SPECTROPHOTOMETRIC DETERMINATION OF MIXTURES OF NEPTUNIUM (IV) AND NEPTUNIUM (V) IN NITRIC ACID SOLUTIONS

by

E. K. Dukes and W. E. Shuler
Separations Chemistry Division

December 1960

RESTRICTED DATA

This document contains Restricted Data as defined in the Atomic Energy Act of 1954. Its transmittal or the disclosure of its contents in any manner to an unauthorized person is prohibited.

E. I. du Pont de Nemours & Co.
Savannah River Laboratory
Aiken, South Carolina
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
SPECTROPHOTOMETRIC DETERMINATION OF MIXTURES OF NEPTUNIUM (IV) AND NEPTUNIUM (V) IN NITRIC ACID SOLUTIONS

by

E. K. Dukes and W. E. Shuler*

December 1960

*Present Address: E. I. du Pont de Nemours & Co.
Textile Fibers Department
May Plant
Camden, S. C.

RESTRICTED DATA

This document contains Restricted Data as defined in the Atomic Energy Act of 1954. Its transmittal or the disclosure of its contents in any manner to an unauthorized person is prohibited.

E. I. du Pont de Nemours & Co.
Explosives Department - Atomic Energy Division
Technical Division - Savannah River Laboratory

Printed for
The United States Atomic Energy Commission
Contract AT(07-2)-1
ABSTRACT

The concentrations of Np(IV) and Np(V) ions in nitric acid solutions were determined quantitatively by a spectrophotometric method.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Summary</td>
<td>4</td>
</tr>
<tr>
<td>Discussion</td>
<td>4</td>
</tr>
<tr>
<td>Experimental Procedure</td>
<td>4</td>
</tr>
<tr>
<td>Preparation of Neptunium Solutions</td>
<td>4</td>
</tr>
<tr>
<td>Measurement of Absorption Spectra</td>
<td>5</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>6</td>
</tr>
<tr>
<td>Results</td>
<td>7</td>
</tr>
<tr>
<td>Bibliography</td>
<td>8</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Absorption Spectra of Np(IV), Np(V), and Np(VI) in 1M HNO₃</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Modification of Beckman DU Spectrophotometer for Use in Gloved Box</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Effect of Nitrate Concentration on the Absorption Spectrum of Np(IV)</td>
<td>8</td>
</tr>
</tbody>
</table>
SPECTROPHOTOMETRIC DETERMINATION OF MIXTURES OF NEPTUNIUM (IV) AND NEPTUNIUM (V) IN NITRIC ACID SOLUTIONS

INTRODUCTION

The absorption spectra of Np(III), (IV), (V), and (VI) ions in perchloric acid solutions have been reported. The spectra of the (III), (IV), and (V) ions contain sharp absorption bands in the visible region, and the positions of the bands are sufficiently different to permit spectrophotometric analysis of mixtures of these oxidation states.

The spectra of Np(IV), (V), and (VI) ions in nitric acid solutions have also been reported. Although the spectra are sufficiently different for spectrophotometric analysis, the analysis is complicated by the effect of nitrate complexing on the absorption spectrum of Np(IV).

The purpose of this study was to develop a quantitative spectrophotometric analysis for mixtures of Np(IV) and Np(V) in solutions of various nitric acid concentrations.

SUMMARY

The absorption spectra of Np(IV), Np(V), and Np(VI) were measured in 1M HNO₃ and a spectrophotometric method of analysis was devised for mixtures of Np(IV) and Np(V) in nitric acid solution. In the analysis the absorption of Np(IV) was measured at the sharp absorption band at about 715 μm and the absorption of Np(V) was measured at 617 μm.

A novel adaptation of a Beckman DU spectrophotometer permitted the neptunium solutions to be confined in a gloved box so that the instrument was not exposed to possible contamination by the alpha activity of Np²³⁷.

DISCUSSION

EXPERIMENTAL PROCEDURE

PREPARATION OF NEPTUNIUM SOLUTIONS

A stock solution of Np²³⁷ was purified by solvent extraction and anion exchange. The neptunium was first oxidized to the (VI) state and extracted from 4M HNO₃ into 30% tri-n-butyl phosphate in n-dodecane. The organic phase was washed with 4M HNO₃, and the neptunium was stripped into 0.5M HNO₃ solution. This solution was made 8M in HNO₃ and ferrous sulfamate was added to reduce the neptunium to the (IV) state. The anionic nitrate complex of the Np(IV) was absorbed on a column of "Dowex" 21K anion exchange resin. The column was washed with 8M HNO₃, and the neptunium was eluted with 0.5M HNO₃. The ion exchange step was performed immediately before the neptunium sample
was used in subsequent tests. Np(IV) was the predominant oxidation state in the ion exchange eluate immediately after elution, but oxidation to Np(V) occurred slowly on standing. Consequently, no reagent was needed to adjust to the (V) state. Ferrous sulfamate was used to reduce neptunium to the (IV) state; sodium bromate was used to oxidize neptunium to the (VI) state. Mixtures of Np(IV) and Np(V) were obtained by allowing an ion exchange eluate of Np(IV) to oxidize partially. The concentration of neptunium in the various solutions was determined by alpha counting.

MEASUREMENT OF ABSORPTION SPECTRA

The absorption spectra of pure Np(IV), (V), or (VI) were measured in a Beckman DU spectrophotometer that was modified in the manner described in the following section. A sample of the purified neptunium was adjusted to the desired valence state and diluted to the required concentration with nitric acid, and the absorbance was measured in a 1-cm cell. The absorption spectra of Np(IV), (V), and (VI) in 1M HNO₃ are shown in Figure 1. The molar extinction coefficients are in units of liters/(mole)(cm).

![Absorption Spectra Graph](image-url)
INSTRUMENTATION

A Beckman DU spectrophotometer was modified for use in a gloved box to avoid contamination of the instrument with neptunium. The monochromator was separated from the detector so that each unit formed one limb of a U-shaped optical path, as shown in Figure 2. Light was directed from the monochromator through a window in the gloved box, reflected from a mirror, passed through the sample, reflected from a second mirror, and finally passed through a second window in the gloved box onto the phototube in the detector housing. Since the radiation emerging from the monochromator was a divergent beam, it was necessary to place a lens (45 mm focal length) after the first mirror to form the image of the spectrophotometer slit at the sample position. A second lens (170 mm focal length) converged the beam on the phototube.

Ordinary glass lenses were used and the windows were made of "Plexiglas" plastic, 0.030 inch thick. Simple front-silvered mirrors were used. The entire mirror-and-lens assembly was mounted on a steel base and covered with a lighttight aluminum box.

FIG. 2 MODIFICATION OF BECKMAN DU SPECTROPHOTOMETER FOR USE IN GLOVED BOX
RESULTS

The spectra in Figure 1 show sharp absorption bands at 715 μm for Np(IV) and at 617 μm for Np(V) in 1M HNO₃. Np(VI) exhibits only weak absorption in this region, with no pronounced absorption bands. The 617 and 715 μm bands were used for the analysis of mixtures of Np(IV) and Np(V). The absorbance of a given mixture was measured at the two wavelengths, and the concentrations were determined by the simultaneous solution of the two equations:

\[
A_{715} = E_{715}^{(IV)} \cdot C(IV) + E_{715}^{(V)} \cdot C(V)
\]

\[
A_{617} = E_{617}^{(IV)} \cdot C(IV) + E_{617}^{(V)} \cdot C(V)
\]

The symbols \(A_{715}\) and \(A_{617}\) are the measured absorbances of the solution at 715 and 617 μm, respectively. \(E_{715}^{(IV)}\) and \(E_{715}^{(V)}\) are the molar extinction coefficients of Np(IV) and Np(V) at 715 μm. \(E_{617}^{(IV)}\) and \(E_{617}^{(V)}\) are the molar extinction coefficients of Np(IV) and Np(V) at 617 μm. C(IV) and C(V) are the molar concentrations of Np(IV) and Np(V).

Ten mixtures of Np(IV) and Np(V) in 1M HNO₃ were analyzed by this method. The results are shown in the following table. No attempt was made to confirm the valence state analyses by an independent method, but the sum of the Np(IV) and Np(V) concentrations determined spectrophotometrically was compared with the total neptunium concentration determined by alpha counting. The average difference between the results of the two methods was 3%.

| Spectrophotometric Analysis of Mixtures of Np(IV) and Np(V) in 1M HNO₃ |
|-------------------------------|-------------------------------|
| Concentration of Np(IV), M | Concentration of Np(V), M | Total Np, M | Spectrophotometric | Alpha Counting |
| 0.0131 | 0.0006 | 0.0137 | 0.0140 |
| 0.0122 | 0.0009 | 0.0131 | 0.0139 |
| 0.0120 | 0.0008 | 0.0128 | 0.0125 |
| 0.0112 | 0.0009 | 0.0121 | 0.0121 |
| 0.0049 | 0.0083 | 0.0132 | 0.0133 |
| 0.0034 | 0.0085 | 0.0119 | 0.0118 |
| 0.0019 | 0.0107 | 0.0126 | 0.0120 |
| 0.0005 | 0.0121 | 0.0126 | 0.0119 |
| 0.0002 | 0.0122 | 0.0124 | 0.0127 |
| 0.0001 | 0.0131 | 0.0132 | 0.0138 |

The spectrophotometric analysis of mixtures of Np(IV) and Np(V) may be applied in nitric acid solutions more concentrated than 1M, but the effect of nitrate complexing on the Np(IV) spectrum must be taken into account. At 6M HNO₃ the absorption band for Np(IV) is shifted from 715 to 700 μm and the molar extinction coefficient is slightly diminished, as shown in Figure 3.
FIG. 3 EFFECT OF NITRATE CONCENTRATION ON THE ABSORPTION SPECTRUM OF Np (IV)

The Np(V) spectrum is essentially unchanged. For application at any HNO₃ concentration, the Np(IV) peak position must be determined, and the appropriate extinction coefficients must be measured.

E. K. Dukes
W. E. Shuler

Separations Chemistry Division

BIBLIOGRAPHY


DISTRIBUTION

Copy No.

1-5. AEC, SROO

6-43. du Pont Company, Atomic Energy Division

44. Aerojet-General Corporation
45-46. Aerojet-General Nucleonics
47. Aeroprojects, Inc.
48. AIResearch Manufacturing Company
49-52. Air Force Ballistic Missile Division
53. Air Force Cambridge Research Center (CROTR)
54-55. Air Force Special Weapons Center
56-57. AFFR, Lockheed, Marietta
58. Air Technical Intelligence Center
59. ANP Project Office, Convair, Fort Worth
60. Albuquerque Operations Office
61. Alco Products, Inc.
62. Allied Chemical Corporation
63. Allis-Chalmers Manufacturing Company
64. Allis-Chalmers Manufacturing Company, Washington
65-66. Argonne National Laboratory
67. Army Chemical Center
68. Army Medical Research Laboratory
74-75. Atomics International
76. Avco Manufacturing Corporation
77. Babcock and Wilcox Company (NYO0-1940)
78. Babcock and Wilcox Company (NYO0-274)
79. Battelle Memorial Institute
80. Bridgeport Brass Company, Adrian
81. Brookhaven National Laboratory
82. Bureau of Medicine and Surgery
83. Bureau of Mines, Salt Lake City
84-85. Bureau of Naval Weapons
86. BUWEPSREP, Aerojet-General, Azusa
87. BUWEPSREP, Convair, San Diego
88. Bureau of Naval Weapons (SFO)
89. Bureau of Ships
90. Bureau of Yards and Docks
91. Chicago Operations Office
92. Chicago Patent Group
93. Combustion Engineering, Inc.
94-96. Combustion Engineering, Inc., NRD
98. Denver Research Institute
99. Department of the Army
100. Division of International Affairs, Brussels
101. Division of International Affairs, Tokyo
102. Division of Raw Materials, Washington
103. Dow Chemical Company (Rocky Flats)
104. Edgerton, Germscheneus and Grier, Inc., Las Vegas
105. Engineer Research and Development Laboratories
106. General Atomic Division
107-109. General Electric Company (ANPD)
110-113. General Electric Company, Richland
114. General Electric Company, St. Petersburg
115. General Nuclear Engineering Corporation
116. Gibbs and Cox, Inc.
117-118. Goodyear Atomic Corporation
119. Grand Junction Operations Office
120. Hanford Operations Office
121. Iowa State University
122. Jet Propulsion Laboratory
123-124. Knolls Atomic Power Laboratory
125. Las Vegas Branch
126. Lockheed Missiles and Space Division
127-128. Los Alamos Scientific Laboratory
129. Lowry Air Force Base
130-132. Mallinckrodt Chemical Works
133. Marquardt Aircraft Company
134-135. Martin Company
136. Mound Laboratory
137. National Aeronautics and Space Administration, Cleveland
138. National Bureau of Standards
139. National Lead Company of Ohio
140. Naval Air Development Center
141. Naval Air Material Center
142. Naval Engineering Experiment Station
143. Naval Medical Research Institute
144. Naval Research Laboratory
145. New Brunswick Area Office
146. New York Operations Office
147. New York Shipbuilding Corporation
148. Nuclear Development Corporation of America
149. Nuclear Materials and Equipment Corporation
150. Nuclear Metals, Inc.
151. Oak Ridge Operations Office
152. Office of Naval Research
153. Olin Mathieson Chemical Corporation
155-158. Phillips Petroleum Company (NRTS)
159. Pinellas Area Office
160. Power Reactor Development Company
161. Pratt and Whitney Aircraft Division
162. Public Health Service
163. San Francisco Operations Office
164. Sandia Corporation
165. Sandia Corporation, Livermore
166. Sargent & Lundy
167. Sylvania-Corning Nuclear Corporation
168. Technical Research Group
169. The Surgeon General
170-172. Union Carbide Nuclear Company (ORGDP)
173-176. Union Carbide Nuclear Company (ORNL)
177. Union Carbide Nuclear Company (Paducah Plant)
178. USAF Headquarters (ODCE)
179. USAF Project RAND
180. U. S. Naval Postgraduate School
181. U. S. Naval Radiological Defense Laboratory
182. University of California at Los Angeles
183-184. University of California, Berkeley
185-186. University of California, Livermore
187. University of Rochester
188. University of Washington
189. Walter Reed Army Medical Center
190-191. Westinghouse Bettis Atomic Power Laboratory
192. Westinghouse Electric Corporation
193-196. Wright Air Development Division
197. Yankee Atomic Electric Company (NYOO-222)
198-237. Technical Information Service Extension