gas contained by the membrane. From the
leading-order equation of motion (103), we obtain

K̇M =

∫
Ω

ṙ · [Div‖(P1) + α(∆p)n + µ0(gradha)m]dA. (131)

Using [9]

L̇M =

∫
Ω

α(∆p)n · ṙdA (132)

this is reduced to

K̇M = L̇M + µ0

∫
Ω

m · ḣadA+

∫
∂Ω

P1ν · ṙdS −
∫

Ω

P1 · ḟdA, (133)

where we have used ḣa = (gradha)ṙ for stationary applied fields, together
with the symmetry of gradha. In this work we assume r to be fixed on
∂Ω and accordingly suppress the integral over ∂Ω. We now use (105)1 and
combine the result with (129)3 to derive

d
dt

(KM + EM) =

∫
Ω

(WF · Ḟ−P1 · ḟ)dA. (134)

Using (104) with the constraint of bulk incompressibility in the form F−t ·Ḟ =
0, together with (59) and (64), we find that

WF · Ḟ = P · Ḟ = P1 · ḟ + Pk · ḋ (135)

and thereby reduce (134) to

d
dt

(KM + EM) =

∫
Ω

Pk · ḋdA, (136)

which vanishes by virtue of (105). Thus the leading-order model yields the
conservation law d

dt
(KM + EM) = 0, which is replaced, in the presence of

dissipation, by the imbalance d
dt

(KM + EM) ≤ 0. This observation suggests
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that a dissipative numerical scheme may be based on a discretization of the
artificial dynamical equation

Div‖(P1) + α(∆p)n + µ0(gradha)m = ρκr̈ + cṙ, (137)

where c is a suitable constant. It is straightforward to show that if this
equation is used in place of (103), then the leading-order energy balance is
replaced by

d
dt

(KM + EM) = −c
∫

Ω

|ṙ|2 dA. (138)

Our earlier observation that stable equilibria minimize E implies that
EM is minimized, to leading order in thickness. Indeed, it is easily verified
that (112) and the static specialization of (103) furnish the Euler-Lagrange
equations for EM . Consequently, KM + EM decays on trajectories of (137),
provided that c > 0, and achieves a strict minimum at a stable equilib-
rium. It therefore yields a Lyapunov function for (137), whose equilibria
coincide with those of (103). This conclusion applies strictly only to a finite-
dimensional projection of the problem associated with a spatial discretization
of the equations on Ω. It also presumes that equilibria are minimizers of EM .
Here, however, we have only imposed necessary conditions for a minimum
of the energy. In particular, in the purely mechanical specialization of the
theory it is known that these conditions are insufficient to preclude compres-
sive stresses in equilibrium, which violate the Legendre-Hadamard necessary
condition for minimizers of EM [25]. In such circumstances the existence
of minimizers may be restored by replacing the membrane energy with a
suitable relaxation [25-28] which excludes compressive stress a priori via the
mechanism of fine-scale wrinkling. This is the subject of tension-field the-
ory [29]. In this work we apply the theory to problems that do not exhibit
wrinkling and therefore do not require the explicit relaxation.

We emphasize the fact that (137) does not describe the actual dynamics
of the membrane. Rather, it is used here solely to expedite the computation
of equilibria by embedding the equilibrium problem into an artificial (finite-
dimensional) dynamical system whose equilibria coincide with those of the
physical problem. As such, it furnishes a convenient regularization of the
equations. The strictly dissipative nature of this system is a feature shared
by actual equations of motion that account for dissipation through constitu-
tive equations rather than through modification of the equation of motion.
However, (137) proves more convenient for the purpose of generating equi-
libria because it allows the discrete equations associated with the temporal

25



evolution to be decoupled, affording a more efficient solution procedure. This
is discussed in the next section.

4. Finite-difference scheme

Equation (137) is discretized by using a finite-difference scheme derived
from Green’s theorem. The application of this scheme to plane-strain prob-
lems in nonlinear elasticity theory is described by Silling [30]. Its adaptation
to membrane theory is developed in [26] and [27]. Here, we summarize the
method and describe its extension to magnetoelasticity.

The reference plane Ω is covered by a grid consisting of cells of the kind
depicted in Figure 1. Nodes are labelled using integer superscripts (i, j).
Thus, ui,jα are the referential coordinates of node (i, j), where uα = u · iα;
α = 1, 2. The four regions formed by a node, together with its nearest-
neighbor nodes, are called zones. Zone-centered points, identified by open
circles in Figure 1, are labelled using half-integer superscripts.

Green’s theorem may be stated in the form∫
D

σα,αda = eαβ

∫
∂D

σαduβ, (139)

where σα(u1, u2) is a smooth two-dimensional vector field, D is an arbitrary
simply-connected subregion of Ω and commas followed by subscripts identify
partial derivatives with respect to the indicated coordinates. To approximate
the divergence σα,α at node (i, j) we identify D with the quadrilateral con-
tained within the dashed contour of Figure 1. The left-hand side of (114) is
estimated as the nodal value of the integrand multiplied by the area of D;
the right-hand side as the zone-centered values of the integrand on each of
the four edges of ∂D multiplied by the appropriate edge length. Thus [26],

2Ai,j(σα,α)i,j = eαβ[σi+1/2,j+1/2
α (ui,j+1

β − ui+1,j
β ) + σi−1/2,j+1/2

α (ui−1,j
β − ui,j+1

β )

+σi−1/2,j−1/2
α (ui,j−1

β − ui−1,j
β ) + σi+1/2,j−1/2

α (ui+1,j
β − ui,j−1

β )],(140)

where

Ai,j = 1
4
[(ui−1,j

2 −ui+1,j
2 )(ui,j+1

1 −ui,j−1
1 )−(ui−1,j

1 −ui+1,j
1 )(ui,j+1

2 −ui,j−1
2 )] (141)

is one-half the area of the quadrilateral.
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Figure 1: Finite-difference mesh.

27



We also have need of gradients of various functions at zone-centered
points. First, we apply (139) with σα = cασ(u1, u2), where σ is a smooth
scalar field and cα are arbitrary constants. This yields∫

D

σ,αda = eαβ

∫
∂D

σduβ. (142)

We now identify D with the shaded region in the figure. The left-hand
side is approximated by the product of the shaded area with the integrand,
evaluated at the zone-centered point, and the four edge contributions to the
right-hand side are approximated by replacing the integrand in each with the
average of the nodal values at the endpoints. This gives [26]

2Ai+1/2,j+1/2(σi+1/2,j+1/2
,α ) = eαβ[(σi+1,j+1−σi,j)(ui,j+1

β −ui+1,j
β )−(σi,j+1−σi+1,j)(ui+1,j+1

β −ui,jβ )],
(143)

where

Ai+1/2,j+1/2 = 1
2
[(ui,j+1

2 −ui+1,j
2 )(ui+1,j+1

1 −ui,j1 )−(ui,j+1
1 −ui+1,j

1 )(ui+1,j+1
2 −ui,j2 )].

(144)
The magnetoelastic equilibrium equation is given by (137) in which the

right-hand side is suppressed. To facilitate its discretization, we exploit the
fact that the term αn associated with the pressure load may be expressed as
a divergence on Ω [31]. Thus, n = nkik, where i3 = k,

αnk = 1
2
eijkeαβfiαfjβ = Gkβ,β, (145)

and
Gkβ = 1

2
eijkeαβfiαrj (146)

in which eijk and eαβ respectively are the three- and two-dimensional unit al-
ternators (e123 = e12 = +1). This result is useful in the present circumstances
because the net lateral pressure on the membrane is uniformly distributed.
Thus, the equilibrium equation is equivalent to the system

Tkα,α = Rk, where Tkα = Pkα + (∆p)Gkα and Rk = −µ0h
(a)
k,ifiαMα.

(147)

Here Pkα = P· ik ⊗ iα are the components of P1, h
(a)
k = ik · ha are the

components of the applied field, fkα = f · ik ⊗ iα = rk,α are the components
of the surface deformation gradient, rk = ik · r are the Cartesian coordi-
nates of a material point on the deformed surface and Mα = M · iα are the
magnetization components.
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Each of eqs. (147) is of the form

σα,α = f, (148)

where σα = Tkα and f = Rk; k = 1, 2, 3. The σα, in turn, depend on the
magnetization and on the gradients of σ = rk (k = 1, 2, 3). To solve (148) at
node (i, j) we integrate it over the region enclosed by the dashed quadrilateral
of Figure 1 with vertices at the nearest-neighbor nodes, obtaining

Σi,j = F i,j, (149)

where
Σi,j = 2Ai,j(σα,α)i,j, (150)

and
F i,j = 2Ai,jf i,j. (151)

In (150) the right-hand side is evaluated in terms of the zone-centered values
of σα via (140). The latter are determined constitutively by corresponding
zone-centered values of magnetization together with the gradients σ,α which,
in turn, are given via (143) by the values of σ at the nodes located at the
vertices of the shaded region of Figure 1. The scheme is seen to require
one degree less differentiability than that required by the local differential
equations. Discussions of the associated truncation errors are given by Silling
[30] and Hermann and Bertholf [32].

To solve eqs. (149) we introduce a regularization based on the artificial
dynamical system (cf. (137))

Σi,j,n = mi,jσ̈i,j,n + ci,jσ̇i,j,n + F i,j,n (152)

where mi,j = 2Ai,jρ is the nodal mass, ci,j = 2Ai,jc is the nodal damping
coefficient, n is the time step, and superposed dots refer to derivatives with
respect to (artificial) time. This is not the discrete form of the actual dynam-
ical equations. Rather, it is an artificial system introduced solely to expedite
the computation of equilibria. The basic method, known as dynamic re-
laxation [33], is a powerful tool for generating equilibria in a wide variety
of nonlinear problems. It was developed for membrane theory in a purely
mechanical setting in [26-28] and extended to coupled thermoelasticity in
[31].

We observe that the matrix Gkβ associated with lateral pressure is eval-
uated at zone-centered points (cf. (147) and (150)). However, this involves
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the deformation rk (cf. (146)), a nodal variable. The required evaluation is
based on the average of the deformations at the four adjacent nodes. Simi-
larly, (147) requires nodal values of fkαMα, which are obtained by averaging
values at the four adjacent zone-centered points.

In the case of volume-dependent pressure loading it is necessary to eval-
uate the volume enclosed by the deformed membrane and the plane Ω. This
is obtained from (130) in which αn · r = 1

2
eijkeαβfiαfjβrk. The domain is

divided into zones - the shaded regions in Figure 1 - and the integral over
each is estimated as the zone-centered value of the integrand multiplied by
the shaded area, given by (144). Similarly, the scaled self field at a given
position y in the surrounding space is obtained by using (99), in which the
integral is replaced by the sum of the integrals over the zones. Each of these
is approximated by multiplying the value of the integrand at the relevant
zone-centered point by the shaded area. The integrand is formed from zone-
centered values of f and M and the averaged values of the nodal membrane
position r.

The time derivatives in (152) are approximated by the central differences

σ̇n = 1
2
(σ̇n+1/2 + σ̇n−1/2), σ̈n = 1

h
(σ̇n+1/2− σ̇n−1/2), σ̇n−1/2 = 1

h
(σn−σn−1),

(153)
where h is the time increment and the node label (i, j) has been suppressed.
Substitution into (152) furnishes the explicit, decoupled system

(h−1 + c/2)mi,jσ̇i,j,n+1/2 = (h−1 − c/2)mi,jσ̇i,j,n−1/2 + Σi,j,n − F i,j,n,

σi,j,n+1 = σi,j,n + hσ̇i,j,n+1/2, (154)

which is used to advance the solution in time node-by-node. The stress at
zone-centered points is updated by using (64), (65) and (104), in which the
reactive constraint pressure q is computed from (67), (68) and (115)2.

The starting procedure is derived from the quiescent initial conditions

σi,j,0 = σ0(ui,jα ), σ̇i,j,0 = 0, (155)

where σ0(uα) is assigned. Thus, from (154) we obtain

(2/h)mi,jσ̇i,j,1/2 = Σi,j,0 − F i,j,0, (156)

in which the right-hand side is determined by the function σ0. The system
is non-dimensionalized and the solution is advanced to the first tn such that
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max
i,j
|Σi,j,n − F i,j,n| < δ, a suitable tolerance. We remark that because only

long-time limits of solutions are relevant, temporal accuracy is not an issue.
Stability is addressed by using sufficiently small time steps selected on the
basis of successive trials based on a sequence of values of h.

A similar temporal discretization is used to update the magnetization
and director fields M and e at zone-centered points. Consistency with the
derivation of the Lyapunov functions L1,2 of Section 3 requires the use of a
staggered scheme in which the predicted position field at time step n + 1 is
fixed while integrating (126). We then start the integration of (126)2 using
the value of e at step n as the initial condition (with the initial value ė = 0).
This calculation proceeds in increments of the time-like variable τ2. We fix
the predicted value of e at the subsequent step and use this value to integrate
(126)1 with respect to τ1, using the value of M generated by the previous
value of e as the initial condition (with initial value Ṁ = 0). This continues
until convergence is achieved, yielding the magnetization associated with the
predicted value of e. The integration with respect to τ2 then resumes and
the cycle is repeated until convergence is achieved, yielding the values of
e and M associated with the position field at step n + 1. The process is
repeated until the deformation field converges, yielding the final equilibrium
position, magnetization and director fields over all nodes and zone-centered
points. However, numerical experiments indicate that this computationally
intensive double-staggered scheme is not required in practice. Instead, we
find that equilibrium states may be achieved by treating all fields on an
equal basis as far as temporal integration is concerned.

The magnetization at step n = 0 is set to zero. This is the unique
solution to (112) if the applied field vanishes. Accordingly, the applied field
intensity is first set to a small value and the equilibrium fields are obtained
by the foregoing procedure. Successive equilibria are then computed for a
sequence of increasing field intensities, using the equilibria associated with
each member of the sequence as initial values for the next member.

5. Examples

In this final section we discuss the results of some numerical experiments.
All examples pertain to a membrane that is initially square, of side 8 mm
and thickness h = 50 × 10−3mm. The latter is used in place of ε in the
formula (99) for the self field, which was derived using a scheme in which
ε is interpreted as (dimensionless) thickness. The mass density is ρ = 1750
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Figure 2: Deformed membrane at D = 160× 10−6Am2.

kg/m3; the free-space permeability is µ0 = 4π × 10−7 N/A2 (Newton per
square Ampere) [14]; and the dipole source is centrally located above the
plane at yd = (8 mm)k. We find that convergence is achieved in all cases
using a regular 33 × 33 mesh. Material parameters are taken to be those
suggested in [34]. Thus, the saturation magnetization is M̄s = µ0/2, the
shear modulus is µ = 1.0 × 106 N/m2, and the remaining parameters in
(56) are C10 = 1.0, C20 = 0.625, C11 = 0.0791, C21 = 0.0, C01 = β/6 and
C02 = β/2, where β = µ0M̄

2
s /2.

Figure 2 depicts the deformation of the membrane under zero pressure
in response to a dipole of strength D = 160 × 10−6 A −m2 (cf. (20)). The
vertical and in-plane dimensions are scaled differently to aid in visualization.
We have used the data generated by the simulation, together with (69), to
verify that the the three-dimensional principal stretches on the membrane
surface are well within the limits required for the validity of (41)2. The ref-
erential in-plane magnetization field M is shown in Figure 3. This field is
directed everywhere toward the center of the membrane, where differentia-
bility requires that it diminish to zero in intensity. This and the constraint
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Figure 3: Reference magnetization at D = 160× 10−6Am2 on the reference plane.
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(91) cause the interaction with the applied field to weaken near the center,
resulting in a deformed surface that is relatively flat under the dipole source.

Figure 4 shows the variation of the in-plane part, e, of the director field

Figure 4: In-plane part, e, of director field, at D = 160× 10−6Am2.

with respect to position on the reference plane. The deformation deviates
from Kirchhoff-Love kinematics wherever this is nonzero. This reflects the
bias induced by the dipole source at points lying off the dipole axis, causing
the director d on the deformed surface to tilt relative to the tangent plane
as the membrane adjusts to the applied field. The effect diminishes near
the corners of the membrane where the field is relatively weak, and near
the center where the field lines intersect the membrane orthogonally and the
associated bias vanishes; in either case the kinematics revert to the Kirchhoff-
Love mode. Figure 5 illustrates the self field generated by the membrane,
computed post facto using (99), in a plane of symmetry obtained by fixing a
reference coordinate at the value zero.

Finally, the effects of pre-stretch and pressure are displayed in Figure 6,
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Figure 5: Self field in space at D = 160× 10−6Am2, in the plane defined by u2 = 0.
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in which the height of the deformed surface, at a point on the dipole axis,

Figure 6: Membrane displacement under the dipole source, as a function of dipole strength.
Effect of prestretch indicated by circles (◦) and crosses (×); effect of fixed or volume
dependent pressure is indicated by dots (·) and stars (*), respectively (see text).

is plotted against dipole strength. The open circles and crosses correspond
to zero applied pressure; the former corresponding to no pre-stretch and the
latter to a uniform pre-stretch of 1.2 induced by an outward displacement
of nodes on the boundary; these are subsequently fixed in the course of the
simulation. Pre-stretch is seen to stiffen the membrane dramatically, result-
ing in a much smaller deflection at any given field strength. The effect of
pressure (at no pre-stretch) is illustrated by the dotted and starred data, the
former corresponding to a fixed inflation pressure P = 2.0 × 105 Pa acting
on the interior of the membrane; the external pressure is assumed to vanish.
This is regarded as being supplied by a large reservoir with an opening on
the reference plane. The stars correspond to a volume-dependent pressure
in which the product of the pressure and the enclosed volume remains con-
stant, as in an ideal gas at fixed temperature. The constant is derived by
using (130) to compute the contained volume generated in response to the
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fixed pressure at zero field strength. As expected, pressure has a significant
effect on deformation at small field intensities, but its relative importance di-
minishes with increasing intensity. Moreoever, at any value of field intensity
the volume-dependent pressure yields a smaller displacement than that pro-
duced by the fixed pressure. The discrepancy increases with field intensity
due to the attendant increase in volume, which causes the volume-dependent
pressure to be reduced in magnitude. In all cases an upper limit is predicted
for the deformation that can be maintained in equilibrium. Such limits are
identified by the failure of the dynamic relaxation method to generate equi-
libria when the field intensity is increased above a critical value. Our results
thus establish the existence of a limit-point instability at sufficiently high
field intensities. This corroborates the analysis of [35], based on a low-order
finite-dimensional projection of the model developed in [7].
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