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Extraction Algorithms — Final Report 
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D. M. Ranken,2 and R. S. Roberts1 

15 October 2013 
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Executive Summary 

THE BENCHMARK IMAGERY PROJECT 
Benchmark Imagery for Assessing Geospatial Semantic Content Extraction Algorithms (the 
“Benchmark Imagery Project”) was a three-year endeavor funded by the Enabling Capabilities 
(EC) Team of DOE/NNSA’s Office of Proliferation Detection R&D, NA-22, and carried out 
through a collaborative effort between Los Alamos National Laboratory (LANL) and the 
Lawrence Livermore National Laboratory (LLNL).  The primary objective was to create a set of 
benchmark imagery for validating algorithms designed to extract semantic content from 
geospatial images of industrial facilities. The goal was not to develop algorithms; rather, it was 
to provide information that could be used to do so. The secondary objective was to demonstrate 
how this information could be used for algorithm validation.  

This report summarizes the results of the Benchmark Imagery Project. 

BENCHMARK IMAGERY SUITE V1.1A 
The set of imagery, metadata and ancillary data collected under the project constitute the 
Benchmark Imagery Suite v1.1a. The suite includes aerial visible-band images of 190 US 
industrial facilities, synthetic images of 38 fictitious electrical power plants and lidar elevation 
rasters of 16 of the real facilities. The classes of industries in the suite include the following: 

• Chemical Processing (27 facilities) — e.g., oil refineries. 
• Heavy Manufacturing (31 facilities) — e.g., steel foundries and metal-casting plants. 
• Heat Processing (37 facilities) — e.g., nuclear and coal-fired electrical power plants. 
• Mechanical Processing (83 facilities) — e.g., aluminum processing plants and water 

treatment plants. 
• Semiconductor Industry (12 facilities) — e.g., computer chip companies. 

The related data in the suite include the geographical locations and industry types of each 
facility. Spectrally, most of the images are three-band red-green-blue (RGB); however, some 
also include a fourth, near-infrared band. Spatially, each image covers an area of approximately 
1 to 1.6 km2, with a ground sample distance (GSD) of 0.3 to 1m. All images are orthorectified 
GeoTIFF [1] images taken at a near-nadir viewing angle.  

Ancillary data in the Benchmark Imagery Suite v1.1a are intended to facilitate using the data in 
algorithm testing. They include object-annotation files for all 190 of the aerial photographs, and 
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posterized versions of all of the synthetic images and 51 of the aerial images. (A posterized 
image is a color-coded silhouette that identifies key objects in the scene.) The real images are 
organized by industry type. In the top-level directory for each industry type is a catalog of the 
sites therein plus a KML file that interfaces to Google Earth to show the user where the various 
facilities of that type are. The catalog is a browser-compatible (.html) file that lists key 
parameters of each image, such as spatial sampling parameters, image size, and number of 
spectral bands and date of acquisition. 

All of the aerial GeoTIFF images in the suite are openly available and were downloaded through 
the USGS web site (http://www.usgs.gov/pubprod/aerial.html#aerial). The choice to use USGS 
data was driven by a goal of having openly distributable images, free of classification or 
licensing issues. The Benchmark Imagery Suite v1.1a is unclassified but is for OFFICIAL USE 
ONLY.  To obtain a copy of the data, interested parties should contact 

Mr. James Peltz 
Program Manager 
james.peltz@nnsa.doe.gov 
202-586-7564 

PATH FORWARD 
The Benchmark Imagery Suite v1.1a is only one step towards compiling a comprehensive set of 
imagery, metadata, test methods and test results for algorithms that infer meaning from overhead 
geospatial imagery. The next major phase of its life cycle is for others to start using and revising 
it in a controlled way. Opportunities to expand upon the existing suite include both (a) refining 
the existing data (such as with more exhaustive annotation, more posterized images, more lidar 
imagery, or more documented tests of algorithms) and (b) broadening the scope of the imagery in 
the suite (such as with more industry classes, increased lexicon, more imaging modalities, more 
test metrics, or sites with multiple over flights). It is hoped that others will use the suite and 
improve it so that it becomes a standard benchmarking tool and inspires the creation of effective 
new algorithms. 

ORGANIZATION OF THE REPORT 
The body of this report has 8 sections: Background, Initial Conditions: Industrial Classes, 
Facilities and Labels, Real Images, Lidar Images, Synthetic Images, Ground Truth, 
Demonstration of Testing an Algorithm with Benchmark Imagery, and Conclusion. Two 
appendices discuss the organization of the suite and provide criteria used for annotating the 
imagery.  
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I. Introduction 

An important portion of nuclear non-proliferation information is derived from overhead imagery. 
As the quantity and quality of overhead imagery grows, the data stream is eventually going to 
exceed unaided human capacity to handle. Since image interpretation ultimately is word-based in 
nature, tools that automatically label and interpret images in words are needed (Figure 1 and 
Figure 2). In parallel, testing standards must be developed for these emerging tools, including 
suites of test images and methodologies for using the test images. In short, new tools for the 
automatic extraction of semantic content from geospatial imagery of industrial facilities are 
needed to better support NA-22’s mission in nuclear non-proliferation [2]. Collecting an initial 
suite of test images and demonstrating their utility are the underlying raison d’être for — and 
goal of — this project. 

 
Figure 1. Key terminology used in this report. 

 
Figure 2. Simple schematic illustration of an iterative approach to assisting a subject matter expert by extracting semantics from 
imagery. 

The actual process of automatic image interpretation, illustrated by the simple cartoon in Figure 
2, is non-trivial. The overarching methodology must contain lists of rules, objects, and 
relationships among those objects — an ontology [3] — that can be mapped onto the input 
image(s). The components of the ontology may or may not be well specified or complete. For 
example, what are the rules that enable a human analyst to determine the boundaries of a facility 

Geospatial Image

Lexicon of Labels
• Cooling tower(s)
• Ponds 
• Power lines …

Segmentation

This might 
be a nuclear 
powerplant.

Iterations

Domain SME

DEFINITION GEOSPATIAL SEMANTIC CONTENT EXTRACTION 

“Inference (interpretation) of the implied significance of objects or activities from images that 
include information about their layout and location” 

Geospatial (adj.): of or relating to the absolute or relative position of things on the Earth’s 
surface. 

Semantic (adj.): of, pertaining to, or arising from, the different meaning of words or other 
symbols. 
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from looking only at an image or set of images? The lexicon of labels that a human image 
analyst would use (pond, tower, pile, …) is often different than the labels that an image-
processing algorithm would use (polygon, edge, point, …). How should one design a 
segmentation algorithm to align with the lexicon of labels that a human would assign to objects 
in the scene? How does the vocabulary of labels limit possible interpretations of the image? 
What range of features must the geospatial image include for an algorithm to function? These are 
but a few of the issues that arise and that are active areas of computer vision research as applied 
to automated interpretation of overhead imagery. 

From the preceding discussion, one can easily see that algorithms that support automated image 
interpretation may apply only over a narrow range of conditions. When applied to images that do 
not meet those conditions, the algorithms break. One desired property of a suite of benchmark 
imagery is that it should contain enough variety to test algorithms to their breaking points. This 
would help users understand the range of validity of the algorithms. Furthermore, it seems 
intuitively correct that the training set and the test set of images should be different when 
evaluating an algorithm.  

An implicit assumption in making a benchmark imagery suite is that its existence will stimulate 
creation of new algorithms. This is based on historical precedents associated with land-based 
terrestrial imagery following the creation of other computer-vision data bases such as the Cal 
Tech 101 and 256 data bases [4]. It is the Field of Dreams concept: “Build it, and they will 
come.” [5] To stimulate as many new algorithms as possible, the suite should be available to 
academics, because much of the creativity in geospatial image processing is concentrated within 
the academic community. This leads to an indirect requirement for the suite that it be affordable 
(free) and widely distributable (unclassified and unlicensed).  

Another key issue is what should be the balance among actual photographs and synthetic images 
in the Benchmark Suite? Image analysts work with actual photographs, but algorithm developers 
can benefit from using real, synthetic and composite images. Each type of image has its own 
advantages. Real images automatically incorporate all the physics of the scene and all the 
engineering characteristics of sensors. Composite and synthetic images enable the content in a 
scene to be entirely configurable and the ground truth to be perfectly known. Creating facilities, 
objects, and environment in a synthetic image can be dictated by end users and their needs. This 
is very important when testing algorithms on situations where imagery is limited or where 
control is needed over the scene. Facilities can be generated in different stages of construction. 
Images can be “captured” at different angles and different time of day. Effects such as fog, 
clouds, and lighting can be simulated. Sensor and mission characteristics such as over-exposure, 
distortion, blur, and a variety of viewing geometries can be modeled.  Also, synthetic images 
may be more distributable than real images, because they tend to be less sensitive in nature 
(unclassified). Therefore, the Benchmark Imagery Suite should contain a mix of real and 
composite/synthetic images. 

The work in this project was accomplished iteratively among the following sequence of steps:  
1. Select the types of industrial facilities, the vocabulary, the rules  
2. Select the Real Images 
3. Create the Synthetic/Composite Images 
4. Collect the Lidar data 
5. Create the Ground Truth Set  
6. Demonstrate Algorithm Testing with the Benchmark Imagery Suite 
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II. Initial conditions: Industrial Classes, Facilities and Labels 

In a semantic process, one must define terms up front [6]. For the current project, the industrial 
classes of interest, candidate facilities, image features and their definitions were specified prior 
to obtaining significant numbers of images.  

SELECTION OF INDUSTRIAL CLASSES 
We defined the industrial classes of interest by following a seminal paper on photointerpretation 
from Chisnell and Cole [7], who divided all industries into six categories and provided a 
vocabulary of names for industrial objects. Table 1 lists their major industry groups. 

Industrial 
Class Description Example 

Extraction 
Exploits the natural resources of the earth and its waters with the 
minimum handling required to accumulate raw materials in a 
form suitable for transportation or processing. 

Quarry 

Mechanical 
Processing 

Engages in the sizing, sorting, separating, or otherwise changing 
the physical form or appearance of raw materials. Sawmill 

Chemical 
Processing 

Utilizes chemicals or chemical processes to separate or rearrange 
the chemical constituents of raw materials. Refinery 

Heat 
Processing 

Utilizes heat as the primary process to refine, separate, or re-
form raw materials, or derive energy from them. Smelter 

Heavy 
Fabrication 

Forms and assembles the parts of finished products which 
individually are large and heavy. Shipyard 

Light 
Fabrication 

Forms and assembles the parts of finished products which 
individually are not extremely heavy and are rarely very bulky. 

Boat repair 
yard 

Table 1. Chisnell and Cole’s Industrial Classes 

Since their paper first appeared (1958), new technologies and, arguably, new industry types have 
emerged. To the list of Chisnell and Cole’s industry types, we have added “Semiconductor 
Industry,” which did not exist at the time that Chisnell and Cole wrote their work. This class is 
intended to cover not only the processing of semiconductor materials but the fabrication of 
integrated circuits, printed circuits and related items. We then prioritized the order in which we 
would collect examples from each industry type. The current version of the Benchmark Imagery 
Suite includes the following classes: 

• Chemical Processing (27 facilities) — e.g., oil refineries. 
• Heavy Manufacturing (31 facilities) — e.g., steel foundries and metal-casting plants. 
• Heat Processing (37 facilities) — e.g., nuclear and coal-fired electrical power plants. 
• Mechanical Processing (83 facilities) — e.g., aluminum processing plants and water 

treatment plants. 
• Semiconductor Industry (12 facilities) — e.g., computer chip companies. 

In consultation with the NA-22 program office, Chisnell and Cole’s Extraction and Light 
Fabrication classes are not included in the current Benchmark Imagery Suite. 
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CHOICE OF FACILITIES 
Next, a list of candidate industrial facilities and their locations (i.e., a gazetteer) was prepared, 
compiled from open-source information, including two EPA databases, an OSHA database, the 
Energy Justice database and the North American Industry Classification System (NAICS) by the 
US Census Bureau [8]. A separate gazetteer was formed for each industrial type used in the 
Benchmark Imagery Suite, with a unique alphanumeric code assigned to each site. Each 
industrial facility was given a unique benchmark ID indicating whether it was chemical 
processing (CP), heavy manufacturing (HM), heat processing (HP), mechanical processing (MP) 
or semiconductor industry (SI). This set of gazetteers, which contains the name of each facility, 
its location and other site-specific data, are working documents that are not included with the 
Benchmark Imagery Suite. Minimum and maximum latitude and longitude values were 
calculated for each site, based on the nominal geographic coordinates and size of each facility. 
Extremely large facilities (many square miles) and small facilities (one or two buildings) were 
excluded. 

CONSTRAINED VOCABULARY 
The Benchmark Imagery Suite uses a simplified vocabulary derived from Chisnell and Cole. The 
list of labels in this work is limited to objects that a human could identify without significant 
specialized knowledge. Modifiers that imply hidden knowledge are dropped from labels. For 
example, with regard to standing water, we include the simple term “pond,” but Chisnell and 
Cole list a variety of types of pond that imply specialized knowledge of functionality such as 
“flocculation clarification basins” in a water treatment plant. Table 2 below lists the version of 
the constrained vocabulary used in the Benchmark Imagery Suite. During the course of the work 
the vocabulary evolved slightly, with some of the original definitions being slightly revised and a 
few additional terms put into the list. Appendix B gives the photointerpretation key created for 
the Benchmark Imagery Project with photographic examples of each of the terms in Table 2. 

Image Feature Definition 

Building A structure consisting at a minimum of a foundation, a roof, and supports 
and which is not a house or an industrial building.   

Conveyor 
A structure (e.g., belt, duct, pipe, etc.) used to move material (e.g., a 
conveyor belt, pipeline, or steam pipe), electricity (e.g., conduit), or people 
(e.g., sky bridge). 

Cooling Tower  A type of cooling unit which is typically a very tall, hyperboloid-shaped 
structure.   

Cooling Unit 
A piece of equipment used to dissipate or remove heat from other 
equipment or a building by dumping it into the surrounding environment 
through the use of an intermediate fluid (e.g., water, refrigerant).   

Crane Permanently mounted equipment affixed to a facility which is used to lift, 
and possibly move, heavy objects — specifically, an “Overhead Crane.”  

Electrical 
Substation 

A collection of structures used for the transmission, transformation, 
distribution or switching of electric power. 
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Image Feature Definition 

House 
A structure consisting at a minimum of a foundation, a roof, and supports, 
which is (usually) small in areal extent and is typically located within a 
residential area. 

Industrial Building 
A structure consisting at a minimum of a foundation, a roof, and supports, 
which is (usually) large in areal extent and located within the bounds (e.g.,  
fence-line) of an industrial facility. 

Kiln Equipment (e.g., furnace or oven) for drying, baking, or burning material.   
Pile A purposefully-placed heap of solids with some angle of repose.   

Pond 

A container of any shape (e.g., natural, round, rectangular, square, etc.), 
installed either above or below ground, which uses either soil or concrete 
or metal to effect the containment, and which has an open view to the sky, 
such that the liquid within often appears dark in tone (since the liquid may 
contain significant solids).   

Rail Line 
A linear structure consisting of a foundation (e.g., compacted material) 
upon which rests horizontally oriented bars of metal, to facilitate the 
movement of locomotives, railcars, etc.   

Stack A vertical structure used to convey exhaust; usually relatively tall in height 
compared to surrounding structures.   

Tank 
A non-mobile (i.e., fixed), enclosed structure (i.e., with a lid and walls), of 
wide variety in shape (e.g., cylindrical, spheroidal, etc.), and oriented either 
horizontally or vertically, for holding solid, liquid, or gas.   

Tower 
A vertical piece of equipment (e.g., watch tower, fractionating tower, 
cracking unit, etc.), usually relatively tall in height compared to 
surrounding structures.   

Water Tower A tank, elevated via placement on top of a tower.   
Table 2. Constrained vocabulary of labels in the Benchmark Imagery Suite. 

III. Real Images 

In this report, “real” images refer to images captured with an imaging sensor, as opposed to 
computer-generated “synthetic” images. This section of the report focuses on the real images in 
the Benchmark Imagery Suite. 

REQUIREMENTS AND SCOPE OF IMAGERY 
The images in the Benchmark Imagery Suite must meet several conditions. They must be 
overhead images of industrial facilities. They must be geospatial in nature. They must have 
adequate lateral spatial resolution to enable detection of the key features listed in Table 2 —
nominally with ground sample distances (GSD) of one meter or less. They must cover a large 
enough area to show the environment around each facility — on the order of 1 to 2 km2. They 
must be accessible and affordable to users. There must be adequate numbers of images in the set. 
Previous work in computer vision has suggested that many tens or even hundreds of images are 
needed for each modality represented in a benchmark suite (visible-band, infrared, broad-band, 
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multispectral, hyperspectral, radar, and lidar, for instance), in order to provide the richness of 
features that algorithm developers might need [9].  

To collect such a wide assortment of images of a set of facilities captured with multiple overhead 
imaging modalities would have required a large effort. The Benchmark Imagery Project, 
however, was a modestly sized project whose intent was to make an initial collection of images, 
not a complete set representing all imaging modalities with all possible variations in the scene. 
Therefore, with few exceptions (see Section IV Lidar), we chose to use only visible-band 
conventional digital images. Such overhead imagery is the most readily accessible, affordable 
and distributable of all of the imaging modalities.   

ACQUIRING REAL IMAGES 
A ready source of visible-band overhead imagery is the USGS National Map Viewer, 
http://nationalmap.gov/viewer.html (formerly called the Seamless Data Warehouse 
http://seamless.usgs.gov/). These large-area aerial images, which are GeoTIFF [1], carry 
terrestrial coordinates of the scene embedded in their headers and often have a GSD as small as 
tens of cm. Although restricted to images over the United States, the images are in the public 
domain and can be obtained free of both cost and licensing restrictions. This potentially permits 
wide-spread sharing of the benchmark imagery.  In this regard, we followed the precedent set by 
the Overhead Imagery Research Dataset (OIRDS) project [10]. 

To obtain a desired image from the USGS data bank, one must specify the geographic region of 
interest by providing the maximum and minimum values of latitude and longitude. This can be 
done either manually through a graphical user interface or automatically in batch mode. The 
latter approach allows one to download multiple images with a single command file. We wrote a 
software tool to read the geographic information of each site from the gazetteers mentioned 
previously and submit a batch download request to the USGS server. We downloaded well over 
three-hundred images this way and organized them by industry type in separate folders. We 
manually inspected each downloaded image and rejected obviously incorrect pictures. The most 
common errors were blank or grossly misshapen images or images that did not contain the 
intended industrial plant. The default size of each real image was 1km × 1km. A few were 
slightly larger in order to capture all of a facility plus its surroundings.  

EXAMPLE IMAGES 
The pictures on the following pages illustrate the types of images downloaded for the Benchmark 
Imagery Suite. Table 3 at the end of this section gives the list of all facilities by index number 
and type.  
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Figure 3. Illustration of a heat processing facility, HP0058_C8, GSD: 0.3m. 
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Figure 4. Illustration of a chemical processing facility, CP28_VDE, GSD 0.5m. 

 
Figure 5. Illustration of a heavy manufacturing facility, HM45_V3F, GSD: 0.3m. 
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Figure 6. Example of a mechanical processing facility, MP032_VBQ; GSD: 0.3m. 
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Figure 7. Example of a semiconductor industry facility, SI0018_U4F; FSD = 0.15m.  
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Chemical 
Processing 

Heavy 
Manufacturing 

Heat 
Processing 

Mechanical 
Processing 

Semiconductor 
Industry 

27 Facilities 31 Facilities 37 Facilities 83 Facilities 12 Facilities 
CP2_U3Z HM2_VA6 HP0003_V80 MP001_P16 MP058_P12 SI0002_V58 
CP3_U5W HM5_VGO HP0031_U44 MP002_V6I MP059_P14 SI0005_U62 
CP5_VGA HM6_V6L HP0034_U4X MP004_P11 MP060_VC4 SI0006_U62 
CP7_VD6 HM7_U52 HP0039_VJ4 MP006_P18 MP062_U30 SI0013_U62 
CP10_U60 HM9_V77 HP0040_VCY MP007_P17 MP063_P14 SI0015_U5H 
CP14_P15 HM10_V77 HP0044_VDN MP008_P11 MP064_P15 SI0018_U4F 
CP15_VDA HM17_V5Z HP0047_C87 MP009_P18 MP066_P12 SI0019_V7Q 
CP23_V24 HM25_VGA HP0049_C87 MP010_P15 MP067_P14 SI0020_U4H 
CP28_VDE HM28_VGA HP0050_VGA MP011_VGA MP068_P16 SI0021_U3B 
CP32_VIO HM31_C87 HP0052_V2V MP012_P16 MP069_VD2 SI0024_U6D 
CP35_P17 HM36_VGA HP0056_C87 MP013_P15 MP073_P15 SI0027_U62 
CP38_P16 HM41_V5Z HP0058_C87 MP014_P16 MP074_P14 SI0030_U62 
CP39_VIY HM45_V3F HP0060_VIT MP015_U3J MP077_C87  
CP42_V24 HM52_VBV HP0062_V5D MP016_P16 MP078_VHD  
CP43_P16 HM53_VBJ HP0068_C88 MP017_P16 MP081_P13  
CP44_P17 HM56_VBV HP0069_U3J MP018_C87 MP082_P18  
CP45_VD0 HM59_VBU HP0078_V80 MP019_P18 MP083_U5R  
CP51_U62 HM63_C87 HP0082_V6X MP020_P11 MP084_P18  
CP58_VD6 HM64_VAY HP0086_C87 MP022_P16 MP087_P14  
CP6_VDA HM74_VAT HP0087_VCA MP024_VC4 MP089_P15  
CP61_VBI HM75_VAT HP0104_P16 MP025_U4K MP090_P15  
CP78_U42 HM77_VAW HP0107_U30 MP027_P18 MP092_P16  
CP81_VD6 HM78_VC3 HP0108_VDA MP029_V78 MP093_P15  
CP85_U3L HM79_VBY HP0109_VEN MP030_VC4 MP094_P17  
CP86_VCP HM80_VBG HP0110_V5Q MP031_P15 MP095_P17  
CP93_V7Z HM81_VAW HP0112_VF7 MP032_VBQ MP096_V77  
CP98_U43 HM83_C87 HP0115_VCS MP035_P16 MP097_P18  
 HM86_VC5 HP0117_VBO MP038_P18 MP098_P17  
 HM92_VCK HP0119_VAS MP039_P18 MP099_P13  
 HM103_U4X HP0121_P18 MP040_P17 MP100_P17  
 HM104_U4X HP0122_P18 MP041_P18 MP101_VE6  
  HP0130_U30 MP043_P16 MP102_V6K  
  HP0142_C88 MP044_P10 MP104_VFI  
  HP0148_V5D MP045_P10 MP105_P18  
  HP0150_VG9 MP046_P10 MP106_P18  
  HP0155_V7Q MP047_P10 MP107_V5V  
  HP0156_VH7 MP048_P10 MP108_CM2  
   MP049_P10 MP109_P13  
   MP053_P17 MP111_P18  
   MP054_P16 MP113_CM0  
   MP055_P17 MP114_P12  
   MP057_P16   
Table 3. Aerial Images Included in the Benchmark Imagery Suite v1.1a. 
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IV. Lidar Images 

The Benchmark Imagery Suite includes a small amount of lidar elevation data. Lidar, which 
stands for “Light Detection And Ranging” or “Laser Imaging, Detection And Ranging” 
depending upon whom one asks [11], gives 3-dimensional geospatial data. Unlike conventional 
2-dimensional imagery, a set of lidar data enables one to determine not only the ground 
coordinates of objects in a scene but also their elevations (height above the reference geoid). In 
particular, for scenes with known or slowly varying ground elevation, a lidar data set enables one 
to determine height of objects above or below the surrounding terrain, which is useful for testing 
algorithms that detect structures like buildings, towers, fences and power lines.  

Chemical Processing Heat Processing Semiconductor Industry 
CP2_U3Z HP0003_V80 SI0019_V7Q 
CP51_U62 HP0034_U4X  
CP61_VBI HP0044_VDN  
CP81_VD6 HP0078_V80  
CP93_V7Z HP0087_VCA  
CP98_U43 HP0115_VCS  

 HP0117_VBO  
 HP0119_VAS  
 HP0155_V7Q  

Table 4. List of facilities in Benchmark Imagery Suite v1.1 for which lidar data are included. 

The lidar datasets cover the same ground as sixteen of the real images (see Table 4). The data 
have been converted from LAS point-cloud format [12] to RAS raster-image format. The grid of 
pixels in each rasterized lidar image exactly matches that of the associated RGB image, making 
the lidar image like an additional layer of the visible-band image. Instead of giving spectral 
information, each pixel of the rasterized lidar image contains a single scalar value denoting the 
elevation of whatever object occupies the ground coordinates of that pixel. Figure 8 below shows 
an example of a rasterized lidar image, first by itself and then overlaid on the corresponding 
GeoTIFF aerial image. 

  
Figure 8. Example of a rasterized lidar image. Site CP2_U3Z. Left: Elevations are displayed as gray scale values, with black 
being lowest and white highest. Right: Rasterized lidar image overlaid on the corresponding GeoTIFF Image. 

Color Elevation 
 15 – 28m 
 >28m 
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OBTAINING LIDAR DATA 
The USGS web server provides a national lidar data set for the United States. Coverage, though 
not complete, is extensive. Almost 40% of the sites with visible-band imagery in the Benchmark 
Imagery Suite v.1.1 have lidar data sets available. All of the lidar data in the current suite come 
from the USGS server via the Earth Explorer tool (http://earthexplorer.usgs.gov), a client/server 
interface that provides access to USGS’s Earth Resources Observation and Science (EROS) 
Center archive.   

 
Figure 9. Graphical User Interface for the USGS’s Earth Explorer showing an area of interest for site CP2_U3Z (red square) 
superimposed upon an image of the surrounding region. 

 
Figure 10. Graphical User Interface for the USGS’s Earth Explorer showing that an area of interest (orange square) straddles 
two separate tiles of USGS data (yellow and green boxes). 
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To find lidar datasets that covered the same ground area as the visible imagery in the Benchmark 
Imagery Suite, we first obtained the geographic bounding box coordinates of each GeoTIFF 
image in the suite from its header. We then used the bounding box coordinates to create a 
Keyhole Markup Language (KML) polygon file. (KML is a tag-based language for displaying 
geographic data on computer-based two-dimensional maps and three-dimensional Earth 
browsers, such as the Google Map component used in Earth Explorer.) The KML polygon file 
was uploaded to Earth Explorer to define an area of interest to search for lidar data. Figure 9 on 
the previous page shows the USGS Earth Explorer user interface during the process of entering a 
search request for a given site. In this example the site is CP2_U3Z, the same site shown in 
Figure 8. The Data Search component is located on the left side of the screen, and the Google 
Map component is on the right side. In the figure, the bounding box for CP2_U3Z has just been 
uploaded and is shown in red. 

The geographic data on the USGS server are organized in tiles that are approximately 
contiguous, square zones. Each tile of lidar data consists of sets of (x, y, z) points representing 
easting, northing, and elevation measured from a reference geoid. In addition, projection 
coordinate system information is stored with each tile.  

When responding to a query for lidar data, Earth Explorer searches its database for all tiles that 
overlap the specified bounding box of interest and that contain lidar pulse returns falling within 
the bounding box. It then returns a list of such tiles and graphically displays them. Figure 10 on 
the previous page shows the search results for the particular bounding box for CP2_U3Z. As 
shown in the figure, there are two tiles of lidar data (highlighted in yellow and green) that 
overlap the region of interest in this example (highlighted in orange). 

Ideally, one would like to have lidar data that have been collected at the same time and cover the 
same ground area as the visible imagery in the Benchmark Imagery Suite. However, the lidar 
data available in Earth Explorer were not collected at the same time as the visible imagery. For 
many of the scenes, multiple lidar tiles were needed to completely cover the corresponding 
ground area. For some scenes, the tiles overlapped and/or were from lidar campaigns that 
occurred during different years. Such spatial and temporal differences in tiles can lead to 
differences between the lidar imagery and the visible imagery and even to differences between 
lidar data sets. In the Benchmark Imagery Suite, no attempt was made to reconcile differences 
that might have occurred as a result of time lapses between tiles of data. 

When choosing which data to download, tiles from the same lidar campaign were selected where 
possible. In addition, data from recent collects were preferred over data from older collects to 
better match the man-made objects in the scenes and to take advantage of advances in lidar 
precision and accuracy in the more recent collects. In all cases, a set of tiles was selected that, 
taken together, completely covered the bounding box area.  

PROCESSING THE LIDAR DATA 
After collecting the lidar tiles, software was written to automate the following steps for each 
visible image scene: 

First the point clouds from multiple tiles were combined. Next, each point in the point cloud was 
compared to the coordinates of the bounding box in the GeoTIFF header of the corresponding 
visible image. Points falling outside the bounding box were removed.  

LLNL-TR-645052 Page 16 of 69 



White, Pope, et al., Benchmark Imagery Final Report [Lidar Images] 

Likewise, anomalous points were identified and eliminated. Anomalous points included noisy 
points with values outside the range of realistic elevation values for objects in the scene. 
Anomalously high points can be caused by birds, low-flying aircraft or atmospheric aerosols; 
anomalously low points (i.e., negative elevation values) may be caused by excessively long 
return times resulting from multiple reflections.   

Next, the raster size and pixel scale of the visible image were read from the GeoTIFF header. 
This information was used to create a regular grid and the point cloud was interpolated to fit the 
regular grid. Three interpolation algorithms were tested: natural, cubic, and v4. The “natural” 
interpolation algorithm subjectively produced the best results. Of the three algorithms tested, it 
was also the most used in the literature. The resulting rasterized data (interpolated and gridded 
elevation data) was flipped vertically to match the orientation of the GeoTIFF image (see Figure 
8). Finally, the elevation data with corresponding easting and northing grid was saved as a matrix 
file. The data were also saved as indexed tiff images with corresponding color maps. 

To verify that the rasterized lidar data matched the resolution of the visible imagery, the 
rasterized lidar elevation image was overlaid on the corresponding visible image. Since the site 
CP2_U3Z is at sea level and the ground area is fairly flat, resulting lidar elevation values are 
close to height above the ground. To show the overlap, lidar points with elevation values 
between 15m and 28m were mapped to yellow, and points with elevation above 28m were 
mapped to red and then overlaid on the corresponding visible image. The result is shown on the 
right side of Figure 8. The rasterized lidar elevation data lines up well with the visible image 
data.  

In creating the rasterized lidar elevation images, we encountered many situations where the 
coordinate system used in the lidar data differed from that used in the GeoTIFF visible-band 
imagery. Such occurrences were due to the many different mapping conventions commonly 
available and frequently used in remote sensing. When the coordinate systems differ, the overlap 
between the lidar image and its corresponding GeoTIFF visible-band image can be artificially 
degraded by many meters. While converting from one coordinate system to another is generally 
straight-forward and would virtually eliminate the inter-image displacement artifacts, we chose 
not to do that task in this first version of the Benchmark Imagery Suite. Instead, we required that 
the lidar and the GeoTIFF coordinate systems had to be the same. Based on that requirement, 
only 16 of the visible band images had lidar data that merited inclusion in the Benchmark 
Imagery Suite v1.1. The task of reconciling differences in coordinate systems in order to increase 
the amount of lidar data in the suite has been left for future work.  

V. Synthetic Images 

The synthetic images created for the Benchmark Imagery Suite are simulated digital photographs 
of 3-dimensional computer models of industrial facilities. The models are placed on geospatially 
accurate 3-dimensional backgrounds built by draping a 2-dimensional orthorectified image of a 
wide scene over a digital elevation model (DEM) of the underlying terrain. The computer 
program SceneWorks creates the images. It merges the 3-D models with the 2-D background 
image and DEM, sets the synthetic camera parameters and lighting, adds selected features if 
desired (e.g., clouds, motion smear) and takes a simulated photograph. Like the real images, the 
synthetic images in the Benchmark Imagery Suite are RGB visible-band, and they use values of 
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areal extent (1 – 2 km2) and GSD (0.3 – 0.4m) that are similar to those of the real images. There 
are 38 synthetic images in the Benchmark Imagery Suite v1.1a, all of which are stored in 
GeoTIFF format. 

SceneWorks, the view rendering engine used in this project, is a real-time 3-D visualization 
framework developed by LLNL that is used to support the Army, Navy, Air Force, NGA, and 
DHS [13], [14]. It leverages the video-game industry and related advances in off-the-shelf video 
cards. Images take approximately 1/30th of a second to generate, permitting real-time 3-D 
interaction between the user and the scene. Real-time interaction is a tremendous benefit when 
setting up the scene, placing components, and tweaking properties such as lighting and materials. 

Because the synthetic images in the Benchmark Imagery Suite are a mixture of computer-
generated features and real photographs, they are technically composite images, not purely 
synthetic. However, the key industrial components in each scene, their surface textures, the 
lighting and the shadows from those components are generated numerically. In this document, 
we use the terms synthetic image and composite image interchangeably when referring to the set 
of computer-generated images in the Benchmark Imagery Suite. 

A rich assortment of synthetic images is desired in a benchmark suite in order to test algorithms 
over a wide range of inputs and to help prevent algorithms from being mistakenly “tuned” to 
specific conditions.  Parameters that can be varied synthetically include the type of facility, the 
detailed components of the facility, the layout of the facility, the background scene, the base 
terrain, the environment, the lighting, the material properties of each object in the scene, the 
weather, and all of the camera viewing properties (position, orientation, imaging mode, spectral 
sampling, spatial sampling, image quality, …). However, there is a trade-off between having a 
large variety of images and the effort required to create them. 

The types of industrial facility included in the suite are a coal-fired power plant and a nuclear 
power plant — heat processing facilities. The components and their arrangement within each 
facility are patterned after overhead photographs of real-world power plants and are reviewed 
with subject matter experts. Each power plant is placed in one of four backgrounds: arid, 
rural/forest, coastal and urban/suburban, giving a total of eight different combinations of facility 
and background. Each of the two types of power plant has a specific set of synthetically 
generated industrial features that are retained from one background to another, but the 
arrangement of those features changes from background to background.  

In addition to the eight synthetic images described above, we created 10 images that were 
variations of the nuclear power plant on the arid background. The objective was to provide a set 
of images for systematically investigating the impact of facility rearrangement on a 
segmentation/annotation algorithm, keeping all other parameters (e.g., background, lighting, time 
of day) constant. To help do this, we wrote a computer tool to assist with creating facility 
layouts. Our approach was to adapt an existing computer code that automatically arranged 
electronic components on a circuit board, subject to a set of placement rules, B*-Tree 
Floorplanner [15]. The computer-generated facility layout specifications were passed to the 
synthetic scene generation software which, in turn, placed the components of the facility on the 
background and created a synthetic image. The image was then checked for errors and the layout 
was corrected and the image redrawn as needed. Once we had the 10 variations of the original 
scene, we created 2 more variants of each of the 10 new images by exploiting reflection 
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operations. In one variant, we “flipped” the placement of the facility components about a 
horizontal axis. In the other variant we “flopped” the placement of the facility components about 
a vertical axis.  

Figures 11 and 12 below show examples of two synthetic images, a coal-fired power plant in a 
coastal environment and a nuclear power plant in an arid environment. 

 
Figure 11. Synthetic image of a coal-fired power plant 
in a coastal environment. 

 
Figure 12. Synthetic image of a nuclear power plant in an arid 
environment. 

In the remainder of this section we provide the details of generating synthetic images used in the 
Benchmark Imagery Suite. 

• Model Building 
• Base Terrain Preparation 
• Initial Facility Layout  
• Image Compositing 
• Automating the layout process 

Using the SceneWorks software we imported the terrain based data (overhead imagery and 
elevation data). Then we placed the 3-D components into the scene and configured the lighting, 
shadows, and other environmental parameters. Next we positioned the virtual camera (altitude 
and view angle) and selected the image size (in pixels). Then the pre-processed, synthetic image 
was captured in SceneWorks. 

MODEL-BUILDING 
By a model we mean a computer object that represents a physical structure such as a building. 
The models are 3D spatially accurate geometric meshes that have been textured with RGB 
images. When a desired model is not already in the SceneWorks library, we obtain it in one of 
two ways: we buy it, or we fabricate it by starting with two-dimensional overhead images.  
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SceneWorks, requires three-dimensional models. Creation of highly detailed facility components 
should be avoided whenever possible. Making such components is very time consuming, and 
there are tremendous existing resources on the internet where 3D models of entire facilities can 
be purchased for only a few hundred dollars (see Turbosquid.com [16]). There are also free 
resources (see Trimble 3D Warehouse [17]) where 3D models can be downloaded, but in our 
experience the quality of these models is insufficient.  

Using Commercial 3-D Components 

SceneWorks reads models in text based, OSG format. When an existing model is not available 
directly in that format, it can typically be downloaded and converted to OSG by the AutoDesk 
software application 3DSMax [18] with the OSG exporter plug-in [19] installed.  

Complete facilities should be broken into components, which can be also done with 3DSMax. 
Each component should be moved to the origin with the ground at its base (i.e. ‘ground-
clamped’) and the origin at its center. There is no need to create multiple copies of identical 
components. For example, if the complete facility has two cooling towers, only one cooling 
tower needs to be exported as an individual component. It can be replicated in SceneWorks.  

3D models have textures which have three different material lighting properties: ambient, diffuse 
and specular.  Sometimes the material lighting properties of commercially acquired 3D 
components make the lighting to look unrealistic compared to real overhead images.   These 
components can be changed in either 3DSMax before export, or by modifying the exported OSG 
file directly. We prefer modifying the OSG file because this can be done in bulk using python 
scripts to change all textures in all models in a given directory at once. Results can be viewed in 
the context of the scene in SceneWorks almost instantly, with no modification of any other files.  
Visible overhead images typically have very harsh lighting compared to the lighting typically 
found on 3D models. Model lighting can be corrected to be more realistic simply by increasing 
the diffuse lighting, and reducing the ambient lighting. 

Creating 3-D Components from 2-D Images 

Some hard-to-find 3D components can be created very quickly from 2D objects. Components 
which have no height such has railroad tracks, basins and parking lots are easily created by 
texturing a basic 2D shape with imagery.  These objects do not need 3D geometry because they 
are flat; therefore they do not cast significant shadows and do not have significant perspective.  

The procedure starts with finding an example of the object in high-resolution orthorectified 
imagery. This imagery is acquired from the USGS, as our other imagery used in creating base 
terrains. The object’s dimensions are measured in an online program such as Google Earth [20], 
or from the image geospatial data directly using a GIS program like Global Mapper [21]. Once 
the dimensions are known, then the object is created in using a basic 3D modeling program, like 
Trimble Sketchup [22].  Even though the object is 2D, it must exist in a 3D world, so it must 
have some nominal height.  Using Sketchup we extrude the object vertically (along the Z axis) so 
that the height is approximately 1/2 meter.  SceneWorks will automatically disable shadow 
casting on objects that are less than 1 meter in height to prevent any visual artifacts. 

The top of the 3D object should be textured with the image of the object in Sketchup.  Before 
that, the texture image must be cropped out of the large orthorectified satellite image. We are 
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using a free Photoshop-like tool called “GIMP” [23].  Once the texture image of the object is cut 
out and saved in PNG format [24] using GIMP, the object can then be textured on the top face of 
the 2D object with the texture image. The 3D object is then exported from Sketchup as a DAE 
(Collada) [25] file.  This file can then be converted to OSG using the OSGConv tool [26], which 
is included with SceneWorks. 

BASE TERRAIN PREPARATION 
The four different environments we selected to use as background images include sites in arid, 
coastal, rural/forest, and urban/suburban areas. The arid environment was previously selected 
from a region near Kettleman City, CA. We found our coastal background images by performing 
a broad area search of the United States coast line. We selected a region near Galveston, TX.  
For the forest background we searched the main forested areas of the continental U.S. and chose 
a region near Ellington, MO. For the urban background, we searched the Environmental 
Protection Agency website for areas that would provide an adequate clearing for a facility in an 
urban setting, and we selected an area near Denver, CO.  

When selecting a location for building a base terrain there are several desirable and undesirable 
characteristics that must be considered. The location must contain a flat clearing large enough for 
multiple facility types (at least 100m x 100m) and free of any discernible objects that would 
prevent a facility from being placed (built) there.  The clearing should have no trees, buildings, 
or vehicles. Base imagery may contain shadows being cast from nearby trees and small 
buildings, but the shadows simulated in SceneWorks should match the underlying imagery.  
Finding the date that the imagery was taken can help in generating shadows that match, as 
SceneWorks generates shadows from facility 3D models using accurate solar ephemeris 
modeling.   

Google Earth is very useful tool for seeking out and evaluating different locations. It displays 
high resolution imagery and DEM, and it is quickly navigated.  Once a potential location is 
found in Google Earth and appears to be viable, the source data (DEM and imagery) are acquired 
and evaluated. Most imagery in Google Earth is commercial and restricted in distribution. We 
acquire our source data using the USGS National Map Viewer and Download Platform [27]. 
Using the USGS website we acquire a 5km x 5km region of imagery and DEM centered on the 
desired location of the facility.  For examples of images reviewed and more information on 
selecting base imagery, please see Goforth, et al. [28]. 

The source data (imagery and DEM) must be converted into a format that optimized for 3D real-
time rendering.  Using SceneWorks’ terrain generator, the input files are selected and the 3D 
terrain is generated in only several minutes. This 3D real-time format is an Open Scene Graph 
(OSG) terrain format, IVE. SceneWorks also uses the geospatial metadata from the input files to 
configure its internal GIS engine and coordinate system. The SceneWorks scene map is now 
saved and ready for facility components to be added. 

INITIAL FACILITY LAYOUT 
Our approach for facility layout is to select one or more real facilities from our benchmark 
imagery set as a template for our layout and then to review that layout with one or more subject 
matter experts. There is a moderate amount of effort in creating a realistic layout of a facility. 
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Figure 13. Coal-fired power plant, HP52. 

 
Figure 14. Image of an actual nuclear plant, HP104. 

 
Figure 15. Image of an actual nuclear plant,  HP119. 

The synthetic images in the Benchmark Imagery Suite include two types of facilities — a nuclear 
power plant and a coal-fired power plant. These two facilities are each placed in 4 different 
environments: arid, coastal, urban/suburban, and rural/forest.  The placement of 2 types of 
facilities in 4 different environments yielded a total of 8 synthetic images.  The facilities must be 
modified slightly for each environment.  For example, cooling towers are not needed when a 
power plant is positioned on the ocean in a costal environment. 

The coal-fired power plant layout is based on Image HP52. Comparison of synthetic and real 
images can be seen in Figures 11 and 13. The nuclear power plant layout is based on Benchmark 
Images HP104 and HP119.  Comparison of synthetic and real images can be seen in Figures 12, 
14 and 15. 
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IMAGE GENERATION 
Once the facility layout is established, the 3D models are placed in the scene using the 
SceneWorks STAGE tool. The models must be ground clamped to ensure there are no gaps 
between the building and ground.  If model is not flush with the ground, the object will appear to 
be floating above the ground, and the shadows will not cast directly from the base of the object.  
Then simulated time of day and date are set manually so that shadows match the underlying base 
imagery. This is done with the real-time shadow rendering capability of SceneWorks. 

In SceneWorks, the simulated camera is positioned with nadir view at an altitude high enough to 
allow for a large amount of lens magnification using the zoom feature. This removes a large 
amount of perspective, simulating an image taken from a high-altitude platform. At this point the 
scene has been constructed and the settings configured, so generating the composite image is 
trivial. The image-capture button is pressed, and the composite image is automatically generated 
and saved to disk as a TIFF image. 

Using GIMP, we manually post-processed each image to enhance the brightness, contrast, 
saturation and lightness. Post-processing improved the realism of the image by visually matching 
the colors and exposure of the composite image to other similar images in the benchmark 
imagery set. After post-processing, we converted the output image from TIFF to GeoTIFF. To do 
so, we used SceneWorks to return the UTM coordinates of the four corners of the original 
overhead background image. Then we computed the GSD of each pixel and, using open-source 
“listgeo” and “geotifcp” tools [1], added the geospatial data (GSD, UTM extents) to the TIFF file 
as GeoTIFF metadata. 

AUTOMATING THE LAYOUT PROCESS 
The layout of an industrial plant is the conceptual skeleton around which synthetic scenes of the 
plant are built. Experience gained creating the initial facility layouts for the Benchmark Imagery 
Suite showed that having a faster way to identify and arrange the components of a given plant 
could potentially increase the rate at which synthetic images were generated. We therefore 
experimented with a way to automate the layout process [29]. 

In seeking a workable automatic layout scheme, we attempted to limit the effort and yet make it 
useful for the current generation of the Benchmark Imagery Suite. A key self-imposed 
requirement was that the process — whatever it turned out to be — must add more usable images 
to the set of synthetic scenes. When we began the effort, we did not know the details of the 
obstacles we might face or how quickly (or if) we could pull together working software. One of 
our goals in undertaking this experiment in automation was simply to identify key issues from 
which we might benefit in future synthetic scene simulations.  

Facility layout is a complex problem with many objectives and constraints. Designers have been 
using computer algorithms to assist them in optimizing facility layouts since the early 1960s 
[30]. Although a large body of computerized tools and knowledge now exists, layout 
optimization remains an active area of operations research. (All the more reason for us to avoid 
writing our own layout software!) 

To limit the scope of this effort, we chose simply to rearrange the components of our existing 
synthetic images on their backgrounds. This enabled us to focus on automating only one class of 
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facility layout issues — namely, topological/geometrical constraints. Examples of such 
constraints included things like the following:  

• Proximity — e.g., minimum and maximum separation between a nuclear containment 
vessel and a steam turbine. 

• Connectivity — e.g., a conveyor belt transporting waste ash from a coal combustion 
chamber to an ash pile. 

• Size — e.g., minimum and maximum linear extent of the footprint of a single component, 
group of components or an entire facility. 

B*-Tree Floorplanner 

One algorithm for performing automated layout is B*-Tree Floorplanner [15], which is readily 
available through the University of Michigan freeware package Parquet. [31] The algorithm is 
used for laying out electronic components and common lines (buses) in very large scale 
integrated (VLSI) circuits. It arranges a list of user-specified rectangular boxes and their 
dimensions into a given area, minimizing both dead space and bus overlap. The inputs are a set 
of macros and (optionally) a fixed outline. The macros define the boxes and their connectivity, 
and the fixed outline defines the boundaries of the area to be filled. The output is a floor plan — 
a layered arrangement of the boxes and their interconnections (buses) within the required outline. 
If the fixed outline is omitted from the input (“bus-driven floor planning” or BDF mode), the 
software solves the classic packing problem of minimizing the area of a given set of non-
overlapping rectangles in a plane [32]. Results are local solutions to minimizing a cost function, 
and they vary from run to run, even with nominally identical input.  

Instead of using the boxes to represent VLSI electronic components, we used the boxes to 
represent industrial components in a large facility. Each box contained just one feature (e.g., 
building, pond, or cooling tower) plus a buffer zone. We operated the software in the BDF mode 
and produced ten different layouts of the nuclear power plant in an arid environment. Each run of 
the algorithm maintained the same salient components and constraints (adjacency and 
connectivity). 

KML Generator 

To interface the resulting layouts to SceneWorks, we developed a computer code, KML 
Generator, that converted the output of B*-Tree Floorplanner into KML model layouts. KML 
Generator took the footprint size and important information about the models of the individual 
facility components (component label, centroid offset, shape and base rotation), and generated a 
KML shape file that could be displayed in Google Earth, thereby enabling us to visualize the 
layouts easily.  

After checking each layout, we read the KML files into SceneWorks. SceneWorks, in turn, 
placed the models of the various industrial components onto the background using the 
coordinates and orientations specified in the KML file.  

Results of Using an Automated Layout Tool 

We did achieve our goal of increasing the number of synthetic images with the automated layout 
software. The process of learning to use that software, not surprisingly, was more time 
consuming than we could have estimated. This effectively reduced the time available for 
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generating more images. Issues like correctly specifying sizes of the boxes to B*-Tree proved to 
be trickier than anticipated. When done incorrectly, layout errors would appear, but often they 
could not be detected until the synthetic image of the full 3-D scene was finished. Common 
errors were collisions between components in the 3-D rendering, and transposition of coordinate-
axes. These were easily repaired by manually adjusting the input to the B*-Tree Floorplanner 
software and tweaking the KML Generator data as needed. As a result of the experiment, we 
identified a process that should work more smoothly in the future but that presently still requires 
human inspection of results and manual correction of errors.

VI. Ground Truth 

Ground truth for the Benchmark Imagery Suite consists of annotated overlays that assign labels 
to some or all of the industrial features in the scenes. The words used for the labels come from 
the constrained vocabulary defined previously. (See Appendix B.) For the real images, the 
annotation is based on human inspection and interpretation of objects in the images. For the 
synthetic images, the annotation is based on the perfect knowledge of what the models in the 
scene represent. Two classes of annotation are provided: point labels and area labels. The former 
are labels that have been tagged to a single pixel in a single object in the scene, one label per 
object. The latter are images in which all pixels in the scene have been classified in accordance 
with the constrained vocabulary, the images have been segmented, and each type of object has 
been color coded. This section describes the four cases of annotation available in the Benchmark 
Imagery Suite: 

• Real Images: Selective Point Annotation (All Object Classes) 
• Real Images: Exhaustive Point Annotation (Buildings Only) 
• Real Images: Exhaustive Areal Annotation (All Object Classes) — Posterization 
• Synthetic Images: Exhaustive Areal Annotation (All Object Classes) — Posterization 

REAL IMAGES: SELECTIVE POINT ANNOTATION (ALL OBJECT CLASSES) 
100% of the real images in the Benchmark Imagery Suite were annotated point-wise. To do the 
labeling, we divided the images among six annotators, with at least two people being responsible 
for each image. To speed up the annotation process, we used a point-and-click software tool 
developed by LANL, Geospatial Image ANalysis Tool (GIANT). Although other tools were 
considered (Annotate, Annotation Tool, Daeja View One, ERDAS, Fototagger, ImageJ, 
Intelligent Scissors, Label Me, Light Room Abode Photoshop, Photostuff, Snagit , Szoter , Text-
Image Linking Environment [TILE]), GIANT had the best mix of affordability and user features 
of interest. The tool allowed users to point to an object in the image and apply a label from a 
drop-down menu that contained the controlled vocabulary. Objects were labeled by opening an 
image in GIANT, using the mouse to select a single pixel within the boundary of each object to 
be labeled, and saving the resulting geospatial annotation file (.gaf). GAF files are IDL binary 
structure files with a list of (x, y) pixel coordinates and a label next to the coordinate pair  
GIANT provides a tool to convert this binary format into a comma separated value file format 
which can be imported into other software for further processing, if desired.  This tool was used 
to provide these data in CSV format within the Benchmark Imagery Suite.  
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Figure 16. Portion of an annotated image showing the labels superimposed on the scene, Heavy Manufacturing Plant, HM5. 

Annotators were instructed to label 30 to 50 objects of their choosing in each image. Thus, most 
pixels in the image had no label attached to them. (The pixel classification was selective, not 
exhaustive, across an image.) After all of the images were annotated this way, there were two to 
three sets of annotations for each image. The annotations for each separate image were then 
merged by one of the annotators, and the final annotated images were checked for correctness by 
a trained image analyst. No attempt was made to segment the annotated objects in the images by 
drawing borders around them. A final quality assurance pass was made to eliminate double 
labeling of objects and to center the position of each label on its corresponding object. Figure 16 
shows a portion of an image that has been selectively annotated point-wise with GIANT. 

REAL IMAGES: EXHAUSTIVE POINT ANNOTATION (BUILDINGS ONLY) 
12 of the real images were annotated exhaustively in a point-wise manner. In these images, only 
the buildings were labeled. Other objects were ignored. The motivation to label the images 
exhaustively arose as a result of previously creating a simple “building finder” algorithm with 
which to experiment on the set of real images. Results of testing the algorithm on the selectively 
annotated images suggested that using sparse, point-wise annotation was not an effective way to 
evaluate that particular algorithm. We concluded that exhaustive annotation was required. As a 
first cut at exhaustively annotating the real images, we attempted to label all the buildings in a 
subset of the real images. Buildings less than the size of a trailer home were ignored. Multiple 
annotations were placed for objects with multi-faceted roofs, due to changes in lighting which 
generally cause segmentation algorithms to create multiple polygons for any single roof. In 
addition, we added two new classes of building object, “house” and “industrial building.” The 
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simple term “building” was then redefined to mean any building other than a house or an 
industrial building. Fig. 17 shows an example of this type of annotation for a residential 
neighborhood in the vicinity of site HM2_VA6. 

 
Figure 17. Example of a portion of an exhaustively annotated image (buildings only), HM2_VA6. 

Exhaustive annotation of buildings by hand proved to be a slow, tedious process, and we limited 
this exercise to 12 Heavy Manufacturing (HM) sites, as shown below in Table 5. For each of the 
12 images, the list of locations of the labeled objects is included in the Benchmark Imagery Suite 
in a subfolder of the corresponding image as a file in comma-separated-value (CSV) format. (See 
the subfolder “Exhaustive_Point_Annotation” in each of the 12 folders listed below.) 

HM2_VA6 HM28_VGA HM36_VGA HM41_V5Z 
HM52_VBV HM53_VBJ HM77_VAW HM80_VBG 
HM82_VAY HM86_VC5 HM92_VCK HM104_U4X 

Table 5. List of 12 real-image files with exhaustive point-wise annotation. 

REAL IMAGES: EXHAUSTIVE AREAL SEGMENTATION (ALL OBJECT CLASSES) — 
POSTERIZATION 
52 of the real images in version 1.1a of the Benchmark Imagery Suite have been exhaustively 
segmented, or “posterized.” (A posterized image is one in which each pixel has been classified 
and labeled by color coding it according to its class membership.) A group of students and a 
post-doc from Old Dominion University under the leadership of Prof. Khan Iftekharuddin 
manually segmented and labeled the 52 real images with GIMP by color coding each identified 
object. [33] All object classes from the constrained vocabulary were used for selecting labels. 
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Figure 18 shows an example of a posterized real image for site CP2_U3Z, the same site 
discussed in the previous section on lidar. (See Figure 8 for comparison.) Table 6 lists all of the 
images that ODU segmented and color coded. Table 7 provides the color code associated with 
each object class in the constrained vocabulary.  

 
Figure 18. Posterized image of site CP2_U3Z. (See Fig 8.) 
 

CP2_U3Z HP0003_V80 SI0005_U62 
CP3_U5W HP0031_U44 SI0006_U62 
CP5_VGA HP0034_U4X SI0013_U62 
CP7_VD6 HP0040_VCY SI0019_V7Q 
CP14_P15 HP0044_VDN SI0020_U4H 
CP35_P17 HP0047_C87 SI0021_U3B 
CP38_P16 HP0049_C87 SI0027_U62 
CP39_VIY HP0050_VGA SI0030_U62 
CP42_V24 HP0056_C87  
CP43_P16 HP0058_C87  
CP44_P17 HP0060_VIT  
CP51_U62 HP0062_V5D  
CP58_VD6 HP0068_C88  
CP61_VBI HP0078_V80  
CP78_U42 HP0087_VCA  
CP81_VD6 HP0107_U30  
CP86_VCP HP0110_V5Q  
CP93_V7Z HP0112_VF7  
CP98_U43 HP0115_VCS  
 HP0117_VBO  
 HP0119_VAS  
 HP0121_P18  
 HP0142_C88  
 HP0148_V5D  
 HP0155_V7Q  

Table 6. List of 50 real-image files with exhaustive areal segmentation/annotation (“Posterized”). 

Object_Name Color_Name Red Green Blue 
Building Orange 255 127 0 
Conveyor Periwinkle 204 204 255 
Cooling Tower Violet 143 0 255 
Cooling Unit Azure 0 127 255 
Electrical Substation Rose 255 0 127 
House Yellow 255 255 0 
Industrial Building Red 255 0 0 
Kiln Tan 210 180 140 
Overhead Crane Chartreuse 223 255 0 
Pile Burnt Orange 204 85 0 
Pond Blue 0 0 255 
Rail line Cyan 0 255 255 
Stack (Industrial Chimney) Magenta 255 0 255 
Tank Green 0 255 0 
Tower Turquoise 64 224 208 
Water Tower Spring Green 0 255 127 

Table 7. Color lookup table for the constrained vocabulary used to posterize real images. 
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Each posterized real image was vectorized and saved as a shape file in various formats (see 
Figure 19). Both the posterized annotation image (a raster file) and the vectorized annotation 
image provide a way for segmentation/annotation algorithms to quantify the position and 
shape/orientation similarity of their labeled image segments to ground truth.  

 
Figure 19. Shape file representation of a posterized real image, CP2_U3Z. 

SYNTHETIC IMAGES: EXHAUSTIVE AREAL SEGMENTATION (ALL OBJECT CLASSES) — 
POSTERIZATION 
All 38 of the synthetic images have posterized versions for use as ground truth. There are two 
minor differences between the posterized synthetic images and the posterized real images. The 
first difference is an invisible one that has to do with the way the pixel classification and 
segmentation are imposed. For the real imagery, a human must visually identify the boundaries 
of each image segment containing an object to be labeled, and then that person must fill the 
interior region of the segment with a color that corresponds to the class of the object being 
labeled. In doing this, there is room for subjective errors in determining where the segmentation 
boundary lies. In the posterized synthetic image, on the other hand, the human plays no direct 
role in estimating where the edges of an object lie. Instead, SceneWorks will automatically 
posterize the image with a single button click. The code for posterization in SceneWorks is based 
on a few key OpenGL calls which are trigged through the scene graph. The posterization is 
achieved through force overriding the Open Scene Graph (OSG) node of each object to disable 
texturing of the object. Lighting and shading are also disabled in the node so that there are no 
shadows. A color is selected for the object by iterating through the objects and selecting a 
different hue in the RGB color space for each object. Finally, the object is colored by replacing 
the color arrays on the node and all of its children. The base terrain is rendered all black. The 
result is automated, perfect segmentation. The color key for each image is a CSV file. 
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A second difference between the posterized synthetic images and the posterized real images is in 
the labels and associated color map that are used to identify objects. Every object in a synthetic 
image that must have a unique position must be handled as a unique entity and therefore requires 
a unique name within SceneWorks. If there are, for example, two identical looking but separately 
placeable cooling towers in a scene, they must be given separate names. The constrained 
vocabulary is too general to identify specific objects when there are multiple, disconnected 
copies of a given type of object. Therefore, the objects in our synthetic images have multiple 
levels of abstraction. For example “Hangar-2” would be colored a single color and would be 
keyed with three different levels of specificity, as shown in Figure 20.  

 
Figure 20. Example of an object, “Hangar-2” with multiple layers of abstraction in its name, increasing in specificity from top 
to bottom. 

Having different levels of object abstraction allows for algorithms to use the posterized images at 
different levels of detail. For example, if two buildings are connected to each other, some 
algorithms just mark the complete structure as a “building,” while others segment those two 
buildings apart and define the specific type of building (e.g. Hangar-1 and Hangar-2.)  

To allow for posterization abstraction levels, the objects are named in SceneWorks using the 
STAGE tool according to the following naming convention: object class first, then the specific 
object number (i.e., “OBJECT_CLASS-OBJECT_NUMBER”).  This enables the posterization 
engine to create multiple levels of abstraction. A posterized synthetic image has complete 
ground-truth detail, but it may be abstracted out (made more general) by using the color-key 
CSV file to associate all objects of a higher classification, as in representing all buildings by a 
single color instead of rendering the scene with a unique color for each individual building 
object/model. 

As was true for real images, posterized synthetic images have an associated vectorized 
representation, a shape file. By providing both a rasterized ground truth image and a vectorized 
version, the Benchmark Imagery Suite accommodates labeling algorithms that produce labeled 
segments in either of 2 common image representations. 

LLNL-TR-645052 Page 30 of 69 



White, Pope, et al., Benchmark Imagery Final Report [Ground Truth] 

The following figures and table show an example of a synthetic image, its ground truth image in 
both posterized and vectorized form and the corresponding color look-up table. 

 
Figure 21. A synthetic image of a nuclear power plant in an arid environment. 

 
Figure 22. Posterized version of Figure 21. 

 
Figure 23. Vectorized version of Figure 22. 
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 Color Indices Labels 
Object # Red Green Blue Ontology Name Object Class Object Name 

1 0 255 234 Building bldg bldg1-1 
2 25 255 0 Building bldg bldg2-1 
3 255 110 0 Building bldg bldg2-2 
4 64 255 0 Building bldg bldg3-1 
5 0 162 255 Building bldg bldg3-2 
6 255 183 0 Building bldg bldg3-3 
7 255 221 0 Building bldg bldg3-4 
8 0 255 200 Building hangar hangar-1 
9 0 89 255 Building hangar hangar-2 

10 255 72 0 Building hangar hangar-3 
11 0 238 255 Building hangar hangar-4 
12 0 255 85 Building reactorbldg reactorbldg-1 
13 0 200 255 Building reactorbldg reactorbldg-2 
14 255 34 0 Cooling Tower coolingtower coolingtower-1 
15 0 12 255 Cooling Tower coolingtower coolingtower-2 
16 255 0 0 Electrical Substation substation substation-1 
17 102 255 0 Pond basin basin-1 
18 213 255 0 Pond bigpool bigpool-1 
19 0 123 255 Pond pool pool2-1 
20 25 0 255 Pond pool pool2-2 
21 140 255 0 Pond pool pool2-3 
22 251 255 0 Tank reactor reactor-1 
23 255 149 0 Tank reactor reactor-2 
24 0 51 255 N/A forklift forklift-1 
25 0 255 46 N/A forklift forklift-2 
26 174 255 0 N/A parkinglot parkinglot-1 
27 0 255 12 N/A rack rack-1 
28 0 255 123 N/A truck truck-1 
29 0 255 162 N/A trucksmall trucksmall-1 

Table 8. Color look-up table for the posterized image shown above in Figure 22.

VII. Demonstration of Testing an Algorithm with Benchmark Imagery 

One of the requirements of this project is to demonstrate the use of the Benchmark Imagery Suite 
in verifying or validating a semantic extraction algorithm. To meet that requirement, we have 
tested several algorithms. Our objective is not to create and validate algorithms but simply to 
show how the imagery might be used in the validation process. We broadly envision two types of 
semantic extraction algorithm. For convenience we refer to them as “Level 1 algorithms” and 
“Level 2 algorithms.” (Note: this terminology should not be confused with the use of “Level 1” 
or “Level 2” in referring to quality of data or information as may be used by others. See for 
example [34].) Level 1 algorithms denote processes that detect human recognizable features in a 
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scene and assign a label to each feature. An example is an algorithm that segments and 
automatically annotates an image in such a way that industrial components such as individual 
buildings, piles or electrical substations are located and labeled in an image of, say, a coal-fired 
electrical power plant. Level 2 algorithms are those that analyze the labels and the spatial (or 
spatio-temporal) inter-relationships among them to infer that they represent (in this example) a 
power plant. In a nutshell, Level 1 algorithms use images as their input. Level 2 algorithms use 
the output of Level 1 algorithms as their input. 

Early in the project, we chose to focus on Level 1 algorithms. We expected that it would be 
straightforward to obtain automated annotation software and to demonstrate the use of the 
Benchmark Imagery Suite with it. However, that proved not to be the case. We therefore wrote a 
simplistic algorithm to locate and label buildings in overhead images of industrial facilities, and 
we tested that algorithm with the Benchmark Imagery Suite. From that initial exercise, we drew 
two top-level conclusions. First, the simplistic algorithm we wrote, while useful for 
demonstrating a testing methodology, was not suitable for further development. Second, we 
determined that exhaustively annotating the images, rather than selectively annotating point-
wise, would be highly desirable. 

We undertook exhaustive annotation of the real imagery. The task was very labor intensive, and 
we recognized that we would have to restrict exhaustive annotation to only a subset of the real 
images. We performed two types of exhaustive annotation. In one set of images we labeled every 
kind of building in the scene pointwise. In another set we segmented and color coded every 
object in the scene that was defined in the constrained vocabulary of Table 2 in Section II. This 
process we called “areal annotation” (as opposed to “point annotation”). At the conclusion of the 
exhaustive annotation process we had a total of four types of annotation, as discussed in the 
previous section on Ground Truth: (a) selective point annotation of all the real images (30 to 100 
objects labeled per image), (b) exhaustive point annotation of some of the real images (12 
images), (c) exhaustive areal annotation of some of the real images (51 images), and (d) 
exhaustive areal annotation of all of the synthetic images (38 images). 

In the final year of the project, we used a new algorithm for finding buildings, an adapted version 
of LANL’s patented RADIUS algorithm [38]. We ran a variety of tests to demonstrate using the 
various types of annotation to test the new building finder algorithm. These tests are discussed in 
the remainder of this section of the document. In addition, in the process of preparing to test the 
RADIUS-derived algorithm, we found it necessary to create shape files from the well segmented, 
areal annotated images. In addition to providing training and test images, the resulting shape files 
were suitable for use in testing Level 2 algorithms. Although we attempted towards the end of 
the project to exchange files with other researchers who were developing a web based package 
for extracting semantic inferences on shape files [35], there were interfacing difficulties and 
insufficient time remaining on the Benchmark Imagery Project to see this effort through. It 
remains a topic of future interest. 

We now discuss the major steps involved in using our imagery for testing algorithms. 

1. Define V&V methodology 
2. Obtain algorithm to test 
3. Train & Test algorithm using the Benchmark Imagery Suite 
4. Interpret results from the V&V tests 
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DEFINE V&V METHODOLOGY. 
In previous years, NA-22 sponsored a GeoSpatial Validation (GSV) working group that 
recommended a protocol for validating geospatial algorithms. [36] We have chosen to use the 
V&V methodology from that group. 

 
Figure 24. Algorithm verification and validation cycle proposed by the NA-22 GSV Working Group.  

Shown in the figure, an algorithm (Box 1) is supplied by a developer and placed into validation 
testing (red box). It is then given input from a source of ground truth, or “Validation Referent” 
(Box 2). The algorithm calculates a result that can be measured, a “System Response Quantity 
(SRQ).” A geospatial SRQ could be, for example, a list of all buildings in a set of images and the 
corresponding geocoordinates and areal footprints. The SRQ computed by the algorithm is then 
compared to the pre-tabulated, true value (Box 3). In this report, we refer to the differences 
between the algorithmic outputs and the ground truth values as “validation metrics.” In the 
example just mentioned, validation metrics could include the difference in the number of 
buildings identified vis-à-vis the actual number or the position and size errors of the detected 
buildings. The validation metrics from Box 3 are then compared with a set of Accuracy 
Requirements (Box 4). If the validation metrics for the algorithm are within acceptable limits, 
then the algorithm is considered to be validated for the SRQs being tested (Box 5). Otherwise, 
the algorithm is rejected. 

As drawn, the V&V process flow applies to an R&D environment, where a failure of validation 
might not indicate a problem only with the algorithm. Rather, an unsuccessful validation test 
could be a result of errors either in the ground truth, the accuracy requirements, or the algorithm, 
requiring improvements in any or all of them. The three dashed lines numbered 6, 7 and 8 in 
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Figure 24 accommodates feedback to support the R&D validation cycle. This situation applies to 
the Benchmark Imagery Project, which is a research and development effort.  

(Note that in situations in which a set of validation benchmarks and acceptance requirements 
have been adopted as standards, a failure to validate is attributed entirely to having a bad 
algorithm, and the algorithm is flatly rejected.) 

OBTAIN ALGORITHM TO TEST. 
At the beginning of this project, we planned to use existing commercial software such as ERDAS 
Imagine, Arc GIS or eCognition for demonstrating the use of the benchmark imagery for V&V 
[37]. Upon investigation, we concluded that such software was not of interest, due to the high 
purchase price, steep learning curve and lack of automation. We sought to find more-automated 
software if possible. As the project developed, it became apparent that automated or semi-
automated algorithms for identifying and classifying industrial facilities from overhead images 
were not available. Therefore, to demonstrate the process of using our current suite of images for 
V&V, we created our own algorithm, a simplistic “building finder” (BldgFinder). Since the 
purpose of the demonstration was not for us to develop an algorithm but to illustrate the use of 
our benchmark images in the V&V process, it was not required that the algorithm be robust. 
Additionally, this work establishes a benchmark so that the performance of other algorithms can 
be compared against the performance described here. 

The semantic aspect of the algorithm was that it attempted to match a word from the constrained 
annotation vocabulary (Table 2) with objects in images. “Building” was chosen as the particular 
word to match, because buildings were a key industrial feature of all images in our data, whether 
real or synthetic. The geospatial aspect of the algorithm was that it used both the shape 
characteristics of the polygons created through segmentation and the spatial resolution (i.e., the 
ground sample distance [GSD]) of each image to calculate the area of the segmentation 
polygons. 

The BldgFinder algorithm was developed based on LANL’s RADIUS image segmentation 
technology [38] and a pre-defined “buildingness” metric. The algorithm is a binary classifier; 
therefore, its performance was evaluated in terms of detecting the object of interest (i.e., 
“building”) as well as objects which were not of interest, (i.e., “non-building”), and its ability to 
avoid confusion between these two classes [39]. The “buildingness” metric was calculated based 
on several polygon shape characteristics (e.g., perimeter complexity) and the ground sample 
distance (GSD) of the image being segmented. The threshold value for determining whether a 
polygon represented a building (buildingness > threshold), called a “candidate polygon,” or was 
not a building (buildingness < threshold), called a “non-candidate polygon,” was set based on 
training data. Only candidate and non-candidate polygons which overlapped the ground truth 
were used in assessing algorithm performance.  A wrapper written around the algorithm 
permitted batch operation of the code for efficiently testing large numbers of images. Further 
details of the BldgFinder algorithm are not provided here because the secondary objective of the 
Benchmark Imagery project was not to develop a semantic capability with a high probability of 
detection and low false alarm rate. Rather it was to illustrate use of the benchmark imagery suite, 
and inherently establishes a nominal performance benchmark for other algorithms to compare 
against. 
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TRAIN & TEST ALGORITHM USING THE BENCHMARK IMAGERY SUITE 
The V&V demonstration consisted of two main activities: training and testing. Five tests were 
performed in order to demonstrate use of the benchmark imagery suite for training and testing a 
semantic algorithm (i.e., the BldgFinder algorithm), and to establish a nominal performance 
benchmark for other algorithms to compare against. Imagery and ground truth used to train and 
test the BldgFinder algorithm came from the Benchmark Imagery Suite v1.1. Error matrices 
(a.k.a., “confusion matrix,” or “contingency table”) [40] were created by comparing the 
BldgFinder classification results to the ground truth information, as illustrated on the next page 
(Figure 25). Next, commonly used performance metrics (e.g., overall accuracy) [41] were 
calculated from the error matrix values as a means to assess the algorithm’s performance. 
Finally, all of this information was then aggregated into a performance table associated with each 
test. 

 
Figure 25. Illustration of comparison of BldgFinder candidate polygons to ground truth (in this case, point annotations) to 
create an error matrix. 

The “ground truth” information consisted of both point and polygon information. Two types of 
point annotation were available, “sparse” and “exhaustive.” An object label (text string) was 
attached to each point location. The sparse point annotations utilized the controlled vocabulary 
from the photo-interpretation guide (Appendix B [42]), and were available for every real image, 
while the exhaustive point annotations used a subset of this vocabulary consisting of building 
types only (i.e., “building,” industrial building,” and “house), and were available only for twelve 
of the real images. Polygonal truth information consisted of object boundaries (represented as 
polygons) and their labels (represented as a text string attached to each polygon via a polygon’s 
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unique ID). This information was derived by performing a raster-to-vector conversion of the 
manual annotation masks (for the real imagery) or the posterization masks (for the synthetic 
imagery), referred to in this report as “manual polygons” and “posterization polygons,” 
respectively. 

Each row of a performance table contains the error matrix results, performance metrics, and 
other information obtained by running the BldgFinder algorithm on a single image. The final row 
contains the cumulative result. There are sixteen columns in each performance table. The 
definition of each column is discussed next [40]. 

Name is the image name used for testing. If real imagery was used, the name is the alphanumeric 
site name and the image number, separated by a backslash (“\”). If synthetic imagery was used, 
then the name is simply the synthetic image name. 

All Markups (AM) is the total number of object polygons, that is, the sum of all true building 
and true non-building points or polygons. 

Building Markups (BM) is the total number of true building points or polygons. 

%Bldgs is the ratio of Building Markups (BM) to All Markups (AM) expressed as a percentage 
(i.e., %Bldgs = BM/AM). 

True Positives (TP) is number of correctly detected building polygons as compared to the total 
number of true building points or polygons. For the point annotations, a true building polygon is 
the same as a candidate building polygon if the point annotation falls within the candidate 
building polygon. A correct detection is a candidate building polygon which significantly 
overlaps a true building polygon. Significant overlap was defined as a situation where the 
candidate polygon covered at least 30% of the area of the true building polygon. A true building 
polygon was only used once in calculating TP. That is, if multiple candidate building polygons 
overlapped a single true building polygon, then only the candidate building polygon with the 
highest overlap was used in calculating TP. Unused candidate polygons were simply tallied (see 
“Building Candidate (BC)”). Note that true positives (TP) plus false negatives (FN) equals the 
total number of true building polygons (i.e., the number of building markups (BM); BM = 
TP+FN). 

False Positives (FP) is the number of incorrectly detected building polygons as compared to the 
total number of true building points or polygons. The definition of significant overlap and the 
single use of a true building polygon to calculate FP were the same as those used to calculate TP. 

True Negatives (TN) is the number of correctly detected non-building (non-candidate) polygons 
as compared to the total number of true non-building points or polygons. The definition of 
significant overlap and the single use of a true non-building polygon to calculate TN were 
analogous to those used to calculate TP. 

False Negatives (FN) is the number of incorrectly detected non-building (non-candidate) 
polygons as compared to the total number of true non-building points or polygons. The definition 
of significant overlap and the single use of a true non-building polygon to calculate FN were 
analogous to those used to calculate TP. 
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Building Candidates (BC) is the total number of candidate building polygons which were not 
accounted for as being a TP, FP, TN, or FN. 

Overall Accuracy (OA) is calculated as (TP+TN)/(TP+TN+FP+FN). 

User's Accuracy for buildings (UAB) (a.k.a. “Precision” or “Positive Predictive Value”) is 
calculated as TP/(TP+FP). 

User's Accuracy for non-buildings (UANB) (a.k.a. “Negative Predictive Value”) is calculated 
as TN/(TN+FN). 

Producer's Accuracy for buildings (PAB) (a.k.a. “Recall” or “Sensitivity”) is calculated as 
TP/(TP+FN). Note that this is the same as TP/BM since TP+FN equals BM (i.e., BM = TP+FN). 

Producer's Accuracy for non-building (PANB) (a.k.a. “Specificity”) is calculated as 
TN/(TN+FP). 

False Alarm Rate (FAR) is calculated as FP/(FP+TN). 

False Discovery Rate (FDR) is calculated as FP/(FP+TP). 

In the first test, the BldgFinder algorithm was trained by using a subset of the sparse point 
annotations created through manual markup of the real imagery (Table 9). Then the trained 
algorithm was tested on a separate set of imagery, using the corresponding sparse point 
annotations as truth (Table 10).  

 
Table 9. List of real image names (.tif) and their corresponding point annotation files (.csv) used for training the BldgFinder 
algorithm (where Bldg = “Building”) 
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Table 10. Performance table results of applying the BldgFinder algorithm (where Bldg = “Building”), trained using the 
information listed in Table 9, to the real images listed under “Name,” with their associated sparse point annotations serving as 
ground truth. 

 
Table 11. List of real image names (.tif) and their corresponding exhaustive point annotation files (.csv) used for training the 
BldgFinder algorithm (where Bldg = “Building”) 

A second test was performed by using the real imagery which had exhaustive point annotations 
(a total of twelve real images). Half (six images) were used for training (Table 11) and the other 
half (six images) were used for testing (Table 12). 

 
Table 12. Performance table results of applying the BldgFinder algorithm (where Bldg = “Building”), trained using the 
information listed in Table 11, to the real images listed under “Name,” with their associated exhaustive point annotations 
serving as ground truth. 

A third test was performed by using a subset of the areal (polygon) annotations created through 
manual markup of the real imagery (i.e., manual polygons) to train the BldgFinder algorithm 
(Table 13). Then the trained algorithm was tested on a separate set of imagery, using their 
corresponding, manually-defined polygonal annotations (manual polygons) as truth (Table 14).  

LLNL-TR-645052 Page 39 of 69 



White, Pope, et al., Benchmark Imagery Final Report [Demonstration of Algorithm Testing] 

  
Table 13. List of real image names (.tif) corresponding with the areal (polygonal) annotation files (_annotations.shp) used for 
training the BldgFinder algorithm (where Bldg = “Building” and “Industrial Building”). 

 
Table 14. Performance table results of applying the BldgFinder algorithm (where Bldg = “Building” and “Industrial 
Building”), trained using the information listed in Table 13, to the real images listed under “Name,” with their associated 
posterization polygons serving as ground truth. 

A fourth test was performed by applying the BldgFinder algorithm, as trained in the third test, to 
the synthetic imagery from the “two types four sites” category, using the corresponding polygon 
annotations (posterization polygons) as truth (Table 15). 

 
Table 15. Performance table results of applying the BldgFinder algorithm (where Bldg = 'bldg', 'hangar', 'hangarsmall', 
'reactor', 'reactorbldg', 'smallbldg', and 'stackbldg'), trained using the information listed in Table 13, to the “two types four 
sites” synthetic images listed under “Name,” with their associated posterization polygons serving as ground truth. 

Finally, a fifth test was performed by applying the BldgFinder algorithm, as trained in the third 
test, to the synthetic imagery from the “arid_nuc” category, using the corresponding polygon 
annotations (posterization polygons) as truth (Table 16). 
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Table 16. Performance table results of applying the BldgFinder algorithm (where Bldg = 
'bldg','hangar','hangarsmall','reactor','reactorbldg','smallbldg', and 'stackbldg'), trained using the information listed in Table 13, 
to the “arid_nuc” synthetic images listed under “Name,” with their associated posterization polygons serving as ground truth. 

INTERPRET RESULTS FROM THE V&V TESTS 
In this section, we use the testing results from the five tests to draw inferences about the 
benchmark imagery and about the algorithm. Only general trends are discussed here because the 
number of comparisons which could be performed is large, given the number of tests and 
especially the number of performance metrics. 

The first observation is that the PAB was high (~> 75%) for all tests when using real imagery 
(Tables 10, 12, and 14). This suggests that, while nascent, the BldgFinder algorithm shows 
promise as a means to automatically detection buildings within synoptic imagery. 

The second observation is that the FAR was high (~> 40%) when real imagery was used (Tables 
10, 12, and 14) and when the “arid_nuc” synthetic imagery was used (Table 16), but was 
relatively quite low (6%) when the “two types four sites” synthetic imagery was used (Table 15). 
This suggests that the “two types four sites” synthetic imagery requires modification so that 
algorithm performance is more similar to the results achieved by the other tests. Adding more 
clutter would be a logical first step. 

The third observation is that the availability of exhaustive annotations did not improve the 
algorithm’s performance. It was expected that using exhaustive point annotations would lead to 
higher accuracy. The PAB dropped from 85% to 76%, although the FAR did decrease from 66% 
to 57% (Tables 10 and 12).  

The fourth observation is that, for the “two types four sites” synthetic imagery, the PAB was 
high (> 80%) when using the “nuc” synthetic imagery, but was low (< 68%) when using the 
“coal” synthetic imagery. This result suggests that the BldgFinder algorithm performance varies 
strongly with industry type. 

The fifth observation is that, for the “arid_nuc” synthetic imagery, the PAB varied from a low of 
45% to a high of 100%. It was anticipated that this test would show that algorithm performance 
is dependent upon where the objects are placed relative to the background, since the size, 
number, and shape were expected to be consistent across all ten synthetic images. However, this 
was found not to be the case (i.e., both AM and BM are not a constant value in Table 16). This 
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result lead to discovery of a problem with the posterization process, which is the cause of 
inconsistency in the size and number of posterization polygons. This is an example of how 
testing an algorithm can provide insight into how the benchmark imagery suite can be improved. 

A sixth and final observation is that the number of building candidates (BC) was always very 
high (two or more orders of magnitude) when compared to the number of building markups 
(BM). This is due to the fact that the buildingness metric is purely spatial nature; therefore, it 
includes road fragments, shadows, parking lots, sidewalks, and other man-made structures that 
are rectilinear. While the ground truth in the benchmark imagery suite meets the need to train on 
the spatial attributes of buildings, currently there is no more information available that can be 
reliably used to narrow down building candidate polygons. The spectral (i.e., natural color) 
attribute of buildings is highly variable, and their aspect ratio is likewise highly variable (there 
are long skinny buildings as well as square-like ones). A promising cue is height above ground 
level, which can be provided by lidar. The current literature concerning the combination of 
natural color and lidar modalities indicates that polygons associated with roads, shadows, 
parking lots, and other low-relief features would likely be eliminated from the set of candidate 
polygons [41], thereby reducing the BC count. 

In the V&V demonstration performed with the Benchmark Imagery Suite v1.1, we created and 
tested a nascent building-finder algorithm. Our validation metrics were also simple. Furthermore, 
we had no user-supplied accuracy requirements on the algorithm. In the future, other 
characteristics such as annotation confidence, image quality, amount of clutter, etc. might also 
prove useful for conducting V&V testing [10]. 

So far, we have emphasized how the V&V demo led to recommendations about the Benchmark 
Imagery suite. Before we close this section, though, we comment briefly on the algorithm that 
we used. We attribute much of the inaccuracy of the building finder algorithm first to the limited 
spectral resolution (3-bands) of the training data and second to the fact that the algorithm only 
made use of the visual portion of the electromagnetic spectrum. Buildings are not spectrally 
unique in the visual wavelength region of the electromagnetic spectrum. This leads to inaccurate 
segmentation. Next, the threshold value for the buildingness parameter was not varied. Often in 
defining a detection algorithm one varies the threshold to determine the value that optimizes the 
ratio of the probability of detection to the probability of a false alarm. Plotting the probability of 
detection against the false alarm rate results in a Receiver Operating Characteristic (ROC) Curve, 
a commonly used performance diagnostic for comparing algorithms. That was not done in this 
study, as our objective was not to optimize the performance of the algorithm but to use it as a 
vehicle for stepping through the process of V&V 

REMARKS AND SUGGESTIONS ABOUT THE BENCHMARK IMAGERY SUITE 

The images and annotations provided in the Benchmark Imagery suite proved useful for 
purposes of making a decision about the validity of a semantic algorithm.  

The current set of images appeared to fully exercise the algorithm. 

Exhaustive point annotation does not necessarily improve detection statistics of the algorithm. 

Objects should be segregated into those that make up the “figure” (i.e., are part of the industrial 
facility) and those that make up the “ground” (i.e., are part of the surroundings)
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VIII. Conclusion 

SUMMARY OF WORK ACCOMPLISHED 
This project has collected a suite of geospatial images for use in validating or verifying 
algorithms that extract semantic content from overhead images of industrial plants, and it has 
demonstrated using those images to test the performance of algorithms for finding buildings in a 
scene. (An algorithm that detects, locates and labels specific human recognizable features in an 
image — buildings for instance — is an example of a semantic extraction algorithm.) The suite 
of benchmark images contains 190 aerial RGB GeoTIFF images of real facilities, 38 synthetic 
RGB GeoTIFF images of fictitious electrical power plants, and 16 lidar data sets. Each of the 
latter data sets corresponds to one of the real aerial images. The suite of imagery contains not 
only the images, it also provides ground truth information in the form of labeled objects in the 
scene. The vocabulary for labels consists of about a dozen generic industrial features (Table 2). 
The five sorts of industries include chemical processing plants, heat processing plants, 
mechanical processing plants, heavy manufacturing facilities, and semiconductor plants.  

LESSONS LEARNED 
1. Having many users use the Benchmark Suite to test more algorithms and assess more 

scenarios is essential to guide future efforts in creating a strong benchmark suite of images. 
2. The detailed requirements on the imagery are not completely known. The question “what is 

good enough” arose time and again with respect to many aspects of creating the current 
Benchmark Imagery Suite. For example, what counts as a realistic synthetic image? This 
issue is somewhat subjective and can depend upon a specific facility, algorithm or sensor. 

3. Stand-alone automated segmentation and annotation algorithms are not plentiful. This, we 
believe, is because analysts tend to use toolkits of many types of algorithm, “brewing their 
own” procedures as needs dictate. 

4. Having a capability to render images quickly and to change key aspects of a scene easily 
such as time of day, components or layout is important but is not sufficient for creating 
synthetic images quickly.  
• Commercial models of industrial facilities or their components may not be available. 
• Available models may be overly limited in their appearances. 
• A large part of generating synthetic images of specific types of industrial plants is spent 

learning what features should be included in the scene and the details of how they should 
appear when rendered. This determination requires significant time spent poring over 
images of various sites and consulting with SMEs. 

A PATH FORWARD  
Our recommended path forward includes three tasks: 

• Enlarge the contents of the suite. 
• Improve the semantics behind the suite. 
• Disseminate the suite. 

First, enlarge the existing suite of images and ground truth. The present Benchmark Imagery 
Suite is but a small step, with essentially only one type of imaging modality (visible-near-
infrared), CONUS images only, one image per industrial site, split among five industrial classes. 
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Therefore, increase the number of images and the types of facilities represented and the fraction 
of images that are exhaustively annotated. Some specific improvements would be: 

• Add more imaging modalities, especially lidar with normalized digital elevation models 
(height above ground). 

• Increase the number of facility images in the present industrial classes. 
• Add images of OCONUS facilities. 
• Increase the number of areal annotations to include all of the real-world images in the 

Benchmark Imagery Suite, not just 51 of them. 
• Increase the number of industry classes represented in the suite. 
• Expand the set of synthetic imagery, first by creating additional layouts of electrical 

power plants on all of the current base terrains as was done for only nuclear power plants 
on an arid background. Then add more types of facility and types of background. 

Second, expand the underlying semantic foundations of the Benchmark Imagery Suite. The 
meaning or interpretation of an image in words is limited by the vocabulary available to describe 
it. Moreover, the process of assigning humanly meaningful descriptors to an image of a facility 
requires an extensive network of like and dislike images and knowledge that is not directly in the 
image — knowledge of manufacturing processes at a given type of facility, for example. 
Refining the definitions of the industrial classes, increasing the size of the lexicon, defining new 
industrial features like boundaries, and creating detailed, pertinent ontologies are practical ways 
to expand the semantic foundations.  

Finally, make the Benchmark Imagery Suite available to as wide an audience of users as is 
practical. If possible, receive and incorporate their comments and suggestions to improve the 
suite. In the opinion of the authors disseminating the suite is the most important next step in the 
path forward. Although not a trivial task, posting it online in an appropriate manner with 
autonomous access to authorized users would help disseminate it. Doing so will almost certainly 
result in greater insights into its utility, and boost research into semantic algorithm design, 
testing, and inter-comparisons. The precedent set by the computer vision community (e.g., Cal 
Tech 256 [4], OIRDS [10], etc.) is quite clear in this regard. Interactions with users in relevant 
working groups and professional societies such as the Geospatial Working Group [43], the 
American Society for Photogrammetry and Remote Sensing [44] or the Open Geospatial 
Consortium [45] would provide useful insight. It is anticipated that increasing the access to the 
suite will cause more algorithms to be tested and additional test metrics to be used, which will 
improve understanding of both the algorithms being tested and the benchmark images.
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X. Appendix A — Organization of the Benchmark Imagery Suite v1.1a 

Organization of the Data 
The Benchmark Imagery Suite v1.1a files are organized in the following directory hierarchy: 
 
Benchmark_Imagery_suite_v1.1 
|_____ Real 
| |_____ <type> 
|  | <type>_catalog.html 
|  | <type>.kml 
|  | <type>_GoogleEarth.jpg 
|  | 
|  |_____ <site> 
|   |_____ <#> 
|    | <#>.tif 
|    | <#>.gaf 
|    | <#>.csv 
|    | <#>_annotations_overlaid.bmp  
|    | <#>_output_parameters.txt 
|    | <#>.kml 
|    | <#>.tn.jpg 
|    | <#>.xml and/or <#>_meta1.xml 
|    | 
|    |_____ Exhaustive_Areal_Annotation 
|    |  <#>_annotations.tif  
|    |  <#>_annotations.shp, .shx, and .dbf 
|    |  <#>_annotations_QGIS.shp, .shx, and .dbf 
|    |  <#>.png 
|    | 
|    |_____Exhaustive_Point_Annotation 
|    |  <#>_exhaustive.csv 
|    |  <#>_exhaustive_annotation_overlay.bmp 
|    |_____Lidar 
|      <#>_elevation.ras and .hdr 
|      <#>_elevation.mat 
|       
|_____ Synthetic 
 |_____ Arid_Nuc 

|  arid_nuc_gen#_gt.tif 
|  arid_nuc_gen#_gt.png 
|  arid_nuc_gen#_p_gt.tif 
|  arid_nuc_gen#_p_gt.png 
|  arid_nuc_gen#_p_gt.shp, .shx, and .dbf 
|  arid_nuc_gen#_p_gt_QGIS.shp, .shx, and dbf 
|  arid_nuc_gen#_p.csv 
| 
|_____ Two_Types_Four_Sites 
  <type_site>_gt.tif 
  <type_site>_gt.png 
  <type_site>_p_gt.tif 
  <type_site>_p_gt.png 
  <type_site>_p_gt.shp, .shx, and .dbf 
  <type_site>_p_gt_QGIS.shp, .shx, and dbf 
  <type_site>_p.csv 
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Real 

There are five directories, one for each of five different industry types (<type>):  Chemical 
Processing (CP), Heat Processing (HP), Heavy Manufacturing (HM), Mechanical Processing 
(MP), and Semiconductor Industry (SI).  Under each of these directories, there are the following 
files: 

<type>_catalog.html  -  Contains catalog information in a tabular layout, stored in HTML format 
(e.g., Chemical_Processing_catalog.html). 

<type>.kml-  Contains the center point locations of all sites of a specific industrial type, stored in 
KML format (e.g., Chemical_Processing.kml).  

<type>_GoogleEarth.jpg - a screen capture of the site locations as rendered by GoogleEarth(c) 
(Figure 1). 

 
Figure 1.  Screen capture of the site locations for the Chemical Processing (CP) industry type as 
rendered using GoogleEarth(c). 
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Under each of the five industry type directories, there are subdirectories whose names are the 
alphanumeric site names (<site>; e.g., “CP2_U3Z”). 

Under each of these alphanumeric site name subdirectories, there is a single subdirectory whose 
name is the image number (<#>; e.g., “44608466”). 

Under each image number directory, there are the following types of files: 

<#>.tif  -  An USGS orthoimage in GeoTIFF format (with georeferencing). 

<#>.gaf  -  Point annotations in GAF format (i.e., an IDL structure in IDL SAVE file format). 

<#>.csv  -  Point annotations in CSV format. 

<#>_annotations_overlaid.bmp  -  The point annotations overlaid onto the orthoimage (Figure 2). 

 
Figure 2.  The point annotations (“44608466.csv”) overlaid on the orthoimage (“ 44608466.tif”) 
for Chemical Processing site CP2_U3Z, image number 44608466, as contained in the file  
“44608466_annotations_overlaid.bmp.” 
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<#>_output_parameters.txt  -  A metadata file containing GSD and geographic extents 
information. 

<#>.kml  -  The geographic extents of the orthoimage, expressed as a polygon, in KML format. 

<#>.tn.jpg  -  Thumbnail version of the orthoimage, referenced by the catalog HTML file 
(<type>_catalog.html). 

<#>.xml and/or <#>_meta1.xml  -  Metadata for the orthoimage as provided by the USGS. 

Under some of the image number directories, there are up to three other directories; 
"Exhaustive_Point_Annotation", "Exhaustive_Areal_Annotation", and "Lidar.” 

Under the "Exhaustive_Point_Annotation" directory, there are the following types of files: 

<#>_exhaustive_point.gaf  - Point annotations in GAF format (i.e., an IDL structure in IDL 
SAVE file format). 

<#>_exhaustive_point.csv - Point annotations in CSV format. 

Under the "Exhaustive_Areal_Annotation" directory, there are the following types of files: 

<#>_annotations.tif - The exhaustive areal annotations in the form of a raster mask, in TIFF 
format (without georeferencing). 

<#>_annotations.shp, .shx, and .dbf - The exhaustive areal annotations raster mask, converted to 
vector format, suitable for overlaying on the image stored in the TIFF or PNG file by using, for 
example, ENVI. 

<#>_annotations_QGIS.shp, .shx, and .dbf - The exhaustive areal annotations raster mask 
converted to vector format, suitable for overlaying on the image stored in the TIFF or PNG file 
by using, for example, QGIS. 

<#>.png  -  The USGS orthoimage in PNG format (without georeferencing). 

Under the "Lidar" directory, there are the following types of files: 

<#>_elevation.ras and .hdr - The point cloud contained in a LAS file, converted to a raster of 
elevations above mean sea level stored in ENVI standard raster format (i.e., row concatenation; 
lexigraphical ordering), and its associated ENVI header file stored in ASCII format. 

<#>_elevation.mat - Same as the <#>_elevation.ras file, but in Matlab format. 
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Synthetic 

Under the Synthetic directory, there are two subdirectories, Arid_Nuc and 
Two_Types_Four_Sites. 

Under the Arid_Nuc  directory , there are the following types of files: 

arid_nuc_gen#_gt.tif  - The synthetic image in GeoTIFF format (with georeferencing). 

arid_nuc_gen#_gt.png - The synthetic image in PNG format (without georeferencing). 

arid_nuc_gen#_p_gt.tif - The posterization image associated with the arid_nuc_gen#.tif image.  
This is the synthetic image equivalent of the exhaustive areal annotations mask created for the 
real imagery. 

arid_nuc_gen#_p_gt.png - The posterization image in PNG format (without georeferencing). 

arid_nuc_gen#_p_gt.shp, .shx, and .dbf - The posterization image converted to vector format, 
suitable for overlaying on the image stored in the TIF or PNG file by using, for example, ENVI. 

arid_nuc_gen#_p_gt_QGIS.shp, .shx, and dbf - The posterization image converted to vector 
format, suitable for overlaying on the image stored in the TIF or PNG file by using, for example, 
QGIS. 

arid_nuc_gen#_p.csv - The color triplet-to-object “key” for the posterization image stored in 
CSV format. 

Note that the generation number ( gen#) runs from gen1 to gen30. 

Under the Two_Types_Four_Sites  directory , there are the following types of files: 

<type_site>_gt.tif  - The synthetic image in GeoTIFF format (with georeferencing). 

<type_site>_gt.png - The synthetic image in PNG format (without georeferencing). 

<type_site>_p_gt.tif - The posterization image associated with the <type_site>_gen#.tif image.  
This is the synthetic image equivalent of the exhaustive areal annotations mask created for the 
real imagery. 

<type_site>_p_gt.png - The posterization image in PNG format (without georeferencing). 

<type_site>_p_gt.shp, .shx, and .dbf - The posterization image converted to vector format, 
suitable for overlaying on the image stored in the TIF or PNG file by using, for example, ENVI. 

<type_site>_p_gt_QGIS.shp, .shx, and dbf - The posterization image converted to vector format, 
suitable for overlaying on the image stored in the TIF or PNG file by using, for example, QGIS. 

<type_site>_p.csv - The color triplet-to-object “key” for the posterization image stored in CSV 
format. 

Note that <type_site> takes on all eight combinations of the two types, “nuc” (i.e., nuclear power 
plant) and “coal” (i.e., coal-fired power plant), and the four sites, “arid,” “denver,” “forest,” and 
“ocean.” 
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XI. Appendix B — Photointerpretation Key 

Paul A. Pope 
15 April 2013 

GENERAL GUIDANCE 
The controlled vocabulary is biased toward helping an automated algorithm discern between 
objects.  For example, a “Cooling Tower” is a type of “Cooling Unit;” however, “Cooling 
Towers” are (generally) massive in size (and therefore cast a long, large shadow, and the 
structure itself exhibits large perspective distortions; characteristics which an automated 
algorithm might be able to leverage), whereas a “Cooling Unit” is sized somewhere between an 
“A/C Unit” or “HVAC unit” and a “Cooling Tower.”  Another example is “Pond” versus 
“Tank.”  For our purposes, a “Tank” is a fully enclosed structure, whereas a “Pond” is a 
container of any shape (e.g., natural, round, rectangular, square, etc.), installed either above or 
below ground, which uses either soil or concrete or metal to effect the containment, and which 
has an open view to the sky, such that the liquid within often appears dark in tone.  Additionally, 
a “Tank” might contain solid, liquid, or gas, whereas a “Pond” will only contain liquid (if 
present).  Note that in this context a “Fish Tank,” like those found at a fishery, would instead be 
labeled as “Pond” rather than “Tank.”  This line of reasoning is taken because the generally dark 
toned, exposed liquid is probably a feature that an automated algorithm could be trained to 
discern, and therefore this differentiation in terms should help in algorithm development. 

If the mouth of a stack is occluded due to smoke or steam, then do not label that particular 
object, even though it might be particularly salient.  Similarly for “Raillines;” please label the 
track and its associated bed and not the “Train” atop it, because even though the presence of a 
“Train” can be used to infer the presence of a “Rail line” underneath it, the “Train” occludes the 
“Rail line.”  Individual objects and not groups of objects (e.g., “Tank Farm”) should be labeled.  
Current object detection algorithms already find it challenging to consistently find even single 
objects, much less groups of them.  Adhering to these guidelines will lend consistency to the 
labeling and therefore should aid in developing an automated algorithm. 

If a clear semantic distinction cannot be made and/or the object cannot be seen clearly (i.e., it is 
occluded by other objects, or cloud/smoke/steam, etc.), then please do not label an object.  This 
will help to ensure labeling consistency across our team.  Bottom Line:  “When in doubt, leave it 
out.” 
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“Building” - A structure consisting of, at a minimum, a foundation, a roof, and supports.  This 
“catch-all” label is to be used for buildings which are not “House” nor “Industrial Building,” and 
for buildings whose use cannot be readily determined.  A detached “Garage” or “Church” or 
recreational facility or fast-food restaurant or strip-mall building or other medium-sized 
commercial building are examples of a “Building.” 
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”House” - A structure consisting of, at a minimum, a foundation, a roof, and supports, which is 
(usually) small in areal extent and is typically located within a residential area. 
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“Industrial Building” - A structure consisting of, at a minimum, a foundation, a roof, and 
supports, which is (usually) large in areal extent and located within the bounds (e.g. fence-line) 
of an industrial facility. 
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“Conveyor” - A structure (e.g., belt, duct, pipe, etc.) used to move material (solid, liquid, or gas; 
e.g. a conveyor belt, gas/liquid pipeline, or steam pipe), electricity (e.g., conduit), or people (e.g., 
skybridge). 
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“Cooling Tower”- A type of “Cooling Unit” which is typically a very tall, hyperboloid-shaped 
structure.  “Cooling Towers” are most often associated with nuclear power plants, although they 
can also be found at other facilities. 

LLNL-TR-645052 Page 58 of 69 



White, Pope, et al., Benchmark Imagery Final Report [Appendix B — Photointerpretation Key] 

“Cooling Unit”- A piece of equipment used to dissipate or remove heat from other equipment or 
a building by dumping it into the surrounding environment through the use of an intermediate 
fluid (e.g., water, refrigerant).  This includes “Chillers” and “Cooling Towers.”  “Cooling Units” 
are smaller in stature than “Cooling Towers” and their capabilities are somewhat self-contained 
(akin to an “A/C Unit” or “HVAC Unit” but are larger in size). 
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“Crane” - Permanently mounted equipment affixed to a facility which is used to lift, and possibly 
move, heavy objects.  Specifically, “Overhead Crane” like those used in the Heavy 
Manufacturing industry.  Mobile equipment and vehicular-mounted cranes such as “Truck-
mounted Crane,” “Backhoe,” etc. are not considered to be “Cranes” within this context.  
Although they are often affixed on top of or adjacent to a facility, a “Construction Crane” is also 
not considered to be a “Crane” within this context because they are temporary. 
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“Electrical Substation” - A collection of structures used for the transmission, transformation, 
distribution or switching of electric power. 
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“Kiln” - Equipment (e.g. furnace or oven) for drying, baking, or burning material.  A “Cement 
Kiln” and a “Rotary Kiln” are types of “Kilns” within this context. 

 
A horizontal, rotary kiln can be seen at the center of this image of the cement plant south of Cape 
Girardeau, Missouri as referenced in “Land Use/Land Cover and Environmental 
Photointerpretation Keys,” USGS Bulletin 1600, pp. 57-58.
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“Pile” - A purposefully-placed heap of solids with some angle of repose.  Note that “Pile” can 
refer to either fine materials like sand, gravel, or coal that has some angle of repose, or it can 
refer to tires, lengths of pipe, junk (as in “Junk Pile”), or scrap metal.  Note that items which are 
stacked (e.g., lengths of pipe or I-beams) are a type of “Pile,” albeit they are generally more 
orderly in their arrangement. 
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“Pond” - A container of any shape (e.g., natural, round, rectangular, square, etc.), installed either 
above or below ground, which uses either soil or concrete or metal to effect the containment, and 
which has an open view to the sky, such that the liquid within often appears dark in tone (since 
the liquid may contain significant solids).  Exceptions to this generally dark-toned appearance 
may be water-aeration ponds, treated water storage reservoirs, and natural ponds with high algal 
content.  Note that “Holding Pond,” “Settling Pond,” and “Natural Pond” are types of “Pond” 
within this context, as well as “Skimming Tank,” and “Fish Tank.”  A “Natural Pond” is a 
dammed (either naturally or artificially) body of water (smaller than a lake) such that the flow of 
water is either constrained or completely restricted.  “Ponding” (i.e., where the flow of liquid is 
momentarily restricted) is not considered a “Pond” within this context.  A “Pond” is an endurant 
(persistent), whereas “Ponding” is a perdurant (fleeting) (Note:  click on these words for their 
definitions within the context of formal ontology). 
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”Rail line” - A linear structure consisting of a foundation (e.g. compacted material) upon which 
rests horizontally oriented bars of metal, to facilitate the movement of locomotives, railcars, etc.  
Note that even though a “Rail line” can be inferred by the presence of a “Train,” only the track 
and its associated bed should be labeled.  If a “Train” obscures a “Rail line,” then the “Train” 
should not be labeled as “Rail line.” 
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”Stack” - A vertical structure used to convey exhaust; usually relatively tall in height compared 
to surrounding structures.  Note that an orderly “Pile” of material (e.g., lengths of pipe or tires) is 
not considered a “Stack” (a homonym) within this context. 
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“Tank” - A non-mobile (i.e., fixed), enclosed structure (i.e., with a lid and walls), of wide variety 
in shape (e.g. cylindrical, spheroidal, etc.), and oriented either horizontally or vertically, for 
holding solid, liquid, or gas.  Note that a “Tank Car” (e.g., as part of a “Train”) is not considered 
a “Tank” within this context. 
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“Tower” - A vertical piece of equipment (e.g. watch tower, fractionating tower, cracking unit, 
etc.), usually relatively tall in height compared to surrounding structures.  This term includes 
electrical power transmission towers, distillation towers (columns) in chemical plants, and 
security towers.  Note however that a “Cooling Tower” is not a type of “Tower” within this 
context.  A “Cooling Tower” is a type of “Cooling Unit.” 
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“Water Tower” - A tank, elevated via placement on top of a tower.  Note that its use for the 
storage of water is assumed. 
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