Coarse-Mesh Rebalance Methods Compatible with the Spherical Harmonic Fictitious Source in Neutron Transport Calculations

by

W. F. Miller, Jr.
In the interest of prompt distribution, this report was not edited by the Technical Information staff.
COARSE-MESH REBALANCE METHODS COMPATIBLE WITH THE SPHERICAL HARMONIC FICTITIOUS SOURCE IN NEUTRON TRANSPORT CALCULATIONS

by

W. F. Miller, ...

ABSTRACT

The coarse-mesh rebalance method, based on neutron conservation, is used in discrete ordinates neutron transport codes to accelerate convergence of the within-group scattering source. Though very powerful for this application, the method is ineffective in accelerating the iteration on the discrete-ordinates-to-spherical-harmonics fictitious sources used for ray-effect elimination. This is largely because this source makes a minimum contribution to the neutron balance equation. In this report, the traditional rebalance approach is derived in a variational framework and compared with new rebalance approaches tailored to be compatible with the fictitious source. The new approaches are compared numerically to determine their relative advantages. We conclude that there is little incentive to use the new methods.

I. INTRODUCTION

It has been observed by several authors that periodically requiring the flux to satisfy neutron balance on a phase-space grid accelerates the iteration on the within-group scattering source in discrete ordinates neutron transport calculations. The method, used in TWOTRAN, entails the superposition of a coarse spatial grid on the fine mesh and finding direction-independent factors that, when applied to the flux and current, require neutrons to be conserved in a weighted integral sense within each coarse-mesh cell. It was recognized by Lathrop that his coarse-mesh rebalance equations could be derived variationally or by a weighted residual approach. Nakamura, as well as Yuan et al., used variational principles and the second-order self-adjoint neutron transport equation in the derivation of their rebalance equations.

The advent of ray effect mitigating fictitious sources has provided a new challenge to the effectiveness of coarse-mesh rebalance algorithms. The term "ray effect" refers to anomalous ripples that appear in the neutron flux for some problems with isolated sources and low scattering ratios. The fictitious sources that yield spherical harmonic or spherical harmonic-like solutions effectively eliminate these distortions. However, when the within-group iteration proceeds on the sum of this source and the scattering source, the convergence properties of the iterative process are greatly degraded. As reported by Jung, the traditional coarse-mesh rebalance approach is ineffective in accelerating this iteration.

In Sec. II, the step and diamond spatial differencing coarse-mesh rebalance equations are derived from a variational principle. In Sec. III, the discrete-ordinates-to-spherical-harmonics fictitious source used in this study is presented and described. In Sec. IV, variational methods are used to derive new coarse-mesh rebalance approaches more applicable to the fictitious source iteration. Section V provides numerical results while some conclusions and recommendations are described in Sec. VI.
II. COARSE-MESH REBALANCE WITH THE STEP AND DIAMOND DIFFERENCE EQUATIONS

We variationally derive the coarse-mesh rebalance relationships that result from the step and diamond difference schemes for two reasons. First, although Lathrop recognizes that a variational derivation is possible, such a procedure has not been documented to the author's knowledge. Second, the variational approach provides a unifying framework for earlier rebalance equations as well as for the new relationships derived in Sec. IV.

For simplicity, consider the monoenergetic or within-energy-group equation in x-y geometry with isotropic scattering and sources. We wish to accelerate the convergence of the so-called within-group or inner iterative process

\[
\psi_m^{k}(x,y) = \psi_m(x,y) + \sigma_s(x,y) \psi_m(x,y) + \sigma_o(x,y) \psi_m(x,y) \]

These are the x-y geometry discrete ordinates equations for iteration \(k \); a set of equations in the angular flux \(\psi_m \) for each of M discrete directions determined by the direction cosine set \(\{ u_m, n_m \} \). In discrete ordinates neutron transport codes such as TWOTRAN, Eq. (1) is spatially differenced, traditionally with the step or the diamond difference scheme, and the iteration on the scattering source proceeds. At an arbitrary stage of the iteration, neither Eq. (1) nor its corresponding set of spatially differenced equations satisfy neutron balance. This can be seen by first defining

\[
\phi = \sum_{m=1}^{M} w_m \psi_m, \quad \phi^* = \sum_{m=1}^{M} w_m \psi_m^*, \quad J = \sum_{m=1}^{M} w_m \sigma_o \]

where the \(\{ w_m \} \) are the input quadrature weights. We then operate on Eq. (1) with \(\sum_{m=1}^{M} w_m \) to obtain

\[
\frac{\partial \psi_m}{\partial x} + \frac{\partial \psi_m}{\partial y} + \sigma_s \psi_m - \sigma_o \psi_m^* = Q.
\]

Clearly, neutron conservation occurs only upon scalar flux convergence when \(\phi^{k-1} = \phi^k \). The coarse-mesh rebalance approach is designed to speed up this convergence by requiring neutron balance in a weighted integral sense on a pre-established spatial grid.

Consider the fine-mesh spatial grid of Fig. 1 with a superimposed coarse mesh and consider the following semi-discrete functional:

\[
F(\psi, \psi^*) = \int_{x_1}^{x_{T+H_x}} \int_{y_1}^{y_{T+H_y}} \sum_{m=1}^{M} w_m \left[\psi_m^* - \psi_m \right] dx dy.
\]

Here, \(\psi_m^* \) and \(Q_m^* \) are the adjoint angular flux and adjoint source, respectively, and as usual, we assume that all cross sections are known constants in each mesh cell. It is well known that the functional of Eq. (2) has, as one set of its Euler equations, the discrete ordinates equations:

\[
\frac{\partial \psi_m}{\partial x} + \frac{\partial \psi_m}{\partial y} + \sigma_s \psi_m - \sigma_o \psi_m^* = Q_m^*.
\]

The so-called Euler equations provide necessary conditions for the functional to be "stationary" with respect to arbitrary changes in \(\psi_m \). The process of rendering a functional stationary will be pursued in more detail below. The discrete ordinates adjoint equations are also Euler equations of Eq. (2)
rendering the functionary stationary with respect to arbitrary variations in ψ_m^*.

Equation (2) may be used as a starting point to derive the coarse-mesh rebalance equations used with the step difference scheme. We begin by choosing approximation spaces for ψ_m^* and ψ_m. Let

$$\psi_m(x,y) = \sum_{i=1}^{IT} \sum_{j=1}^{JT} f_{ij} \Delta_{ij}(x,y)$$ \hspace{1cm} (4a)$$

and

$$Q_m(x,y) = \sum_{i=1}^{IT} \sum_{j=1}^{JT} Q_{ij} \Delta_{ij}(x,y)$$ \hspace{1cm} (4b)$$

where

$$\Delta_{ij}(x,y) = \begin{cases} 1 & \text{if } x_{i-\frac{1}{2}} \leq x < x_{i+\frac{1}{2}}, \\ 1 & \text{if } y_{j-\frac{1}{2}} \leq y < y_{j+\frac{1}{2}}, \\ 1 & \text{if } x_{i-\frac{1}{2}} \leq x < x_{i+\frac{1}{2}}, \\ 1 & \text{if } y_{j-\frac{1}{2}} \leq y < y_{j+\frac{1}{2}}, \\ 1 & \text{if } x_{i-\frac{1}{2}} \leq x < x_{i+\frac{1}{2}}, \\ 1 & \text{if } y_{j-\frac{1}{2}} \leq y < y_{j+\frac{1}{2}}, \\ 0 & \text{otherwise}, \end{cases}$$ \hspace{1cm} (4c)$$

and ψ_{ij} is the angular flux for direction m and for the ijth mesh cell. The $\{\psi_{ij}\}$ are known from the previous iteration, while the $\{f_{ij}\}$ are unknown and are restricted by

$$f_{ij} = f_{k\ell} \quad \text{for } k \leq i, j \leq \ell.$$ \hspace{1cm} (4d)$$

We further assume

$$\psi_m(x,y) = \sum_{k=1}^{IM} \sum_{\ell=1}^{IM} \psi_{k\ell}^* y_{k\ell}(x,y)$$ \hspace{1cm} (5a)$$

where

$$y_{k\ell}(x,y) = \begin{cases} 1 & x_{k-\frac{1}{2}} \leq x < x_{k+\frac{1}{2}}, \\ 1 & y_{\ell-\frac{1}{2}} \leq y < y_{\ell+\frac{1}{2}}, \\ 0 & \text{otherwise.} \end{cases}$$ \hspace{1cm} (5b)$$

Inserting Eqs. (4a) and (5a) into Eq. (2) yields the reduced functional.
Carrying through the integration, we obtain

$$F[\psi^*, \psi] = \sum_{k=1}^{\text{IM}} \sum_{l=1}^{\text{JM}} \psi_{kl} \left(\sum_{\mu > 0} w_{\mu} \left(f_{k\mu} \psi_{mk} - f_{kl} \psi_{ml-1} \right) \Delta y_j + \sum_{\mu < 0} w_{\mu} \right) \Delta x_l + \sum_{\nu_i} \sum_{\mu > 0} w_{\mu} \left(f_{kl} \psi_{ml-1} - f_{k\mu} \psi_{mk} \right) \Delta x_l + \sum_{\nu_i} \sum_{\mu < 0} w_{\mu} \left(f_{kl} \psi_{ml} - f_{k\mu} \psi_{mk+1} \right) \Delta x_l \Delta y_j$$

(6)

By ψ_{mk}, we refer to the angular flux evaluated at the jth y fine interval and at the x fine interval adjacent to the outgoing boundary of the kth coarse-mesh interval. A similar definition holds for ψ_{ml}.

In Eq. (6), $Q_{ij} = \sum_{m=1}^{M} w_{m} \psi_{ml}$. To find the stationary point of the reduced functional of Eq. (6), we set

$$\frac{\partial F}{\partial \psi_{k\mu}} = 0\quad k = 1, 2, \ldots, \text{IM}$$

$$\frac{\partial F}{\partial \psi_{kl}} = 0\quad l = 1, 2, \ldots, \text{JM}$$

to obtain the coarse-mesh rebalance equations

$$f_{k\mu}(Q_{k\mu} + F_{k\mu} + F_{Uk\mu} + F_{Dk\mu} + AB_{k\mu}) = Q_{k\mu} + f_{k-1\mu}$$

$$+ f_{k\mu} F_{k\mu} + f_{k+1\mu} F_{Uk\mu} + f_{k\mu} F_{Dk\mu} + AB_{k\mu}$$

$$+ f_{k+1\mu} F_{Dk\mu+1}$$

(7a)

where
Equation (7a) is the set of rebalance equations for the rebalance factors \(f_{k\ell} \). Thus, after each iteration, or series of iterations, one uses the new angular flux iterate to compute the quantities of Eq. (7b), solves for the rebalance factors of Eq. (7a), and applies them as indicated in Eq. (4a) to obtain an improved flux. A weighted residual or weight-and-integrate approach may also be used to derive Eq. (7a) by first inserting Eqs. (4a) and (4b) into Eq. (3) and multiplying the result by \(y_{KL}(x,y) \). Then, operating with the desired equations result.

The coarse-mesh rebalance equations for the diamond difference scheme are derived in a manner analogous to the above procedure except Eq. (4a) is replaced by the trial solution

\[
\psi_m(x,y) = \sum_{i=1}^IT \sum_{j=1}^JT \bar{\psi}_{ij} m_{ij}(x,y)
\]

where

\[
\bar{\psi}_{ij}(x,y) = \begin{cases}
\psi_{ij} + \frac{\psi_{ij} (x_{i+1} - x_{i})}{\Delta x_i} (x_{i+1} - x) \\
+ \frac{\psi_{ij} (y_{j+1} - y_{j})}{\Delta y_j} (y_{j+1} - y) \\
x (y_{j+1} - y), x_{i+1} - x_{i}, y_{j+1} - y_{j}
\end{cases}
\]

The resulting rebalance equations are:

\[
f_{k\ell} \left(f_{k\ell+1} + F_{k\ell} + P_{k\ell} \right) = f_{k\ell-1} \left(f_{k\ell+1} + F_{k\ell} + P_{k\ell} \right) + A_{k\ell}
\]

The flows are defined in a manner analogous to Eq. (7b). It is clear that other trial functions for \(\psi_m \) and \(\psi_{ij} \) yield other rebalance equations.

III. DISCRETE-ORDINATES-TO-SPHERICAL-HARMONICS FICTITIOUS SOURCE

A new development in the theory of discrete ordinates approximations is the advent of fictitious source fixups to mitigate the ray effect distortions that plague some neutron transport calculations. These fixups entail appending the within-group discrete ordinates equations of order \(N \) with a fictitious source that ensures that the resulting solution satisfies spherical harmonic or spherical harmonic-like equations of order \(N-1 \). These fictitious sources are complicated functions of the angular flux itself. Appending one of these sources alters the iterative process of Eq. (1) to:
\[
\begin{align*}
S_m &= \sum_{n=0}^{N-1} \sum_{p=0}^{N} v_n^p (\mu_m, \eta_m) \left[\sum_{r=0}^{N-1} (v_r^N, v_r^{N-1}) \sum_{m=1}^{N} a_m^p \gamma_r^N \left(\mu_m, \eta_m \right) \right] \\
&\quad \times \sum_{m=1}^{N} a_m^p \gamma_r^N \left(\mu_m, \eta_m \right) \left(\frac{3\phi_{r-1}}{\delta x} + \gamma_r^N \left(\mu_m, \eta_m \right) \right) \\
&\quad \times \sum_{m=1}^{N} a_m^p \gamma_r^N \left(\mu_m, \eta_m \right) \left(\frac{3\phi_{r+1}}{\delta y} + \sum_{r=0}^{N-2} (v_r^N, v_r^{N-1}) \right) \\
&\quad \times \sum_{r=1}^{N/2} \gamma_r^{2r-1} \left(\mu_m, \eta_m \right) \left(\frac{3\phi_{2r-1}}{\delta x} + \gamma_r^{2r-1} \left(\mu_m, \eta_m \right) \right) \\
&\quad \times \sum_{r=0}^{N-1} \gamma_r^N \left(\mu_m, \eta_m \right) \left(\frac{3\phi_{r-1}}{\delta y} + \gamma_r^N \left(\mu_m, \eta_m \right) \right) \\
\end{align*}
\]
\(m = 1, 2, \ldots, N \quad (9)\)

This fictitious source requires the solution of Eq. (9) to satisfy the spherical harmonics equations of order \(N-1\). We have used the following inner product notation in Eq. (10): \((a, b) = \frac{1}{2} \int d\Omega \int d\Omega a^*(\theta, \phi)b(\theta, \phi)\). Also, the \(v_j^1\) are spherical harmonics and the \(a_{m1}\) are normalized weights defined such that the quadrature set exactly integrates all spherical harmonics through a given order. The Appendix provides a detailed discussion of these \(a_{m1}\).

In order to simplify Eq. (10), we define

\[
\begin{align*}
P_m &= \sum_{r=0}^{N-1} (r^N_{N-1}) \sum_{m=1}^{N} a_m^p r^N \left(\mu_m, \eta_m \right) \gamma_r^{N-1} \\
&\quad + \sum_{m=1}^{N} a_m^p \sum_{r=1}^{N/2} \gamma_r^{2r-1} \left(\mu_m, \eta_m \right) \phi_{2r-1} \\
&= P_m^{\text{in}} \\
G_m &= \sum_{r=1}^{N} (r^N_{N-1}) \sum_{m=1}^{N} a_m^p r^N \left(\mu_m, \eta_m \right) \gamma_r^{N-1} \\
&\quad + \sum_{m=1}^{N} a_m^p \sum_{r=1}^{N/2} \gamma_r^{2r-1} \left(\mu_m, \eta_m \right) \phi_{2r-1} \\
&= G_m^{\text{in}} \\
\end{align*}
\]

These quantities depend only on the angular quadrature set used and can be precalculated before the iterative process begins. Combining Eqs. (10), (A-5), and (11), we obtain

\[
S_m = \sum_{p=0}^{N-1} \sum_{n=0}^{N} \gamma_n^p (\mu_m, \eta_m) \sum_{m=1}^{N} \left[P_m^{\text{in}} \frac{3\phi_m^0}{\delta x} \\
+ G_m^{\text{in}} \frac{3\phi_m^0}{\delta y} \right]. \\
\]

An important fact to note about Eqs. (9) and (12) is that spherical harmonic solutions are independent of the quadrature set used. Different quadrature sets do alter the solution on the system boundary slightly since they correspond to different boundary conditions. Thus, as Reed has pointed out,
the potential exists to select a quadrature set that minimizes the spectral radius of the iteration matrix implied in Eq. (9). That is, we wish to select quadrature points such that \(\{S_{mf}\} \) is minimized in some reasonable norm. The sheer complexity of Eq. (12), as well as its dependence on the angular flux and hence the physical problem concerned, causes such a minimization process to be impractical. The simplest approach one can take is to select quadrature points such that

\[
\sum_{m=1}^{M} a_{m0} S_{mf} = 0. \tag{13}
\]

Then the fictitious source is zero in a weighted sum sense. Inserting Eq. (12) into Eq. (13) yields

\[
\sum_{m=1}^{M} a_{m0} S_{mf} = \sum_{p=0}^{N-1} \sum_{n=0}^{P} \sum_{m=1}^{M} \left\{ \hat{\alpha}_{mm0} \frac{\partial \psi_m}{\partial x} + \hat{\beta}_{mm0} \frac{\partial \psi_m}{\partial y} \right\} = 0.
\]

But, as shown in the Appendix, the \(a_{m0} \) are odd spherical harmonics through order \(N-1 \) as well as selected \(N \) order ones. Thus,

\[
\sum_{m=1}^{M} a_{m0} \psi_p (\eta_m) = \sum_{m=1}^{M} a_{m0} \psi^0_p (\eta_m) = 1.
\]

Hence, Eq. (14) becomes

\[
\sum_{m=1}^{M} a_{m0} S_{mf} = \sum_{m=1}^{M} \left\{ \hat{\alpha}_{mm0} \frac{\partial \psi_m}{\partial x} + \hat{\beta}_{mm0} \frac{\partial \psi_m}{\partial y} \right\} = 0.
\]

In general, this equation is satisfied if, and only if,

\[
a_{m0} = 0 = \hat{\alpha}_{mm0} = \hat{\beta}_{mm0} \quad mm = 1, 2, \ldots, M. \tag{15}
\]

From Eq. (11), it is sufficient that the following relationships hold in order for Eq. (15) to be satisfied:

\[
\sum_{m=1}^{M} a_{m0} \psi_p (\eta_m) = 0, \quad r = 0, 1, \ldots, N \quad \text{(16a)}
\]

\[
\sum_{m=1}^{M} a_{m0} \psi_p (\eta_m) = 0, \quad r = 1, 2, \ldots, N/2 \quad \text{(16b)}
\]

\[
\sum_{m=1}^{M} a_{m0} \psi_p (\eta_m) = 0, \quad r = 1, 2, \ldots, N/2. \tag{16c}
\]

Spherical harmonic recursion relationships can be used to express the sums of Eqs. (16b) and (16c) as sums over linear combinations of spherical harmonics of order \(N-1 \) and \(N+1 \). Since \(N \) is restricted to be even, these sums are over odd spherical harmonics. As discussed in the Appendix, symmetric quadrature sets yield a \(\{a_{m0}\} \) set symmetric about \(\mu = \eta = 0 \), and the sums of Eqs. (16b) and (16c) are identically zero. Likewise, with a symmetric quadrature set, the sums of Eq. (16a), with \(r \) odd, are zero. We are left then with the requirement of finding a symmetric quadrature set satisfying the relationship

\[
\sum_{m=1}^{M} a_{m0} \psi_p (\eta_m) = 0, \quad r = 0, 2, 4, \ldots, N. \tag{17}
\]

Two sets, discussed in the Appendix, have been derived that satisfy this requirement. Unlike the standard \(S_N \) set generated in TWTTRAN, these sets result in convergence of \(\psi_r \), (9) for all problems run. Since the \(\{a_{m0}\} \) are quadrature weights, Eq. (13) implies that, if the fictitious source is included in the functional of Eq. (2), its contribution is zero. Thus, quadrature sets satisfying Eq. (13) ensure that the fictitious source in no way contributes to the rebalance equations and hence the coarse-mesh rebalance equations cannot accelerate fictitious source convergence. Thus, we are left to a dilemma. A quadrature set that satisfies Eq. (13) leads to a source for which Eq. (9) converges more rapidly than other sets. Yet the traditional coarse-mesh rebalance method does not accelerate convergence. We are required, then, to consider variations of the traditional rebalance approaches.
IV. REBALANCE METHODS APPLICABLE TO DISCRETE-ORDINIATES-TO SPHERICAL-HARMONICS FICTITIOUS SOURCES

Let us consider the functional of Eq. (2) with the fictitious source appended:

\[F[\psi^*, \psi] = \int_{\Omega} \int_{\Omega} \psi^* \psi \sum_{m=1}^{M} \left(\varphi_m \frac{\partial \psi}{\partial x} + \varphi_m \frac{\partial \psi}{\partial y} \right) + \sigma \varphi_m - Q - S_{mf} - \psi^* \psi \]. \tag{18}

We have shown in the previous section that quadrature sets satisfying Eq. (17) yield a fictitious source that makes no contribution to the balance equation. That is,

\[\sum_{m=1}^{M} \varphi_m S_{mf} = \sum_{m=1}^{M} a m 0 S_{mf} = 0. \tag{19} \]

We have thus to seek approximation spaces for \(\psi^* \) and \(\psi^* \) such that the sums of Eq. (19) do not appear in the reduced functional. That is, we seek approximation spaces such that the fictitious source contributes to the equations for the rebalance factors.

A. Space-Angle Coarse-Mesh Rebalance

We consider a coarse angular mesh superimposed on the fine angular mesh as indicated in Fig. 2 where, for example, the coarse mesh is composed of the four quadrants of the unit disk. We consider the simplest case of two coarse-mesh intervals, one for \(\eta > 0 \) and one for \(\eta < 0 \). In lieu of Eq. (5a), we assume

\[\psi^*_{k\ell}(x,y) = \sum_{k=1}^{IM} \sum_{\ell=1}^{IN} \psi^*_{m} Y_{k\ell}(x,y) \tag{20a} \]

where \(Y_{k\ell}(x,y) \) is defined in Eq. (5b) and

\[\psi_{m}^* = \left\{ \begin{array}{ll} \psi_{m}^* \forall k \ell, \eta > 0 \\ \psi_{m}^* \forall k \ell, \eta < 0. \end{array} \right. \tag{20b} \]

Both \(\psi_{m}^* \) and \(\psi_{m}^* \) are unknown constants in \(m \) for all \(k \ell \). In lieu of Eq. (4a), we use the following approximation for \(\psi_{m}(x,y) \):

\[\psi_{m}(x,y) = \sum_{i=1}^{IT} \sum_{j=1}^{JT} \sum_{m=1}^{M} a m 0 S_{mf} = 0. \tag{21a} \]

with the \(a m 0 \) given by Eq. (4c) and the \(a m 0 \) restricted by

\[f_{mij} = f_{k\ell}^{\text{UP}} \quad \text{for } i k \ell, j \epsilon \ell, \eta > 0 \tag{21b} \]

and

\[f_{mij} = f_{k\ell}^{\text{DN}} \quad \text{for } i k \ell, j \epsilon \ell, \eta < 0. \]

We next combine Eqs. (18), (4b), (12), (20), and (21), differentiate the F[\psi^*, \psi] with respect to \(\psi_{k\ell}^* \), and set the result to zero to obtain:

\[f_{k\ell}^{\text{UP}} \left(F_{k\ell}^U + F_{k\ell}^L + F_{k\ell}^R + A_{k\ell}^U - S_{k\ell}^U \right) - f_{k\ell}^{\text{UP}} \left(F_{k\ell}^U - S_{k\ell}^U \right) \]

\[+ f_{k+1\ell}^{\text{UP}} \left(F_{k+1\ell}^U + S_{k+1\ell}^U \right) - f_{k-1\ell}^{\text{UP}} \left(F_{k-1\ell}^U - S_{k-1\ell}^U \right) \]

\[- f_{k\ell}^{\text{DN}} \left(S_{k\ell}^D + F_{k\ell}^L - S_{k\ell}^D \right) \]

\[+ f_{k+1\ell}^{\text{DN}} \left(S_{k+1\ell}^D + F_{k+1\ell}^L \right) - f_{k+1\ell}^{\text{DN}} \left(F_{k+1\ell}^L - S_{k+1\ell}^L \right) \]

\[+ f_{k-1\ell}^{\text{DN}} \left(F_{k-1\ell}^L - S_{k-1\ell}^L \right) \]

\[= Q_{k\ell}^U \quad \text{for } ik, j = 1, 2, \ldots, JM \tag{22a} \]

where
\[
\begin{align*}
&\text{FR}_{k_0}^U = \sum_{j \in \mathcal{J}} \sum_{m > 0} \sum_{n > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \Delta y_j , \\
&\text{FL}_{k_0}^U = \sum_{j \in \mathcal{J}} \sum_{m < 0} \mathcal{W}_{m} \psi_{m,n} \Delta y_j , \\
&\text{FU}_{k_0}^U = \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
&\text{AB}_{k_0}^U = \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \Delta x_i \Delta y_j \left[\sigma_{ij} \sum_{n > 0} \psi_{m,n} \right] \\
&\text{QQ}_{k_0}^U = \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \Delta x_i \Delta y_j \sum_{n > 0} \psi_{m,n} \Delta x_i \Delta y_j , \\
&\text{FU}_{k_0}^D = \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
&\text{FSU}_{k_0}^D = \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
&\text{FSU}_{k_0}^U = \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
&\text{FSU}_{k_0}^L = \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
&\text{FSU}_{k_0}^R = \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
&\text{FSU}_{k_0}^L = \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
&\text{FSU}_{k_0}^R = \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\end{align*}
\]

\[
\begin{align*}
\text{FSU}_{k_0}^U &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^D &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^L &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^R &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^L &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^R &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\end{align*}
\]

\[
\begin{align*}
\text{FSU}_{k_0}^L &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^D &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^L &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^R &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^L &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\text{FSU}_{k_0}^R &= \sum_{i \in \mathcal{I}} \sum_{k > 0} \sum_{p > 0} \mathcal{W}_{m} \mathcal{W}_{n} \psi_{m,n} \sum_{n > 0} \mathcal{W}_{m} \psi_{m,n} \Delta x_i , \\
\end{align*}
\]

We repeat the above process except \(\frac{d \psi}{d \psi} \) is now differentiated with respect to \(\psi_{k,\mathcal{K}} \) to yield

\[
\begin{align*}
&\text{DN} \left(\text{FR}_{k_0}^U + \text{FL}_{k_0}^U + \text{FD}_{k_0}^U + \text{AB}_{k_0}^U - \text{FSU}_{k_0}^D + \text{FSU}_{k_0}^D + \text{FSU}_{k_0}^R + \text{FSU}_{k_0}^L \right) \\
&- \text{DN}_{k_0} \left(\text{FR}_{k_0}^U - \text{FSU}_{k_0}^D \right) - \text{DN}_{k_0} \left(\text{FD}_{k_0}^U \right) - \text{DN}_{k_0} \left(\text{AB}_{k_0}^U \right) \\
&- \text{DN}_{k_0} \left(\text{FD}_{k_0}^U + \text{FSU}_{k_0}^D \right) - \text{DN}_{k_0} \left(\text{FSU}_{k_0}^D \right) \\
&- \text{DN}_{k_0} \left(\text{FSU}_{k_0}^D \right) + \text{DN}_{k_0} \left(\text{FD}_{k_0}^U \right) + \text{DN}_{k_0} \left(\text{FSU}_{k_0}^D \right) \\
&+ \text{DN}_{k_0} \left(\text{FSU}_{k_0}^D \right) + \text{DN}_{k_0} \left(\text{FD}_{k_0}^U \right) = \text{DN}_{k_0} \left(\text{FSU}_{k_0}^D \right) \\
&+ \text{DN}_{k_0} \left(\text{FSU}_{k_0}^D \right) + \text{DN}_{k_0} \left(\text{FD}_{k_0}^U \right) + \text{DN}_{k_0} \left(\text{FSU}_{k_0}^D \right) \\
\end{align*}
\]

where the definitions of the terms appearing in Eq. (23) can be deduced from Eq. (22b). Now Eqs. (22) and (23) provide a system of 2N\times 2N linear algebraic equations for the \(\psi_{k,\mathcal{K}} \) and \(\psi_{k,\mathcal{K}}^U \). These rebalance factors then are applied respectively to the upward and downward directed angular fluxes. The scattering and fictitious sources are calculated from these improved fluxes and the iterative process proceeds.
Other than the obvious disadvantage of the complexity of these equations, storage requirements will be greatly increased. The quantities of Eq. (22b) must be stored over the coarse mesh. In addition, two vectors having lengths equal to the scalar flux vector are needed for application of the rebalance factors. Further, the coupled set of equations in the unknowns \(f_{UP}^{\text{k,l}} \) and \(f_{DN}^{\text{k,l}} \) will be much more difficult to solve than Eq. (7). This coarse space-angle mesh rebalance approach is discarded based upon the above observations.

B. Up-Down Coarse-Mesh Rebalance

In this approach, we retain the advantage of the space-angular mesh rebalance method, but decouple the equations for \(f_{UP}^{\text{k,l}} \) and \(f_{DN}^{\text{k,l}} \) (Eqs. (22) and (23)). In neutron transport codes such as TOWTRAN, the space-angle mesh is swept for all downward directions, assuming a known scattering and fictitious source, and then for all upward directions with the same sources. In Eq. (23), we assume that we are rebalancing on the downward directed fluxes and all upward angular fluxes are known and can be treated as sources. Then, Eq. (23) reduces to

\[
\begin{align*}
\Delta N^D_k^l &= \frac{\partial}{\partial \Delta \chi^D_k^l} \left(f_{k+1}^{\text{l},l} - f_{k}^{\text{l},l} \right) - \sum_{\lambda=1}^{\lambda_M} \left(F_{D_k^l}^{\text{D}} \right) \\
&= Q_{Q_k^l}^D , \quad \chi = 1,2, \ldots, \lambda_M \quad \text{(24)}
\end{align*}
\]

with

\[
Q_{Q_k^l}^D = \sum_{\lambda=1}^{\lambda_M} \left(F_{D_k^l}^{\text{D}} \right) + SC_k^l + F_{SU_k^l}^{\text{D}} - \sum_{\lambda=1}^{\lambda_M} \left(F_{D_k^l}^{\text{D}} \right) - F_{SU_k^l}^{\text{D}} - F_{SU_k^l}^{\text{D}} + F_{SU_k^l}^{\text{D}} - F_{SU_k^l}^{\text{D}}
\]

In a similar manner, Eq. (22) reduces to

\[
\begin{align*}
\Delta N^{UP}_{k+l} &= \frac{\partial}{\partial \Delta \chi^{UP}_{k+l}} \left(f_{k+1}^{\text{UP}} - f_{k}^{\text{UP}} \right) - \sum_{\lambda=1}^{\lambda_M} \left(F_{U_k^l}^{\text{U}} \right) \\
&= Q_{Q_k^l}^{UP} , \quad \chi = 1,2, \ldots, \lambda_M \quad \text{(25)}
\end{align*}
\]

with

\[
Q_{Q_k^l}^{UP} = \sum_{\lambda=1}^{\lambda_M} \left(F_{U_k^l}^{\text{U}} \right)
\]

\[
Q_{Q_k^l}^{UP} = \sum_{\lambda=1}^{\lambda_M} \left(F_{U_k^l}^{\text{U}} \right)
\]

Equations (24) and (25) are significantly more simple to solve than the space-angular mesh rebalance equations. The storage requirements are still significantly larger than that needed in the traditional rebalance method, though if only a reasonably coarse mesh is used, the storage penalty is not great. Intuitively, one would expect less acceleration than with the space-angular mesh equations since the coupling in \(f_{UP}^{\text{k,l}} \) and \(f_{DN}^{\text{k,l}} \) is less.

Equations (24) and (25) may be further simplified by ignoring the fact that the fictitious source is comprised of spatial derivatives when deriving the acceleration scheme. Then, there is no spatial coupling in \(f_{UP}^{\text{k,l}} \) or \(f_{DN}^{\text{k,l}} \) in the fictitious source term. Then, Eq. (24) becomes

\[
\begin{align*}
\Delta N^{DN}_{k+l} &= \frac{\partial}{\partial \Delta \chi^{DN}_{k+l}} \left(f_{k+1}^{\text{DN}} - f_{k}^{\text{DN}} \right) - \sum_{\lambda=1}^{\lambda_M} \left(F_{D_k^l}^{\text{D}} \right) \\
&= Q_{Q_k^l}^{DN} , \\
&= 1,2, \ldots, \lambda_M \quad \text{(26)}
\end{align*}
\]

while Eq. (25) is

\[
\begin{align*}
\Delta N^{UP}_{k+l} &= \frac{\partial}{\partial \Delta \chi^{UP}_{k+l}} \left(f_{k+1}^{\text{UP}} - f_{k}^{\text{UP}} \right) - \sum_{\lambda=1}^{\lambda_M} \left(F_{U_k^l}^{\text{U}} \right) \\
&= Q_{Q_k^l}^{UP} , \\
&= 1,2, \ldots, \lambda_M \quad \text{(27)}
\end{align*}
\]

In these expressions, the definitions of Eq. (22b) apply and

\[
\begin{align*}
F_{SU_k^l}^{\text{U}} &= F_{SU_k^l}^{\text{D}} - F_{SD_k^l}^{\text{D}} - F_{SU_k^l}^{\text{D}} - F_{SU_k^l}^{\text{D}} - F_{SU_k^l}^{\text{D}} + F_{SU_k^l}^{\text{D}} + F_{SU_k^l}^{\text{D}} + F_{SU_k^l}^{\text{D}} + F_{SU_k^l}^{\text{D}}
\end{align*}
\]

and

\[
\begin{align*}
F_{SU_k^l}^{\text{U}} &= F_{SU_k^l}^{\text{D}} - F_{SU_k^l}^{\text{D}} - F_{SU_k^l}^{\text{D}} - F_{SU_k^l}^{\text{D}} - F_{SU_k^l}^{\text{D}} + F_{SU_k^l}^{\text{D}} + F_{SU_k^l}^{\text{D}} + F_{SU_k^l}^{\text{D}} + F_{SU_k^l}^{\text{D}}
\end{align*}
\]

We would expect a less effective acceleration scheme than that of Eqs. (24) and (25) due to the decreased spatial coupling of the rebalance factors.
C. Angular Moment Coarse-Mesh Rebalance

We stated in Sec. III, and will demonstrate in Sec. IV, that quadrature sets that satisfy Eq. (13), when used in conjunction with Eq. (9), yield an iterative scheme that generally converges more rapidly than when the standard S_N scheme is used. However, standard rebalance methods, based on the neutron conservation equation, are ineffective. Since the fictitious source makes no contribution to this equation, we consider an equation involving higher angular moments. First, let Σ_n denote the sum over all spherical harmonic orders for which, in general,

$$\sum_{m=1}^{M} a_{mp} \Sigma_n^{m<0} (x,y) \neq 0.$$

These orders may easily be determined numerically for a given quadrature set as discussed in the Appendix. Then assume

$$\psi^*_m(x,y) = \frac{1}{n} \sum_{m=1}^{M} \sum_{k=1}^{J_H} \psi^*_k \gamma_{k,\ell}^n(x,y) \sum_{pn} a_{mp}, \quad (28)$$

and let

$$\psi_m(x,y) = \sum_{i=1}^{IT} \sum_{j=1}^{JT} f_{ij} \psi_{ij}^* \Sigma_m^{ij}(x,y), \quad (29)$$

with $[\Sigma_m^{ij}]$ and $[f_{ij}]$, respectively, satisfying Eqs. (4c) and (4d). Inserting Eqs. (28) and (29) into Eq. (2) differentiating F_{ij}^* with respect to ψ^*_k and setting the results to zero yields

$$f_{k\ell}(\overrightarrow{F}_{k\ell} + \overrightarrow{F}_{k\ell} + \overrightarrow{F}_{k\ell} + \overrightarrow{A}_{k\ell}) - f_{k-1\ell} \overrightarrow{F}_{k-1\ell}$$

$$- f_{k+1\ell} \overrightarrow{F}_{k+1\ell} - f_{k-1\ell} \overrightarrow{F}_{k-1\ell} - f_{k+1\ell} \overrightarrow{F}_{k+1\ell} = \overrightarrow{Q}_{k\ell} \quad k=1,2,\ldots,IM$$

$$\ell=1,2,\ldots,JM \quad (30a)$$

where

$$\overrightarrow{F}_{k\ell} = \sum_{\mu_m>0} \sum_{pn} a_{mp} \sum_{j\ell} \psi_{mkj} \Delta y_j - \sum_{m=1}^{M} \sum_{pn} a_{mp}$$

$$\times \sum_{p'=1}^{N-1} \sum_{n'=1}^{N-1} \gamma_{p',n'} (\mu_m, n_m) \sum_{\mu_m=0}^{r'} P_{mmp'} \sum_{j\ell} \psi_{mkj} \Delta y_j,$$

$$\overrightarrow{A}_{k\ell} = \sum_{\mu_m>0} \sum_{pn} a_{mp} \sum_{j\ell} \psi_{mkj} \Delta x_j + \sum_{m=1}^{M} \sum_{pn} a_{mp}$$

$$\times \sum_{p'=1}^{N-1} \sum_{n'=1}^{N-1} \gamma_{p',n'} (\mu_m, n_m) \sum_{\mu_m=0}^{r'} P_{mmp'} \sum_{j\ell} \psi_{mkj} \Delta x_j,$$

$$\overrightarrow{Q}_{k\ell} = \sum_{m=1}^{M} \sum_{pn} a_{mp} \sum_{j\ell} \sum_{\mu_m>0}^{r'} \psi_{mkj} \Delta x_j \Delta y_j,$$

In principle, this scheme requires no more computer storage than standard rebalance, though if one desires the true absorptions and flows to be printed, one more sweep through the space-angle mesh is needed after convergence.

A simplification analogous to that applied in the previous section to up-down rebalance may be applied to the angular moment rebalance equations. That is, the fictitious source may be treated as if it did not involve derivatives, thus eliminating coupling in $[f_{k\ell}]$ for these terms. Equation (30a) then reduces to
where the flows are the same of those of Eq. (30b) without the fictitious source contributions, and

\[\tilde{A}_{k+1} = \sum_{m=1}^{N} \sum_{n=1}^{N} \sum_{p=1}^{P} \sum_{i=1}^{I} y_{p}^{i} (\mu_{m}^{i} \eta_{m}^{i}) \]

\[\times \left(\sum_{j>0}^{J} \sum_{j}^{J} (\psi_{(m-1)j}^{(m+1)j} - \psi_{(m-1)j}^{(m+1)j}) \Delta y_{j} + \sum_{m<0}^{M} \sum_{p=1}^{P} \sum_{i=1}^{I} y_{p}^{i} (\mu_{m}^{i} \eta_{m}^{i}) \right) \]

\[\times \left(\sum_{j>0}^{J} \sum_{j}^{J} (\psi_{(m-1)j}^{(m+1)j} - \psi_{(m-1)j}^{(m+1)j}) \Delta y_{j} + \sum_{m<0}^{M} \sum_{p=1}^{P} \sum_{i=1}^{I} y_{p}^{i} (\mu_{m}^{i} \eta_{m}^{i}) \right) \]

Again, we expect Eq. (31) to be less effective in accelerating when compared to Eq. (30a) due to the tighter spatial coupling of \(\xi_{k+1} \) in the latter case.

V. NUMERICAL RESULTS

In this section, we consider several sample problems in order to compare the quadrature sets and acceleration schemes described in the previous sections. We also consider both the diamond and step spatial differencing schemes. For all problems run, the pointwise convergence criterion was \(10^{-3} \) and the fictitious source used was that one which converts the discrete ordinates equations of order four to the spherical harmonics equations of order three. The three problems run are depicted in Figs. 3-5 with region cross sections provided in Table 1. We used a spatial mesh, with equal intervals, of 20 x 20, 30 x 30, and 20 x 20, respectively, for problems 1-3.

Table II provides a comparison of the number of inner iterations [see Eq. (9)] required for convergence using the step and diamond schemes with no
TABLE I
CROSS SECTIONS FOR TEST PROBLEMS

<table>
<thead>
<tr>
<th>Cross Section</th>
<th>Problem 1</th>
<th>Reg. I</th>
<th>Reg. II</th>
<th>Reg. I</th>
<th>Reg. II</th>
<th>Reg. III</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_a</td>
<td>1.0</td>
<td>0.5</td>
<td>0.10</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>c_b</td>
<td>1.0</td>
<td>0.75</td>
<td>1.0</td>
<td>1.0</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>0.0</td>
<td>0.25</td>
<td>0.90</td>
<td>0.0</td>
<td>1.0</td>
<td>0.01</td>
</tr>
<tr>
<td>γ_f</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

TABLE II
ITERATIONS REQUIRED FOR CONVERGENCE WITH VARIOUS QUADRATURE SETS AND DIFFERENCE SCHEMES

<table>
<thead>
<tr>
<th>Problem</th>
<th>Step Difference Scheme</th>
<th>Diamond Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quad Set 1</td>
<td>Quad Set 2</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

*This problem was run with coarse-mesh rebalance.

The iteration acceleration mechanism employed. Quadrature Sets 1 and 2 are those discussed in the Appendix, while Set 3 is the standard S_N set used in TWOTRAN. While the first two sets satisfy Eq. (13), the S_N set does not. This does not appear to affect the iteration count when the step scheme is used. When the diamond scheme is used in conjunction with Set 3, however, the iteration diverges for all problems run. The first two sets, although requiring more iterations for convergence than with the step scheme, yield convergent algorithms when used with the diamond scheme. Since Set 3 does not satisfy Eq. (13), the fictitious source does contribute to the neutron balance equation. Included in Table II are the results of runs using coarse-mesh rebalance and Set 3. The number of iterations is unaffected largely due to the fact that, although the contribution of the fictitious source to the rebalance equations is not zero, it is very small. Table II then provides little basis to make a quadrature set selection when the step scheme is used but clearly indicates that schemes satisfying Eq. (13) are preferable when the diamond scheme is used.

One reason for the better performance of all sets when used with the step scheme is related to the behavior of the analytic solution of the spherical harmonics equations at material interfaces. It is well known that certain angular flux moments are discontinuous at material interfaces with the spherical harmonics method. Yet the diamond difference approximation imposes angular flux continuity at the mesh cell boundaries. The step scheme, however, allows angular flux, and hence flux moment, discontinuity at all mesh cell edges.

Table III depicts an iteration count comparison for three of the methods discussed in Sec. IV. Method 1 is the up-down coarse-mesh rebalance approach described by Eqs. (24) and (25). Method 2 is the simplification of Method 1 given by Eqs. (26) and (27). Method 3 is the angular moment coarse-mesh rebalance approach of Eq. (31). All problems were run with quadrature Set 1 and the step scheme. When the iteration counts are compared with the nonacceleration results (see Column 1 of Table II), it is clear that none of the proposed methods are very effective in accelerating the iteration process.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this work we have sought coarse-mesh rebalance methods that accelerate the iteration on the fictitious source (Eq. (9)). Although we have developed several seemingly promising methods, none of the proposed procedures is effective enough to warrant consideration for production codes. Since coarse-mesh rebalance methods are nonlinear and the fictitious source is extremely complicated, it is very difficult to determine the reasons for the disappointing results. It appears from the results,
however, that the coarse-mesh rebalance approach to accelerating Eq. (9) should be discarded in favor of a synthetic or some other approach.

REFERENCES

11. B. G. Carlson, "Tables of Symmetric Equal Weight Quadrature Eq[0 over the Unit Sphere," Los Alamos Scientific Laboratory report LA-5952 (1975).

APPENDIX

DETERMINATION OF SPHERICAL HARMONIC QUADRATURE WEIGHTS

In the derivation of the Miller-Reed fictitious source, the angular flux is assumed to have a spherical harmonic polynomial expansion given by

\[
\psi(x,y,\mu,\eta) = \sum_{p=0}^{N-1} \sum_{n=0}^{p} Y_p^n(\mu,\eta) \phi_p^n(x,y) + \sum_{n=1}^{N/2} x^{2n-1} Y_n^{2n-1}(\mu,\eta) F_n\phi_n^n(x,y) \tag{A-1}
\]

where the \(Y_n^{2n-1}(\mu,\eta)\) are spherical harmonic polynomials defined by

\[
Y_p^n = \left[\frac{(2+\delta_{p,0})(p-n)(2p+1)}{2\pi(p+n)!} \right] \phi_p^n(\mu) \cos n\eta. \tag{A-2}
\]

Here \(\mu\) is the \(x\)-component of the neutron direction vector, while the \(y\)-component is

\[
\eta = \sqrt{1 - \mu^2} \cos \phi.
\]

The \(\phi_p^n(\mu)\) are associated Legendre polynomials. The spherical harmonics are normalized such that

\[
\left(Y_p^n, Y_p^{n'} \right) = \int_{-1}^{1} \int_{0}^{\pi} d\mu \cos \eta \ Y_p^n \ Y_p^{n'} = \delta_{p,p'} \delta_{n,n'}.
\]

The spherical harmonic angular flux moments, \(\phi_p^n\), are defined by

\[
\left(\psi, Y_p^n \right) = \phi_p^n.
\]

A Lagrange basis is introduced such that the unknowns are directional fluxes in lieu of angular flux moments. Thus, in addition to Eq. (A-1), we also set
where the l_n^μ are Lagrange polynomials and M is the number of directions corresponding to the discrete ordinates order, N. To find these polynomials in terms of the spherical harmonics, we expand the l_n^μ by

$$L_n^\mu(\mu, \eta) = \sum_{p=0}^{N-1} \sum_{n=0}^{P} a_n^{\mu p} \psi_n^p + \sum_{n=1}^{N/2} \gamma_n^{2n-1}. \quad (A-4)$$

Combining Eqs. (A-1), (A-3), and (A-4), it is clear that

$$\psi_n^p = \sum_{m=1}^{M} a_{m n p} \psi_m. \quad (A-5)$$

To find the a_{np}, we define the $M x M$ matrices.

$$Y = \begin{bmatrix} y_0^0 (\mu_1, \eta_1) \cdots y_{N-1}^0 (\mu_1, \eta_1) \\ \vdots \\ y_0^0 (\mu_n, \eta_n) \cdots y_{N-1}^0 (\mu_n, \eta_n) \end{bmatrix}$$

and

$$A = \begin{bmatrix} a_0^n & 0 & \cdots & 0 \\ 0 & a_2^n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{N-1}^n \end{bmatrix}$$

Then, it follows from Eq. (A-4) and the definition of Lagrange polynomials, that

$$YA = I \quad (A-6)$$

where I is the identity matrix. Thus, the A array is determined completely from the quadrature points and is given by

$$A = Y^{-1}. \quad (A-7)$$

It is difficult to deduce anything about the structure of Y^{-1} for a given quadrature set. However, certain generalities can be made about the matrix A based on numerical experimentation with several sets, including the ones to be presented below. The first observation follows from Eqs. (A-2) and (A-4):

$$\sum_{m=1}^{M} a_{m 0} = \sqrt{2\pi} \sum_{m=1}^{M} a_{m 0} \gamma_0^0 (\mu_m, \eta_m) = \sqrt{2\pi} a_{m 0} \psi_0. \quad (A-8)$$

Second, all the $a_{0 0}^0$ are positive and are analogous to quadrature weights, since, from Eq. (A-5),

$$\psi_0 = \sum_{m=1}^{M} a_{m 0} \psi_m. \quad (A-5)$$

Thus, note that these quadrature "weights" are fixed by the quadrature points. Third, for a quadrature set symmetric about $\mu = \eta = 0$, the $a_{m 0}$ are likewise symmetric about $\mu = \eta = 0$.

As shown in Sec. III, there are incentives for deriving symmetric quadrature sets that satisfy Eq. (17), repeated here

$$\sum_{m=1}^{M} a_{m 0} \gamma_0^0 (\mu_m, \eta_m) = 0 \quad r=0,2,4,\ldots,\infty. \quad (A-8)$$

We take the specific case of $N = 4$ and point out sets that satisfy Eq. (A-8).

1. Quadrature Set 1—The first quadrature set satisfying Eq. (A-8) is the EQN set derived by Carlson. This set is

<table>
<thead>
<tr>
<th>m</th>
<th>w_m</th>
<th>μ_m</th>
<th>η_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0833333</td>
<td>0.3500212</td>
<td>0.3500212</td>
</tr>
<tr>
<td>2</td>
<td>0.8333333</td>
<td>0.3500212</td>
<td>0.8688903</td>
</tr>
<tr>
<td>3</td>
<td>0.0833333</td>
<td>0.8688903</td>
<td>0.3500212</td>
</tr>
</tbody>
</table>

These were derived by Carlson by solving a non-linear system of equations

$$\sum_{m=1}^{M} \omega \cdot \mu_m \eta_m = \int d\mu d\eta \gamma_0^0, \quad \mu \cdot p \text{ even, and} \quad \omega \mu = 0,2,4 \quad (A-9)$$

15
with the constraint of equal weights. Since Eq. (A-9) has a unique solution, the \(\{ a_0 \} \) of Eq. (A-8) and the \(\{ w_m \} \) of Eq. (A-9) must be identical except for a normalizing constant.

2. Quadrature Set 2—The second set, named the ZPN (zeroes of Legendre polynomial) set is found by solving the six nonlinear equations of Eq. (A-9) along with the three constraints that each \(\mu_m \) be a zero of \(Y_4^0 \). The resulting set is

<table>
<thead>
<tr>
<th>(n)</th>
<th>(w_m)</th>
<th>(\mu_m)</th>
<th>(\nu_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0815181</td>
<td>0.3399810</td>
<td>0.3499611</td>
</tr>
<tr>
<td>2</td>
<td>0.0869637</td>
<td>0.8611363</td>
<td>0.3594757</td>
</tr>
<tr>
<td>3</td>
<td>0.0815181</td>
<td>0.3399810</td>
<td>0.8728896</td>
</tr>
</tbody>
</table>

Again, the equations to find the ZPN set have unique solutions. Thus, the weights and \(\{ a_0 \} \) must be equal to the \(\{ w_m \} \) except for normalization.