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ABSTRACT

SOME OBSERVATIONS CONCERNING THE USE OF REAﬂISTIC FORCES_iN
. A MICROSCOPIC DESCRIPTION OF THE INELASTIC SCATTERING
OF NUCLEONS FROM NUCLEI AT MEDIUM ENERGIES
By

Fred L. Petrovich

The problem of describing, in a microscopic picture,
the process of inelastic nucleon-nucleus scattefing at ineci-
dent energies in the 15-70 MeV range is of current interest.
Of primary interest are the properties of the projec-
tile-target interaction. In this work several models for
this interaction are investigated by direct calculation.

All of the interaction models considered are consistent with
some portion of the data concerning the free two—ﬁuéleon
force; hence, the term "realistic forces" which'appears in
the title of this paper. To be specific, it is assumed that
the projectile-target interaction is giveh by (1) a pseudo-
potential derived from the impulse appfoximaﬁion; (2) the
long range part of the Kallio-Kolltveit poténtial (K-K force)
which is known to be a good approximation to the central

part of the shell model reaction matrix, and (3) a Yukawa

force derived from effective range theory.
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This study is restricted in that the local distorted
wave approximation (D.W.A.) is used throughout and no consider-
ation is given to components of the interaction with compli-

cated spin dependence such as the tensor and 25 parts.

»Appfoximations are made to treat the exchange component of

the D.W.A. transition amplitude which is non-local. This
component appears because of the required antisymmetrization
of the projeétile—target wave function and it has been neg-
lected in most recent workvon this problem, These approxi-
mations are discussed and some comparisons with exact calcu-
lations are presented.

Application is made to (p,p') transitions in closed
and pseudo-closed shell nuclei. Random phase approximation
(R.P.A.) staté vectors are used to describe the states of
the target nuclei. Studies of the (e,e') reaction and the
(p,p') reaction (at incident energies in excess of 100
MeV) have shown that these vectors give a good description
of the transitions considered; therefore, these calculations
provide é test for the proposed interaction models. The
results obtained with all three interaction models are shown
to be in reasonable agreement with experiment, although the
Yukawa effective range force appears to be somewhat poorer
than the other two at incident energies below 30 MeV. The
inclusion of exchange plays an essential part in giving this
aéreement. In most instances deficiencies in the shapes of

the theoretical angular distributions are noted.
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Further application is made to traﬂsition involving
low lying states in nuclei which possess one or two nucleons
outside of a closed shell. The purpose is to study core
polarization effectsvwhich are known to be important in
these transitions. The effects are estimated in calcula-
tions which use either'a microscopic model or the macroscopie
vibrational model to describe the core. Emphasis is on the
completely microscopic calculations which assume that the
core can be described by a zero order shell model Hemiltonian
and that only the effect of simple particle-hole excitations
of this core with energies.up to roughly a#w need by censid-
ered. The coupling between ﬁhe valence nucleons and the
core is treated by first order perturbation theory and the
K-K force is taken to be the eoupling interaction. This
model is essentially the same as the one used recently by
Kuo and Brown in work on the spectra of nucleil of this type.
Contributions to (p,p”) cross sections due to core polariza-
tion are large. The relation between the effect of core
polarization on the spectrum and in inelastic proton-nucleus
scattering is examined. The micrescopic model ddesn't do too
badly on the (p,p”) cross sections, i.e. mass polarization
effects. The experimental data is underestimated somewhat.
However, effective charges for corresponding y-transitions,
i.e. charge polarization effects, are badly underestimated.
One case is found where this model does badly on the mass
polarization. This is explained by explicitly taking into
account the effect of a highly collective stete in the core

nucleus. .
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From this study it is concluded that a reasonable
description of thié class of feactions'is obtained using
'realistic forces" provided the treatment includes the effects
of (1) antisymmetrization and (2) long range correlationé in
‘the target nuclei, in particular, core correlations (R.P.A.)

and core polarization.
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CHAPTER 1
INTRODUCTION

There are several factors responsible for the current
interest in the microscopic description of inelastic nucleon--
nucleus scattering at medium energies, i.e. incident energies
ranging from 15-70 MeV. DMost important are recent advances
in the theory of nuclear structure which‘provide a des-
cription of a vériety of nuciear states in terms of the
motions of the individual nucleons which comprise thesé
systems‘.l’2 The medium energy region is of pafticular inter-
est primarily because it is the best source of data on these
reactions. This is credited to the'néw sectbr—focusséd
cyclotrons and the large tandem accelerators. 

Much has béen said in the literature about this problem.
Ref. 3-7 are a representative sample of papers and a rea-
sonably good bibliography is contained therein. These papers
consider some of the formal aspects of the problem and discuss
those features of inelastic nucleon-nucleus scattering which
make these reactions valuable for studying nuclear structure.
Eﬁphasis is on the distorted wave approximation (D.W.A.);
however, a good discussion of the coupled channels method is

given in Ref. 5. The treatment of the non-local D.W.A.




transition amplitudeT is discussed in Ref. 3. This is
encountered when the required antisymmetrization of the
projectile—tafget wave functions is taken into account.
The results of several calculations are also avail-
able.8_lu In these works the local D.W.A. is used and the
question of‘antiSymmetrization is ignored. It is assumed
that the projectile-target interaction can be expressed as
a sum of two-body interactions between the projectile .and
individual target nucleons. Tbe two~-body interaction is
taken to be local and séalar,vseparately in spin, i-spin,

and coordinate space. Various radial forms are used and

the strength and range parameters are fixed by direct

-calculation and cémparison with experiment. Simple shell

model wave functions are used to describe the ﬁarget nuclei.
Application 1s restricted to the (p,p') and (p,h) reactions
(a limitation imposéd by the experimental data) and the
transitions cbnéidered serve to isolate different components
of the interaction. As far as the weak components of the
force are concerned, the information extracted in this manner
shows some consistency; ﬁowever,‘these analjSes yield a

large range of values for the strength of the strong, noﬁ—
"spin-flip" componénts of the force. In addition these
strengths are considerably larger than that expected from a

knowledge of the free two-nucleon force.

TIn this work the terms local and non-local D.W.A. are v |
used to specify the character of the operator appearing in
the D.W.A., transition amplitude, i.e. local or non-local in
the projectile coordinate.



through the strong parts of the interaction.

In related calculations the description_of the target
nuclei is improved so as to introduce explicitly the effects
due to core polarization in those transitions which proceed
15,16 The macro-
scopic vibrational model is used to describe the core.and a

closure assumption makes it possible to fix the core para-

meters from experimental y-transition rates. The effects are

-large and much smaller interaction strengths result when they

are included. It is likely that core polarlzatlon can account

for many of the inconsistencies noted in the earlier works.
The effects due to antisymmetrization arevcontained
in the éxchange component of the transition amplitude which
1s necessarily non-local. Its properties are presently
being investigated. 1Initial results indicate that it cannot
be neglected and that its importance is a function of inci-
dent nucleon energy, multipolarity of transition, radial
form and‘exchange nature of the two-body force, and initial
and final target states.l7—19 This dependence places restric-
tions on the two-body interactibn and implies a re-evaluation
of some of the conclusions obtained in analyses in which
antisymmetrization is ignored.
Considerable success has attended the use of "realistic
forces" in the bound state problem.2o—25 The theoretical
foundations of this approach are reviewed in several

1,26-29  (Rer. 27 due to MacFarlane is an excellent

places.
article.) The majdr step is this treatment is the intro-

duction of the shell model reaction matrix, or G-matrix, as



the interaction between bound nucleons.“r This is obtained
dirgctly from a two-nucleon potential in a manner which

takes inté.account the presence of other nucléons in the'
nucleus and eliminates the need for using wave functions with
short range two-particle correlations. The G-matrix used

in Ref. 20-25 1is derived from the Hamada-Johnston (H—J)
potential which fits the nucleon-nucleon scattering data up
to 300 MeV.30 Application has been made to nuclei hot more
than two‘nucléons‘away from a closed shell.

The success of this treatment of the bound state problem
is very encouraging. Because of its fundamental nature, it
avoids many of the difficulties associated with commonl&
used empirical methods where the interaction is essentially
lert free.?’ The biggest difficulty is the compensatory
relation between the particular calculation which is per-
formed (the proper calculation is, of course, not known
a'priori) and the interaction which is so determined. These

v

remarks need not be confined to the bound state problem.
As an example, note that the initial empirical eff‘orts8“lll

on the inelastic nucleon-nucleus scattering problem conceal
the importance of core polarization and antisymmetrization.

_The purpoée of this paper is to explore a parallel

treatment of the microscopic description of inelastic nucleon-

[The G-matrix referred to here is often called the
"bare" G-matrix. This provides a means of differentiating
"between matrix elements of this operator and corresponding
" matrix elements which implicitly contain effects other than
interaction of nucleons through this operator alone, e.g.
core polarization effects.




nucleus scattering. Here, asserted a'priori, are three
mod¢1$ for the projectile—target interaction. All of‘these
relate direétly to the free two-nucleon force. The word
models 1s used because no attempt at a precise derivation of
the projectile-target interaction is made. This hopefully
can be done within the framework of the many body theory of
these reactions in a manner analagous to that fbllowed in
the treatment of the bound state probiem.. In thils work the
asserted interaction models are simply investigated by '
direct calculation. In related works they are used to
calculate optical potentials for elastic nucleoh—nucleus
scattering in the medium energy region.3l’32
To be specific, it is assumed that the projectile-
ﬁargét interaction ié given by'(l)»a pseudo-potential derived
from the impulse approximation, (2) the long range part of
the Kallio-Kolltveit potential (K-K force) which is.known
to be a godd approximation to the central part of the'éhell
model reaction matrix, and (3) a Yukawa force derived from
effective range theory. These interactions have the same
férms, i.e. local, scalar, etc. . . . , as those used in
previous investigations and all calculations are carried out
using the local D.W.A. Any effects due to long range corre-
lations--for example core polarization effects-}are‘included
explicitly in thertargetAwave functions. Antisymmetrization
is treated approximately in the impulse approximation and
the effects are contained implicitly in the pseudo-potential.

For the case of'the reaction matrix and effective range



interactions a local approximation’to the exchange component
of the D.W.A. transition amplitude 1s included in the calcu-
lations.

The impulse approximation33 is a free scattering approxi-
mation which can be derived from the formal multiple scatter-
ing solution to the nucleon-nucleus scattering problem which
was developed by Watson and collaborators.3u—38 This approxi-
mation has been applied with success to inelastic proton—
nucleus scattering primarily at incident energies greater than
100 Mev,39-H4 It is generally assumed to be invalid at
energies lower than 100 MeV; however, there are indications
that it might give good results at energies as low as
50 l‘/‘IeV.36Y’L‘5 The pseudo—potential is simply a fit to the
Fourief transform of the free two-nucleon scattering amplitude
which is calculated from the H~J potential, off the'energy
shell, i;é. using nucleon-nucleus kinematics in place of

nucleon-nucleon kinematics.

The Kallio-Kolltveit potential contains a hard core
and has an exponential radial form.u6 It fits the nucleon-
nucleon S-wave phase shifts up to 300 MeV. The long rangeu
part of this potential is defined by the'Scott—MOSKOWSKi
separation me’chod,l47 i.e. a separation distance is determined
(it turns out to be of the order of 1F) below which the
potentiél is set to zero. The separation method gives the
leading term in a perturbation expansion for the components

of the reaction matrix which act in states of even relative

orbital angular momentum. This force is a good approximation




to the central part of the G-matrix used in Ref. 20-24,

The latter is derived from a more complete potential and con-.

tains additional detail. Application of the K-K force to

the calculation of the low energy spectrum of O16

in Ref. 46
was one of the first attempts to use "realistic forces™ in
the bound state problem. In evaluating bound state matrix
elements it is assumed that the K-K force acts only in
relative s—-states.

Tﬁe impulse approximation pseudo-potential and K-K
force are selected because it is possible that they are valid
representations-of the projectile-target interaction asymp-
totically, i.e. far outside and deep.inside the nucleus,
respectively. Reference to the high energy features of
nucleon-nucleon scattering is contained in the potentials
from which they are derived. It is ef interest to see how
these interaction models differ from thevforces of regular
functional form which are obtaihed in the shape independent
analysis of low energy nucleon-nucleon scattering data,48’49

To this end calculations are performed with a Yukawa effective

range force. Consideration by way of discussion is also

given to Gaussian and exponential effective range interactions.

There 1s an imaginary division of the remainder of this
paper into two parts. Details relating to the interaction
models, D.W.A. calculations, and exchange approximation are
contained in Chapters 2-5 and a few Appendices. Applications
and results are presented in Chapters 6 and 7 with Chapter 8

reserved for final remarks. To be a bit more specific, a
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discussion of the antisymmetrized D.W.A. 'is given in Chapter 2. J
The approximation used to treat exchénge is also developed
here. The impulse apﬁroximation pseudo-potential is présented
in Chapter 3. Chaptef 4-contaiﬁs some rough arguments con-
cerning the possible character of the actual projectile-
target interaction and its relation to the K-K force and
impulse approximation pseudo-potential. The effective range
forces are introduced in Chapter 5 where some of the pro—
perties of the "approximate" exchangé component of the D.W.A.
transition amplitude are discussed and a few results obtained
with. exchange treated approXiﬁately are compared with results

18,19

of exact calculations. At this point the K-K force and

effective range forces are compared on the basis of this
approximation.
Applications, mainly to (p,p') transitions in closed

and pseudo-closed shell nuclei, i.e. C12, 016, Cauo

Pb208

, -and
» are considered in Chapter 6. . Random phase approxima-
tion (R.P.A.) state vectors are used to describe the target

50-54

nuceli. Studies of the (p,p') reaction at incident

energies above 100 MeVuO—uu and studies of the (e,e!')

55,56

reaction indicate that these vectors give a good des-
cription of the transitions considered. These transitions
serve to test the proposed interactioﬁ models at least to
within the quality of thevapproximation used to treat anti-
symmetrization. Some inelastic electron scattering resﬁlts
are presented in order to provide a frame of reference for

examining the (p,p') differential cross sections which are

presented.
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Chaptér 7 is devoted to the treatment of transitions
involving_low lying states in nuclei which possess ohe-or
two nucleons outside of a closed shell. Core polarization
plays an important part in these transitionsls’16 and has
an equally important effect on the relative spacinQ»Qf these

low lying levels.2022

The effects of core polarization are
estimated in calculations which use either‘a microscopic |
model or the macroscopic vibrational model to'deécribe the
core. Emphasis is on the completely microsCopic’calculations;
which assume that the core can be described by a zero-order
shell model Hamiltonian and that only the‘effect'of simple
particle-hole excitations up to roughly 2#w in energy need:
.be considered. The coupling between the valence.nucleons

and the core is treated by first order perturbation thédry
and the K-K force is taken to be the coupling interaction.
This is essentially the model first used by Horle and Arima
in calculating gquadrupole moments57and it is the Same picture
that Kuo and Brown have used in Ref. 20-25. Differential
cross sections for (p,p') transitions and Y—transition rates
are calculated. For the most part, the»K—K force is used

for the projectile-target interaction. The completely micro—:
scopic (p,p') calculations are amusing as they constitute a
first attempt to ca}culate the observed cross sections
directly from a knowledge of the two-nucleon force. The
relation between the effect of core polarizatibn on the'épect—
rum and in transitions is examined. Conclusiohs are drawn as

to the validity of the partiqle—hole model.



CHAPTER 2

DETAILS OF THE DISTORTED WAVE APPROXIMATION

1. D.W.A. Transition Amplitude and Cross Section

The antisymmetrized distorted wave transition amplitude

for the 1ne1ast1c nucleon-nucleus scattering reaction

k 22> A~ k b,B. (where k is the relative momentum of the target
and projectile, the small letters represent the internal
projectile guantum numbefs, énd the capital letters are

used to specify the state of the target) is given by3’l6’17

—<B|z a'lA>

D rp p r

- (+) (+)
X (0005600, 1) gz (00, (1) =xply (1)¢,(0)>
amb<xm m.b ¢p(1)] X mom t0pt ) X (10

where a local interaction model is implied and provision

ie made for the presence of spin—orbit_coupling in the
optical potential. 1In this expression t(0,1) denotes

the <two-body interaction, the x's are the distorted waves
which describe the relative motion of the prejectile and
target under:the influence of the optical potential, and
co-factor expansions of the target wave functions are
employed. The latter account for the presence of the crea—
tion (destruction) operators at (a) and the single pafticle

bound state wave functions ¢in the relatioq. The arguments

10

(1)
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0 and 1 refer to all nucleon coordinates and fix the manner
in which the integrals are to be taken. |

The first integral in Eq. (1) is the usual direct matrix
element while the second is the exchange component of the
transition amplitude. 1In the former the same particle is
unbound in both the initial and final states, but in the
latter the particle which is unbound initially is captured
into the nucleus and a target particle is expelled into the
final unbound state.

The distorted waves are solutions to a one body
Schrodinger equation which contains the optical_pqtential.

Spin projection is not a good quantum number when this

ama

(Xmgmb).ls the'ma(mb) spin projection component of the

solution with initial spin projection ma(mb). It is clear

potential contains a spin-orbit term. In Eq. (1) Xm'

that spin orbilt coupling gives rise to "spinrflip" in inelastic
scattering over andrabove that which occurs through direct
interaction via t. Note further the standard use of the
superscripts on the distorted waves to specify the boundary
conditions which they satisfy.

From the form of the trensition amplitude it is seen
that inelastic nucleon-nucleus scattering is represented by
a one-body operator in the distorted wave approximation, i.e.
trahsitions are allowed between components of the target |
wave functions which differ only in the state of a single
nucleon. A state of ‘the target nucleus is defined by
its total angular momentum, projection, and additienal

quantum numbers; the internal state of the projectile nucleon
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is fixed by giving its spin and i-spin projection; thus
AZo,J M), azm T, BZapJ M., and bzm 1. Further a’ and b~
will be used for m;Ta and mgTb, respectively..

Scattering experiments are most frequently performed
with unpolarized beams and targets. Under these conditions
the differential cross section for inelastic nﬁcleon—nucleus

scattering is obtained by introducing kinematical factors

and appropriately summing and averaging over projections.

This gives
do _ (M2 b L] e - (2)
ds 2Wh2 ka 2(2JA+15 MAMB DW
Mgy

where u is the reduced mass of the projectile-nucleus

system.

2. Form Factors
Without loss of generality the j-j coupling represen-
tation can be selected as the Single particle basis, ie.
pP=n"L°3"m" T’ and r=nfjmt, which gives
_ e 4
=z -’1 A A oA . 21_ 1 11 -
¢p(l) n <275 m ms|3 m >¢£,(rl)]§ m; 5 7>

z“s 2 2 s

(3)
m
Lol o Xr )1t m Lot
¢r(1)'m2ms<£2 mzmslgm>¢£ (rl)IQ ms2 T
. . s s 58 .
where <aboaB|cy> is a Clebsch-Gordan coefficient. It is

convenient to rewrite Eq. (1) as
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‘ . (o (=)¥ = (+) (= y43. 43
k TDW_mamt’)fjxmgmb(rO)V<V>Xm’m (ry)a rofi Ty (4)

a a

A o}

where

<V>=<B|Epa+a [A> Z

) .<pri m’m'|j’m’><ll m,m
pr mlms 2 S

3 5 memg | Jm>

m,m
Ls

mi*
X{d(ro—rl)f¢za

m
- - - Q:_ 3
(P2)<b,p|t(0,2)[a,r>¢£ (r2)d r,

mi* _ ) m, _

—¢, = (rl)<b,plt(0,l)lr,a’>¢£ (PO)} : (5)
with the bra-ket notation applying to integration over the
interﬁal coordinates only.

The'quantity <V>,_ca11ed'the partial matrix element,
contains all of the nuclear structure information for a
particular transition.‘ It also containé the details‘of the
interaction model and the selection rules‘which’govern the
reaction. It is an effective one-body operator in the
projectile éubspacé. Examination of Eq. (5) shows that <V>
| and r,. Here this

0 1
non—loéality arises due to the presence of the exchange

is non-local, that i1s it depends on T

component of the transition amplitude; however, had t been
assumed non-local the direct component of the transition
amplitude would also contribute to the non-locality in <V>, -
The general rotationél properties of the partial matrix
element can be exploited to reduce the distorted wave calcu-
lations for all transitions to a common form. It can be

shown quite generally that <V> can be written3
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_ 1Vom, o

_ ) 4L -
V=155t Frsg,mTos My oMMy | T gMy>

rl;b’B;a’A)(—l) <J,JM, M_-M

11 - - - Pl - - '.
x<5 5 ma,—mb|S ma—mb><LSM,ma—mb|J,MB—MA> (6)

where M=MB-MA+mb—ma. FLSJ,M transforms under rotation of -

. * .~L . .
the coordinate system as Y the i insures convenient

LM’
time reversal properties, and L, S, and J satisfy the vector

relations

J=T5-3, §=5-5/+8=0,1 ‘ [=3-5. (7)

It is clear that L,S, and J are the angular momenta trans-
ferred to the target nucleus through t in the inelastic
collision. If i-spin is considered to be a good quéntum
number for the target nucleus Eq. (6) can be rewritten as

1/2-m°
) i ~LpT (Ty»Ty3a7A,b"B)(-1) Py gM, ,M_-M

V>=Lsart T FLsy,m M s MMy | T M >

11

X<5 3 ma,mb|Sma—mb><LSM,ma-mblJ,MB—MA>
X<T,TM_ ,M_, -M_ |T. M, >< Tt ,7 -7 |% 7 > - (8)
AT T T ‘ BT 2 b?'a b'2 a

A B A B

where T=T,-T =t -%, -T=0,1 and M -Mj =t_-1,. Eq. (8) fe uces

, B ‘A
to Eq. (6) by defining.

S M

E _ Lo oL
Frsa,wor Frss,m<Ta™p sMp Mg [Tghp ><5 Tt st -ty l5 1, (9)

A B A B

This expansion of the partial matrix element can be used to

write the transition amplitude as
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a y 2 LMmbma -
5 Tpw=Lsg? F ¥y Mp=My [T pMp> 85 . (o)
where J=|:2J+1]l/2 and
LMm_m ~L 1/2-m .
b a_ 1 - b A m _
Bss —mzm,—u—-(_l) <LSIVI,ma mle,M m, +m_ >
abJ
M‘
l 1 - -~ - -
X<F 3 Mge-mp|Smi-my>
(- ) (+ ) 3 3p
xffx (r )FLSJ M- X~ “m (r )d ryd r, . (11)
| .
The cross section, Eq. (2), then becomes
| do » I )2 Kb 2J +1 Iz J’;Mmbma|2 (12)
dq 2Wh2 a 2(2J +D mbm LS J .
JM

with the interference between different S and L for a given

J occuring as a direct consequence of the spin—orbit‘coupling
iﬁ the optical potential. 1In practice this interference is
found to be weak. As partial wave expansions of the distorted
waves are used in evaluating the integral in Eq. (115 the
multipdle components of FLSJ,M(;O’EI),aPe needed. They are

defined as follows:

sJ
2 Fry, Lb(r > >YL y (F )YL M (£1)

Frsg M(P ’r =L b

b
M Mb

x<LbLaMbMa|LM> : | (13)
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o0 (r,r )= L o<t M. | LM> ' '
LL L ‘T0°717m M “TplaMpMy
a b a

xffFLSJ,M(rO,rl)YLbe(rO)YLaMa(rl)dQOdQl (14)

The reduction has been achieved. All of the "physics"

SJ

LLbLa(rO’rl

which are independent of projection quantum numbers and are

for a particular transition is contained in the F

functions of the radial coordinates ro and'rl. Given these

quantities the distorted wave cross section is obtained by
LMm, m ‘

computing and summing the Bsy b-a as prescribed by Eq. (11)

and Eq. (12). Unfortunately, the calculation is still not
easy. It will be seen that each of these multipole components

is a fairly complicated quantity as far as computation is
concerned. Further, FSJ (r,,r,) is associated with

LLbLa 0°71
angular momentum transfer L, S, and J to the target nucleus

with the projectile undergoing a transition from the state

of relative angular momentum La to L Even though only a

b
few Valﬁes of L, S, and J are expected to contribute to a

transition there may be as many as twenty partial waves used

in the calculation of a cross section in the energy region
. SJ

| LLbLa
not only complicated, but many of them are required.

of interest here. The point is that the F (rogrl) are

For the direct, or local component of the partial
matrix element an additional separation can be made.
6(r0—r1) Lb Lb

{ —>5 (-1) “<L

l”o Vim

SJ L3I,

Frn o (Posr)=F 7 (r
b a

o) bLOOILaO>} (15)
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monic, and using the closure property of spherical harmonics

gives for this case

Fror,m(FoF1)TF S (rg) Yy ()8 (Fp=F) (16)

|
Using result (15) in Eq. (13), recoupling a spherical har-
0

section is considerably easier because the "physics" is

~

LSJ,

‘When Eq. (16) can be used the calculation of the cross '
(ro) which are few in number and |

-then contained in the F

depend on only one radial coordinate. 1In addition explicit
LMmbma
SJ '
which is much simpler than the one obtained by using Egq. (13)

use of Eq. (16) in Eq. (11) gives an expressibn for B8

in Eq. (11). Computational difficulties associated with the
treatment of non-local partial matrix elements have been the
major reason for neglecting the éffects due to antisymmetri-

zation in the past. Fortunately, this problem is well on

its way to solution.l6’17

In this work an attempt is made to account approxi-
mately for antisymmetrization in an expression of the form

(16). The calculations are then essentially reduced to

donstructing the form factors FLSJ T

-~ O). -
components - DLSJ(rO) which comes from the direct component

of the transition amplitude and ELSJ(rO) which approxi-

(r These have two

mately represents terms coming from the exchange component.

o oy
- It 1is FLSJ,M(rO’rl) which 1s properly referred to as

a form factor. When using the local D.W.A. FLSJ(rO) is the

essegtlal part of FLS{,M(rO’rl)' In this work the term form
factor will refer to FLSJ(rO).
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Two approximations are used--one with the impulse approxi--

mation and another for the case of the K-K and effective

'range forces. The approximations differ only in detail--

not in spirit. They are discussed in Section 6 of this

LSJ(rO) is made when

using the K-K and effective range forces, whereas it is

implicit in the impulse approximation pseudo-potential.

Returning to the discussion of the complete partial
matrix element Eq. (13) is used to rewrite Eg. (6) as

1/2-mZ :
ma,—mbISma—m >

<Us= ) i 7(-1) b

ST pIMy S Mp-M, [T M > <5

11
ATTA° B” 2 2

x<LSM,m7-m”|J ,Mg~M ><L, L M M |LM>

A

) ,
xY (2 )Y (r' )F (r Ty ) (17)
LM, Q LM, LLbL 0

In the next two sections of this chapter it will bé shown

that Eq. (5) can be written in the above form, thus allowing

ST py
LL, L, ooty

restricted to the static 1nteractlons being considered in

identification of the F The discussion is

-this work. bThese have the form

t(O’l).=too(1°01)“301(1"01)"o 01+t 4 (rg1) T, Tty (rg1)000 0T T,

Aty
=£T<—1> tgp(Toy)
Ay

02, (0)03 (1)1l (0)T) (1) (18)

where oi(rg) are the usual spherical tensor components of the

spin (i-spin) operator and 08=T8=1.
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| k ' 3. Integration Over Internal Coordinates

Using Eq. (18) the following result is obtained for

the integrals over internal nucleon coordinates in Eq. (5)'

<b,’pI’G(O,l)_la,’r>—2 (- 1)A+ytST( Ol) % Sm” o3 AI— m ><; SmSA]% m;>
Ay
x<%‘I‘Ta,—y ]%Tb><%TTy ]%—T’)
x{<5] 6% [2><%| |17 | |2>}2 (19)
<b;plt(0,%)|r,a’>=gT(_1)A+ytST(r01)<% Sm A|2 mb><— m A|— mg>

Ay

;
x<§TT,—y|%Tb><%TTay}%T’>

x(<5| o] [3><2] [<T| 13512 (20)

where <aa|ObB]cy>=<cb76|aa><a||Ob|lb> is the convention
adopted for the Wigner-Eckart Theorem.58 The following

recoupling identity

1

1 1 .
<GSmg =25 mi><s

S

Ik meee ] G2yl 111 oo
SmoA |5 mi>=g%, STW(5 5 5 535 S87)

x(<1)S -S+A AR E R m><: 5'm A% % m2> (21)

and its i-spin counterpart is used in Eq. (20)._ Then the
fact that

1,09y, L =

S|HED 5=

is used and summation indices are interchanged to give
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A+ 1 1.
b3p|6(0,1)|r,a >_Z p-DMYEL g <dsmz <2 dns
Ay :
1 .1
x<3 Sm A |5 m;><z T vl5 T, >
1 1..1,,.Ty,1.,2
x<5 Try|3t7>{<3] | o <5l 5>} (22)

where

8
with W indicating a Kacah coefficient? Eg. (22) can be

summarized as <b’,p|t(0,1)lr,é’>=<b’,p|tE(O,l)|a’,r>

B

- The coefficients in the expansion of tST(fOI) in terms

of tST(r01) which is given in Eq. (23) will be called,ﬂs T

ZST
that is t (r01) q* T°£ST g T,(1"01) They are given in Table 1.

TABLE 1;——Coefficients for expansion of th(r01) in terms
of tS’T’(rOI)'
ST 00 10 Ol. 11
I R
oo F b3 4
]
wE 4 4
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It is not obvious from the above table, but the relationship
between th(o,l) and t(0,1) can be stated very simply. To

see this note the following alternative expansion for t(0,1).

£(O’l)=%s Vs (To1 ) Ppg o | (25)
Here PTS=PTPS with PT and PSVrepresenting the usual i-spin
and spin pfojection operators —-PO=% (1-60f81) and
Pl=% (3+50-61) for the case of ordinary spin. Unlike the
previous relations for t(0,1) and tE(O,l), where the sub-
scripts S and T referred to the unit of spin and i-spin
which could be transferred from the projectile to the target
nucleon thfough the corresponding part of the interaction,
the subscripts on VTS(r01) indicate that it is the componeﬁt
of the intéraction which écts when the projectile and target'
nucleons are coupled to total spin S and total l1-spin T.

SO SE TE TO

Commonly used is the notation VOO=V ,V10= ,V01=V ,V11=V

where SO, SE, TE,and TO refer to singlet odd, singlet even,

Vv

triplet evén, and triplet odd components of the interaction,

respectively.

Expanding Eq. (25) and regrouping terms as in Eq. (18)
gives the following relations between tST(r01) and VTS(rOl)’

1
L0076 Vo +3Vp1*t3V otV )

1
£10778(Vo0*Vp13V19+3Vy ;)
(26) -

_1 .
L0116 (~V00"3Vp1 V103V 7)

_1 _ _
©11°78 Vo0 Vo1 V1%V 1)
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Similarly_using Eq. (23) it follows that:

E _1 ,.,
£00=16V0073V0173V14+9V14)
t2 =1 (Lv v _+3v. 43V, )

10716 00" Y01 10 117

' (27)

tB =l (v +3V. V. 437, )

01 16'" Y00 01 '10 11

E 1

£11716 W00 V01*V10*V11)

The right hand sides of Eq. (26) and Eq. (27) differ only-
by the signs of the even state terms. For the case of an
even state force tE(O,1)=—t(O,1) and for an odd state force
tE(O,l)=t(O,l). Rémembering that the transition amplitude
is proportional to the difference between the direét and
‘exchange components, it is clear (insofar as the integration
over internal coordinates is concerned) that the exchange
amplitude contributes constructively to the direct amplitude
for the even components of the interaction and destructively
for the odd components. This result is a direct consequence
of the fact that the internal wave function of the two nucleons
is symmetric for odd states and'antisymmétric for even states.
It could have been seen more easlly by coupling the internal
coordinates of the projectile and target nucleons to good
Spin and i-spin before integrating in Eq. (19) and Eq. (20).
This was not done, however, since Eq. (l9)»and Eq. (22) have
the form that is needed for the remainder of this.disucssion.

It ié interesting to note that because of antisymmetri-

zation, "spin-flip" and "i-spin-flip" through direct inter-
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action 1is allowed even if 1t is strictly forbidden by the
form of the interaction. To see this note that a Wigner
force £(0,1)=t  (r ) leads to tE(o,1);%[t00(r01)+t10(r01)x
60-Bi+t01(r01)¥0-?1+t11(r01)80-51?0-?1]. Sgch consequences
appear formally because of the introduction of the pseudo-
interaction fE(O,l) into the exchange amplitude, but it
shouldvbe‘remembered that this is simply a convenient way
of cataloging the manner in which the incident pfojectile
can be captured by the target with expulsion of a target.
nucleon into the final projectile state. To conclude this

section note that the partial matrix element Eq. (5) can

now be written as

»

my

<V>=<B|z ata_|A> L .<g-k m” |3 m*><2: m
rppr mym_ s 2

2 n%[3m>

)
mzlﬂs
N A Moo= y43.,
x{d(ro—rl)f¢2, (r2)<b,p|t(0,2)|a,r>¢£ (r,)a r,-

me* _ E My -
$g% (r))<pip|t (0,1)|ajr>9, (rg)l}. , (28)

b, PFinal Reduction of Partial Matrix Element

Since the components of <V> which correspond to the
tiansfer of total angular momentum J are of interest it is
convenient to couple the creation and annihilation operator

in Eq. (28) to good J.

+
. - P ;a.
J'm Tt " jmT

(29)

) s -, 2 - s ~ 0 - _ - j_m
AJMJ(J T ,JT)—m%,<J jm’, mlJMJ>( 1) a




24

The phase factor (—1)‘3_m insures that AJM has the correct
J

transformation properties under rotation. If l1-spin is
considered to be a good quantum number additional coupling
to good T is necessary.

™ Z
<

+ 7 sy = l.l g > 1/2-1
AJMJ(J J,)_TT’ ) 2T ,_TITMT ("l)

AJMJ(j'T';jT) (30)

For these two cases it immediately follows that

Lot ) Jom_. . .
<B|prapar|A = JmT( ~1)97"<5%5m”, mlJMJ><JAJM M ]J
J'm 1t~
JM,
J
x<dg [R5 17330) | [T > - ' (31)

and

<B|z a2 |A>— _ér(—l)J’m<j’jm’,emIJMJ><J IM M [T M

BB
Jm t”
JM,
J
M,
x(-1)1/27T L L - »=T | TM;><T , TM,, M ol Tty >
2 2
Tp
x<i [ 1A G s> . (32)
B B! 1%g A ATt

Eq. (31) or Eqg. (32) and the results of Eq. (19) and .
Eq. (22) are inserted into Eg. (28) and a recoupling operation
is performed to introduce the transferred orbital angular

momentum. The necessary identity is
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z - J—m . - _ _]_.. l - l
e (-1)Y <3 im”, m|JM> <5 SmSA]2 m><23 mzmsljm>
m_m?
X<L°E m’|J m >*z /_J JL (—l)L_2+2 <LSMA |JM.>
2 Z E l J
x<LAMm |27m) >% (737527232 % s). . ' (33)

Rearranging some Clebsch-Gordan éoefficients, summing over
indices if necessary, and comparing with Eq. (17) allows

the identification

*
L Yy (F )YL M, (v))Fpy L, (o:71) < LM, M, | LM>=
LM LpMp b
a a
LM
j§,1L233‘£2z’ 1S X (3739587 zL,l i S)ZB(JT) 2 ,<L2Mm2]£ mg>
memg
(- (5 B ) S mi*(‘ Yo (r )00 F(F )d3 v—
x{ Tomry )0y e (rp)tanlry,)é, " (r,)d r,-
m; ¥ m
2 - U E %, =
9= (r)tgnlryy)e, "(ry)l. - (34)

In these relations X (abcidef;ghi) 1s a 9-j symb0158 and

my—= o —- l - l
B(Jf)_/§T<TATMTaMTB TA[TBMTB><2TTb,Ta T 157,>

x<J TBIIA (373)]1J,T - (35)

for the case of good i-spin or

B(JT)=T§,T2<%TT,Ta— b|2T ><;T1b;Ta—Tb|%ra><JB|lAJ(jft’;jr)lIJA>

(36)
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when i-spin is not considered to be a good quantum number
for the target.

The meaning of the reduced matrix elements appearing
in Eq. (35) and Eq. (36) can be illustrated by writing them
in a somewhat more familiar forﬁ. By inverting the Wigner-
Eckart Theorem the reduced Matrix element appearing in Eq.

(36) can be written as follows.

« -, - Z - j—m
<apdpl A (37t ,JT)IlaAJA>—MAMJ<JAJMAMJIJBMB>( 1)

_x<j’jm’,—m[JMJ>
 x<a J.M |a+, -_-a | e, J,M,> (37)
B BB'" ' Jm t""jmt' A" A A

The Greek letters have been re-introduced to allow complete
specification of the nuclear states. Since A and B are

antisymmetric states containing n nucleons it follows thaﬁ

+ ' + .
<qBJBMB|aj,m,T,ajmT . Ao T M >

Mos= L
o, J M, >= <a,J MBIaJ’mfr T oM

298" %0 7 M <%pIp
- %p'p

X<o_ J M

29p p[ajmTla J.M,> (38)

A"ATA

where the complete set of antisymmetric states'composed of

n~1 nucleons has been introduced. The reduced matrix
elements in Eq. (35) and Eq. (36) afe simply related to the
coefficients of fractional paréntage (c.f‘.p.)59 and all
results can be put in the form of the usual fractional parent-

58

age expansion. The definitive relation is
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<a.d M

_1/2 -
o7p pIaJmTlaAJ M,>=n <apJp,JTl}aAJ

AA

A><JpJMpm|JAMA>. (39)

Using results (38) and (39) in Egq. (37) and summing over pro-

Jections gives:

« - ” - Aéf_l
<aBJB[|AJ(J T ;jT)[[aAJA>=S(JAJBJ;jj TT7)JJ
S(JAJBq;jJ TT )=apJpn<apJp;JI|}aAJA><apJp;J 7| Yagdg> (40)
A A~ Jp_JA+J_j g
x{JAj W(3iJ JAJB;JJp)(—l)‘ .

For the case of good i-spin it follows that:

o T - - . . s - A?;—lA —1/2
<aBJBiB[|§J(J J)I]aAJATB>—S(JAJBJ,TATBT,Jj )JI3T TT(2)

b(JAJBJ;TATBT;JJ )=%f%Tpn<apJpr;Jl}aAJATA>

x<apJpr;J I}aBJBTB> (41)

A I, =T p+3=3"
X1T 3 W(II 7T 53990 (-1) }

N T -7 +T=1/2
x{T, /20 (% % T p A }.

T'he spectroscopic amplitudes S which have been introduced
are simply partial sums of the complete fractional parentage

expansion of the partial matrix element. They contain the

weighting imposed by the nuclear structure for the contribution

to the transition due to a single nucleon going from the

initial state j(jt) to the final state j“(j”°t”). The factors
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~

appearing in Eq. (40) and (41) which have not been included
in S guarantee a convenient interpretation ofvthe remaining
factors in Eq. (34).

When i-spin is not considered to be a good quantum
number it is useful to redefine the interaction by pef-
forming the sum over T when Eq. (36) is used ih Eq. (34),

i.e. define

(P01)=%T2<lTT,T Loosedmr 15t

P 2" Tpl5 21T Ty T 157, srrpy)  (42)

t -~
STaTbTT

with a corresponding relation for tE (rOl). Table 2 gives

the coefficients in the above expansion for the various
combinations of i-spin projections. The first entry in each

column is the coefficient for T=0 while the second is for T=1.

I-spin projection equal to %ldenotes a proton and‘—% denotes

a neutron. Incompatible projection combinatiqns are indicated
by a dash. The table simply shows that for inelastic proton
or ﬁeutron scattering the proton-proton and neutron-neutron
interaction is tSO+tSl while the neutron-proton interaction

is tSO—tSl' Further it illustrates that only the iso—Vector
part of the interéction contributes to the charge exchange
reactions. Since it will always be clear what reaction is
being considered no ambiguity should result if the Subscripts

T,T, are dropped from t in Eq. (42). For the (p,p') reaction

it is also convenient to use the subscripts pp and pn corres-

ponding tO»Ta=T= % and T =-T1= %, respectively.

a
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TABLE 2.--Interaction components when 1i-spin is not used.

REACTION Ta"b § % z _% _% % _%_ _% %

(p,p”) % = 1,1 -1 - -
(n,n") —%-—% 1,-1 1,1 - -
(p,n) -1 - - - 0,2
(n,p) | —%% - - 0,2 -

Now Eq. (40)-(42) are incorporated into Eq. (34). 1In
addition t(rOl)’tE(rOI)’ and 6(?0—51) are expanded in spherical

harmonics. This expansion is defined by
_ZfA . ¥ o- (" ' ur
Flrg )= (g m ) Y y(rg) ¥ (2)) (43)
with

1
fL(rO;rl)=2ﬂf_iPL(cosa)f(rOl)dcosa o (4h)

where a is the angle between }O and ;1” The single particle
m ~

wave functions are ¢ Q(P)=izu (r)Y (r). The following

L ni le

integration formula facilitates the inversion of the resulting

expression.

- - - = "l/2A - A—l -
fYLlMl(r)YL2M2(r)YL3M3(r)dQ (bm) L.L.L-*%<I, L2OOIL30>

17273 1

: 3
x<LlL2M1M2|L3,—M3>(—l) (45)
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Contraction of Clebsch-Gordan coefficients and fecoupling
in the exchange component, as was done previously in inte-
grating over the internal coordinates (see Eq. (21)), glves

for the case of good i-spin

SJ _
FrL o (rgsry)=
b~ a

) 1 1
5372 T<TATMT M =My [Ty ><5 Tt L7 -1 |57, >
T AT Ty B

AANAA AAAA

b AT 5 s TR( g5 ensd Ls)s(a,9,05m, T g5 ke

2 2 A°B°° A°B
’ S(r,-r
2272 . 0" "1
x () "L LbL Iopp(rg) <2t OO|LO><LaLbOO|LO>——;§————
0

% ) ’“,2
‘un'z'<rl)unz(ro)L’('1) W(LL 2°L_;L°L)<&Lo0|L, 0>

-1 - E . ‘ (46)
x<8°L oolLa0>tSTL,(rO,r1)}.
For the case i-spin is ignored,

sJ _
FLLbLa<PO’r1)_

jg,/ﬁiLf“ Az TRaLSIR(53I5 0 2L,2 2S)S<J gJ3dd 1)
T~
_1 A A /\_2 Q’/ 6(r0_r )
x(Um) {LaLbL IS (r Y<g” OO[LO><L L oo]Lo> 5
r

* ¥ L’r.2 t rs ;
“upeg - (T dug (rgd g (107 LoW(RLy 2L ;L L)gzL 00 | Ly, 0>

o E , ‘ o
X<8°L OOILaO>tsTT’L’(PO’r1)}f : A(“?)




.
In these expressions

- 2 46 )
STL f“ - (T by, (o370 ) ()2, %ar, (
and
S AN _ | 2. : | '
ISTT’L"Iun'z’(rz)tSTT‘L(ro’rz)unz(rz)rz ar,. - (A7)

Using the symmetry properties of the Clebsch-Gordan
coefficients it is easy to see that the first term in Eq. (46)

and Eq. (47) has the form indicated in Eq. (15). Identifica—

tion of DLSJ(rO) follows directly.
“LSJ ) . , 1
D’ (r0)~jj,/§ T<TATMTA’MTB IT Mo, ><2TTb,Ta—Tb|2T2>
:T -
xS(JAJBJ TATBT,JJ )
§(r.-r "
. 1727 1LsJ T .1 i 2
x[<) 75l l—%" 1" (2)1 (2)IIJ§>tSTL(rO’rl)rldrl (46 ).
Fo
LST, . e
D (ro)—JJ,/E S(JAJBJ,JJ TTt7)
Tt~
§(r.-r,) "
. 172’ 18g N2 cu7™y
xf<] I]———;:T——— (2)| 13 >ty T'L(rO’rl)rldrl
2

Th~ spin—angle tensor has been introduced, i.e.

L <LSMA| JM >1LYLM of

TﬁSJ 7
J
and the reduced matrix elements appearing in these relations

are given by
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S{r.-r.)
<3751 I—22 wP )T (2) | | 33>
T

.L+2—2’ AAAAANAN l 1
1

(4m) ™+ 2/359L8IT<La00] 2 705K ("3 T527AL;5 £8)

Xu:’l'(rl)unl(rl) | (46 )

and

S(r.-r.)
. - 1 °2 L J
<7 —== 7(2)]] 5=

l”zv

iL+2—2 (uﬂ)~l/2/~ 11

2JALST<LL0O0|270>X(J 3387 2L35 5 8)

¥ . )
Xun’z’(rl)unﬁ(rl)' : | (47 )

The V2 and 1i-spin factors in Eq. (U6") and Eq. (47”) appear
because the partial matrix element contains the integrations
over internal projectile coordinates.

Examination of the above relations shows that the direct
component of the partial matrix element for a given Lidepends
oh only one multipole coefficlient of the interaction while the’
eXchange component depends on several of these coefficients.

In éddition one of the more interesting consequences of anti-
symmetrization is noted. This concerns the relation between
the L-transfer and parity changé (A7) in a transition. 1In
inelastic nucleon-nucleus scattering no change in the intrinsic
parity of the projectile is inVolved, thus any change in the
parity of the target during a transition requires a correspond~

ing change in parity in the state of relative projectile-target
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motion. This condition is disﬁlayed in Eq. (46) and (47)
L +L :

where it is obvious that Awn=(-1) a b=(—1)2+2 .  These

same relations illustrate that the direct component of the
transition amplitude vanishes unless Aﬂ=(—l)L. Such a
relation does not exist for the exchange component and there
will be contributions to the cross sections when An#(-l)L.

In the local D.W;A. one has the selection rules indicéted

in Eq. (7) albng with those given in Eq. (8) for i-spin and
the additional relation between L-transfer and Am. For a
given value of J, (LSJ) can take the values (J,0,J) and
(J,1,J) or (J-1,1,J) and (J+1,1,J). With the inclusion of the
exchange component all four triads are allowed for a given J.
The contributions to the cross Section with (—i)L#Aw are

referred to as non-normal transfers.

5. Zero-Range Interaction
A special case of some interest is an interaction of

zero-range, i.e. t(r01)=T (FO—FI) which leads to t(ro;rl)=
§(r0—rl) . _ ’ .
T s which does not depend on L; therefore the multipole
ry : | :
coefficient of the exchange interaction can bevfactored out of

the sum over L” in Eq. (46) and (47). The sum then yields
Ll L2 gL ;L°L)<2L"00|L, 0><2°L"00|L_0>=
L' A Tl b a "

A A_2 - ' .
L, L L <zz,oo|Lo><LaLboolLo>

which gives the exchange component of FiibL (ro;rl) the same
a

form as the direct component. The following expressions are
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~LSJ

obtained for F (ro) for the case of good i-spin and the

case when i-spin is ignored, respectively.

pLSJ ) | 1 1
(ro)—..zl/_ T<TATMTA BITBMTB><§ TTb,Ta_Tb|§Ta>
T
xS(J,doT 3T, ToT3337) (Tar=TE, )
A“BY 3 p'B"S sT™TST
- §(r,-r
. 0" 2’ _1s T 1
x<§ 5l === T 2T (2) |33 - (48)
r
O .
or
“LST, ) Caao E
F (ro)—jj,/§ S(JAJBJ,JJ TT )(TSTT’L—TSTT'L)
Tt~
§(r.-r.)
. 0 LS
x| === T (2) |55 (49)
I'O .

It is clear that the effect of antisymmetrization in the limit
of zero range is simply to renormalize the strength of the
interaction. Further, non-normal transfers are not allowed

in-this limit.

6. Approximéte Treatment of Antisymmetrization

The approkimations used to treat antisymmetrization in
this work are based on the fact the exchange scattering, as
compared to the direct scattering, is sensitive to a partic-
ular momentum component of theAtwo—body interaction. To see
this note the form which the basic integrals of the D.W.A.
transition amplitude, Eq. (1), have in a momentum represen-

tation.

d
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Lggp=C2n )™

x[xp T (RY) SR R, E (R RS e, (B )x S (R dar (50)
I, = (2m)7

xfxg TR 6L (R 4R EE(RD-R, Do (B (Rpar (s1)

In the direct scattering the projectile goes from the initial
state El to the final state Ei by transferring momentum
§=K1—Ei to the bound particle. In the exchange scattering
the prdjectile‘is captured and transfers momentum 5=E£—E2

to the bound particle thereby expelling it from the target
with momentum El. Introducing the initial and final relative
momentum k and k” of the two nucleons it follows that:

(52)

To the extent that the scattering 1s governed by the kinematics
of the nucleon-nucleus system, i.e. on the average the bound
particle is initially at rest in the lab and for scattering
.at a particular angle in the nucleon-nucleus center of mass

the average value of q is the assymptotic value, it follows

that:

(53)
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3

where N is the number of particles in the target and it has
been assumed that no energy is 1ost in exciting thevtarget.
For the case of'the K—K and effective range forces the
exchange - 1ntegral is. approximated by evaluating t (Ik k2|)
2

at kLAB and remov1ng it from the integral. In a coordinate

representation Eq. (51) becomes
i oo V% _ * _ - - - Y o
Tex™® (kpap) I () an (7116 (Ry-7 )0, G xS (5gyadrgade, . (su)

=L3SJ

The following expressions result for E (ro):
LS 2 1 1
E ry)= »§T<TATMT T ><STr,1m1 |51,
T A "B A B
xS(J , I J3T, T T;3J )A(l)(x )
A“B’ A"B"?
§(r.-r.) :
x<j 5| [—2=2- P82y Ty 152> (55)
2 2 2
r .
: 0
LSJ(r )—.Z,/” S(J,350333 )A(l),(x )
TT
S(r.-r.) ‘ .
PO .
(1),.2 ’17'501 cE 3
A (A)=[-fe ( 1)8°ry4] (57)
0 o1, 2 .2
. AT=2g

0 LAB LAB

This is the simplest approximation which can be made to

In Eq. (57) A2=k? =2ME_, /A% where M is the nucleon mass.

treat the exchange component of the D.W.A. transition
amplitude. Comparing the above relations for ELS;(rO)vwith.

those for 5LSJ(rd) in Section U4 of this chapter leads to

d
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the following qualitative conclusions about the properties’

of exchange scattering as treated in this approximation.

(1) The ahgular distribution for exchange écattering will fall

off slower in angle than that for direct scattering.

(1i) The importance of exchange scattering will increase as

| the energy'decreases.

(1ii) The importance of exchange scattering with respect to
direct scattering should increaée with increasing L-
transfer.

(iv) The direct and exchangé amplitudes will be roughly in phase.

These cohclusions require assumptions regarding the behavior of

the multipole coefficients and Fourier transforms of the inter—

actions being consicered, i.e. A(l)(xg) increases with decreas-

S and tL(rO;rl) falls off with increasing L. The assumed

ing A
behaviour is typical and the gqualitative observations are in
agreement with the reSults of exact calculations.l7_19
Quantitative comparisonsvare made in Chapter 5.

One can object to this>approximation for two reasons:
(1) it does not preserve the possibility of non-normal’ trans-

fers and (ii) the validity of taking tE(]Ei—E ) out of

5l
integral in Eq. (51) is strictly valid only at high energies
where the importance of exchange scattering i1s diminished.
The quantitative comparisons in Chapter 5 serve as an

answer to the latter objection. Because of objection

(1) 1t is necessary that non-normal transfers be unimportant
if this approximation is to be uséful.i One reason for

favoring normal transfers over non-normal transfers is that

the latter only contribute through the exchange amplitude.
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For the case of a Serber interaction and isOscélar, normal
~parity transitions (this being.a hypothetical situation
similar to most of the actual cases considered inAthis work)
a stronger argument can be given. A normal parity transition

is defined by the condition Aﬂ=(—l)J2 where J, is the lowest

L
allowed J-transfer. For this case the dominant normal
transfer is specified by the triad (JROJQ) and the corres-

- ponding non-normal transfers are specified by (Jzil,l,Jz).

An isoscalar transition proceeds through the T=O.mu1tipoies
of the interaction. For a' Serber interaction tOO is three
ftimes stronger than th which introduces at least a factor

of nine difference in magnitude between normal and non-normal

transfers. In addition collective effects in the target

nuclei will be displayed in (JOJ) triads. For -the case o

J,+1 ‘
an abnormal parity transition, i.e. Aw=(-1) 2 ,» the factor

of nine goes the other way. Neglecting the non-normal trans-

fers may be serious here.

By expanding tE([Ei—E2|) in Eq. (51) in avTaylor series

about Ag,additional terms can be iﬁcluded in ELSJ

(ro). These
will correct for the finite spread of momentum componenté in
the distorted and bound state wave functions and will intro-
duce some dependence on the local momentum transfers. In
principle this series conserves the possibility of non-normal
transfers. It is presently being studied only with the hope
of improving the results for normal transfefs. The series

is developed formally in Appendix A, but will not be discussed

in this paper.

o
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The t—matfix for free two-nucleon scattering is'a
function of q2, p2, and 5-5; The dependence on p is related
to the fact that it includes the effect of exchange scattering.
The pseudoépotential used in this work is determined from those
components of the free two-nucleon t-matrix which are off
the two-nucleon energy shell as prescribed above,»i.e. Eq. (53).
On the avérage, exchange scattering is thus being treated in
essentially the same way. The pseudo-potential is strongly
eﬁergy dependent. It might have been beﬁter'to include only the
effects of direct scattering in this pseudo-potential and

treat antisymmetrization in a consistent way throughout.

7. Transition Densities
It is convenient to introduce the transition densities.

These are

LSJ,T ) 1 ' iy
B (ry)=554/2 T<TATMT oMy - IT 775 Tl Ty~ Ty 157,
A 'B B
XS(J 4 3T, ToT535 ")
é(r -r.) ' .
x<j 5| |—5-2- "% ()T (2) | 153> (58)
2 2
r
1
and
S(r,-r,)
~LSJ _ ) ke e\ 1 27 LLSJ
P Pl)“gj’/§ S(qAJBJ,JJ T17)<j| | ———;g——— (2)]13>. (59)

Deleting reference to the fractional parentage expansion

these relations can be rewritten as




“ho

JLSJT,T _ 1, ol
I (r ) /‘ T <TATMT My, M |TBMT ><5TT, ,T, Tb|2Ta> ,
A B B
N _
§(r.-r.)
1l "1 LSJ
<JBTB||iZl e e ORI ESTIE I (58")
r )
1
and
: © §(r,-r.) : .
LSJ _ 171’ LSJ .
N CIPEY, JRS I P i Mk R Rl COTTENS | (59")

1
The sum on i in Eq. (58') runs over all target nucleons while
in Eq. (59') the sum on i runs only over those target nucleons

consistent with the subscript TT° on FLSJ

rl). For example,
in the (p,p') reaction this sum would run over either target
protons or target neutrons. The form factors are related to

the transition densities by the following expressions.

HENEINL, Vo, (rgsm)F o T ey Pary (58
PR (= vy o (i PSS (e e 2ae, (59m)

In Eq. (58") and Eq. (59")ﬁ/L(qO;rl) represents either the

appropriate multipole coefficient of the impulse approximation ‘ _
pseudo-potential or
6(ro—rl)

2
0

£y, (rgsr+a ) 02) -

when the K-K or effective range forces are used.
Note that 1n 1ntrodu01ng the trans1t10n den51t1es an '

addltlonal partltlon of the 1ne1astlc nucleon nucleus
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scattering calculations has beenrachieved. The filrst
separated the details of the interaction model and nuclear
structure from the distorted wave calculation. Here the
details of structure are separated from the radial form of
thevinteraction and the effects of antisymmetrization.

?LSJ 'LSJ

Detalled formulae for calculating (ro) and F (r

)
for the cases of interest in ﬁhis work are given in Appendix

B. The_mahner in which the transitions densities are related
to the inelastic electron-nucleus scattering form factors

and the reduced matrix elements for y-transitlons 1s discussed
in Appendix C. This is important as it provides the means

- for calibrating the nﬁclear wave functions used in testing

the ihteraction models in this work. The relation of the
transition densities to these reactions is independent of

the approximations involved in treating inelastic nucleon-

nucleus scattering in the local D.W.A.



CHAPTER 3
IMPULSE APPROXIMATION PSEUDO-POTENTIAL

The free two nucleon scattering amplitudg_has the

33

" form

m = A+ Boy -noy «n+C(og+oy ) -n+Eg, -5, -q+Fa, "POy *P - (1)
where q=q/|q|, q=k'-k; n=n/|n|, n=kxK'; and p=qxn. Here K
‘and k' are the initial and final relative momenta of the two
nucléons and q is the momentum transfer. The unit vectors

A A

(a,n,p) form a right handed coordinate system and the
coefficients A,B,C,E, and F are functions of q2, q2+p2, and
q*p as well as iso-spin, i.e.

A = F3A A FE(A -8 )T, T, - (2)

where AO is the coefficient for the singlet i-spin state
and A1 is the coefficient for the triplet i-spin state. The

free two-nucleon t-matrix is related to ] by

2 .
t = - AT g 3

Note that 7] can be written as follows

M= A + %—(B+E+F)50-5l + other terms ' .‘ e

42
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5 where the other terms are the parts of the scattering

| amplitude which are not scalar in spin space. The components
of M have beén calculated3® from the H-J potential using
nucleon-nucleus kinematics (as prescribed in Section 6 of
Chapter 2) for lab energies of 19.6, 27.5, 40, 50, 60, 95,
125, and 155 MeV. This gives W] as a function of q2, Elnps

and N. The dependence on N is weak which is evident from

Eq. (2.53) and only the N=12 results are used in this

work .

A typical set of résults are shown in Fig. 1 which
shows the real part (the free two nucleon scattering ampli-
tude is, of course, complex) of %(3A1+AO) as a function of
g for ELAB=19'6’ 50, and 125 MeV. The components of the
scattering amplifude which are not scalar in spin space
are small for lab energies below_lOO MeV. This ié good as
this study is restricted to those components of the iﬁter—»
action which can be expressed in the form of Eq. (2.18).

The pseudo-potential is obtained simply by inserting
the first two terms on the right in Eq. (4) into Egq. (3) and
taking the Fourier transform of the resulting relation. As
a matter of convenience a Yukawa radial form, i.e. Ve—mr/mr
has been assumed for the components of the pseudo-potential.
This is tantamount to fitting the components of M(qz) to

—~ M§ % (m?+q°)L.
%o}
The strength and range parameters of the various componénts

of t(E;ELAB) are read off graphs of the form of Fig. 1.
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Figure 1l.--Real part of the %(3A

igu \ +Al) component of the free two-nucleon scattering
amplitude as a function of q. Tﬁe Calculation is off the energy shell with N=12.
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The range m is determined roughly by the half maximum and

the quantity X§ is proportional to the value of the scatter-

. m .
ing amplitude in the forward direction (g=0). The constant

of proportionality is-41.5 MeV- F° with the scattering amp-
litude given in F and Y§ given in MeV‘F3. |

The strength andmrange parameters for the spin, i-
spin components and p-p- (n-n) and n-p spin components-of
the pseudo-potential are giveﬁ in Table 1 for ELAB=20—6O
MeV. Two Yukawa fits to the scattering amplitude have also
been méde although they have not been used ih any calculaé
'tions. _Uniike the one Yukawa fits which only fit the
scattering amplitude closely in the forward direction, these
fit it quite well over the entire range of q displayed in
Fig. 1. The parameters for these two Yukawa fits are avail-
able but will not be given here. |

Inspection of Table 1 shows that the pseudo-potential
has a 1arge'imaginary part. The real part of %(Al-Ao) and
‘both the real and imaginary parts of the spin-flip, nbn—i—
spin-1lip part of the scattering amplitude vary quite
strongly with energy and are not fit very well by the Yukawa
function; The former indicates large non-localities and the
latter“indicétes that‘the two Yukawa fits should probably
- be used in these cases. Neglecting these difficulties for
%(Al—AO) is not serious because the imaginary part, which is
-comparable to the real part, is fairly well determined.

For the purpose of facilitating comparison of the

various components of the pseudo-potential with each other




TABLE 1.,--Strength and rahge parameters for components of impulse approximation pseudo-potential, S is V/m3 in MeV-F3
and m is inverse range in F~l. Two numbers appear in each column. The first is for the real part of the pseudo-
: . potential and the second, in parenthesis, is for the imaginary part.

E;apMev] v Y v : v

00 10 01 . 11
S m S m S m S m
20 -19.5(-52.4)  1.38(1.59) 12.4(8.30) 2.50(1.58) -6.06(24.9)  .950(1.83) 9.57(16.6) .782(1.68)
30 S2H.6(<U1.1)  1.22(1.52)  6.67(k.72)  3.50(1.50) -.960(19.9)  .880(1.78)  10.8(12.2) .818(1.68)
o -24.1(-33.4)  1.16(1.46)  6.19(.023) 2.50(1.65) 1.12(15.7)  2.50(1.65)  11.6(9.54) .808(1.68)
50 ~24.9(-28.4)  1.15(1.39) 4.56(.015) 2.50(1.88) 2.37(13.9) 2.50(1.53)  11.8(7.68) .780(1.60)
60 -25.0(-25.2)  1.15(1.31) 3.29(.005) 1.30(1.95) 2.70(11.9) 2.50(1.43)  12.0(6.23) .750(1.55)
B, plMeV] vgp : vép _ vgn vgn
s - s m s m s , m
20 =24 U(-27.6) 1.16(1.47) 22.2(25.3) 1.94(1.63) -13.3(-75.5) 1.80(1.60) 3.32(-8.20) 2.50(1.84)
30 -23.2(-20.7)  1.10(1.40)  19.5(21.8) 1.42(1.69) -21.2(-62.3) 1.45(1.58) -2.08(-7.45)  .245(1.72)
10 -22.8(-16.7)  1.19(1.32) 17.8(12.9) 1.16(1.70) -25.2(-49.8)  1.32(1.50) -5.24(-6.65)  .420(1.60)
50 -22.7(-14.5)  1.06(1.22) 16.4(9.12)  .960(1.72) -27.1(-42.3) 1.24(1.38) -7.25(<6.23)  .550(1.40)
60 -22.4(-13.4)  1.08(1.22) 15.6(7.05) = .880(1.66) -28.0(-36.9) 1.23(1.30) .650(1.30)

~8.72(-5.60)
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aﬁd with corresponding components of other interactions
real 1F range Yukawa "equivalent" to this interaction has
been determined over the energy region from 20 to 60 MeV.
This 1is given in Table 2. The real 1F range Yukawa form
has been selected as it is the form which has been populér
in recent analyses. This "equivalent" interaction is no
more than a rough fepresentation of the actual pseudo-
potential, i.e. in a calculation it won't reproduce pre-
cisely the multipole and state dependence of the prototype.

From the table it is seen that the pseudo—poténtial is

‘similar to a Serber force and the strengths of the components

decrease fairly rapidly with energy. The latter effect is a
direct result of the decreasing importance of the exchange

component bf the scattering amplitude.

TABLE 2.--Strengths for real 1F range Yukawa "equivalent" to
impulse approximation pseudo-potential. All values are in MeV.

g ' 0 1 0 1
ELAB VOO V10 VOl Vll Vpp Vpp ' Vnp Vnp
20 -86.9 33.6 45,9 38.3 -53.2 59.5 -123 -17.2
30 -69.3 23.1 35.4 29.5 -38.6 U46.1 -103 -12.8
40 ~56.3 15.5 26.0 20.5 -34.9 30.1 -81.8 -10.9
50 -48.8 11.4 22.1 15.9 -29.8 22.2 -67.4 - 9.6

60 -43.8 4.3 18.3 13.6 -25.5 18.0 =-59.1 - 9.2




CHAPTER 4
THE PROJECTILE-TARGET INTERACTION

By analogy with the bound state problem the two-body
interaction to be used in nucleon-nucleus scattering cal-

culations is given by the integral equation

Q

e—-1¢

t= v-v t (1)
where v 1s the nucleon-nucleon potential, Q is the Pauli
operator, and e 1s the energy denominator defining the many
body Green's function - defined in accord with the conven-

1,20

tions of Kuo and Brown. The presence of the ie in

Eq. (1) makes t compléx. It is possible to express t in

terms of the operator

= Q
tg = V-V 2t (2)

which is real, This expression is

t o= tg-imtgQé(e)t. 1 (3)

B

If the imaginary part of t is small, and from the deformed
optical potential description of inelastic'nucleon-nucleus

scattering (see Section 2 of Appendix B) it is‘expected to

48
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be small with respect to the real part in the medium

energy region, Eq. (3) can be approximated as
~ 3 ?
t-tp-imt Qé(e)ty. (3")

This argument; which is based on the relative magnitude of
the real and imaginary part of the inelastic scatﬁering form
Factoré given by that model, is wvalid only in the region of
the target nucleus where the form factor is appreciable.

Eq. (2) formally is equivalent to the definition for
the bound state reaction matrix,1’2o.but it must be remem-
bered that the energy denominator, e, appropriate fbr the
scattering problem is not the same as that for the bound
state problem. Kuo and Brown have so.ved Eq. (2) for the

bound state probleml’20

taking the H-J potential for the
nucleon-nucleon interaction. Using the Scott-Moskowski
separation method,u7 they have shown that the attractive,

even components of tB are well represented by

where Vo is the long rangé part of the H-J potential and
Vipg is the long range part of the tensor component of this
poetential. |

‘The second term in Eq. (4) only acts in triplet states

and is given approximately by
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Q. . 8 2 2
Vg eV "Tes Voo (P) * 53 Vg (r)S, (5)

where le(r) is the radial part of the long range part of
tensor component of the H-J poténtial, 812 is fhe "tensor"
operator, and <e> is a mean energy denominator which is
.highly state dependent. The state‘dependence of <e> will be
discussed in a moment. The first term on the right in Eq. (5)
gives a very important contribution to the central, triplet
even component of ty while the second term gives a small

(10%) contribution to theieven tensor component of tB'

In Writing Eq. (4) several terms in the Scott-Moskowski
expansion have been omitted. They consist principally, for
the H-J potential, of a contribution tS from the repulsive
core and various second order terms-including a cross-term
between t, and v,. These additional terms are state
dependent, but their net effect is small. They will be
ignored. Note that Eq. (4) comprises a local interaction
in configuration space.

The odd components of the nucleon—nucléon'potential
are repulsive; therefore, the éorresponding components of tB
can not be obtained from the Scott-Moskowski expansion since
1t does not exist. Kuo and Brown use the réfefence spect-

1,20 to treat the odd components. This does not

rum method
vyield a configuration space interaction. Im any event, tB
1s repulsive in singlet odd states and has some attractive

triplet odd matrix elements. In binding energy calculations,
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the net effect of these odd state interactions is negligible, -
therefore, it is concluded that the average effect of the odd f
state interacfions is small.

The contribution to the triplet even component of tB
contained in Eq. (5) is state dependent due to its dependence
on <e>. Equivalently it is density dependent. The mean

energy denominator <e> is state dependent because of its

connection to the Pauli operator which appears on the left

in Eq. (5), i.e. as the effect of Q is reduced as the density
decreases, the strong tensor interaction between relative s
and d states is felt more strongly and this must be accounted
for by a decrease in <e>. This effect is very clear in
nuclear matter calculations. At low density contributions

to the binding energy from relative 3S states are consider-

1

ably larger than those from the lS state, showing the full

0
strength of the tensor force. At observed dénsities the

two contributions are about equal. For high densities thé
lsocontribution is the greater - an effect which is an
important aid to nuclear saturation.

An estimate of this effect can be obtained by compar-
ing calculations of the bound state matrix elements for tﬁo
free nucleons in a nucleus, without the presence of other
nucleons, and with those where the presence of'other nucleons
is taken into.account. In the first case, taking O16 as an

66 3

example, the S, matrix elements are -~16 MeV, while with the

Pauli Principle taken into account they are -9 MeV. The 180

matrix elements are .8 MeV and very quite slowly with
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density. Thﬁs the average s-state matrix element, which is
by far the largest, varies from ;8 1/2 MeV in the nuclear
interior to ~12 MeV far outside the nticleus.

This somewhat iengthy discussion of the bound state
reaction matrix has been given with a view towards assuming

that it 1s equivalent to t_ for the scattefing problem,

B
i.e. differences between the ﬁropagator of Eq. (2) for the
boﬁnd_state problem and the scattering problem (in the
energy region of interest here) do not alter tB.appreciably.
The stability of the separation distances (they remain
essentially constant up to 30 MeV in the two-nucleon center

of mass) for the important even components of tB supports

this hypothesis. With this assumption, near the target

E_ .E . .E E
tT = tB—lﬂtBQG(e)tB

(6)

where the superscripts E and 0 stand for even and odd,

respectively, and

E_ T 8 2 .
tB = V- oS sz(r) (triplet states)
| (7)
= vi (singlet states)

where the superscripts T and S denote triplet and singlet,
respectively.
In writing Eq. (6) the odd state components of t are

being neglected and in writing Eq. (7) the second order
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‘ ' contribution to the tensor force has been dropped. The state
dependence of the triplet component of tg could be incor-

porated in Eq. (7) by defining <e> to be a function of the
1§ca1 density. |

Now consider the region far outside the target nucleus
whéré the density is low and the effect of other nucleons is
negligible. Here the propagator in Eq. (1), Q/e,
becomes the propagator for two free nucleons, l/eo, and t is

given locally by t i.e. the pseudo-potential given

impulse’
in Chapter 3 which was derived from the free two-nucleon
scattering amplitude. The tensor force now makes itself
.felt with full strength, but not in the real part of the
iqteracﬁion. The approximation of Eq. (3') is no 1longer
valid, and the optical theorem forces the strength into the
imagiﬁafy part of the interaction. The large imaginary
compbnent of the pseudo-potential is evident in Table 1
shown in Chapter 3.

Combining these local arguments leads to a picture
of a force which 1is primarily real inside the nucleus where
the effect of the tensor in generating an effective central
forcé is somewhat damped, going over to the impulse approxi-
mation at large distances, i.e. a force which has a large
imaginary component. This asymptotic region is, however,
likely to be at a density where all form factors are quite
negligible. That is to say the picture of the force in the
region of the target, which is where the scattering takes

place, is of prime importance. In summary, near the target ¢t
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\

is expected to be comp'lex and density dependent. The real J
part is expected to increase outside the nuclear surface
by about 50% on the average; the imaginary part to be quite
small in the interior, peaked outside the nuclear surface,
as all the form factors involved in évaluating tg Qé(e)tg
are peaked at the nuclear surface, but small for incident
energies up to about 40 MeV. At much higher energies this
is not true.

As the incident energy increases then the difference

Q

between o and %g becomes less important and the impulse
approximation becomes valid. However it should be pointed

out that this approach asymptotically at high energies is
quite slow. The impulse approximation is still a poor

. approximation at 150 MeV, even‘though it predicts cross-
sections correctly. Its order of magnitude is quite good,

but it's phase, i.e. the relative strength of the real

and imaginary part of the interaction, is quite wrong as

is shown by the fact that the ground state expectation

value of timpulse does not give the optical potential (real’
and imaginary part), and that variables likely to be sensi-
tive to the phase, like polarization, are by no means pre-
dicted successfully. "97%3 Tt works better at 1 GeV, though the
tests then are not as strin,g;entlfl1 Therefore, t is to approach
timpulse only slowly for the energy region we are consider-
ing. On the other hand, as far as its magnitude is con-

cerned, disregarding its phase, the impulse approximation

might not be too far out.



‘withtriplet even and singlet even components defined by
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The arguments which have been presented above are very
rough and, in fact, they could be wrong in detail. They
are intended more as a suggestion than actual truth. The
resolution of the points which have been made is a problem
related to, but separate from, the purpose of this work
which 1s to determine whether or not ohe make some sense
out of inelastic nucleon-nucleus scattering using the inter-
actioné.which are already available and convenient to use
in D.W;A. calculations. These are, of course, the impulse
approximation pseudo-potential and the interaction defined
in Eq. (6) and Eq. (7). It should also be mentioned that an
essentially identical discussion of t has been given,
independently, by Satchlergj He has aliso made some estimates
of the imaginarx part of ¢t.

The Kallio-Kolltveit potential is an s-state potential
L6

i

Vi (7

I
-+
8

r<c

~-a4 (r-c)

-A.e r>c
i

b

where Ap=U75.0 MeV, a,=2.5214F 1, Ag=330.8 MeV, a =2.4021F %
and ¢=0.4F. The long range part of this potential is known

to give a good representation the central components of tg

as defined in Egq. (7). 1In the calculations of this work,
the non-central parts and the imaginary part of.tg are neglected

and the K-XK force is taken to represent itg central part of

tg. Fixed separation distances, ds=1.025F and dT=O.925F,

are used throughout. The K-K force acts only in relative
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s-states, but since this is an inconvenient restriction for
D.W.A, calculations.it is allowed to act in all even states.

This leads to a slight overestimation of tg;
dent versions of the K-K force have been proposed by Green.

E 68
B .

These forces are not examined in this paper.

Density depen-

These account for the yariation of £t with <e> in Eq. (7)
In lowest order calculations, all of the bound state forces

discussed here are found to give a reasonable account of the

real part of the optical'potential in the medium energy region;

therefore, at least the spin, isospin averages of the monopole

components of these forces are adequate for the scattering

pr'oblem.31’32

In detail the K-K force gives larger well depths,
smaller mean square radii, and somewhat poorer agreementvwith
phenomenological potentials than do the other fbrces. A rea-
sonable estimate of the imaginary part of the optical potential
has also been obtained with these forcesf The impulse approxi-
mation pseudo—potential failed to describe the optical potential
in that it gives ﬁoo small a real component and a very large
imaginary component, i.e. its phase is incorrect.

A real 1F range Yukawa "equivalent" to the K=K force
" (A) has been determined. It is compared with other "equi-
valent" interactions in Table 1. These are the impulse

approximation pseudo-potential for E =60 MeV (B), the

Lab
empirical interaction of Ball and Cerny69 determined from

' Y
studies of the (He3, He3 ) and(HeB,t) reactions in lp-shell
nuclei (C), the interaction used by Glendenning and-VenerQnia

in studies of the N1 isotopes in the (p,p') reaction (D),

and the interaction used by True7o in Nlu shell




57

‘ model calculations (E). The agreement between the forces is
| almost complete. The lab energy of 60 MeV was selected for
timpdlse’ because'the-impiicit exchange cohtributibn to this
fforce should be diminished here. Note that only the magni-
tude of the streﬁgths for interaction C are given. The
analysils did ﬁot give any conclusive information as-to the
actual -exchange mixture of the force. Further, a guess of
the magnitude of enhancement effects in the-target'nudlei

was used in arriving at the value of V for force C. These

0o
effects are considerably smaller in lp-shell nuclei thén

they are in heavier elements. The overall agreement of

these forces is very satisfactory.

TABLE 1-——Comparison of strengths of various real 1F range

- Yukawa "equivalent" interactions. All values are in MeV. A
is the K-K force, B is tippyise at Epap=60 MeV, C is the inter-
action determinsd Ball and Cerny, D is the interaction of
Glendenning and Veneroni, and E is the interaction of True.

) : . 0 1 0 1
Force VOO VlO VOl V11 Vpp Vpp Vpn Vpn
A -36.2 6.30 17.8 12.1 -18.4 18.4 -5y - -5.75
B -43.8 . 4.30 18.3 13.6 -25.5 18.0 -59.1 =9.20
c®  J30-k0| |11-27| |21| (17| @ - - - -

p" ~40.5 6.80 20.2 13.5 =-20.3 20.3 -60.7 =6.70
70

.
E
.

-41.1 7.40 20.0 13.7 -21.1 21.1 -61.1 -6.30




CHAPTER 5

'THE APPROXIMATE TREATMENT OF ANTISYMMETRIZATION

In this chapter some results obtained with anti-
symmetrizatioﬁ treated approximately'(as discussed in Section
6 of Chapter 2) are compared with corresponding results obtained
with the -excharnge compdnent of the D.W.A. transition amplitude
treated properly. The exact reéults are due to J. Atkinson
and V. Madsen.1!™19 A modification of the D.R.C. (Direct
Reaction Calculation) code available at Lawfence Radiation
Laboratory, Livermore, California has been used in obtain-

71 This code is restricted to inter-

ing- these résults.
_actions with radial dependence which can be easily expressed
as a combination of not more than three Yukawa functions.
Because of this all comparisons are for interactions with
Yukawa radial form. No direct information concerning this-
approximation, is available for the interaction of primary
interest in this work--the K-K force. The recently developed

non-local D.W.A. code at Oak Ridge National Laboratory has

been set up to handle interactions of this type, i.e. which

have a "hole" in them, and new results should be forth-
16

-coming.
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1. Yukawa Function
The essential ingredient of the approximation under
consideration is the Fourler transform of the 1nteractlon

For the Yukawa function

V(r) = Ve ™ /mr

N
fa—
N

this transform is given by
V(A%) = (Unv/m) (A2+m2)L (2)

Table 1 gives the value of this transform as a function of the

lab energy for m=0.5, 1.0, 1.5, 2.0, 2.5, and 3.0F L. V has

been taken to be 1 MeV and it is to be remembered that the lab

energy and A2 are related by A2=2MEAﬁ2. The last row in this

table gives the ratio of the Fourier transform at 20 MeV with

respect to that at 80 MeV. These energies span the region of
interest in this work and this ratio is indicative, within the
framework of this appreximation, of the relationship between
the range.ef the interaction and the energy dependence ofrthe
exchange component of_D.w.A.rtransition amplitude. It ie

seen that‘this fatio decreases with the range'and is approach-

ing one in the zero range limit.
: ek L 90
2. Transitions in Zr”~+p

Dependence on Energy and Multipole

The ratio of the exchange integrated cross section to
the direct integrated cross section has been given for the

_ % _
L=0,2,4,6, and 8 transitions in the Zr90(p,p*) 70 reaction
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TABLE 1. ——Fourler transform. of Yukawa 1nteractions of various J ‘
ranges as a functlon of the lab energy. : '
V(E) [MeV.F3]
| m(F 1) ,
E(MeV) .5 1.0 1.5 2.0 2.5 3.0
| 0 101 - 1é.6 3.72 1.57 . 804 465
10 34.0 8.44 "3.06 1.40 ;7h6 LAh
20~ | 20.5 6.36 2.60 1.26 696 420
30 14,6 5.10 2.26 1.15 .651 .4oo |
40 ~11.4 425 1.99 - 1.06 .613 .382
50 9.33  3.65 . 1.79 .975 578 .366
60 7.90 3.20 1.62 .906 547 .351
70 6.85 2.84 1.48 84T .520 .337
80 6.04 . 2.56  1.36 LT94 ko5 325
90 5.41 2.33 1.26 .T48 Jh72 .313
100 4,89 2.14 1.17 .707 451 .302
uz0) 3.40 2,48 1.91 1.59  1.41 1.29

at 18.8 MeV as a function of the inverse range of an iﬁteractidn
of, Yukawa radial form.l8 For the L=2 transition the Oex/odir
.ratio has been calculated as a function of energy with the

range of the force fixed at 1F. 19 A Serber exchange mixture

has been assumed, and 3 -J coupllng wave functlons for two
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protons in the lg9/2 orbit were used to describe the target.T
The 18.8 MeV optical parameters of Ref. 8 have been used
throughouf. Results obtainéd approximately are compared

with the exact results in Fig. 1. The exact results are shown
as dashed lines and the approximate results are indicated by
solid lines. In the lower graph the corresponding results

aré bracketed and labeled with the L-transfer.

The importanhce of exchange iricreases with increasing
multipole and with decreasing energy. Note ﬁhat Oex/ddir
deviates more from 1, the zero range value, as the range
of the forcg increases. For L=6 and L=8 oex is greater than
Oqir* The approximate values of Oex/odir for L=4 are about
one, bﬁt the exact values are less than one. Qualitatively,
the agreement of the approximate results with the exact
results is quite good. The approximaté'results overestimate
the exact results except for the case L=8. The agreement
between the approximate and exact values of Oek/cdir improves
with increasing energy. There is no pronounced change in the

agreement as the force range becomes shorter except for the

L=8 case. The approximation is improving with increasing

+ o+

'T be more precise the O+ ground state and 0 , 2 , 4 |

'6+ and 8 excited states are considered to be due to the allowed

couplings of two 1g9/ protons. The allowed normal transfers
are specified by thé %riads (J,0,J) and (J,1,J) where the
transferred J must be the same as the total angular momentum

of the final state. The (J,1,J) contribution vanishes due to

a structure selection rule. Two non-normal transfers,
(J+1,1,J), are also allowed. Only the contributions due to
normal transfers are being considered in the following discuss-
ion, therefore it is unambiguous to specify each transition by
the L-transfer implying the contribution due to the triad (J,0,J3).
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Figure 1l.--Comparlson of approximate and exact results showing the
variation with energy and interaction range of the ratio of the
exchange to the direct integrated cross section for several multi-

poles in the Zr90(p,p') reaction.
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multipole which is very good since the contribution from the
exchange'compohent of the transition amplitude 1is beéoming
mofe impértant at the same time. The last effect is consistent
with the fact that transitions 6f high multipolarity are not
senSitive fo the details of the nuclear interior which are
ignofed in the approximation.

The result indicated by the center line and labeled .
L=0 1n the lower graph of Fig. 1 is interesting. This épproxi—
mate result was obtained by considering the ground state and
- first O+ state of zr2° to be described by more realistic
configuration mixed wave functions involving both the 1g9/2
and 2pl/2 proton levels.8 The ratio dex/cdirvfor this case
is quite different than the result obtained using only the
unrealistic (lg9/2)2 configuration. This indicates that the
contribution to cross sectlions due to exchange can be quite

sensitive to the wave functions involved.

Total Cross Section (Direct + Exchange)

If maximum interference between the direct and exchange

-

w
34
vl

amplitudes 1s assumed it follows that the total intzgr

cross section (direct plus exchange) is given by

2 _ ex 2 - :
* /Eex) = 1+ (5 ) 041 “air, (3)

0 ~(Vo..
T. dir dir

This assumption is quite good. It has been shown that the
direct and exact exchangé amplitudes are essentially in phase
except for extreme forward and backward angles.l8’19 This is true

to a greater extent in the approximate calculations. Table 2




displays the
of L for m=8
and cex/odi

in the table

r

and 2.0F -,

values of o
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- Exact

1

and o,

Approx

/

a as a functi
Exact ction

Eq. (3) has been used to determine

values have been taken from Fig. 1. The humbers

mate total cross section.

To 1llustrate the rate of improvement of the approximation

with increasing energy note that o

indicate a maximum error of 40% in the approxi--

-1

This occurs for L=0 and m=.8F .

Approx

/

O‘Exact

goes from 1.15

to 1.02 as E goes from 30 to 50 MeV for the L=2 transition

with m=1F 2+

given

in Fig.

1.

0LExact

goes from 2.17 to 1.95

over the same energy region indicating that the enhancement

of the direct cross section due to exchange is decreasing

fairly slowly with increasing energy for this particular

multipole.

TABLE 2.——Comparisén of approximate and exact. values of o,
. the enhancement of the direct cross section due to exchange,
for two values of the interaction range’ appearing in Fig. 1.

m=. 8F 1 m=2.,0F 1

L aA' rox %5 rox

0LExact 0‘Exact 0LExact 0‘Exact
0 1.4Y 1.40 2,40 1.35
2 2.00 1.32 2,77 1.26
Y 3.04 1.35 3.33 1.29
6 5.66 1.22 4.58 1.19
& 14,8 . 804 6.82 .978
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'. - Fig. '2 shows the direct,exchange)and total integrated.
cross sections as a function of multipole for the cases
‘m=.5F_1'and m=3.0F T of Fig. 1. Both the approximate and
exact_results are shown for 0.y and Op and maximum interfer-
“ence has been assumed in obtaining O "The ébsoiute normél—
ization of the results is arbitrary, but the relative maghi—
tude of each,for each force range ,is as shown. This figure
illustrates how O falls off slower with L than does Sqip

due»tb the contribution from Oox~—an effect which is not very

pronounced for m=3F_l——and how the fairly large errors in the

approximate values of oex/o are not so strongly reflected

dir
in OT.
Fig. 3 compares the behavior, as a function of multipole,
of oT(Exact) for the 2F range force with T4 for forces

with m=1.0 and l.SF-l.- The behavior is similar. A previous
empirical analysis of these transitions, in which antiéymmet—
rization was ignored, led to the conclusion that ailF range
Yukaﬁa interaction reproduced the observed multipole depend-
ence of the cross sections.8 A longer range would have been

selected had antisymmetrization been taken into account.

Angular Distributions

The direct (D) and approximate exchange (E) angular
distributions for the 2F range Yukawa force are shown in
Fig. 4. All curves have been normalized to one at peak. With

the exception of the L=0 transition the exchange angular
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distributions fall off only slightly slower with angle.than
do the diéect and  for the lower multipples)the latter'exhibit-
quite a bit more structure. Both the direct and approximate
exchahge angular distributions for the .33F range Yukawa force
are essentlally the same as the approximate exchange angular
distributions shown in Fig. H;

.in Fig. 5 the L=2 direct (D) and exact exchange (E)

angular distributions given by a Yukawa force with a range

slightly longer than 1F are compared.l8 Comparing these with -

the L=2 results in Fig. U4 indicates that the approximate
eXéhange angular distributions may fall off faster with
angle than do the exact exchange angular distributions. This
also might be multipole dependent, but no comparison is
avallable for the higher multipoles. The differenqes, for
large angles, between both the direct and exchénge'angular
distributions shown in Fig. 5 and those which correspond in
Fig. U is attributable to the fact that the spin-orbit term
in the optical potehtial has been excluded in obtaining the
results shown in Fig. 5. Inclusion of optical spin-orbit
coupling is found to have no.effecﬁ on the ratios of inte-

grated cross sections discussed previously.

Form Factors

The direct and exchange form factors correspohding to
the results given in Fig. 2 are shown in Fig. 6. The overall
normalization for each‘force'range is again arbitrary with

the relative scaling given correctly. For the short range
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' ‘ force (m=3.OF_1) all of the form factors inecluding the exchange
(zero range) form factor are similap in shape with the peak

magnitude of the exchange form factor assuming a value inter-
mediate to those for the L=0,2 and L=4,6,8 direct form factors.
This ordering 1s preserved for the long range force (m=;5F_l);
however, the differences in peak magnitude of the direct form
factors is much more pronounced. Here the direct form factors
are also much broader than the exchange form factor and peak

at larger radii. The differences in peak radii between the
L=0,2,4,6, and 8 direct form factors is not very large for
elther force range. Examination of these form factors
emphasizes again that a multipole independent assumption has
been made about the exchange scattering and that the variation
of Oex/odir is due mostly to the changes in the direct scatter-
ing. The exact results call for additional multipole and
energy dependence in the exchange scattering.

Relation of Energy Dependence
to Interaction Form

It is found for both the long range and short range
Yukawa interactions that the approximate Uex/cdir ratios are
given to within 5% by taking the square of the ratio of the
areas under the appropriate form factor curves. The area is
defined as the product of the peak magnitude and the half
width of the curve. To what extent this will be true for
other transition densities and forces with different radial

forms is not known. For example, it has been noted that
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L=0,2,4,6, and 8 form factors obtained from the (lg9/2)2
transition density with a Gaussian interaction of 2F range
exhibit a much larger Spread in peak positions than is seen
for the 2F range Yukawa force.9

Nonetheless, this observation indicates that the energy
dependence of o .. /Uex for a given transition density and

dir
multipole can be written

(o]

=X (g) = (2 (g)32 (4)
dixr

with K, the ratio of the integrated cross section obtained

wlth a é-function force of unit strength to the direct

integrated cross section, being roughly constant. Eq. (4)

implies that

S A (1) 2 Yex
5o ) = I E /Y (e 5oy, E2) - (5)

Fig. 7 glves Oqip? & s and Op @s a function of energy
for the L=2 transition and the 1F range Yukawa force. The
conventions are the same as those for Higih2s WEHIR fipvupe
simply illustrates that Orp drops off faster with energy than

does @ due to the behavior of ¢ that the approximation

dilr (=g
is improving with increasing energy, and that large errors
are not observed in Op €even at the lower energies. The result
indicated by the center line and labeled & (F.T.) has been

obtained by fixing K from the value of Oex/g at 25 MeV and

dir

then using Eqg. (5) to get this ratio at the higher energies.




1
:gs
s
S
S
<
;52
'y
3. N
b—|
10

Zr9Qp|p') =2
Yukawa Force (Serber Mixture)
m= |F-l

a—a o7 (Approx)
a---a o7 (Exact)
X—X Odir

o——o0 Oex (Approx)
0-—-0 Oy (Exact)
O—-—0 Ogx (F.T.)

1072
0 25 50 75 100

E(Mev)—»

Figure 7.——Energ¥ dependence of o Jps Ooxs and o, for L=2
transition in Zr9%0 calculated witﬂ Ir range force as in Figure

1. Both approximate and exact results are given for o and

Om. Energ{ degendence computed from the Fourier trans®8rm of
tge force 1s also indicated.



The value of Oox is then easily extracted given ¢ The

dir’
agreement between Oox (Approx) and oeXI(F.T.)_is quite good.+
This relation can be used with Eq. (3) to estimate, for
a particular transition and force, the ratio of the enhance-
ment of the direct total cross section due to exchange at

two different energies given the value of oex/c at one

dir
energy. Table 3 gives the values of a(20)/a(80) which have
been obtained through the use of these relations for thé
L=0,2,4,6, and 8 transitions in zr2° for Yukawa forces with
m=.5, 1.0, 1.5, 2.0, 2.5, and 3,OF_1; The values of Oex/cdir
at 20 MeV are those shown in the lower graph of Fig. 1. The
differences between these ratios for the different multiples
increase with the force range. For the 2F range force the
energy dependénce of O should be quite different for the
various multipoles provided the direct total cross sections
vary slowly with energy, i.e. OT for the higher multipoles
should fall off faster with energy than for the lower
multipoles where O x is making a smaller contribution. This
is an example bf an effect due to antisymmetrization which

might be used to study the properties of the projectile-

target interéction.

Non-Normal Transfers

The cross sections for the non-normal transfer specified
by the triad (J-1,1,J) have been calculated for these five
transitions for a 1F range force.19 In all cases they were

found to be smaller than the corresponding normal exchange

+Note that ogy(Exact) and Oex(F.T.) will only agree if the
extrapolation is for energies above 40 MeV; however, reasonable
approximate values of o (see Eq. (31)) might be obtained over
the entire energy region.
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TABLE 3.--Approximate energy dependence of enhancemént of
direct cross section due to exchange as a function of multi-
pole and range of a Yukawa force.

m[F 1] 0 (20)/a(80)
L=0 L=2 L=l L=6 L=8
0.5 1.31 1.60 2.27 . 3.26 5.10
1.0 1.56 S 1.7h 2.07 2.47 3.22
1.5 1.54 1.62 1.75 1.92 2.10
2.0 1.43 1.47 1.52 1.60 1.67
2.5 1.33 1.35 1.38 1.41 . 115
3.0 1.30 1.26 1.27 1.29 1.32

cross sections. Only for the L=8 transition, wﬁere éxchange
scattering is dominant, was an appreciable contribution to

Op obtained. Here the (718) component gave 25% of On. This
is encouraging, however, it must be noted that the S=O and
S=1 components of the proton-proton force are equal in magni-
tude. If the component of the force contributing to the
non-normal.transfer was larger than that contributing to the
normal transfer (as in the hypothetical.situation outlined in
Sectioh 6 of Chapter 2) the non—normalltransfer woﬁld clearly
be more important for the L=8 transition and might be impor-

tant for the lower multipoles also.

3. Transitions in C12, 016, and Cau0 + p.

As a further check,comparison calculations have been

performed for some of the transitions which are'being used
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in thils work to "calibrate" the effective interaction.:

These are the excitation of the 1+T=1 (Q=-15.1 MeV), 2+T=O
(Q=-4.43 MeV) and 37T=0 (Q=-9.63 MeV) levels of c12 by 28.05
and 45.5 MeV protons, the excitation of the 37T=0 (Q=-6.13 MeV)
level of 0™® by 24,5 MeV protons and the excitation of the
37T=0 (Q=-3.73 MeV) and 5 T=0 (Q=-4.48 MeV) levels of ca'l

by 25 and 55 MeV protons. The experimental results to be

12 at 45.5 MeV and for cal® at 55 MeV have been

shown for C
. 72,45 12 R

published while the results for C at 25 MeV is the

unpublishéd work of P. Locard and S. Austin. The experimental

16 .t 24.5 MeV and for cal0 at 25 MeV are the

results for O
unpublishéd work of W. Benenson and C. Gruhn, respectively.-
In these calculations the interaction was taken to be the
1F range Yukawa 'equivalent"to the K-K force which was given
in Chapter 4. The wave functions used in these éalcula—
tions are specified in the following chapter. For the time
being it 1s sufficient to say that both the exact and approxi-
mate results have been obtained in a consistent manner from
these wave functions. Optical spin-orbit coupling has
beem omitted and the opticalfparameters used are given in .
the next chapter.
Only normal transfers have been considered. The targets
beingvconsidered all have O+ ground states, therefore the J-
transfer must equal the total angular momentum of the finai

!
state. All of the transitions except the one ending at the

12

1+T=1 state of C are of normal parity. For these only the



78

cross section specified by the triad (J,0,J) has eeen.cal—
culated while that specified by (J-1,1,J) has been calculated
for the abnormal parity transition.

The exact and approximate results are compared with
each other and with experiment in Fig. 8,9, and 10. The
total differential cross sections are shown in all cases.

The dashed curves are the approximate results and the solid
curves are the exact results. The direct differential cross:
sections and the approximate and exact exchange differential
cross sections are shown only in Fig. 8 which gives the
results for the L=3 transition in 012. Here the direct
angular distributions are shown as center lines and dashed
and solid curves are used to deSignate'the approximate and
exact exchange angular distfibutions, respectively. No
ambilguity results from not distinguishing the exchange and
total differential cross sections in this figure as the latter
are always larger. Not much need be said about the differ-
ences beﬁween the exact and approximate results. It is quite
clear that no serious discrepancies have been introduced in
ﬁreating exchange by this approximation. The differences
that are observed are generally consistent with those noted
in discussing the Zr90 results, i.e. fhe approximate total
differential cross sections tend to overestimate the exact
ones at the lower energies by less than 40% and. the differ-
ences all but vanish at the high energies. The shapes are

generally consistent with some deviations being noted at
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forward angles for the L=3 transitions in 012 and 016. The
only peculiarity that is observed occurs for these same
cases--here it is found that the approximate results tend

to underestimate the exact results. In the light of the
other results which have been presented this is not expected
and an explanation is not readily available.

The value of T aasts and the approximate values of Oex
and Oy for the L=3 transition in 012 at 28.05 MeV are 6.59,
12.9, and 36.5 mb, respectively. At U45.5 MeV the values
7.48, 7.46, and 28.8 mb are obtained. Note that T44p has
changed only slightly with energy and that oex/odir
(28.05) = 1.96 and Oex/cdir (45.5) = ,997 which are in the
ratio 1.97. The value one would predict using Eq. (5) and
Table 1 1s 1.86.

The comparison of the results with experiment is of
some interest. It is found that this 1F range Yukawa force
yields results which are in reasonable agreement with experi-
ment at the lower energies but appreciably overestimate the
higher energy data.f Thus 1t is concluded that the experi-
mental data favor an interaction whose range is longer than

LS

4. Summary
Although the results which have been presented do not
constitute a complete study of the approximation it is felt

that they demonstrate that it is probably qualitatively

TThe optical parameters used in the calculation for
the L=3 transition in 016 were not very good. Better para-
meters are given in Ref. 73. The results shown in Fig. 10
should be reduced by a factor of 2-3.
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correct over the entire medium energy region and may be

quantitatively valid at energies exceeding 40 MeV. For the
lighter ﬁuclei considered it was found that the shapes of the
total differential cross sections computed approximately were
in reasonable agreement with those computed exactly with the
possible exception of the L=3 transitions in C12 and 016.
Here differences are noted between the exact and approximatei
exchange angular distributions. Differences were also noted
- for the L=2 transition in ngo. The energy dependence of
Oax and Orp has been related to that of O4ip through the
Fourier transform of the force being used. Further, it would
appear that the damping of exchange scattering in the nuclear
interior, i.e. the correction ferms discussed in Appendix A,
would improve the approximate results. As the exact calcula-
tion of the exchange transition amplitude is quite involved
it is felt that this approximation and the relations based
on it can be put to QOOd use in any anaiysis of the}effects

due to antisymmetrization.

5. K-K Force
The singlet even and triplet even components of the K-K

force have the form

V(r)

1l
o
H
WA
Q

(6)

which lead to the following expression for the Fourier

transform.
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2

V(A2)=unVe‘md(m2+x2)‘2{S—i;M[ (m

#2%) (md-1)+2m2]

5 (7)
tcosAd[d(m“+1°)+2m]}

As this force acts only in even states the A(l)(Az) are

given directly by the Fourier transform of the appropriate

componént of the interaction. Table 4 gives the strengths

and A

of all components of A(l). The notation A A

SE TE® 7ST?

and Agp and APT is used. The last row in this table gives

S
the 20 to 80 MeV ratios as was done in Table 1.

The values of these ratios, as compared to those given
for the Yukawa functions,are illustrative of the long range
character of the XK-K interaction. The results of Section 3
of this chapter indicated that  a 1ong range force 1s needed.
The behavior of the. A(l)(E) is, for the most part,-regular.
The extreme long range behavior of Alo and the fairly short
range character of Agn indicate that a great deal of cancel-
lation has taken place in constructing them. This leads
one to suspect that these components of the interaction are
not well determined.

Unlike interactions with regular functional forms, the
long range behavior of the K-K interaction is not reflected
in its range parameter. It is attributable, instead, to

the presence of the "hole" in the interaction. To see this

it is only necessary to note that

V(A2) = Mnfojo(kr)V(r)r2dr (8)




TABLE 4.--Strengths of com

ponents of exchange interaction for K-K force as a
function of the 1lab energy. Fixed separation distances are assumed.

21 (£y[Mev.F33

E[MeV] | '

AsE Ao e Ao Mg Ay AGT aBP gapm Ag"
0 -868 -1200 -388 87.8 171 129. =217 217 -558 -41.5
10 =660 - gM6  -301  64.6 136 100  -165 165 =437 -35.7
20 -500 - 745 -23& 47.2 108 77.8 125 125 -3h2  -30.7
30 -376 - 585 -180  33.9 86.3 60.1 -94.0 gk.o —267  -26.2
40 -278 - 457 -138  23.7  68.2 U5.9  -69.6 69.6 -206 ~22.3
50 -0l =352 -104 157 534 346 -50.3 50,3 -157 -18.9
60 -140 - 267 -76.2° 9.54 41,2 25.4  -34.9  34.9 -117 ~159
70 -90.6 - 196 -53.8 4.72 31.2 17.9 -22.7 22.7 -850  -13.2
80 51,3 - 139 -35.6  .958 228 1.9 -12.8 12,8 -58.4 -10.9
9.75 © 5.36 . 6.57 g4 5.8 6.57 9.75  9.75 5.87 2.82

(20/80)

S8
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and to remember that the main envelope of the Bessel
fﬁnction appearing in this integral is confined to values
of r~%.' Since A, and Ag, are roughly 1 and 2 F—l, respec-—
tively, while the cutoff radii are approximately 1F, it is
clear that this main envelope is falling within the "hole".
Continuous exponential functions with the same range
parameters as the singlet even and triplet e&en componeﬁts
of the K-K force give (20/80) ratios of 2.05 and 1.96,
respectively, as compared with the corresponding values of
9.75 and 5.36 given in Table U4,

It is interesting to estimate the effect of the energy
dependence of the separatioﬁ disfances (which is being
- neglected in this work) on the values of A(l) (E) given in

Table 4., To do this it is assumed that

[o]
I

1.025 + (.05/60)(E-20)
(9)

(o]
i

0.925 + (.03/60)(E-20)

‘where E is in MeV. These linear relations represent reason-
ably well the energy dependence of the cutoff radii as cal-
culated by Kallio and Kolltveit.u6 Table 5 contailns ﬁhe
resulfs obtained for-A(l) (E) under this assumption. The
values of A(l) (20) given in Table 5 are identical to those
given in Table 4 as the separétion distanges have been fixed
at this energy. It i1s seen that‘ASE is'quiﬁe sensitive to
this change while the effect on ATE is smallep»insofar'as

the (20/80) ratios are concerned. The energy dependence of



TABLE 5.--Same as

Table 4 except separation distances

according to Eq.

(9).

vary with energy

E[MeV] 21 gy mev. 533 .
Asg Arg Bo0 A0 Aoy Ay agP A5 afn an
0 884 101 "393 0 90.0 172 131 -221 221 o566  -4.12
10 ~667 =952 -30k  65.6 137 101  -167 167 ~4h0  -35,6
20 500 -7A5 -23h 47.2 108 77.8  -10% 125  -342  _30.7
30 370 =580 -178  33.1 85.6  59.3  -92.4  g2.4 sl ~26.3
40 -267 W46 134 222 67.0 g -66.8  66.8 -201  -22.4
50 "186 -338 -98.2  13.8  51.7 32,7 . _u6.6 uc.¢ -150  -18.9
60 2z -2 -69.6  7.32 39.1 23.2 -30.5 30.5 -109  -15.9
70 712 177 —b6.5 2.3 28.7 15.5 -17.8 17.8 -75.1 -13.2
80 -31.1  -117 -27.8  -1.50 20.0 9.26 -7.77  7.77  -47.8  -10.8
(20/80) 16.1 6.37 8.41 -31.6 5.42 16.10 16,1  7.16 2.86

8.41

Lg



the separation distance is somewhat more pronounced

in the former case. The differences between Tables U
and 5 taken with the related effect on the direct component
of the transition amplitude are large enough to produce

noticeable differences in calculations; however it is doubt-

ful that they will be more important than the effects df the

density dependence, imaginary component, and odd state-
components of the interactidn_which are also being negiected-
in thié work. Further, most of the available data lies in
fhe energy regioh from 20-50 MeV and none of the stfong '
transitions bbserved are likely to isolate the singlet even

component of the interaction where the effect is,the largest.

6. Effective Range Forces

It has already been noted that the (20/80) ratios
for typical Yukawa forces are much’smaller than most of
those appearing in Table Qf in fact, since the long range

limit of the Yukawa function is the Coulomb potential, the

' maximum value of (20/80) for the Yukawa is 4. The Gaussian

function, its Fourier transform, and the relation for the

(20/80) ratio are given below.

C 2.2
V(r) = ve @ T (10)
3/2 2 ) '
LCSERE 3 e /Am (11)
m o
X2 —X2 5 .
V(20)/V(80) = exp(_§9;_%9;) - o+ 731/m | (12)
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For an interaction of exponential form the corresponding

relations are:

V(r) = ve ™ | - (13)
2y _ 8mVm
V(AC) = ?5511535 (14)
(m +A80)2
V(20)/V(80) = 5 (15)
(m +A2O)

Eq.‘(lU) follows directly from Eq. (7) in the iimit'as d goes
to zero. Note that V(20)/V(80) for the Gaussian form can
assume any value from 1 to « whereas V(20)/V(86)'for them:
exponéntial function can vary only from 1 to 16.

The Fourier tranéforms of the components of the K-K
force clearly cannot be matched with a Yukawa function over
the 0-80 MeV energy range. It was found that this matching
could not be achieved with an exponential function elther
For example, an exponentlal function with V= -59.7 MeV and
m=.636F gives the same value for (20/80) as the singlet
even component of the K-K force; however, it gives V(O)r=
-5840 MeV.F3 which is about six times the value given in
Table U for the K-K force (A(l)(o)) In addition, V(E) for
E 1ntermed1ate to 20 and 80 MeV are smaller than correspond—
ing values of A(l)(E) A reasonably good match can be obtained
with Gaussian functions. Gaussian interactions with V=
~34.9 MeV and m=.567F"1 and V=-67.3 MeV and m=.660 give the

same (20/80) ratios as the singlet even and triplet
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even components of the K-K force, respectively. They also
give V(0)=-1070 and -1300 MeV.F3 which are reasonable agree-
ment with the corresponding K-K force volume ingetrals.

Table 6 contains the pertinent data for Gaussian,

- exponential, and Yukawa forces which fit the scattering

lengths and effective ranges which are sufficient to
characterize low energy nucleon-nucleon scatteringu8’u9.
Fig. 11 shows the Fourier transforms of these forces compared

with that for the K-K force. The transforms for the K-K

.force are bowed slightly upwards on the graphs, while those

for the Gaussian are straight lines. Both the exponential

and Yukawa transforms are bowed downwards. From the figure

.1t is concluded that the Gaussian effective range force is

quite similar to the XK-K force and that the Yukawa effective
range force shows the greatest deviation from it. This is
consistent with theAremarks made-in the preceding paragraph.
In fact the strengthsvand ranges for the Gaussian functions
given in Table 6 are nearly the same as those obtained by
matching to the K-K force. |

These conclusions are not surprising. ‘Like the

-effective range forces, the K-K force is consistent with the

low energy nucleon-nucleon scattering daté. It is evident
from Fig. 11 that all of the forces are similar (on the
average) for small values of E(<20 MeV). The Gaussian func-
tion has properties similar to the K—K force aﬁd when the two

are forced to correspond over a small region (0-20 MeV) they
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automatically are similar over a much wider region (0—80 MeV).
On the other hand two dissimilar functions férced to corres-
pond over a small région will not correspond over a wider
interval.

¥

TABLE 6.--Forces which are consistent with low energy nucleon-
nucleon scattering data.

Singlet Even‘ Triplet Even
Gaussian V(MeV) -39.5 -71.0
m(F 1y .637 676
V(0)(MeV.F3) -850 ~1279
V(20)/V(80) 6.06 4,95
Exponentiél V(MeV) -138 -186
m(F 1) 1.58 1.48
V(0)(MeV.F3) ~880 ~1442
V(20)/V(80) 3.39 3.71
Yukawa V(MeV) -47.6 -41.5
m(F 1) . 855 .633
V(0)(MeV.F3) ~957 ~2060
V(20)/V(80) 2.72 3.14

The Yukawa effective range force has been selected for
calculations in order to see how sensitive inelastic nucleon-
nucleus scattering is to the differences noted in Fig. 11.

In using this force it is assumed that there is no interaction
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Figure 11.--Comparison of Fourier transform of singlet
even and triplet even components of the K-K force with
those of Gaussian (Glexponential,(E) and Yukawa(Y) effec—
tive range forces. ' ’
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in odd states as is done for the K-K force. Table 7 gives
the values of A(l)(E) for the components of this force.

The format is the same as that of Table 4 for the K-K force.

Note added in proof: A set of calculations from the
O.R.N.L. group have just been made available through a pre-

print.7u

These are for the ngo(p,p')ngo* reaction at

18.8 MeV and 61.4 MeV and for the Zr92(p,p')Zr92* reaction

at 19.4 MeV. Again the L=0,2,4,6, and 8 transitions in zZr2°
have been considered and (1g9/2)2 wave functions have been

used. In Zr92 the L=0,2, and 4 transitions corresponding to

the (2d5/2)2 neutron configuration have been treated. The

long range part of the Hamada-Johnston (H-J) potential,-includ—>

ing the second order tensor contributions to the triplet-even
interaction, has been used for the projectile-target inter-
action. 'The odd state components of this interaction have
been neglected and a separation distance of 1.05 F was used.
In these calculations the exchange component of the D.W.A.
transition amplitude has been treated exactly and Oex/odir
ratios have been given.

These calculations have been repeated using the K-K
force and the approximate treatment of exchange of this work.
The results are compared in Fig. 1'. This comparisoﬁ is rea-
sonable because of the similarity of K-K force and the H-J
interaction used above as was pointed out in Chapter 4. The

discrepancies between the exact and approximate results shown

in Fig. 1' are much larger than any noted in the comparisons

made in Chapter 5. For L=0 in Zr90 at 18.8 MeV the




TABLE 7.--Strengths of components of exchange interaction for Yukawa
effective range force as function of the lab energy

E[MeV] _' 2 (8 rmev. F3)
Asg Arg 200 A0 Bor Ay Ao TP agn APT
0 =957 - -2060  -565  50.9 326 188  -239 239  -891  -137
10 -574 =927 -281  49.7 138  93.8 = -143 143 -419  -4i]
20 -410 -598 189 39.4  86.5 63.0 -102 102  -275  -23.5
30 =318 -hu1 k2 32.1  62.9 U47.5 -79.6 79.6 -205 ~154 .
o - -261 =350  -114  27.0 49.3 38.2 -65.1 65.1 -164  -11.2 =
50 220 -290  -95.7 23.2 0.6 31.9 -55.1 55.1 -136  -8.66
60 ~191  -247  -82.2  20.4  34.4  27.4  -47.8  47.8 =117 -703
70 -169  -216  -72.0 18.1 29.9 24,0 -42.1 h2.1 -102  -5.8g
80 -151 =191 -64.1  16.3 26.4  21.4  -37.7 37.7 -90.5 —5.05
(20/80)| 2.72  3.14  2.95 © 2.42  3.28  2.95 2.72 2.72  3.04 .65
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Figure 1'.--Comparison of exact reéults obtained with long
range part of H-J potential with approximate results given
by K-K force.




96

approximate value of ¢ /o.._ for the K-K force is about
’ ex’ “dir
10 times the exact value obtained for the H-J force. For

L=2 the approximate value is 4.7 times the exact value and

for L=8 the approximate value falls about a factor of 2

below the exact value. Uncertainties this large might
amount to factors of 1.5-3 in the magnitude of the complete
Cross séctions. Also note that the results indicate that

the approximation is over-estimating the energy dependence

due to exchange.

They have also reported that the Gaussian effective

range force gives Oex/odir ratios which are in agreement

with those obtained with the long range part of the H-J

potentlal. Tt is also estimated from their results that the
H~J‘f§rce gives somewhat weaker (25%) cross éections,than
the K-K force. Similar differences between the H-J and

K-K forces were noted by Slanina in his optical potential

calculations.3l’32

.




CHAPTER 6

- STUDY OF INTERACTION MODELS

IN D.W.A. CALCULATIONS

As a matter of convenience this chapter is divided
into two sections, i.e. Section A and Section B. The D.W.A.
results obtained with the impulse approximation pseudo-
potenfial, the K-K forée, and the Yukawa effective range
force for select transitions in 012 and Cauo afe presented
in Section A. Section B is devoted to a random collection
of results.. Some (e,e') results are presented andboccasional
reference 1s made to (p,p') studies at enérgies in excess
of 100 MeV; The (e,e') results (at least electric multi-

' pqle transitions) test only the proton activity in the
transitions. This is sufficient, at least for N=Z7 nuclei
where/protons and néutrons play symmetric roles.
| In-viewing the results to be presented, keep in mind
that a detailed—fit'to the experimental data is not the.
point .of these calculations. An,investigation of the inter-
action models‘with respect to the gross features of the

experimental data is all that has been attempted.




1. Section A

The transitions considered here are the L=0, 2; and

3 transitions in 012 and the L=3 and 5 transitions in CauO

which were intrbduced in Section 3 of Chapt‘er’r’j.jL 'The L=0

transition in 012 is an abnormal parity T=1 transition. It

tests the tll_éomponents of the. interactions. The other
four transitions are normal parity T=0 transitions which
test the tOO components of the iﬁteractiomL' Scme of the
results»of Section B provide information concerning other
components of the projectile-target interaction.

Fig. 1 displays the R.P.A. ?ectorso for the 1+T=l

(Q=-15.1 MeV) state in 012. The analytic expressions for

the L=0 and L=2 transition densities (Section 1 of Appendix

B) are given along with graphs of these functions. The

harmonic oscillator'conétant is also specified, i.e.KA=.610F"

a value consistent with elastic electron scattering.32’55

The calculation of the transition densities from the R.P.A.
vectors is discussed in Section 3 of Appendix B. Note that

011,1 211,1(r) and that

F (r) is COnsiderably larger than F
both peak somewhat inside the nuclear surface. Only the
(011,1) triad is considered in the (p,p') calculations of

this work.

TSee discussion of Fig. 8-10 in Chapter 5.

1
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* T=1 (Q=-15.1 MeV)

p h X | v
lp1/2 | 1p3/2] 1.00 | -.06
If 5/2| 1p3/2| 02 | Ol
2p1/2| 1p3/2| -06 | -Ol
2p3/2| Ip3/2| -06 | -0l
A | 2sw2|i1si2| -o1 | -0
| Id3/2| 1sI/2] 02| Ol

FO! (1)=(- 024243 + 4550%¢ +0594a7r4)e°'
2
2” 1 1) =34452+ 014547 & "
az 810 F-'

| r(F)—
Figure 1.--R.P.A. vector and transition densities

for 1¥T=1(Q=-15.1 MeV) level of Cl2
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. 3
The phases of X?Tj and YJ 3 appearing in Fig. 1 differ- J
' pTh “p’n J +1/2
from those given in Ref. 50 by the .factor (-1) . The

reason for this phase'adgustment has been given elsewhelﬂe.ul_u3

1t 1is made for all the R.P.A. vectors which are taken from
Ref. 50-53 for use in this work. From Fig. 1 it is clear
that the R.P.A. is saying thaﬁ the lfT=1 state in C12 is very
nearly a pure 1p1/2-1p3/2 particle—holé pair. It is well
known that such a wave function predicts an electromagnetic
Ml form factor which is much iarger than experiment.56
Investigation of this 1evél, via the impulse approximation,
in the (p,p;) reaction at 156 MeV showed that reducing the
L=0 transition density by (3.3)1/2 is sufficient to prodﬁce

a theoretical result which is in reasonable agreement with

42,43

experimeht. Such a ‘factor is consistent with the electro-

magnetic studies. The expression for FOll’l(r) aﬁd the
graph of this function in Fig. 1 already contain this reduc-
tion féctor. | |
Fig. 2-5 COntain.information, corresponding to that of
Fig. 1, for the four remaining, normal parity excitations
in 012 and Cauo. The R.P.A. vectors shown have been taken
from Ref. 50, 50, 54, and 51, respectively. These normal
parity vectors exhibit considerably mbre mixing.than the
abnormal parity vector of Fig. 1. Examination of the size
of the Y-amplitudes indicates thét the effect of grdund

state correlatlons is much more 1mportant for normal parlty

transitions than for abnormal parity transitions. Here
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A
C

2" T=0 (Q=-443 MeV)

p h X Y

Ip/2 [ 1p32 | o1 | 05 F2929(1) - (176 o r%- 057 a' 1) x
-ar
1f&/2 | 1p3/2 | -08 06 e
w2 | ip3e | . .
pd2| 30 | 02 F2290 . (11290 P + 212a ) x
2pl72 | p372 | it 08 éczr’
2p32 | Ip3/2 | -12 | -09
932 [ 1s172 | -20 | -14 az6I0F
1d5/2 | 1si2 | 29 | 20
§ 0.020+ | ,

. 1 O.0I5 .
Jea
Cy
4 . OO0 .
- 0.005+ .
3 1 " i 1 1 O L .l 1 1 ol
o i 2 3 4 5 6 -0 05 10 15 20 25 30
.‘
r(fF)— q(F)—

Iigure 2.--R.P.A. vector, transition densities, with theoretical
and experimental inelastic electron scattering form factors for
the 2¥T=0(Q=-4.43 MeV) level of C12,



cl2

3" T-0 (Q=-9.63 MeV)

1d 372 |ip 3/2 | -50

Id 5/2 |Ip 3/2| 88

2
F303.0() . _77263 azr
3130() 256 o536
a=6I0F"

¢0T
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37 T=0 (Q=-3.73 MeV)

P h X Y
if7/2 | 1d &2 | -378 | -20I
If7/72 | 251/2 | -538 | -236
1£7/2 | W32 | -736 | -222
2p3/2| 1d5/2 | -126 | -085
2p3/2| 1d3/2 | =215 | -130
| H5/2| Kd5/2| 199 | 107
If5/2|2s1/2 | 233.| .19
52| 1d3/2|-285 | -163
{2p12 | sz | 146 | 087

IF(q)] xI0°—

o
T

0040

(r)*(-l |28¢ r 49090 re

3!3 (o]

a=498 F"

o
Ol
T

o
n
T

(r)=(- 23I2¢ 4 +.264¢ e

8 5, -a%r?

85-«!’

q(FX—-
Ilgure 4,--Same as Figure 2 for 3 T= O(Q—-3 73 MeV) level of Ca

40
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5 T=0 (Q=-448 MeV)

p h ‘X Y
1f5/2|1d52] 31 | .8
1f772 | 1d5/2| -28 | -I3
1f7/2| 1d 32| -96 | -23

r(F)—

5.--Same as‘Figure 2 for 5'T=O(Q=—u.u8 MeV)

Figure

F505.

F5I5.

o

(r)=-393a5r%6% '

8 5.02¢2

%)= -.1590%r%6 |
" a= 498 F'
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again it is seen that the transition densities peak inside

JlJ’O(r) transition densi-

the nuclear surface and that the F
ties can be neglected. The harmonic oscillator constént'for
Ca)40 is taken from Ref. 32.

Aiso contained in these figures is a comparison of the
theoretical and experimental inelastic electron scattering
form factors for the excitation of these levels. The calcu-
lation of the theoretical (e,e') form factors from the transi-
tion densities 1is aiscussed in Appendix C. These results
are essentially the same as those contained in Ref. 55. They -
have been recalculated more as a check than for any other rea-
son. and are shown [cr completeness. The overall agreement
between theory and experiment is quite good, although the
data for Cauo is admittedly sparse. The ground state corre-
lations are responsible for factors 1.5-3 in the theoretical
form factors which are from four to an order of magnitude
larger than results obtained in single particle-hole excita-

55

tion models. The enhancement effects are largest for the

L=3 transition- in Cauo. The mixing in the R.P.A. vector
for this transition is evident from Fig. 4.

Looking at these results a bit more closely, it is
seen that the L=2 transitions for 012 gives a result for
|F(q)|2 which is about 15-20% too small. The theoretical

12 1 as about the

form factor for the L=3 transition in C
right magnitude, but it peaks at slightly too large a value
of q. Ref. 55 extends the comparison of theory and experi-
ment for these two transitions up to about q=3.5F—l. The

theoretical results overestimate the data in this region
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Which could be an indication that the theoretical transitibn
densities are too large in the interior of the‘nucleus. The
experimental data for the L=3 transition in Cauo is ambiguous
and it is seen that the theoretical result in Fig. 4 falls
iﬁ between the two sets of data points which are in disagree-
ment.. The corresponding résult of Ref. 55 has been obtained
with the R.P.A. vector given in Ref. 51 and it is in égree—
ment with the upper set of data points in Fig. 4. The

experimental data for the L=5 transition is also not very

- definitive. Tt appears that the theoretical result here

could be a little too large and might peak at much too large
a value of q.
1t is concluded from this discussion that (1) the

transition densities presented in Fig. 1-5 should not be
requnsible for any gross discrepancies in the (p,p') results
which are to be shown and (2)vthe effects of long range
correlations, which are included in the R.P.A. Vectors, are
blaying an important part in building up the magnitude of
these.transition densities. Better transition densities

_ . 5

have been constructed for the L=2 and L=3 transitions in C1

by fitting directly to the experimental (e,e') data.75 These

have not been used as they do not differ Pa'great deal from

those presented here and the differences are well within the

uncertainties associated with the local reduction of the

D.W.A. transition amplitude. The (e,e') data for Cauo is

" not suffidiently accurate and complete to even allow con-

sideration of improving the transition densities.
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D.W.A. calculations have been performed for 012(p,p')
Lo%

* .
c'?” at 28.05 and 45.5 MeV and ca’®(p,p')ca0* at 25 ang

55 MeV.v The differential cross sections obtained for the
above transitions using the impulse approximation pseudo-
potential are compared with exberiment in Fig. 6-8. Cor-
responding results for the K-K force are shown in Fig. 9-11
and those for.the Yukawa effective range force are given in
Fig. 12-14. The total differential cross sections for the
L=3 transition in C12 are decomposed into direct and eXchange
components in Fig. 10 (K-K force) and Fig. 13 (Yukawa effec—
tive range force). Optical pafameters used ih the calcula-
tions are given and rcferenced in Table 1. The form used

for this potential is given in Eq. (B.1i3). A tabulation
of.the theoretical total integrated cross sections, S

is contained in Table 2. Values of g and Oex for the

dir
K-K force and Yukawa effective range force are also displayed
in this table.

A quick glance at Fig. 6-14 shows that all of these
forces are giving a fair reproduction of the data. For the
normal parity transitions it is found that the results obtained
with the impulse approximation pseudo-potential and the K-K
force best reproduce the data. The impulse approximation
gives results which are slightly smaller in magnitude than
the K-K force. These differences are no larger than 20%.

The results for the Yukawa effective range force are found

to underestlmate these cross sections at the lower energies,

but at the higher energies they are very close to the results
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TABLE 1.--Optical parameters used
in MeV and radii

in C12

4o
and Ca
and diffuseness parameters are in F.

calculations of this work.

Well depths are

Target EL ' \ W Wy ry a 6 a' vy reo ago r, Reference
C12 28.05 48.06 0] 3.92 1.13 .578 1.379 .570 9.32 1.125 .573 1.20 76

012 45.5 34.5 4.9 0 1.22 .67 1.40 .70 7.5 1.22 0.67 1.20 77
Ca“O 25 7.2 1.78 4.83 1.17 .703 1.288 .653 5.59 1.17 .703 1.20 78
CaUO 55 4i.1 7.2 0 1.18 .70 1.40 .70 7.50 1.18 .70 1.20 77a

aExtrapolated from 40 MeV parameters for Al

27 54

and Fe

LTT
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TABLE 2.--~Integrated cross sections corresponding to results
shown in Fig. 6-14. Decomposition of integrated cross section,
Ops into O4ip and Oox is given for the K-K force and the Yukawa

‘

effective range force. All cross sections are in mb.

. T
i 1

| oo
!

Targgt E(MeV) ; J é Force cdir(mb) oex(mb) cT(mb)
s ;
! i KK 1.22 470 3.18
v | ER 1.33 .303 2.86 ;
| |
IA - - 3.05 ‘
KK 22.4 33.5 1.02 ‘
28.05 | 2* | =R 17.9 21.3  73.6 1
] ' :
L 1a - - 94.0 ‘
KK - 5.06 12.9 30.1 i
37 i ER 4. 06 .22  22.1 {
| | IA - - 26:9
cl? _
KK 1.06 . 150 1.99
1¥ | ER 1.30 122 2.18
IA - - - 2.08
KK 17.0 . 9.12 47.0
45,5 ot ER 13.0 7.42 37.6
IA - - 39.7
KK 4,75 4.28 16.1
37 | ER 3.63 3.48 13.4
IA - - - 13.9
KK 16.1 - 14.6  58.2
37 |  ER | 12.2 ©9.14 39.6
25 IA : - - 5209
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TABLE 2.-~-Continued.

| v '

Target E(MeV) J Force Odir(mb) oex(mb) : OT(mb)
KK 2.21 - 8.35 16.9

| 57 ER 1.79 5.26 12.6

IA - - 14,5

Cabo ,

| KK 15.5 2.51 29.4

3° ER 11.7 | 2.&4 23.7

TA - - 22.6

55 » _

KK 2.28 1.32 6.30
5~ ER 1.69 1.28 5.64
IA : - - 5.15




120

obtained with the other two forces.. Differences between the
K-K force and the Yukawa effective range force were also '
noted in Ref. 32, i.e. the Yukawa effective range force over-.
estimated the real well depth and the mean square radius of
the real part of the optical potential, giving much poorer
agreement with phenomenological potehtials than the K-K force.
The differences between the K-K force and the Yukawa
effective range force<forvthese normal parity transitions
can be understood from Table 2 and/or comparison of Fig. 10
and 13. From Table 2 it is clear that the values of Gdir
for these two forces do not show any pronounced energy
dependence. Tbe K-K force gives slightly larger values of
Oqip: The values of Oex do vary significantlvaith energy,
with those for the K-K force exhibiting the sharpest energy
dependence. Because of the slower drop~off with energy bf
0oy fof the Yukawa éffective range force, the magnitude of
the total differential cross sections it prodﬁces catch up
with those for the K-K foérce as the energy increases.
Differences of this type were suggested in the discussion
of these forces in Section 6 of Chapter 5. It was also
pointed out in Section 3 of Chapter 5 that forces of longer
range.than a 1F range Yukéwa were necessary to.reproduce
the energy dependence of the experimental cross sections -
ra condition satisfied by both of the above forcés, As a
result of the note added to Chapter 5 no conclusion will

‘be drawn concerning the significance of the dlfferences

between these two forces in relation to the data. This
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note indicates that the approximate treatment of anti-
symmetrization is better for Yukawa forces than for the K-K
forcevwhich would leave any conclusion open to question.

Recently, Agassi and Séhaeffer79 have obtained a good
fit to the 55 MeV data for the L=3 transition in 0a’0. 1n
their_calculation.antisymmetrization was treated exactly and
they used a Serber force of Yukawa form with a range of
1.37F. This force is similar to the Yukawa effective range
force used in this work. They used the R.P.A. vector of
Ref. 53 to describe this transition. Their result is con-
sistent with this work. They also found that the force CAL,
used in the calculation of the state vectors,vfails to repro-
auce the data for this case.

For the abnormal parity transition, Fig. 6, 9, and 12,
the magnitude of the theoretical cross sections obtained
with all three forces are in reasonable agreement at both
energies. Actually, at the lower energy O for the Yukawa

effective range force is slightly smaller than O for the K-K

force. This situation reverses at the higher energy; therefore,

the trend is the same as in the other cases. As this is an
L=0 transition exchange is not as important. Further the
values of Odir for the Yukawa effective raﬁge force are
larger than thpse for the XK-K force which is a. reversal of
the results for the normal parity transitions. This is
simply a reflection of the differencesbetween the forces at
large radii. For the K-K force Odir decreases a little with

for the Yukawa effective range force remains

energy and o

dir
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almost constant. Unlike the normal parity transitions, there
are noticeable shape differences in the theoretical differ-
ential cross sections fsr this transition with the experi-
mental data favoring the results obtained with the impulse -
approximation pseudo-potential. It is concluded that the
cross sectlons for this transition are sensitive to the pre-
cise shape and phase of the two-body force. |
The theoretical cross sections have é tendency to fall

off too slowly with increasing angle and they don't show
enough structure. No attempt has been made to try and improve
the shape agreement between the theoretical and experimental
angular distributions. It is knéwn that better shapes would
result if the theoretical form factors could be pushed out
radially._ The density dependence and the imaginary part of
the projectile-target interaction might produce this effect.

| It has been observed in many cases that the direct
cross sections computed with the K-K force show good shape
agreement with the experimental angular distribution. This
shabé agreement is then lost When the exchange component is
included. This does not happen with the Yukawa effective
range force.,

| The feason for this 1s that the direct form factors
for the K-K force- are more surfaced peaked than thosevfor
the Yukawa effective range fcrce. This is evident iﬁ Fig. 15
where the direct form factors for the L=2 transitions in Cl2‘
are compared. Also shown éreithe complete form factors

(with exchange) for 28.05 MeV. The total form factors peak
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well inside the direct form factors. The difference in peak
positions for the direct form factors-in this figure is about
AF, whefeas this difference for the total form factors is
only about .1lF. The latter accounts for the similarity of
the final results for the two forces. The 1ong tall on the
form factoré for the Yukawa effective range force does not
aid in giving better shapes.

The cross sections shown in Fig. 10 and 13 are not
extremely good examples of the above point.: Here the total
cross sections show fairly good shape agreement with the
data out to at least 100 degrees. The direct cross sections
show too much structure. It is noted, however, that the K-K
direct cross sections show more structure than those for
the Yukawa effective range force which is consistent with
form factor differences like those ajSplayed in Fig. 15.

It would appear that some of the dgficiencies in the
angular distributipns'of.Fig{ 6-14 are attributable to
deficlencies in the transitibn densities., In particular,
thé fact that the angular distributions for the L=3 transi-
tion in C'? and those for the L=5 transition in Ca ® peak
iat too large an angle appearé to be consistent with the
(e,e') results which have been shown. The impulse approxi-
‘mation pséudo—potentiél and the Yukawa effective range force
yield cross sections forvthe L=2 transition in C12 whiéh
fall under the data. The (e,e') results suggested this.

The K-K cross sections do not reproduce this discrepancy.
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As a result of the uncertainties in'thé approximate
treafment of antisymmetrizétion it is suspeéted that the
magnitude of the differential cross sections for the K-K
force might be overestimated appreciably, at least at the
lower energieé. This effect will be greatest for the L=0
transition and will become less impoftant With increasing L.
It has already been suggested that the L=2 result is being
overestimated from the comparison of the (e,e') and (p,p")
calculations. It has recently been indicatea that the
tensor fofce might be important for the abnormal parity L=0
transition.8o Including it is fouhd to improve‘the shape
agreement between theory and experiment at 45,5 MeV, parti-
cularly at forward angles. It may be that thé approximate
treatment of exchange is masking the need for this contri-

bution to this transition.

2. Section B

Target Li6

The Jﬂ,T values for the first three states of Li6 are

1%, 0; 3%, 0; ana of, 1.%*

The‘second staté is observed at
2.18 MeV above the first which is the ground state. The
third lies 3.56 MeV above the ground state. Differential
Cross sections have been measured for the Li6(p,p')Li6*
(@=-2.18 and -3.56 MeV) reactions at 24.4 MeV.%! Theoretical
cross sections have been calculated uéing the K-K force.

Shell model, LS-coupled wave functions have been used to

describe the target and the value 0= .581F 1 has been assumed
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for the harmonic oscillator constant.lLl The optical para-

meters are also given in Ref. 14, For the Q=-2.18 MeV transi-
tion.only the contribution from the triad (202,0) is important
and only the triad (011,1) is allowed for the Q=-3.56 MeV
transition; therefore, the components of the force which

aré involved are t and t respectively. Thé results

_ 00 112

are shown in Fig. 16.

The agreement between theory and experiment is poor.
The L=2 cross section is badly underestimated and the L=0
cross section 1s overestimated. 1In addition, the latter
result does not show any of the structure displayed in the
j data. Similar agreement with experiment is obtained when
these wave functions are used in the analysis of the (e,e!')
reaction.82 Fig. 17 shows a rough fit83 to the experimental
(e,e') form factor8u for the L=2 transition. Adjacent to
it is the result which is obtained using the transition
density, empirically determined from this fit, to calculate
the corresponding (p,p') cross section with the assumption
phat the transition still goes through the too_part of the
K-K force. The correspondence between the (e,é') and -
(p,p') results is good and it is concluded that the LS-
coupled wave functions do not give a good description of
the target.

Excellent fits to inelastic electron scattering data
have been obtained; for both the traﬁsitions under discus-
sion, on the basis of the cluster model.82 A parallel

analysis of the (p,p') data is planned. This possibly could

®
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be extended to transitions which have been observed in
..neighboring nuclei. It may be necessary tQ improve the treat-
ment of antisymmetrization and to include the'tensor»force in
this work, particularly for the case of;the L=0 transition.
These points were previously made with respect to the L=0
2

transition in Cl which was discussed in Section A of this

chapter.

Target 012

12 at Q=-16.1 MeV. The

‘There is a 2+T=1»state in C
triads (202,1) and (2i2,l) can contribute to the excitation
of this level in the (p;p') reaction. The components of the
projectile~target interaction which are involved are t01 and
tll’ respectively. Both triads make appreciable contribu-
tions to the éross»sectioh as is seen in Fig. 18. This is
to be contrasted with the situation for normal parity T=0
transition where only the non-"spin-flip" contributions
were found to be important. Here the impulse approximation
pseudo-potential has been used with the R.P.A: vector of
Ref. 50. The data is from Ref. 72 and all parameters are
fixed as in the previous C12 calculations. The total cross
séction shown has been obtained by summing the (202,1) and
(212,1) components incoherently. No significant change
occurs when a coheréntAsum is performed. The magnitude of
the theoretical result is in reasonéble agreement with

experiment, but the.shape is Quite poor.. A comparable fit
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to the 156 MeV (p,p') data has been obtained using this
v_ector’,u‘?’u3 so this result is an indication that the'tol,
component of the "realistic" interactions is not unreasonable.

Target 016

Fig. 19 shows the theoretical result obtained with
the K-K force for the excitation of the 3 T=0(Q=-6.13 MeV)

level of 016

by 24.7 MeV incident protons. The data is the
same as that shown in Fig. 5.10. This is an L=3 transition
which goes through the tOO-component of the force. The>R;P.A.
vector of Ref. 50 was used in the éalculation and- the harmonic
oscillator constant was set at a=.559F—1. The agreement
between theory and experiment is good; however, since this
calculation was performed better optical parameters have

been obtained and it has been shown that the Gillet vector
does.not give a good fit to the inelastic electrén;scattering

73

form factor. Correcting these deficiencies leads to a
theoretical result which falls about a factof of 1.5 below

the data. An explanation_of this discrepancy is not presently
available. |

Target CaAO

Theoretical cross sections have been calculated for the
excitation of the 37 T=0(Q=-6.28 MeV) and the 2 T=0(Q=-6.02
MeV) states in Caqo+p at 24.5 MeV. These are preliminary

results which have been obtained in a study of the Cauo(p,p')
lo*
a

C

data collected by C. Gruhn and collaborators. The
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Figure 19.--Comparison of theoretical and experimental differ-
ential cross sections for the excitation of 37T=0(Q=-6.13 MeV)
level of-O16 by 24.7 MeV protons. The K-K force is used for
the projectile-target interaction. :
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impulse approximation psendo—potential has been used in these
calculations, R.P.A. vectors are from Ref. 54, and all para-
meters are fixed as before. -Only the triads (303,0) and
(llé,O) have been considered and these transitions go through
tOO and'tio, respectively.

The L=3 cross section is shown on the left in Fig}-20
where itvis compared with the result shown previously for the
excitation of the first 37 T=0 state in Cauo.‘ There is a
‘noticeable difference in the shape of the two experimental
angular distributions. This difference is not related to the
difference in Q for the two\transitions. The magnitude of
the cross'section for the second L=3 excitation is an order
of magnitude 1owér than that for the first. The theoretical
calculations reproduce the data quite well. 1In detail the
change in shape comes about because of differences in_the
dominant configurations of the R.P.A. vectors, i.e. the

1r d3/2 particle-hole pair is the largest component of

772714,

the first state vector (see Fig. M)rwhile it is the 2p3/2—
d3/2 particle~hole pair which is most important in the

second. Because of the node in the 2p3/2 radial wave func-

tion, the transition density for the second excitation is
large and negative in the interior and has a positiye peak

Jjust outside the nuclear surface. From Fig. h it is seen

that the transition density for the first excitation is

small and negative in the interior and has a.dominant positive

peak Just inside the surface. The former s1mulates a some-

rwhat larger dlffractlng object and hence the cross section for
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this case falls off faster with increasing angle. This is an
amusing comparison as it demonstrates some sensitivity to a
particular detail of the target wave function.

The result for the L=1 transition is shown on the right
in Fig. 20. The magnitude‘of the theoretical cross section
is seen to be inrreasonable agreement with experiment, but
there is no abparent correlation in shape. The_R.P.A‘ says
that this state is almost a. single 1f, ,-1d, 5 particle-hole
pair. It would be interesting to examine the effect of the

tensor force in this transition.

Target Pb208

Théofetical differential cross sections have been
calculated for the excitation of the 3_(Q=~2.62 MeV) and
57(Q=-3.11 MeV) levels of P08 at 10.0 MeV and 24.5 MeV,
respectively. Experimental data for the former transition
is given in Ref. 77 and 85 and in Ref. 11 for the latter
transition.v_Optical,parameters used 1in the calculations
are to be found in these same references. The K-K forCe
is used, the R.P.A. vectors are from Ref. 52, and a.was
1. The results are compared with the data

in Fig. 21. The agreement betweén theory and experiment for

the L=3 transition 1s not bad, but the L=5 result falls a

factor of 2—3 below the data.

The proton and neutron L=3 transition densities are

almost ldentical; therefore, this transition tests the tOO

component of the force. Using this same vector fo calculate
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the form factor for inelastic electron scattering, a fit to
the data is obtained which is comparable to that shown in

Fig, 21.83

Nothing can be said about the L=5 transition as
there is no (e,e') data available although the poor result is
probably a reflection of a deficiency in the R.P.A. vector

for ﬁhis transition.

1 T=0 Excitations
12

- C7° is known.fo have a 1 T=0 level at Q=-10.8 MeV and
the same J",T is assigned to the Q=-5,90 MeV level in Cuo.
R.P.A. vectors are available for these states in Ref. 50

and 54, respectively. These vectors contain a spurious
-component which'représent translational motion of the center
of mass of the target rather than internal excitation of the
target. These vectors have been "cleaned" by constructing

86,87

the correspondlng spurious states and projecting them

out. Theoretical results obtained with the K-K force, using
both the original vectors (spurious) and the clean vectors,

are compared with each other and with the data in Fig. 22.

The magnitude of the cross sections is not given satisfactorily
in these calculations, but it is interesting that the clean
vectors reproduce the shape of the experimental angular dis—

tributions quite well as compared to the spurious vectors.

As the projection technique is not rigorous it is difficult

to say more about these results.
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CHAPTER 7

CORE POLARIZATION IN INELASTIC
PROTON-NUCLEUS SCATTERING

1. Introduction

In this chapter the calculatioﬁs are extendéd to (p,p”)
transitions involviné low lying states in nuclei which
possess one or two nucleons outside of a closed shell.,
The importance of core polarization on the low iying
spectra of these nuclei and in these transitions has been
dlscussed by manyvauthors. Several methods have been used
for estimating these effects which can be expressed most
simply as a renormalization of operators acting on the
valence nucleons, e.g. the effective two-body force between
valence nucleons and the effective charge of a valence
nucléon. o

One method is a perturbative treatment of the particle-
hole excitations of the core which are induced by the valence
nucleons. This is carried out to lowest order and particle-
hole excitationsup to about 2Kw in energy are included.
In following this procedure the interaction of one
core nucleon with another core nucleon is neglected, i.e.

a zeroth-order shell model Hamiltonian describes the core.,

139
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As the interaction between core nucleons is responsible for

) |

the existence of low lying collective states in the core
'nucleus, it is clear that this method does not include the

contributions from these states.

20-25,51

This approach is used by Kuo and Brown in their

attempt to explain the spectra of nuclei with one or two

valence nucleons. They have shown, looking in a systématic
way at nuclei in the vicinity of 016, Cauo,

88 208
r

, and Pb s that core polarization gives rise to a

Cau8, N156,
S
strong pairing effect which is the major feature of

thé observed spectra. Horie and Arima were among the

first to use this method in their calculation of quadrupole

57

moments. Recently, Federman and Zamick have .used this

"model to examine some of the properties of the effective
chérges for quadrupole transitions for nucleons outside of

Ca40 and N156 cores.88 These studies have been extendéd to

89

other nuclei and additional efforts have been directed at

estimatidg the validity of neglecting low-1ying collective
states of thevcore nucleus.go’91
An alternative method is to use the macroscopic vibra-

92,93,15,16 The inter-.

tional model to describe the core.
action betﬁeen the valence nucleons and the core is treated
in a ﬁanner completely analogous to that discussed in
Section 2 of Appendix B where the interaction of a pro-
jectile with a nucleus, sd described, was considered. .The

eigenstates of the macroscopic vibrational Hamiltonian need

not correspond to physical states of the core as the model "

is used as a vehicle for parameterization. Under the
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»assumption that the core strength is at an energy large
compared to any of the energy differences between.the
valence nucleons involved, the role of a given core multipoie
in the core polarization process is fixed by a single para-
»metef, CL’ the stiffness parameter for multipole L. The
renormalization of ﬁhe two-body forces between nucleons
outside ﬁhe core (bound and/or unbound) as well as the
effective charge are easily expressed in terms of these -
parameters. Using this method, and fixing the CL on the
basis of empirical effective charges, Love and Satchler15’16
have demonstrated that core polarization can give a very
important, even dominant, contribution to (p,p”) cross
sections.

Another variant 1s to consider the coupling of the
valence nucleons to low lying physical states of the core.
The macroscopic vibrational model can be used to param-
eterize the physical core states, although more consistent
calculations would use microscopic wave functions for the
core states--such as R.P.A. vectors. The energies of these
core states are often comparable with the energy differences
between valence nucleons and this has to be taken into
account. This method has been used extensively in the

93,94

lead region. Calculations of this type are useful

in examining the particle-hole model with respect to

neglecting low-lying collective states of the core.
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Atkinson and Madsen have given yet another précedure
for relating the effect of core polarization in electro-
magnetic transitions to the effect in the (p,p7) reaction.19
All these models are attempts to enlarge the vector space
" used in shell model célculations in an easy to handie way
and, at the moment, rest on a very empirical rather than
theoretical foundation. These models are discussed in more
detail in Appendix D. At any rate the main purpose of_the
present chapter of this paper is to extend, to the scatter-
ing-problem, the microscopic perturbative calculation of
Kuo and Brown.

Due to the selection rules, transitions generally
give more detailed information about the nature of core
polarization than bound state calculations. For example,
consider a nucleus with two like valence nucleons which
are restricted to the (j)2 configuration. Such a nucleus
will have a O+ ground state. It is shown in Appendix D
that the pairing effect on the ground étate binding energy
ié due to the coherent effect of a number of core multi-
pole excitations, whereas transitions between the states
of the (j)? configuration which start or end at the ground
state depend essentially on only one core multipole. The
(p,p’) reaétion,is particﬁlarly useful for studying core
polarization since the available experimental data, unlike
that for electromagnetic transition rates, is not limited

primarily to quadrupole and octupole transitions.
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1120, 7090, v89, and B1°%9

are the nuclei considered

in this paper. The first two have two valence protons and
the last two have a single valence proton. In all cases.
the 3p lh (or 2p-1h) components of the target wave func—
tions are 1ncluded as prescrlbed in Appendix D. The K-K
force is used as the interaction between core and valence
nucleons. Angular distributions for the (p,p ) reaction
'_and effective charges are calculated and compared with
experiment. In the (p,p ) calculations the K-K force.‘
is also used for the projectile target interaction. These
'calculations constitute an attempt to reproduce the (p,p )
'experimental data . from a completely microscopic model with
‘the assumption that the projectile and target nucleons all
interact via the same force which in turn is closely |
related to the free two—nucleon potential.

As an example of a particularly convenient
way to relate the effect of core polarization on the
spectrum and in transitions, calculations are carried out
for T150 and ngo us1ng the macroscopic vibrational des-
cription of the core and fixing the core -parameters from
the bound state matrix elements of Kuo and Brown. This
- procedure 1is discussed in Appendix D. All results are
reviewed with respect to coupling to physical core states
and in light of the empirical formula of Madsen and Atkinson.
A very.interesting result is obtained in the case of 81209

where it is found that the transition considered is

dominated by a single core phonon.
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50 .90 - 89

2. Calculations and Results - Ti°°, Zr°-, Y

Macfosbopic Vibrational Model and Relation between
- Core Polarization in Spectra and Transitions

(ngO and TiSO)
90

+
the transitions. from the 0° ground state -

to the 0%, 2%, 47, 6

In Zr

*, and 8" states with Q=-1.75, -2.18,

-3.07, -3:45, and -3.58 MeV, respectively, for 18.8 MeV
incident protons are considered. .ThHe transitions from the
Of ground state to the 2% and 47 levels of 71°9 with

- Q=-1.55 and -2.68 MeV for 17.5 and 40 MeV incident protons
90

are also treated. The two O+,1evels in Zr result ffom,

o _ 2 2 .
the mixing of the (1g9/2) and (2p1/2) proton configura
tions where the ratio of g to p amplitudes in the ground

state is about three guarters. This ratio has been fixed

8,9,54,95,96

.both theoretically and experimentally. The-

+ o+t

27, 47, 67, and 8* states in question in this nucleus are

due to two protons in the ig9/2 orbit. The states in 7120

are describedlas two’valence protons in the 1f7/é shell.
There is also a 6+ state due to this configuration, but»
it has not been fesolved in inelastic proton scattering
experiments.
For these cases the multipole decomposition of the
3p-1h contributions to the‘<(j)20|1gff|(j)20> matrix elements
25 54 ..

have been given. - Comparison of the decomposition with

Eq. (D.25) -and-Eq. (D.26) allows the extraction of the

parameters <kv>?6 A knowledge of.<kv> is required to

L'
determine the parameters Kkv>6L-which are needed to calculate

|
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the transition matrix elements. Following Bohr and
Mottelson?3 <kv> is taken to be 50 MeV in these calculations.
Estimates of this qQuantity, based on reasonable finite
potential wells, for various orbitals in several nuclei
produce values from roughly 35-75 MeV.lS’16 Uncertainties

in the value of <kv> are probably the major source of error

- In making this comparison between the spectrum and transi-

tions.

Table 1 gives the values of <kv>eL deduced in this

9Q<kv>62=.119, which is the same as the value

given in Ref. 15 and 16. The latter value was extracted

manner, For Zr

from the effective charge and can be obtained without
knowing <kV>. It should be pointed cut that the potential
wells used in these references had <kv>~70 MeV. 'In the
last column of Table 1 the parameter CL is tabuiated. This
parameter represents the effective stiffness of the core to
2L~pole surface vibrations and is simply the inverse of GL.
From thebtable it is seen. that the core of TiSO is somewhat
softer than the core of ngo and the L¥2 vibrations are most
important in both cases. This is expected as is the indicated
increase in core stiffness to higher order vibrations. The
indicated core coupling 1s by no means negligible, however,
even for the highest core multipole. Note theilarge mono-

pole coupling indicated for 2p1/2 protons outside the Sr88

core. On the basis of nuclear compressibility, L=0 vibrations

are not expected to be so important.
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TABLE 1.--Extraction of <k,>0; from bound state matrix

elements of Kuo and Brown.

Zr90

. C
L5 <(0%0llogy_y, [1(3)%0> (Mew) MY k0L ey
0 lgg,, ~.020 | .0796 .00504 9920
2 1g9/2 -.578 - .0970 .119 420
4 lgg -.359 | .0900 .079 633
6 1g,, _.218 L0770 .057 877
8 lggy,, -.122 , 542 045 1110
0 2p; , -.2u1 . .0796 .061 820

7120

| . c
L5 <@)P0l]og, 5, 11()205 (Mev) MY <k 20 (wev)
0 ]f%/2 -.033 .0796 .00892 5610
2 1r, -.753 | 0950 .159 314
4o1r, ~. 460 - .0839 -.110 455
6 1f -.233 ' .0602 .0775 645

7/2
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The admixture of a core excited component in a shell
model configuration is proportional to <kv>2/CLﬁwL (see
Ed. (D.1")). Assumihg ﬁhe hydrodynamical valﬁes for the
mass parameter D2 gives 9.2 and 10.8 MeV for the energies
of the effective quadrupole phonon in ngo ahd TiSO.
Using these energies and the C2 of Table 1 in Eq. (D.1")
leads to values of 12% and 14% for the L=2 core admixtures

50 Admixtures this

in the ground states of ngo and Ti
large are not completely tolerable in view of the per-
tqrbative treatment being used. Ref. 15 and 16 report
7% L=2 core admixture in the ground state of ngo. The
discrepancy cannot be accéunted for by differences in
the values of <kv> and C2 which have been used heré and
in those works.

As an example of the pairing effect which is
due to the core polarizétion, the results of shell
model calculations of Kuo and Brown for TiSO and Zr90
are shown in Fig. 1. Theoretical results. obtalned with
and without the inclusion of core polarization are com-
pared with experiment. For both of the spectra shown
the zero of energy is that of two non-interacting protons
in the lowest available orbit outside of the filled core.
The experimental energles have been plotted with the
aid of the mass tables of Mattauch et a1.97 The experi-

mental energies for Ti’° have been shifted by .U MeV
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Figure 1l.--Results of shell model calculations of Kuo and Brown for Zr and

are results with

. 3p~1h
core polarization included while the label G designates results when core polar-

ization is 1gnored.




S

149

‘ because the Coulomb interaction was not included in the
‘ shell model matrix elements.
The figure clearly shows that cofe polarization gives
a large attractive cohtribution to the J=0 matrix elements,
a small attractive conﬁribution to the J=2 matrix elements,
and,repulsive contributions to matrix elements of higher
J. In both'céses the theoretical 27 enefgy ié too high.

90 both of the O+ states and the 4+ state need to be

For Zr
pulled down.

The theoretical results for TI50 are in better agree—
ment with experiment than are those for Zr°°. The T12°
results are for a full 1f-2p shell calculation while only

R . . 90 _
the 2p1/2 and lg9/2 crbits were included in the Zr calcu
lation. Note that the ground state energy in Tiso is 2.90

' A 2 2
MeY below the unperturbed value. <(lf7/2) ol‘v;ff|(1f7/2) 0>
has the value -2.068 MeV with -.869 MeV coming from the bare

force and -1.199 MeV as a result of core polafization. The

additional -.832 MeV ground state binding energy is due to

very small admixtures (less than 5%) of (1f5/2)2, (2p3/2)2,
and ('2pl/2)2 components in the ground state wave function.
For Zr90

<<1g9/2)20|7/effl(1g9/2)20>=—.57 MeV-1.01 MeV

<(2p1/2)20|?/eff|(2p1/2)2o>=-.121 MeV-.0105 MeV
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where the first number in each case is the bare matrix element ‘

and the second is the 3p-lh correction. An additional -.3 MeV

is added to thé first matrix element to account for excitation

of the two valence protons to the (lg7/2)2 configuration and

-.2 MeV 1is added to the second matrix element to estimate

the effect of configurations with two 2p3/2 holes. A pure

(1f7/2)2 calculation for TiSO would probably also underbind

the O+ ground state.

In summary, the perturbative treatment of core polariza-

tion gives a dramatic contribution to the theoretical results;

however, the underbinding of the O+ and 2+ states indicates

that the effect is being underestimated. It is uncertaln how

these deficiencies are distributed between the different

core multipoles. Further, the choice <kv>=50 MeV may result in

contributions to transitions from core polarization which are

somewhat larger than the matrix elements of Kuo and Brown

actually imply--at least for Zr9o.

Microscopic Transition Densities (ngo and TiSO)

In the completely microscopic calculations for Zr90 and

TiSO (detailed formulae are given in Section 3 of Appendix D)

pafticle—hole pairs have been taken from the following shells:

ngo Particles: 24, 1g7/2,3s,1h,2f,3p,1113/2,2g9/2

Holes: 'ld,2s,lf,2p3/2'(and 1g9/2,2p1/2 for neutrons only)

5/231g32d’33

Holes: 1p,1d,2s and 1f7/2(for neutrons only)

50 Particles: 2p,1f
Ti-
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These orbits include all the particle-hole excitatidns with
energies up to roughly 2fiw, except those proton-proton hole
excitations for whiqh the particle level is the same as the
valence orbitals, i.e. in Zr9o the proton particle-hole
pairs lgg/g"jh and 2p1/2—jh are neglected as are 1f7/2-jh'
proton excitations in TiSO. The single particle energy

levels have been taken from the Nilsson chart at zero deform-

vation. The parameter Aw which fixes both the harmonic

oscillator wave functions and the energy denominators has
been taken to be 9.1 and 10.5 MeV for Zr90 and TiBO,
respectively.

The composition of the core transition densities,

FLOL
p
the L=2-6 transitions in T1°2° are displayed in Tables 2 and

(C) and FﬁOL(c), for the L=2-8 transitions in ZrI° and

3. The important particle~hole pairs are listed with their
energy denominators. The amplitude of the state

( o> and the
amplitude of the state ][(jj)o(jpfh)L]L> in the I(j)2L>

![(jj)L(jpjh)L]os in the [(32)o> ground state, A

excited state, AE, are listed along with the fractional

contributions, %, of a particular particle-hole excitation
to its respeétive core transition density (éither proton or
neutron). Observe that in 7r2° it is only the states with
j=1g9/2 that are involved in the L=2-8 tranSitions. For
the definition of the amplitudes see Eq. (D.39). The ratio

FLOL LOL
n

of (¢) to Fp (C) is also given in each case--denoted by

N/P.



TABLE 2.--Composition of core transition dznsities for L=2-8 transitions in ngo.

ngo
L=2 (N/P)=5.35 [(16.8%]
‘ v Protons Neutrons
b h E(ph)[MeV] Ag . % A Ay %
~1lhpy lf7/2 12.5 -.058 -.026 .391 .—.172 -.077 209
| lh9/2  lf5/2 14,5 -.051 -.023 .310 -.130 -.058 .139
g7 /5 1d3 /5 15.0 | —.995 -0.20 .222  -.114 -.051 105 w
2f7/2. 2p3/2v 15.0 -.013 -.006 ' .051 - |
*1i13/2 1g9/2'.' -~ 13.0 | -.156 -.070 .218
*2d5/2 : 'lg9/2 3.5 ' +.273 +.122 .269 i
' T=.974 T=,940 |
L=4(N/P=5.09) [10.7%] \
Protons Neutrons
D h™ E(ph)[MeV] Ag Ag % Ay Ag , %
1h9/2 1f5/2 14,5 -.033 -.011 w153 -.072 - -,024 - .065
lh11/2 11‘5/2 9.5 -.042 -0.14 .097




..1l’

TABLE 2.--Continued

'lhl$/2 1t 12.5 -.021 -.007 105 .102 034 .106
1h, 5 P35 10.5 =039 -.013 234 +108 .036 127
lg7/2 ld3/2 15.0 -.027 -.009 .089
e, 5 ld; 17.0 .018 .006 . 059
lg, s 281 5 16.0 021 007 .097 060 :020 051
3, 1d; 5 26.0 .015 .005 .077 |
*1hg 5 2py 5 14.0 .063 021 .057
*le, . leg /s 4.0 171 .057 .100
*2d; /., leg /o 3.5 .153 .051 123
*1113/2 1gg /5 13.0 .096 032 111
T=.911 T=.745
L=6(N/P=6.41) (8.5%]
Protons Neutrons
D h E(ph)[MeV] A, Ay % A, A %
lhg ,, 1 /5 1.5 ~.018  -.005 .095
lh9/2 1r7/2 17.5 .018 .005 .105
n, . 285 5 15.5 - .018 .005 164 .050 014 069

£GT



TABLE 2.--Continued.

010

1hyy /5 1 /s 9.5 -.036 - .204 . 065 -.018 .064
1ny, 5 1, 5 12.5 =.007 -.002 .054 061 -.017 .066
1h,, /5 2p5 /s 10.5. -.014 -.004 .078 .050 -.014  .050
g, 1dg 17.0 .025 .007 204 .061 017 .087
1155 281 /5 25.0 .011 .003 061
*1h, 4/, 2py 9.0 .075 ~.021 . 089
*lg, ., leg /, h.o 187 -.052 .206
*2d; /5 1gg /5 3.5 .094 .026 .072
*2d5 /5 lgg /5 6.0 .083 -.023 .103
i, 45 lgg /5 13.0 7061 -.017 077
T=.965 T=.883
‘L=8(N/P=7.70) [5.7%] |
Protons Neutrons

D h " E(ph)[MeV]. Ag Ag % Ag | Ag %

i lhg 5 1f, o .17.5 .016

| 1y, 5, 9.5 - 033

| 155 1d, 24.0 .008

hGT
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TABLE 2.--Continued.

*1g; 5 184 /5 b0 -.214 -.052  .564
i3, lgg,, 13.0 | ~.037 -.009  .056
T=.975 T=.911

GG1



TABLE 3.--Composition of core transition densities for L=2-§ transitions in_TiBo.

7170
L=2 (N/P=5,58) [33.0%]
Protons Neutrons
p h E(ph)[MeV] Ag A % Ay Ag_ %
lgy,, 14, 15.5 -.065 -.029 451 ~.186  -.083  .216
lg,,, 1d3,, 17.7 -.054  -.024 309 -.136  -.061 .14y
15,5 1py 5 20.9 -.036 -.016" .158 ‘
*2p3/2 Afe 3.0 b7y 212 ATy
e, 1fy, ., 4.5 -.210 -.094 081
' T=.918 T=.915
L=4 (N/P=6.06) [15.5%]
v ' Protons Neutrons
p ~h E(ph)[MeV] Ay - Ag % A Ag %
lgg /s .2sl/2 4.3 -.033 -.011 .23 -.096 -.032  .107
18,5 259 ,, 19.3 .023 -+ .0075 .134 .063 .021  ,063
leg,, 145, 15.5 -.018 -,0061 .120 -.010 -.0033 .103

96T




TABLE 3.--Continued.

1g9)2 ldy 5 12.7 -.0b2 -.014 (173

lg,,, 145, 20.5 .022 - .0072 .100

1, /5 '1d3/2 17.7 -.028 5.0092 .140 -.066 -,022 .054

15,5 1pg,, o225 .028 .0092  .180 .072 024,079
*2p5 /5 1f, 3.0 .234 .078 . ,187
*2py 5 1f, 5.0 .048 .016  ,156
*1fg 1f 4.5 -.264  -,088 .220

' T=1.081 T=.969
L=§ (N/P=8.60) (11.2%]
Protons Neutrons

p h E(ph)[MeV]} AG AE % AG AE %

1g, 5 1d3/2 '12.7 —.036 -.010 .580 -.090 -.025 .163

lg,,, 145, 20.5 .023 .0063 .369 .058 .016 112
leg,,  ldg 15.5
*1fg 5 1f, /5 .u.5

16T
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The transition densities are, of course, functions of

radial position within the target nucleus. The radial

- dependence of the valence transition density, FLOL(D),,

p

is.givenvby unz(r)ung(r) while the radial dependence of
the contribution of a particuiar particle-hole éxcitation
to its core transition density is given by unpzp(r)uﬁhzh(r).
The particle—hqle excltations which give important contri-
butions.almost:invariably satisfy the cbndition

unpzp(r)unhgh(r)~unl(r)un£(r),
i.e. have radial wave functions similar in shape to those‘of
theiaétive valénce nucleons. This fact was expected and
used to fix the sign the radial integrals in arguing,thé
phase of the effect of core polérization on transitions in
Section 3 of Appendix D. Exceptions occur, for the most part,
only when a particularly small energy denominator is involved.
Since thé radial wave functions of the valence nucleons are
nodeless for these cases 1t 1is not surprising that most of

the'important'particle—hole excitations are formed from

orbitals with nodeless radial wave functions.

LOL LOL
p p

and their important individual components have the same sign

The essential point is that F (D), F (¢c), F c),

LOL(
n

and approximately the same radial shape. This fact, which
1s a result of direct calculation, was assumed in deriving
the empirical formula for enhancement factors due to core

polarization in Section 4 of Appendix D. It also justifies

’

d

%
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comparison of the transition densities and their components
through percentages and ratios as is done in Table 2 and 3.

| In the tables only those particle-hole excitations which
make up at least 5% of their respective transition densities
are listed. In each case the total fraction of_thé complete
core transition density due to the listed particle-hole
eicitations is given. This 1s designated by T. This number
illustrétes the importance of contributions not included in
the tables.

Relatively few particle—hole pairs make important
contributiéns to the transition densities, particularly for
the L=2 transitions, the L=6 transition in Tiso and the L=8
transition in 2r2°, It is also noted that for the L=2

transitions the following condition is highly favored.

lJp—Jhl=L=2

This was also noted by Zamick and Federman in their calcula-
tions of quadrupole effective charges.88 For the L=6 transi-

50

tion in Ti and the L=8 transition in ngo a similar condi-

tion is favored, namely:

<
1}
o
1+
N

.o =1 s, .
= += + =],=

L.*5 Jptdy L=6 or 8
These results follow from Eq. (D.52) and Eg. (D.49) which
show that the contribution of a particular particle-hole
. pair to the transition density is proportional to (2jp+1)x

[M%O% (J 3 )]2 which is essentially given by
P h h™P .
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2 .

(2§ ,+1) (25, +1) Jp -~ Jp L

1/2 =1/2 0

It‘can be shown that vector addition coefficients of the
above t&pe achieve their maximum value when the conditions
cited above are fulfilled.63
The increased fractionization of the core polarization
strength for the transitions with intermediate L-transfers
occurs because the above coppling conditions are not satis-
fied simultaneously with the condition that the pafticle
~and hole orbitals have nodeless radial wave fuﬁctions, i.e.
particle-hole excitations w;th.nodeless radial wave func-
tions that do not satisfy the coupling condition are as
favorable as those satisfying the reversed conditions.
The percentages given in the brackets for each transi-
tion are the admixture of particle-hole pairs coupled to L
in the ground state. This is obtained by summing the
squares of the A,. There are 16.8% L=2 particle-hole
pairs in the (1g9/2)2 gompongnt‘of the ground state of ngo.
The L=2 admixture in the ground state of TiSO isv33%. These
values are to be compared With the corresponding values of
12% and 14% obtained using the macroscopic vibrational model to
describe the core.. The comparison is relative as the energy
denominators used in obtaining the latter values are somewhat

arbitrary.

The core transition densities which have been obtained
here would be essentially unchanged if average energy

denominators of 14.5 and 17.1 MeV were used in place of
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50

the Nilsson denominators for ngo and Ti”", respectively,

in all insténces except.when the particle and hole occupy
sub-levels of the same principle shell. These average
enérgy denominators are somewhat smaller than the values

2hw assumed by Kuo and Brown.25’5)4 The Nilsson scheme gives
small energy denominators when the particle and hole are

in the same principle'shell. This is consistent with Kuo
and Brown's use of empirical energy differences for these
cases. Because of their Smallness, it is these energy
denominators which are most uncertain. Further it is evident
that the transition densities are very sensitive to these
small energy denominators since the 2d5/2—1g9/2 and 1g7/2—
lg9/2 negtroq—neutron hole pairs in Zr90 and the 2p3/2_

1r and 1f —1f7/2 neutron-neutron hole pairs in TiSO

7/2 5/2

(all of which have small energy denominators) appear in

the wave functions with fairly large amplitudes. It is
estimated that a factor of two change in these small denom-
inators could make 20-40% changes in the magnitude of the
transition densities obtained, with the core transition

50

densities in Ti being slightly more sensitive to this

change than those for ngo.
For TiSO
admixtures obtained in the microscopic calculations as com-
pared to those obtained in the macroscopic parameterization
are attributable to differenceé in the energy denominators

used here and in Ref. 25, Most notably, the latter

quotes larger values for the small energy denominators in

s The differences betweén the L=2 ground state core
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TiSO than have been used in this work. Specificaily it gives
E(ph)=4.8, 6.82, and 8.75 MeV for the 2p3 /p=1fg 155 2Dp /o~
1f7/2, and 1f5/2—1f7/2 neutron-neutron hole excitations,
fespectively. Corresponding Values‘used in this work are
3.0, 5.0, and 4.5 MeV. Re?lacing the smaller energy denom-
inators by the larger onésjreduces the L=2 ground state
admixtures in T150 from 33% to 18% and a 20% decrease in the
magnltude of the correspondlng neutron core transition density.
Probably the most startling feature of the results
presented in Tables 2 and 3 is the 1arge‘imbalénce between
the pfoton—proton hole and neutron-neutron hole core polar-
ization contributions. The difference is so large as to
seem unreasonable. It is the natural result of these cal-
culations for three reasons. The first is simply the differ-
ehce in strength between the neutron-proton and proton-
proton forces which results in an average increase of about
2.75 1in the importance of a particular neutron-neutron hole
as compared:with the corresponding proton-proton hole. The
second 1s ‘the presence of the excess core neutrons which
contribute neutron-neutron holes vig small'energy denom-
-inators. From 45-70% of the neutron core transition densi-
ties result from excesé neutrons. Such contributions are
indibated by an asterick in the tables. The last reason is
the neglect of the proton particle-hole pairs for which the
particle level is that of the valence protons. Federman.
and Zamick88 included such contributions in their investi-

gation of quadrupole transition rates and found that they

‘i'I
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gave roughly 35% of the core polarization due to protons.
They observed a neutron-proton imbalance in their results,
but they considered evenly closed cores so it was due only

to the n-p and p-p forces differencé.

L=0 Transition in zp3°

The L=0 transition in Zr90 needs separate discussion.
As was mentioned previously the ground state wave function
and'0+(Q=—l.75 MeV) wave function are mutually orthogonal

. 2 2 . .
combinations of the (;59/2) and (2p1/2) configurations,
l.e. '
+ - 2 2
|07 (g.s.)>= 6] (1gg /) 0>-.8|(2p, ,,)0>

0% (Q=-1.75 Mev>>=.8|(;g9/2)2o>+.6|(2pl/2)20>

The transition density has two components——a (1g9/2)2 com-

" ponent and a (2p1/2)2 component corresponding to the matrix

elements
48<(1 e 2
. g9/2) OIT,(lg9/2) 0>

Strictly speaking the theory also allows for contributions

corresponding to the matrix elements:

2 2
+36<(2py ,5)% | TI(1eg,,) %>
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—.6u<(1g9/2)2o|T|(2pl/2)20>

There is no valence contribution to these matrix elements

as the initial and final valence configurations diffeér in the.
state of more than one particlel Further the 3p-1h inter-
mediate states which can contribute must have two.protons

in the lg9/2(2p1/2)borbit and a third proton in the 2pl/2
(1g9/2) orbit--all coupled to a'proton hole. »These are
neglected., Similar contributiohs, corresponding to the

matrix eléments
2 ' 2
—.8<(1g9/2) L|T|(2pl/2) 0>.

have been neglected in treating the other transitions in
ngo.

The structure of the transition density for the L=0

transition is illustrated in Fig. 2. Shown at the top are

F00(0) (01, ¥200(0)[p-51, Fo00 (1) =539 (0)+F0°0 (0) [D+p-51,
and FSOO(T)=FQOO(C)[n—ﬁ] for the (lg9/2)2 configuration.

Corresponding information for the (2pl/2)2 configuration is
shown in the middle. The complete valence transition
density [D], the cbmplete proton transition density [P], and
the complete neutron transition density [N] are shown at

the bottom.. Here [D]bis the sum of the two curves labeled
[b] in the top two drawings, [P] is the sum of the curves
labeled [D+p-p], and [N] is tﬁe sum of the curves labeled

[n-n].




165

TRANSITION DENSITY
C Zr*ap
0*(Q=-1.75Mev)

173
BA®] l -
08+ -
(o]
-08} -
-6 | L 1 i 1 ] i 1 1 L
R =Y R L L AL L A S e R e | ]
i (2p,): —D ]
= —=D+pp 4
r - ——— p‘a —
o8- e n-i -
0 N ,’,;/ T \\\ n
1 C i
W -08- -
%_ L R S S B R S R R T
186 LI I R A R N AN B S ma
C TOTAL: — D i
- —=—P _
o8- - N .
(0]
-08- f -
-\ _
- —

0
Om

L1 _ 11 [ 4 { ] |
10 20 30 40 50 60 70 80 90100 10 120

riF)—
Figure 2,--Structure of transition density

for L=0 transition in Zr90_




166

As in the previous cases, neutron core excitation are
found to be more important than proton core excitations.’
Thé complete proton transition density does not differ
appreciably from the complete valence transition density;

000

The interior minimum of Fp (D) has been increased, the

surface maximum has been decreased and shifted slightly
outward, and a longer taii_appears as a result of FSOO(C).
The core transition densities'are oscillatory and are not
too similar to tﬁe valence transition densitities. Only
particle-hole pairs with jp=jh contribute to the core
transition densities; As the available particle and hole
levels with the same total angular momentum do not have the
same principle quantum number, the oscillatory shape results.
The small core transition densities for the (lg9/2)2

configuration is understood in terms of the poor overlap of

ulu(r)ulu(r) with unpzp(r)unhlh(r) when np#nh. The overlép

of u,,(r)u..(r) with u (r)u
_ 21 21 nplp nhlh

explains the larger core transition densities dbtained for

(r)(np#nh)'is_better, which

" the (2pl/2)2 configuration. In the latter case, the radial

integrals (see Section 3 of Appendix D) still have the sign

of the two-body force and the difference in sign between the

core transition densities and the valence transition density
for large r is just the difference between u21(r)u21(r) and
woy (r)un 2 (r)(np#nh) at large r. The net effect of core
PP h™h _ :
polarization will be an enhancement of this transition,

although it occurs as a result of inhibition of the ‘(2p1/2)2

~contribution to the transition.
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All particle—hole_pairs which contribute fo thisvtrans—
ition are listed in Tabile 4 with their energy denominators
and the amplitudes AG' AE is not given since it is equal to
AG'for this case. Percentage contributions are not glven
| either Since differences in radial shape between the various
components do not allow such a comparison. Ground state
admixtures are given in brackets as before. These are quite
smali. Excitations involving excess core neutrons are indi—.
cated with an asterik. They do not contribute to this trans-

ition via small energy denominators and thus do not play a

special role in this case.

Microscopic Transition De%sity for Transition
to Q=-.908 MeV State of V39

The excitation of the Q=-.908 MeV level of YS9 for
incident protons of 18.9, 24.5, and 61.2 MeV is considered.
In the ground state of this nucieus the valence proton is in
the 2pl/2 shell and for the excited state being considered
it is in the 1g9/2 orblt The triads (LSJ) which can contri-
bute to this transition are (314), (514), (505), and (515).
None of these are forbidden in the simple shell model inter-
pretation of this transition so there is no breaking of the
valence transition selection rules because of core polar-
ization. It is found that the contributions from (514) and
(515) are small enough to be neglected. The microscopic

transition densities for the (314) and (505) triads have

been calculated by taking particle-hole pairs from the

following levels:
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"TABLE 4.--Composition of core transition dens1t1es for
L=0 transition in Zr90,

Zr90
~ 2
L-0(1g9/2) [<.5%]
Protons Neutrons
P h E(ph)[MeV] AG AG
2f7/2 1f7/2 1770 .0008 .9120
3p3/2 2p3/2 18.0 -.QOOM | .0007
2d5/2 1d5/2 16.5 -.0017 -.0298
331/2 231/2 18.0 -.0056 . -.0146
2d3/2 1d3/2 17.0 -.0080 —,0238
2f5/2 11‘5/2 17.0 . 0066 .0093
*3p1/2 2p1/2 17.5 .0005
*2g9/2 lg9/2 18,0 .0475
» i
L=O(2pl/2) [2.9%]
Protons Neutrons
P h E(ph)[MeV] AG AG
2f7/2. lf7/2 17.0. .0101 .0163
3p3/2 2p3/2. 18.0 .0430 L1044
2d5/2 1d5/2 16.5 .0241 .0486
331/2‘ 231/2 18.0 .0218 L0610
2d3/2- ld?)/2 17.0 . 0060 .0L09
2f5/2 1f5/2 17.0 .0005 .0155
*ggg/g lg9/2 18.0 .0265
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Particles: 24, 1g7/2, 3s, 1h, 2f,3p, 1113/2,2g9/2

Holes: 1f, 2p3/2(and 2pl/2, lg9/2 for neutrons 6n1y)

Note that this transition involves é change in parity--thus
the particle-hole pairs contributing to the core polarization
here are not the same as those involved in the ngo.transitions
which have been considered. The orbits listed include alil
~ the particle-hole pairs with énergies up to roughly 1¥w ﬁith
Athe exception of the 1g9/2—jh and 2p1/2—jh'proton excita-
“tions. By including the 2g9/2 and }113/2 particle levels a
few 26w excitations are brought in. The constant Aw has been
fixed at 9.1 MeV for this case--the same as for Zr90.

The composition of Fglu(c), Filu(c), FSQ5(C), and |
F2°5(c) isjgiven in Table 5. The format of this table is
the same as that of Tables 2 and 3. AE is the amplitude of
the state |2p1/2(jp3h)J;9/2> in the |1g9/2> excited state
and A; 1s the amplitude of the state |1g9/2(jp3h)J;1/2> in
the |2p1/2> ground state. For the expression for calculating
these amplitudes see Eq. (D.33). The J=4 ground state admix-
tures are almost zero while the J=5§ ground state admixtures |
aré Just slightly smaller than the L=6 ground statebadmixtures
which were obtained for ngo.

Fglu(C) is larger than Fglu(c) as is indicated by the
N/P ratio of -.383. The minus sign indicates that FSIM(C)

is opposite in sign to Fglu(D) while Fglu(c) has the same

sign as FSIM(D). The sign difference is a result of the




TABLE 5.--Composition of core transition dengities for transition to Q=-.908 MeV
. | level of Y99,
, v89
J=L(N/P=-.383) [ .8%] '
- Protons Neutrons
p h E(ph)[MeV] AG AE % AG ' AE %
_lg7/2" 1f7/2 10.0 .032 w013 071 -.011 -.005 071
2d5/2 1f7/2 9.5 -.014 -.006 L1hy .QlO .005 .083
351/2 lf7/2 12.0 027 .008 074 -.006 -.002 .053 I
) . [ew]
2d5/2 2p3/2 7.5 L0514 .021 248 -.012 -.005 .152
5,5 1fy 19.0 -.019 -.011  .078 |
1113/2 1?5/2 16.0 .037 .025 . 290 -.011 -.006 232
*lhll/2 lg9/2 6.5 -.011 -.005 | . 152
*1h9/2 . 139/2 11.5 | -.011 ~,005 .083
T=,905 T=.826
| J=5(N/P=3.84) [7.2%]
' - ‘ Protons Neutrons
p h E(ph)[MeV] A, 'AE % A Ap %
1g7/2 lf7/2 10.0 .016 ‘-.027 .101 -,075 -.025 077




> - e

TABLE 5.--Continued

le, ,, 1fe 5 7.0 026 L0y .128 .088 .039 .095

25,5 18, 9.5 017 .008 051 |

24, /5 1 ,, 6.5 .089  -.003  .195 .100 LObY 124

24 /5 1f, 5 12.0 005  -.016 070 =.065 ~.018 064

18,,,  2P3,, 8.0 008  -.047  .275 ~.118 -.052 174

)4, 1y /5 19.0 - -.023 -.003 .085 -.036 -.020 059

1113/ 2055 17.0 ~. 034 0 .115 —.0b2 -.030  .098 g
CHhy s lgg 6.5 | | .130 063 .216 =

T=1.020 T=.907
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repulsive character of the "spin-flip" component of the b—p

force. Thé "spin-flip" componeﬁt of the p¥n force is weak

and attractive which explains the sign and size of Fglu(c).

- These conclusions are based on the discussion of Section 3

of Apbendix D. The contribution to the transition from the

triad (314) is reduced as a result of'core polarization.

This is a well known result first used to explain the slow

MY y—decay of the Q=-.908 MeV level to the ground state.98’99
The results for FSOS(C) and FEOS(C) are similar to

those obtéined for the core transition densities deScribing

‘the L=2-8 and L=2-6 transitions in Zro0 and Ti50, respectively.

FSOS(C), F205(C), and their major components are similar

in shape and have the same sign as FSOB(D).' FEOS(C) is

larger than FgOS(C), but N/P§3.8M is considerably smaller

50

than the values obtained for ngq and Ti core transition
densities. The reason for this is the decreased imﬁortance
of excitations involving the excess core néutrons. Abouf

66% 6f FSOS(C) and about 46% of FEOB(C) is due to particle-
hole pairs which satisfy the coupling conditions given before.

Some fractionization occurs because the overlap of uzl(r)ulu(r)

with uooy (r)u 0 (r) is somewhat more ambiguous than in the
P D hh

case of ngo'andvTiSO. Essentially the same results would be
obtainedAfor all the core transition densities if an average
energy denominator of 11.1 MeV is used Without exception. -
This 1is slightly greater than 1w, the value appropriate

for negative parity transitions.

d
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k Angﬁlar Distributions (Zr9o, TiSO, and Y89)
Figure 3 shows the angulér distributions which have

been calculated for the L=2-8 transitions in Zr2° ip the |
(p,p') reactioﬁ at 18.8 MeV. The data shown is from Ref. 8.
The results for the L=2.and 4 transitions in TiSO for the
(p,p') reaction at 17.5 and 40.0 MeV are compared with experi-
menﬁ in Figure 4. The 17.5 MeV data was taken from the liter-
aturelqoand the 40.0 MeV data is the unpublished work of

B. Preedom. Theoretical differential cross sections obtained
for the excitation of the Q=-.908 MeV level of Y89 for incident
protons of 18.9 MeV, QU.S MeV, and 61.2 MeV are compared

with experiment in Figure 5. The data comes from Ref. 10,

Ref. 101, and Ref. 102, respectively.

In Figure 3 and ¥ the solid curves are the results of

the completely microscbpié calculations and the dashed curves
are the results of the calculations which use the macroscopic
vibrational model to describe the core with the core para-
meters fixed from the bound state calculétions. The solid
curves 1in Figure 5 are the complete differential cross sections
and the daéhéd curve represents the L=5 component of this

cross section. The L=3 component is shown oniy for the

61.2 MeV case where it appears as a center line. The optical
parameters used in these calculations are given and referenced
dn Table 6. The notation is the same as used in Eq. (B.13)

and- the same geometry is used for the volume and surface

imaginary terms.
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.
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TABLE 6 --Optical parameters used in calculating the ngo, T15 , and Y89

Well depths are in MeV and radii and diffuseness parameters are in F

angular distributions.

Target E; hp(MeV) ' W Wp ry a ry a” Vg Too 25 r, © Ref.

zr?0 18.8  52.0 0.0  9.25 1.20 .70 1.25 .65 6.2 1.20 .70 1.25 8

119001 175 g0 0.0 11,0 1.25 .65 1.25 47 00 - - 1.25 100

r1%9(1) yo0  wu.8 8.1 0.0 1.169 .755 1.403 .441  6.51 1.169 .755 1.20 76°

y89 18.9  52.6 0.0 9.8 1.20 .70 1.25 .65  5.70 1.20 .70 1.25 10

¥ 89 24.5 | SAME AS 18.9 MeV

¢89 61.2  39.5 5.12 2.54 1,20 .69 1.40 .53  6.00 1.20 .69 1.20 102
1592 9750 483 0.0 10.68 1.236 .60 1.261 .52 10.0 - 1.236 .60 1.236 103

1%9¢2)  uo.o  uu.85 7.82 1.14 1.16 .75 1.37 .630  6.04 1.064 .738 1.25 104°

aPar*amet_érs for Fé5u used here,
54

bParameters for Fe

used here with V and W varied to provide good fit to elastic cross’
section. | . ' .

LT
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Two sets of parameters are gi&en for T1°9, The first
set (1) was used for the completely microscopic calculations
and the second set (2) were used in the calculations using the
macroscopic vibrational description of the core. Set (2)
give better fits to the elastic scattering data, but were
not available until the microscopic calculations were com-
pleted. As the differences between the two sets of para-

‘ meters are not sufficiently large to alter the conclusions
of this work,'the microscopic calculations were not repeated
with the improved parameters. _

The overall agreement of the theoretical angular distribu-
tions with experiment is fairly good with the possible exception
of the L=8 transition in Zr90. The general tendency is for the
theoretical results to underestimate the data slightly (by
factors less than two), but it appears as if at least a
rough account of the relative magnitude of ﬁhe differential
cross sections of different multipolarity.in Zr90 and TiSO
has been achieved. The results of the micréscopic calcula-
tions are in good agreement with the results of the calcula-
tions which use the microscopic vibrational description of
the cor'e.+ Thié is expected as the latter are only intended
tb display, more directly, the relation between the renormal-

ization of the force acting between bound nucleons and the

1LThe agreement between the microscopic and macro-
scopic results for Ti50 ig g little poorer than for zr90
- This is attributed mostly to the differences in the energy
denominators used in this work and in Ref. 25 which were
previously pointed out.

d
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renormalization of the force between a bound and an unbound
nucleon. The macfoScopic model gives angular distributions
wlth somewhat better shapes than the microscopic calculatlons.
This is partlcularly evident for the L=2 tran51tlons.

It is 1nterest1ng to note that the prescription for

calculating cross sections which is being followed here leads

- Lo the conclusion that the L=3, abnormal parity component of

the Y89 cross sectilon is appreciable. Other analyses have

. assumed that the angular distribution is totaliy due to L=5

transfer.lo’ml’lo2 The presence of the L=3 component of the

cross section is supported by the data--particularly at
61.2 MeV where it ‘broadens the forward peak in the angular

distribution. The apparent dip in this angular distribution

at about 25° is not reproduced by the calculation. In order

ﬁo reproduce this feature of the data both the relative magni-
tudes, widths, and peak positions of the L=3 and L=5 com-
ponents of the angular distribution would have to be.given
precisely. The approximations and assumptions employed in
this work are too crude to give such fine details of angular
distributions.

For the sake of completeness the integrated cross
sections corresponding to the microscopic.reéults of Fig. 3,
b, and 5 are decomposed into their direct and exchange com-

ponents in Table 7. The results in the table are consistent

with'the observations of Chapter 5.
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TABLE 7.--Decomposition of integrated cross sections corres-
ponding to results shown in Fig. 3, 4, and 5 into direct and
exchange components. All cross sections are given in mb,

d

Target | Ep,p(MeV) § L 9%4ir ex O Oex/Odir
1
2 .997  .u82  2.84  .u81
zr?® | 18.8 b 165 .156 627 945
6 .0207 - .0550  .137  2.66
8 .00116 .0163  .0236 14.1
17.5 | 2 b4.89  2.70  14.5 553
7170 b 643 911 2.94 1.42
bo.o | 2 3.93 . 884 8.30 .22k
Yy .680 .340 1.86 .500
18.9 3 . .0k02  .0303  .127 754
5 .0988 .143 IR 1.45
y89 24,5 3 .0496 .0329 .150 661
| 5 128 .165 .532 1.33
T61.2 3 .0768  .00473  .116 .0616
5,189 0330 .361 175

Form Factors for L=2 Transitions

in Zr90 and TiSO

The form factors for the microscopic calculations are
obtained by folding in the appropriaté multipole coefficlent
of the K-K force and exchange interactién with the complete
transition densities obtained by combining the valence and
core transition densities. The foldihg pfocedure is

defined in Eq. (2.59"). When the macroscopic vibrational
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description of the core is used the form factors are defined

by Eq. (D.13) where PplSJ

(r) denotes the valence form
factor.

The form factors given by the microscopic and macro-
scopic models for the L=2 transition in Zr90 at 18.8 MeV
.50

and in Ti

-

at 17.5 and 40 MeV are compared in Fig. 6, 7,
and 8, respectively. The valence form factors are labeled

D and shown as a solid line in the figures. They are the
same in both the microscopic and macroscopic'pictures. The
total form factors, which inciude the effect of core polar-
ization, as given by the macroécopic model are represented

by dashed curves 1abéled D + C (Macro). These are complex
and both the real and imaginary components are shown in the
figures. The total microscopic form factors are represented
by center lines labeled D + C (Micro). These are real.
Strictly speaking one expects the projectile~target inter-
action to>be complex which would lead to complex form factors
in the microscopic calculétions also.

The total'microscopic form factors and the real part of
the total macroscopic form factors are similar in shape to the
direct form factors, although they both peak at slightly
larger radii. The tdtal macroscopic form faétors peak at
the largest radii in all cases shown. The better angular
distributions given by the macroscopic calculations is attri-
butable largely to the latter observation although the imag~

ihary part of the macroscopic form factors does play some

part in the improved shapes.
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Enhancement Factors

In order to examine more carefﬁlly the role of core
polarization in these results, the square of the enhancement
factors obtained iﬁ these calculations are given in Table 8,
These are simply»the ratio of the integrated cross section
obtained with core pclarization to the integrated cross
section obtained without core polarization. They are.
denoﬁed by ES where the subscript p appears because the
'valence nucleons are protons in all cases being considered.
Excebt for the abnormal parity L=3 component of tﬁe Y89 Cross
section, the values of eg are of the order of 10. This
1llustrates that core polarization plays an extremely
important role in the (p,p') reaction. Expérimental values
of eg are given for the transitions in ngo and TiSO. For
the L=2 and L%M transitions in ngo these have been obtained
by normalizing the theoretical angular distribution for the
valence transition to the data at MOO. For the_L=6 and L=8

. [e] o]
transitions in ngo, 60 and 70 were used to compute 8;'

50

For Ti | at 17.5'Mev, ES was determined by comparing the
theéry and data at 40° but at 40 MeV the hump at 51O in the
experimental L=2 angular distribution and the flat spot at
35° in experimental L=4 angular distribution were used for
the point of normalization. In all cases good "eye" fits

to the data have been achieved. Experimental enhancement

factors have not been obtained for the Y89 transition because

the cross section contains two components.




TABLE 8.-~Theoretical and experimental values for the square
of the enhancement factors corresponding to the results of

Fig. 3, 4, and 5. For prescription used to calculate €2 (Exp)
: see text.. P
Target . é E (MeV)g L éz(Micro) ez(Maéro) eg(Exp)
| FraptieY) | P pact D
g 2 18.9 16. 33.2
7190 18.8 | 4 12.7 12, 20.3
6 9.56 11.0 18.4
8 7.62 11. .55.2
1120 17.5 2 17.2 10. 18.9
| | . 12.8 9. 19.4
710 40.0 19.8 13. 19.8
y 14.9 12. 18.2
- y89 18.9 3 .629
5 9.14 N
y89 24,5 3 641 _
5 9.55 _
89 C61.2 3 617 _
5 10.3 -
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‘ Beyond any uncertainties associated with normalizing
the theoretical results to the experimental data, the experi-
mental values Qf eg given in Table 8 are subject to any
errors contained in the approximate treatment of antisymmet-
rization used in this work. For example consider the results
of Love'gg §l7u which were discussed in the note added %o
Chapter 5. Using the central part of HQJ force for the
projectile-target interaction and treating antisymmetrization
exactly, for the L=2 valence traﬁsition in Zr90 they obtain
cdir=.OU12mb, oex=.00415mb, and 0T=.O689mb'with Oex/odir='l‘

The results of this work are odir=.0524mb, oex=.02ﬂ6mb, and

0p=+150mb with oex/odir=.u70. The first set of results gives

Ei(Exp)=72.5 for the L=2 transition in Zr20°.

Taking for ¢ the values obtained in this work for

dir
the K—K force, using the Oax/9gip ratios of Love et al
shown in Fig. (5.1'), and assuming maximum interference (see
Eq. (5.3)) suggests that a proper treatment of exchange
might lead to the following modifications of the ngo results
which have been éhown,
(1) Values of E;(Exp)=54.7, 33.8, 23.2, and 35.1
~might result for L=2, 4, 6, and 8.
(2) The microscopic angularAdistributions for the
L=2, U, and 6 transitions of Fig. 3 may be reduced
by factors of 1.65, 1.66, and 1.26, respectively,

while the L=8 angular distribution may be increased

by 1.57. Here it has been assumed that the completc
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differential cross sections will be effected in
the same way as the differential cross section for
the valence transition. This is not strictly true
sincé neutron excitations contribupe to the_former
and the n-p and p-p forces do not have the éame |
radial shape.
(3) The macroscopic angular distributed of Fig. 3 méy be
multiplied by factors of 1/1.12, 1/1.14, 1/1.07,
and 1.15 in the order L=2-8. Thése cross sections
are more stable than the microscopic ones since the
core contributions are not effected by the uncertain-
ties‘in question.
(4) Under the assumption of (2).the values of eg(Micro)
,Will not be changed.
(5) From (3) it follbws thétreg(Macro) will be 2M;2,

17.8, 13.9, and 8.09 for L=2-8.

‘The main point here is that the results of this work might be

biased so as to improve the agreement of theory and experiment
for L=2-6 transfers.

| The indicated modifications improve the consistency of :
theory and experiment for L=2-8, but at the same time
result in somewhat poorer absolute agreement. With the modi-
fications the microscopic L=2 cross section is too low by a
factor of 2.9 while the L=8 cross section is a factor of 4.6
under the data. Inclusion of the L=7 non-normal transfer
in the 8% calculation might then remo&e most of the discrepancy

between the two results;"Finally observe that the agreement

J
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‘ between the microscopic and macroscopic results is not strongly
effected by the uncertainties due to the exchange approximation,
although the microscopic results for the L=2, 4, and 6 transi-
tions wiil be shifted dowhward 20% with respect fo the macro-
scdpic results while the L=8 results might be bréught into |

- essentlally complete égreement. The fact thaf the macfoséopic
cross sections may be larger than the microscopic cross
‘sections could reflect that a larger wvalue of <kv> should be
uséd in these calculations. ,
The value of eS(Exp) for the L=2 and L=4 transitions
in T1°% are found to be about equal, roughly 19, and the
data provides no inaication that this number varies with
enérgy. It would be useful to have results with exchange
treated exactly to check these points. Except for the magni-
tude of ES it is expected that the observations will be up-
held. Guessing that the cross sections for these‘valence
transitions are being overestimated by the same amount as
for ngo leads to a modified value for eg(Exp) of about 31
at 17.5 MeV. |
It is found that gg(Macro) for the L=2 transition is a
little larger than for the L=4 transition and both are too
small by about a factor of two at 17.5 MeV. They also
~increase a little with enérgy. e;(Macro) for the L=2 transi-
tion at 17.5 MeV might be modified to a value of 13 which

is about 2.3 times smaller than the modified experimental

value. The fact that eg(MiCPO) are larger than eé(Macfo)
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.has aiready been explained. The values'for eg(Micrb) increase
slightly with energy as 1is expected since the shorter range
n-p force is a factor in the complete cross section while
only.fhe p-p force is involved in the valence transition.

| Calculations.have been carried by Satchler gg_gl;67 for

1

the single particle transition in Y99 at 18.9 and 61.4 MeW.

The H-J force has been used and exchange has been treated
exactly. Cdmparing their results with the results 6f this

- work- indicates that the approximate treatment of exchange

is not infroducihg any serious disprepancies here. This is
expected as the dominant multipole'is.L=5 in %his case. The
comparison also indicates that somewhat smaller (léss than

a factor of 2) cross sections would be obtained with the H-J
force. This is also true for the L=2 transition in Zr90 where
the K-K fprce gives the modified experimental value, eg=5u.7,
while €§=72 is obtained for the H-J force from Ref. 74, In
any event it appears as if the results obtained here for

this transition in Y89 are somewhat bettér than those

obtained for'TiSO and ngo.

L=0 Transition in Zr90

An experimental differential cross section is available
for the excitation of the O+(Q=—l.75 MeV) level of Zr90 in
the (p,p') reaction at 12.7 Mev . 105 Ref. 8 also gives an

upper limit for this cross section for incident proﬁoné of
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18.8 MeV. This is about 20 ub between 40° and 60°. A calcula-
tion of the differential cross section for the valence transi-
tion at l8.8vMeV gives a result which is in agreement with

this upper limit. The decomposition of the integrated cross

section for this case is o =.0453 mb, oex=.0392 mb, 0T=.169 mb ,

di
and'oex/odir=.865. This ratio is much larger than g /0d1r=‘22
which is obtained when it is assumed that only lg9/2 prctons
are involved in the L=0 transition (see Fig. 5.1'). This
same effect was observed for Yukawa forces in the discussion
of Fig. 5.1.v Core polarization gives €§=9.35.for-this_transi—
tion which destroys the agreement with experiment. Assﬁming
 that Oex/9qip 1S 10 times too large which is inferred from
Fig. 5.1' leads ﬁo a reeult which is only about 4 times greater
than the uppef limit;

A calculaﬁion with core polarization was made for compari-
son with the 12.7 MeV data. Optical parameters were taken
efrom Ref. 105. The direct and total (direct plus exchange)
dlfferentlal cross sections are shown with the data in Fig. 9
The shape of the theoretlcal cross sections are not in good
agreement with the data and it is seen that there is a large
exchange contribution. Again assuming that the effect of
'exchahge is being overestimated leads to a resulﬁ which is hot
very different than the direct differential cross section
shown. This is in accord with the data ihsofar.as overall

T4

magnitude is concerned. Love et al’  have indicated a value
of 10 is needed for eg based on their calculation of the

differential cross section for the valence transition using
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5 ' Zr%%4p
E =12.7 Mev
. 0% ; Q=-1.75 Mev
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Figure 9.--Differential cross sections for L=0 transition in
Zr90 + p at 12.7 MeV. Direct and total (direct + exchange)
cross sections are shown. Core polarization is included.

10
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the K-B reaction matrix. This is roughly the value obtailned
in this work.

Note that the data has a deep minimum at 60o - the
region where the upper limit of the 18.8 MeV cross section
was fixed - and observe that because of the poor shape agree-
ment this point is badly overestimated. It has been suggested
that the shape of the theoretical result can be 'improved by
damping the form factor in the nuclear interior.9’105 An
angular distribution with a better shape has been obtained
in Ref, lOSfTQm a macroscopic form factor representing a

65

breathing mode.

Effective Charges

Table 9 contains the effective charges for the electric
2L—pole component of the transition rates for the transitions
under consideration. Experimental values are given for the
L=2 transitions. These have been extracted from transition
rates given 1in the indicated references on the basis of the
harmonic oscillator wave functions used in this work. Note
that there are two experimental values given for the quadru-

90

pole effective charge in Zr The two numbers do not agree

with each other and the larger number is the most recent
result.
The results for eeff(Micro) are simply the square

roots of the ratios of the B(EL) computed with the complete

LOL
(

proton transition density, Fp T), to the B(EL) computed

with the valence transition density, FgOL(

&

D). For the
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TABLE 9.--Effective charges for electric 2L—pole component J |
of transition amplitudes for the transitions under consider-
ation in 2zr90, 7150, ang Y89,

Nucleus? L eéff(Micro) éeff ' eeff(Macro) eeff(Exp)A
; 2 1.23 1.79 2.08 . {2.3¢.M15’106
720 4 1.19 1.65 1.73 3.2%.2
6§ 1.13  1.51 1.52 -
8 1.08 1.34 1.41 -
7120 > 1 119 1,67 1.92 1.8+,2107
'y 1.15 1.54  1.64 -
y89 5 | 1.18 1,46 - -

definition of B(EL) see Eq. (C.17) or Eq. (D.54)., Eq. (D.23)

has been used to calculate eeff(Macro). In these calculations

it has been assumed that R£/<rL>=l. Actual values of this

quantity based on reasonable finite well wave functions for

various orbitals in different nuclei vary from .6—1;5.15’16’108

The quantity &_.. is obtained by taking FEOL(C) to bé given
LOL LOL '

D (C)+Fn. (c) 1.

The quadrupole effective charges given by the micro-

by %[F

scopic model fall far short of the experimental values. The
macroscopic model gives reasonable agreement with experiment
if the smaller value for the L=2 effective charge in Zr90 is
assumed to be correct. The values of éeff are in better
agreement with eeff(Macro) and eeff(Exp) than are eeff(Mlcro).

The substitution used in calculating éeff is strictly valid .I -
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k _ only. in the limif of iso-scalar core excitation - a condition
which migﬁt be closer to reality than the microscopic calcu-
lations indicate because of the correlations between core
nucleons which are neglected in that picture. Note that the
values for e ff(Macro) are subject to a assumption 81m11ar to
the one made in calculating e eff? i.e. only the overall effect-

of core polarization is contained inrthe values of <kv>28L

extracted from the Kuo-Brown matrix elements and an indepen-

dent assumption as to how this effect is divided up into

neutron and proton components is made in writing down Eq. (D.23).

| It i1s concluded that the proton-neutron imbalance pre-
‘ dicted by the microscopic calculations is not consistent with
experiment. Experiment appears to favor something more 1like
iso-scalar core excitation. This point will be examined in
more detail in a shoft while. It should also be pointed out
that the inclusion of those proton-proton hole excitations
where the proton is in the valence orbital will not be
‘sufficient to remedy this situation.f Finally; there is no
information indicating that these calculations are giving a
fair description of the relative variation of €opp @5 @
|

function of multipole. Additional experimental y-decay data

| would prove useful in examining this point.

Coupling to Physical Core States

Collective model analysis of the,first»2+ excitation

in Sr88 which has been observed at 1.84 MeV in the (p,p')

TSee note at end of this chapter.



reaction at 18.9 MeV yields the value B2=.13.10 Several

other low lying 2+ states are also observed. A 4+ state is
believed to exist at 4.05 MeV but it has not been resolved
experimentally. The first ot (Q=-3.82 MeV) and first

y* 48 '

(Q=-6.33 MeV) levels in Ca have aiso been observed in
the (p,p') feaction-at-25, 30, 35, and 40 Mev.2%?  Values or
62~.17 and BM~'09 have been extracted from a collective model
analysis of this data. From Eq. (B.17) it foilows that
CZ=272 MeV for the Sr88 levels and C2=33O MeV and Cu=3516 MeV
for the Cau8 levels. From the experimental data it is esti-
mated that first 47 state in Sr88 has Bh~.OM which gives

Cy, 10“. These &alues of C, are comparable to those which
appear in Table 1 of this chapter. The values of Cu given
here are roughly an order of magnitude larger than the corres-
ponding values appearing iﬁ that table.

The appearance of phonons in the core nuclei which have
strengths comparable to the effective core phonon aséociated
with the uncorrelated particle-hole model introduces serious
reservations concerning the use of this model. Kuo has

90

already made this point. A case where such a core phonon
is domihant will be discussed in Section 3 of this chapter.
The general consistency of 82 values extracted from analysis
of the (p,p') reaction and (e,e') experiments indicates that
such phonons have comparable proton and neutron transition
densities; therefore, they will give a‘better account of the

charge and mass polarization effects in these L=2 transitions

than the particle-hole model does.
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The large Cy values for the first yt states in Cau8 énd
Sr88 could be indicative that the particle-hole model might be
better for the states of higher multibolarity; however, ‘the
results obtained for L#Q transitions do not compare more
favorably with experiment than those for L=2 transitions. No
strong 5 state has been observed in Sr88; The results obtained
for the single particle transition in Y89 compare quite well
with experiment--better than those for Ti°° and 72029, This
may suggest that there is something quite different about
negative parity and positive parity transitions; however, the
differénées are not so large as to allow an unambiguous con-
clusion. Calculations with exchange treated exactly are
needed to see exactLiy nhow big these differences are, Also
the M4 y-transition rate must be calculated as a check on
the L=3 component of the cross section, although the shape

agreement between theory and experiment at 61.4 MeV suggests

that it 1s given fairly well.

Microscopic Empirical Formuls

For a normal parity transition the microscopic empirical
formula of Atkinson and Madsen, Eq. (D.63), provides a rela-
tionship between the enhancement due to core polarization,
€, of a valence transition in the (p,p") feaction and the
nature of the effective charge. For a transition involving

valence protons Eq. (D.63) is conveniently rewritten as
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where fp=ep, is the observed effective charge, which is giveﬁ
by the ratio of the total proton transition density to the -
valence proton transition density; fn is the ratio of the
neutron core transition density to the valence proton transi-
tion density; and o is the ratio of the strength of the n-p
force to the p-p force. For the K-K force ¢ is about é.5.
The effective charge gives a measure of the enhancement of
a yétransitidn rate due to core polafization. It ié clear
that the corresponding enhancement factor for the (p,p') reac-
tion should be much larger than the effective charge if fn
is comparable to ep. This is‘simply a reéult of the fact that
the K-K force gives more weight to neutron excitations than
proton excitations in the (p,p') reaction.

When the valence particles are neutrons Eq. (D.63)

can be written

€ =an + fp/a.

Now fp=en; i1s the effective charge, which is given by the ratio
of the proton core transition density to the valence neutron
fransition density and fn is the ratio of the total neutron
transition density to the valence neutron transition density.
The fact that proton excitations are given 2.5 times less
weight than neutron excitations in the (p,p') reaction is

again clearly displayed in the formula. For fixed,fp and fn
the énhancement factors for the case of valence will be much
smaller than for the case of valence protons. This occuré
because a large weight has been assigned to the valence

transition when the valence particles are neutrons.

J
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The smaller enhancement factors for neutron valence particles;

‘as compared to proton valence particles, do not imply smaller

core polarization effects.
The iso-scalar and iso-vector effective charges are

related td f and f_ by:
, . P n

eo = fpifn for proton valence particles
l}' , v
€y. = f +f for neutron valence particles
y "R
1

An iso-scalar transition corresponds to the condition fp=fn

which is equivalent to e.=0. Transitions with iso-scalar

1
core excitation are defined by fb = fn+1 which is the same
n} o}
as el=l. For proton valence particles and fixed ep, the

iso-scalar condition implies larger values of ep than does

the condition of iso-scalar core excitation, i.e. a larger

neutron core transition density is implied by the first

condition. For neutron valence particles and fixed e s

the condition of iso-scalar core excitation implies a larger
neutron core transition density and a larger €, than does

the iso-scalar condition. Both of these conditions imply
strong correlations between protons and neutrons when core
polarization is large. Whenever there is a great deal of
core.polarization_the differences between the conditions will

not be very significant.



Thevexperimental relatiopship between ep(en) and ep(en)
for the lowest quadrupole transitions in ZPQO(A), TiBO(B),
N1°8(c), ana Pb2°7(D) is shown in Fig. 10. Values of e (e )
and ép(en) which lie within Fhe boxes drawn in the figure |
are consistent with the experimental data. The experimental
data for Zr90 and TiBO has béen discussed previously. The
lower limit on ep for these two transitions are the results
of this work, i.e. they have been obtained from the K-K
force with exchange treated approximately. The upper 1imit

90 is obtained from the results of Love, Satchler,

67,74

on ep for Zr
and collaborators for the H-J force with exchange
treated exactly. The intefmediate value of ep for Zr907
(indicated by the horizontal line through the middle of the
box) are fhe results for the K-K force, modified to correct

for the deficiencies in the approximate treatment of exchange.

This was also discussed previously. The upper and inter-

mediate values of ep for TiSO are estimates based on the
corresponding Zr90 results.
N158 and Pbgo7 are two other nuclei which have been

considered in the course of this investigation. They have

not been discussed in this paper. The Pb207 results have

been reported elsewhere.117 Ni58 has been discussed by
Zamick and Federman.88 Both of these nuclei have valence
58

neutrons. The transition in Ni is from the O+ ground state
to the 2+ state at 1.33 MeV and the transition in Pb207 is
the 3pl/2—2f5/2 (Qé—.S?O MeV) neutron-hole transition. The

effective charges for Ni58 and Pb207 come from Ref. 88 and

d
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Figure 10.--Experimental relationship between e,(e,) and
eP(en) for quadrupole transitions in Zr90(4), T§5O?B), N158(c),
an

d Pb207(D). Results of theoretical calculations are also
shown. : :



202

Ref. 94, respectively. The experimental (p,p') cross sections J

for Pb207 comes from Ref; 107 While that for Ni58 comes from

"Ref. 5. The lower limits on e are again the results of

this work and the upper and intermediate values on €nffor

Pb207 are based on the results of Ref. 67. The upper and

58

intermediate values of e, for Ni arelonly estimates;

Also shown in Fig. 10 are lines corresponding to the
iso-scalar condition and the condition of iso-scalar core
excitation. The solid lines are for Valence protons and the
dashed lines are for valence neutrons. Observe thaﬁ above’

the 1so-scalar line you have more neutron excitation than

proton excitation in the transition. Below the l1so-scalar

‘line this situation is reversed.

The experimental data is not terribly definitive, but
the boxes definitely tend to stay somewhere in the vicinity
of the iso-scalar and the iso-scalar core lines, i.e. the

data implies that there are'strong correlations between pro-

90

ton and neutron excitations in these transitions. For 7r s

58

TiSO, and Ni the data says that the total proton transition

density is equal to or greater than the total neutron transi-

tlon density. .This'is consistent with the findings of

18

Schaef‘férl who has studied the (p,p') data and the y-decay

data for the first 27 and 3" excitations in Sr88, 7790

207

, and
the Ni isotopes. For Pb the data implies more neutron
excitation than proton excitation. It should also be pointed

out that the results shown here are not inconsistent with

proton and neutron excitation in the ratio Z/N which has been
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suggested from ceomparitive studies of the (a,a') data and
y-transition rates. 1 Fop ngo, TiSO, aﬁd Ni28 the Z/N
condition is not too different from the iso-scalar condition
and fbr Pb207 it implies quite a bit more neutron excitation
than protonvexcitation.

The data favors the iso-scalar condition fqr N158 and
the condition of iéo—scalar core excitation for Pb207. For
ngo and Tiso it is difficultrto distinguish between the two
conditions from the data. The lower limits on ep imply that
iso-scalar core excitation is required. The upper'limits
on ep favor the iso-scalar condition. In reaching this
conclusion the higher value of ep for Zr90 has been con-
sidered suspicious. This is admittedly arbitrary. Recent
experimental data on quadrupole y-transition rates in Caa2

50

and Ti indicates that iso-scalar core excitation is favored

in the lf7/2 shell.lzo ' The results presented here are
consistent with this‘finding, but they do not substantiate it.
In conjunction with Fig. 10, experimental values of
fp and fn for these transitions are presénted in Table 10.
Two sets of values are ‘given for each transition--one for
the upper limits on ep and €, and one for the lower limits.
They are labeled €, and €. , respectively.
The results of the particle-hole calculations for ,
ngo, TiSO, N158, and Pb-207 are also given in Fig. 10 and

Table 10. . In the figure these results are indicated by the

points A, B, C, and D, respectively. For ngo TiSO, and

>
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TABLE 10.--Experimental and theoretical values for the
normalized proton and neutron transition densiti$s for quad-
rupole transitions in Zr90, Ti50, Ni59, and pp207,

\

_ Experimenf
Nucleus €, € Theory
fp fn fp 'fn ‘ vfp fn
Zr90 2.30 2.30 2.30 1.30 1.41 1.342
_ 2.55  2.11°
71°0 1,80  1.80 1.80  0.80 1.22 1.142
1.81  1.61°
n1°8 1.90  1.90 1.90  1.90 1.20  1.402
pp207 2.13  1.13  2.13  1.13 1.30  0.452
%Results obtained from particle-hole calculation.
bResults obtained with fenormalized force.
N158 the fesults for the particle-hole model fall very near

. the iso-scalar lines. For Pbgo_7 the particlé—hole modél

. , . . t -
gives a result near the iso-scalar core line. In all cases

+The reader is warned not to attach too much significance
to this particular result. For Zr90 and Ti50 the particle-
hole model predicts much larger-negtron core excitation than
proton core excitation and for Ni2® there is much more proton
core excitation then neutron core excitation, i.e. valence
protons couple more strongly to core neutrons and valence
neutrons couple more strongly to core protons. The small
ratio of proton core excitations to neutron core excitations
for Pb207 is a result of the fact that the same harmonic
osclllator well was used for neutron and proton single particle
orbitals. This is tantamount to assuming there is neutron skin
for which there is no experimental evidence. The proton and
neutron wells probably should be adjusted so that the low lying
proton particle and hole orbitals have radii comparable to the

valence neutron orbitals. This will improve the overlap

between the low lying proton orbitals and the valence neutron
orbitals and a larger contribution from proton core excita-
tions will result. :

5
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b the particle-hole model underestimates both the enhancement
factor and the effective charge. From Table 10 it is clear
that the particle—hole model does notvdo too badly for the
neutron core transition density when the valence particies
are protons, but it tends to underestimate the protoh core
transition'density by a fairly large factor. For the case
.of valence neutrons the model does fairly well for the proton
'core transition density and tends ﬁo underestimate the neu-
tron core transition by a substantial factor. This simply
bears out whatéwas said earlier, i.e. the neutron-proton
imbalance in the core transition densities, which is pre-
dicted by the particle-hole model, is not consistent with
experiment.

It 1s not too bothersome that the particle-hole calcula-
tlons do note produce perfect agreement with the experimental
“transition ratés. It définitely gives a good qualitative
estimate of the overall effecf of core polarization. It has
already been pointed out that it doesn't dQ a perfect job
for the spectrum, and that the question of fairly strong, low
lying core phonons carinot be ignored. Further, the coupling
between the valence particles and the coré is a little too
strong (e.g. see amplitudes in Tables 2, 3 and 5 of this
chapter) to allow éne to take first order pertufbation theory
too seriously. The results of Kirsbn and BarretlZl do, in
fact, demonstrate that the perturbation series for thé |

spectrunm convérges only slowly, if at all.
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- It is interesting to follow up on a suggestion due to

122

Harvey to see if the results of the particle-hole calcula-

tion can be improved in a simple way. He points out that

57

Horie and Arima”' did not use the "bare" force (the K-K force
in this work) in calculating quadrupole moments within the
framework of the particle-hole model. Instead fhey used a
two-body force which was fit to the experimental spectrum,
i.e. a renormalized force in ouf language. He argues that
this procedure might give a much better estimate of effec-—
tive transition operators than does the first order pertur-
bative calculation using the "bare" force. Just how good
this new estimate is depends on just how well the actual
renormalized force, which is a complicated operator, can
be represented by a two-body force determined from the
spectrum.

A calculation using this approach was made for_the"

90 50

L=2-8 transitions in Zr and the L=2-6 transitions in Ti-°".

The renormalized force was taken to be of the form

V=vV+G gy

where V denotes the K-K force and G3p—1h was taken to be

separable, i.e.

X ’ ¥ A A~
= - 1 . ]
kv(r)kv(r )6T1 26, Y, (r) YL(r ).

G
3p-1h 1,

The eL are given in Table 1 of this chapter. The additionai

assumption is made that G 1h only acts in T=1 states.

3p-
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Spectra typically require large renormalizations of the bare
force only in T=1 states.2o’27

The results obtained for the quadrupole transition rates

in 2r?% and 71°° are shown in Fig. 10. They are labeled A'

and B', respectively. The corresponding values of fp and fn
are compared with the experimental values in Table 10.

Table 11 gives a breakdown of the results for all the multi-

90 50

poles in Zr and Ti and comparison is made with the results

of the perturbative calculation. Theoretical enhancement

factors are also compared with the experimental values.

TABLE 11.--Normalized proton and neutron transition densities
as given by the particle-hole model and particle-hole model
with renormalized fource for L=2-8 transitions in Zr and for
[=2-6 transitions in Ti50. Theoretical and experimental
enhancement factors are also shown. For Zr90 the experimental
€, values are from Ref. 67. The Ti50 e, values are estimates.

Nucleus L p-h Model Renorm. Force Experiment
. f € f i € € £
p n P P n P > <

2 1.41 -1.34 14,35 2.55 2.11 17.83 8.51 5.80

ze?® 4 1.25 1.06 3.56 1.62 1.37 5.05 7.45 4.52

6 1.14 0.84 3.09 1.30 0.95 3.68 6.19 4,52

8 1.08 0.60 2.58 1.16 0.61 2.69 6.30 7.48

2 1.22 1.14 4,24 1.81 1.61 5.84 6.35 4,36

11°% 4 1016 0,92 3.74 1.50 1.11 4.18 6.26 4,30
6 1.07 0.63 2.65 1.18 0.70 2.93 —-  —_
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The agreement between theory and experimental for the J
L=2 transitions is quite good.A Both the proton and neutron
core transition densities have been increased as compared
to:the perturbative results. The proton transiﬁion densities
have gone through the largest relative change. Differences
between the perturbative results and the results of the
calculations with fhe renormalized force decrease withr
increasing multipole. The renormalized force giVes.e fairly
hefty boost to ep for the L=H transitions and it produces
a sizeable increase in the polarization eharge for all

multipoles. It is difficult to discuss the multipole depen-

. dence of Ep because of the fairly large uncertainties in

the experimental values, i.e. e_ and € bracket a fairly

>
large range of Vaiues. It would be useful to have (e;e')
data for these traﬁsitions as it would prb&ide information
on the multipole dependence of fhe effective'charge. In
any event this procedure would appear'te have some merit.

The calculation reported here is quite rough and a more

careful investigation of this approach is planned.
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3. Single Protogoéh9/2—1113/2 (Q=~1.61 MeV)
Transition in Bi

The nucleus B1209 has one proton outside a Pb208 core.
The valence proton is in the 1h9/2 orbit for the ground
state of this hucleus. The first excited state (Q=-1.609 MeV)

has the valence proton in the 11 level. Twenty triads

13/2
(LSJ) contribute to the transition between these two levels.
The two most important ones are expected to be (112) and
(303). This is similar to the situation'for-the.single
proton transition in Y89 which has just been treated. One
might expect thése two states to be connected by an M2
Y—transition. In exciting the 1113/2 level in the (p,p')
reaction one might expect to observe a differential cross
section which is composed of (112) and (303) components in
analogy with Y89.

Contrary to these expectations, the 1.609 MeV is
observed to decay to the ground state by an E3 y-transition
with B(E3)=(1.3~2.O)x10_2e2b3.110’lll The core nucleus,

pp208

» has a highly collective 3~ state at 2.614 MeV. This
phonon is quite stable as a closely spaced septet of states
are observed in B1209 at roughly 2.6 MeV. The septet results
from the cogpling of the 1h9/2 proton to the 3~ phonon of
Pb208. Another septet; formed by coupling a 1i13/2 proton
to this same state, is expected at about 4.2 MeV. This is

to be contrasted with the situation in Y89 where no strong

5 state is observed in the spectrum of the core nucleus,
88
roo,

S
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208(He3,d)Bi209 experiment has been performedll2

The  Pb
and some (He3,d) strength is observed in the 13/2+ member of
the septet aﬁ 2.602 MeV. ﬁsing the particle-vibration coupl-
ing model Mottlesonll3 has estimated the mixing of the first

two 13/2+ states in Bi209.

The admixture of the 2.602 MeV
state into the 1.609 MeV state is 52=H.8x10—2. In this
calculation the coupling matrix element was obtained from

208

the y-decay of the 3 state of Pb The miking of the

states accounts for the observed (He3,d) strengths.

209 |

The 1.609 MeV state of Bi has been excited in the

(p,p') reaction at 39.5 MeV and a differehtial cross section
is'available.llu .Following Kuo's suggestiongo that the
particle-hole treatment of cofe peclarization may not be
adequate when there is the possibility of contributions from
highly collective phonons of the core (which appears to be

the case for this transition) thé.cross section is calcﬁlated
in two,ways:. (1) including only 2p-1h components in the wave
functions, and (2) replacing the components with p-h coupled to
angular momentum Jc=3 by components which contain the 3~

core state of 208Pb.

In the latter calculation the macro-
scopic vibrational model 1s used to describe the core. The
wéve'functions corresponding to calculation_(l) will be
designafed Set I while those corresponding to calculations
(2) will be called Set II.

Particle-hole pairs are formed from the shells shown_

in Table 12. Harmonic-oscillator wave functions have been

used, and the energy denominators were taken in part from
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TABLE 12 .--Particle and hole orbitals used in microscopic
Calculation. The agbsence of total angular-momentum subscript
indicates that both j=2+1/2 orbits are included.

Particles Holes

~Protons Neutrons Protons Neutrons
thg /5 Mi1/2 1d 1t

2r - 2g 2s 2p

3p 3d 1f lg

1i hs 2p - 2d

2g _ 1J lg 3s

3d 2h - 2d 1lh

4s 3f7/2 3s | 2f
Hasy2 10 3p

2hyy /0 i3/
experiment115 and in part from the Nilsson scheme at zero

deformation. The size parameter hw is 6.8 MeV.

Ref. 113 gives <kv>=60 MeV and C,=649 MeV. Analysis

3
of the reaction 208Pb(p,p')208Pb gives 8370.13 for this
state77’85’116 which is the only state with a large value of
8 in °%8pb. The relation B3=71/2@ﬁQ2/2C3)1/2 implies
C3¥543 MeV which is smaller than the value from Ref. 113 and

2

corresponds to an admixture 52=5.5x10— of the 2.602—MeV,'

1gt state in the 1.609-MeV, ;%i state. The smaller value of

C, is used in this work.

3
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In these calculations, as a matter of convenience, a
pseudo-potential has been used for the projectile—target'
interaction; This pseudo-potential is known to give results
consistent with those obtained using the K-K forcevand
treating antisymmetrization approximately. The 2p-1lh compo-
nents of the cross section have been included only in the
S=0 ferms in the cross section because it is only in these
components that they add coherently. 1In using wave function
Set Il the components of the wave functions containing the
core phonon contribute only to the (LSJ)=(303) component
of the cross section. The remaining 19 components are the
same in Sets I and II.

Figure 11 shows the total differential cross sections
obtained with wave function Set I and Set II. The (303)
components are also shown for both cases. The differential

cross section (II) gives a good fit to the experimental data.

The .(303) (II) component is dominant as forward angles.

The enhancement due to core polarization, of (303) (II) is
about 200. Because of this large enhancement the valence
contribution to (303) (II) is small. Considering only this
component -and neglecting the valence contribution, the data
places an upper iimit on e2=10_l. Wave function Set II gives
B(E3)-2.4x10 %e%p3 which is slightly larger than the experi-

mental values.

The particle-hole model fails to reproduce the effect

of the 37 phonon of 2%%b. The ennancement of (303) (I) is

d
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Figure 11.--The experimental data compared with the theoretical
results obtained with both sets of wave functions. The total

differential cross sections and the (303) component are shown
for both cases.
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about 13 which is an order of magnitude smaller than the J
value obtained for (303) (II). This model predicts that

many components make important contributions to the total
differential cross section. In particular, (303) (I) is

comparable in magnitude with (112) which involves the low-

est allowed L and J transfers. As the lowest J transfer

is highly favored in Y—transitions, the particle-hole model

predicts that the 1.609 MeV, i%i state will decay to the-

ground state predominantly by an M2 transition which is‘in
contradiction to experiment.

It 1is cdncluded that highly collective core phonons
can play an extremely important part in the cbre polariza-
tion process. This is another indication that care must
be exercised in applying the uncorrelated particie—hble
model fdr core polarization.

NOTE added in proof: A calculation was performed

to estimate the effect of exciting proton particles from

90 and TiSO.

the core into the valence orbitals in Zr
These excitations were treated the same as proton excita-
tions into orbitals outside the valence space, but ampli-
tudes of configurafions with three particles in the same
orbit were multiplied by (n—2)/n (where n=2j+1) to account
for violations of the Pauli principle. Experimentally
observed singie particle energy denominators were used
in_the calculation. With these excitations included

e ..=1.41, 1.26, 1.14, and 1.08 for L=2-8 in 2Zr°° and
eff
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e.pp=1.22, 1.16, and 1.07 for L=2-6 in TiBO. These are not
much different ﬁhan the results shown in Table 9 of this
chapter. The result for the L=2 transition in Zr90 shows
the biggest change. Here quite a large contribution was
obtained from the 2pl/2—2p3/2 proton particle-hole pair.
These changes will not effect the (p,p') cross sections very
much as they are primarily sénsitive to the neutron excita-
tions.

Note that the values for eeff(Macro) are somewhat
larger than those for éeff even if the effect of the above
excitations are included. The assumption of the collective
model is that the charge transition density is Z/A times
the mass transition density. Thus one expects that geff
should be'slightly 1argef than e_..(Macro). Coupling this
to the fact that Ref. 15 gives R§/<r2>>1 for 720 again
suggests that a larger value of <kV> than 50 MeV should be

used in these calculations.



CHAPTER 8
SUMMARY AND CONCLUSIONS

It is felt that the results of this work, which are
admittedly rough, clearly demonstrate the feasibility of using
"realistic interactions" in describing the inelastic scatter-
ing of 15—70 MeV nucleons from nuclei in a microscopic picture.
The use of such interactions requires a fairly detailed
descriptién of the target nuclei and it ‘is necessaryvto
treat antisymmetrization. These two requirements are not
objectionable as the former is preclsely the motivating
factor for-the microscopic approach while the latter should
yield use ful information about the interaction as well as
the nuclear wave functions.

Three interaction models have been considered in this
work and the majority of the calcﬁlations which have been
performedvprovide information only about the strong central
components of these forces. The results obtained are sensi-
tive to thé gross features of the force, i.e. strength and
range,.and the impulse approximation pseudo-potential and
the K-K force appéar to be somewhat better than the Yukawa
effective range force. The first two contain information
about the high momentum components of the free two nucleon
force while the third does not. In work on the optical

potentia1,3l’32 it was shown that the impulse approximation

216




217

pseudo-potential does not have the correct phase--a property
which is not examined in the inelastic scattering calculations--
and that the K-K force was better thén the Yukawa effective
range force.

A convenient approximate treatment of anfisymmetriza—
tibn has been developed and used in this work. This approxi-
mation has been shown to be qualitatively correct in general
and gives good quantitive results for Yukawa forces of 1F
range at incident énergies in excess of 40 MéV. For Yukawa
forces of longer range and at lower energies'the’approxi;
mation is still fai?, but it appears to be considerably
poorer for the K-K force. Although the K-K force is favored
theqretically, uﬁcertainties due to this approximation make
it difficult to say that it is better than the Yukawa
effective range force solely on the basis of the inelastic
scattering data.

Finally it has been shown that a simple perturbative
treatment of the effects due to core polarization does
quite well in explaining the observed differential cross
sections for the excitation of low lying levels in several
nuclei with one or two protons outside of a closed shell.
Related effects such as the effective charge and the pair-
ing contribution to the ground energy of such nuclei have
also been considered. The modéls used in this work are
found not to be correct in detail, but the results obtained
are very encouraging and the use of inelastic nucleon-
nucleus scattering as a tool for studying these effects

should prove to be informative.
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APPENDIX A

APPROXIMATE SERIES FOR EXCHANGE COMPONENT
OF D.W.A. TRANSITION AMPLITUDE

Expanding th(]Ei—EQD in Eq. (2.51) in a Taylor series
“about Ag'keeping'only the first two terms and then trans-

forming back to a coordinate representation gives

R P A ES NS 6(F91)0,.(F)x (M (F)a3p a3r

1

(A.1)

(1), 2 2 2 2

=A"""00)-BO) (v, +a5)

01
(1), . o
where A (AO) is defined in Eq. (2.57) and
| (1)
B(xg) =24 (A.2)
a(A)|,2_,2.

0

In Eq. (A.1) the ve operator acts only on the d—function}
The double integral (A.1) can be reduced to a single integral

3
01977
and integrate over d3r01. The other is to transform to an

in two ways. One is to transform to an integral over d3r

integral over d3r01d3rl and again integrate over d3r The

01°
results obtained can be used to write the single integral in

the following symmetric form.
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LoD (B o, () 04 (r (P (33

{}=A(1)(Ag)-B(Ag)(v2+xg)sym . (A.3)
"(v2+xg)sym= %[(v2+xg) + (v2+x§)]

Some algebra, which involves performing the V2 operations in
the integrand of Eq. (A.3), making use of the one body
Schrodinger equations which generate the x's and ¢'s, and
performing a partial integration over one half of the resultihg
term which contains gradieht operators, gives the following
result for the exchange integral.

O [xg T Ve (R ) v (7 x () (7 ade, (A.4)
- %B<x§>fj<p,r)-31b,a)d3rl | | - 5

In Eq. (A.L4)

a0Gsr =AY 021021 P+e?) 1812
(A.5)
2_,2 2
K =k i;% u(r,)

where'U(rl) is the optical potential and
1) Vo (7 )=6. (7)o ()
J(p,r)—d)r(rl,chp(rl)—d)p(r1 V¢r ry

30,)=x T G wd T E DT B v B
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, . , The first integral 1ﬁ Eq. (A.l4) contains a dependence
b on the magnitude of the local momentum of the projectile and
the second ;ntegral expresses dependence on the magnitude -
of the local momentum of the bound particle. These two
integrélsvcan be arranged to display the dependence on the
momenta of the projectile and bound particle in a symmetric
way ; however, the form which is given is more convenient as
it does not explicitly refer to the binding energy and |
.potential of the bound particle. Both of these integrals
can be easily handled in the local D.W.A. |
The third integral in Eq. (A.4) cannot be incorporated
conveniently in the local D.W.A; Contributions to non-normal
transfer come from this term which eSsentially takes into
account the fact that locally the projectile and bound
particle are moving in different directions. - The integral
averages over these directions and the contributions for
normal transfers are expected to be small. In the plane
wave limit it can be shown that the integral vanishes for
normal transfers when ¢p and ¢r are the same.

Neglecting the last term in Eq. (A.4) it follows that

~LSJ

glS - LSJ ~LSJ

5 (r o) (A.6)

(r ) E (r )+E;

where ELSJ(r ) is given by Eq. (2.55) or Eq. (2.56) with the

~LSJ : .
replacement A(l)(ko)*A(AO;rO). Eg (ro) contains the

contribution from the second integral in Eq. (A.4). For the

case of good i-spin




“LSJ

By ()=

2. 4/\
jj‘/§T<TATMT

T

XiL+2,—Q, /3

1 1
My =My | T M, ><3Tt1 ,1 -1 |
> : >
a Ty T,''B Tp 2" v’ a

AAAAAN

JLSITX(J"JT ;8 2L

x(uﬂ)—l/2BST(AS)37

- and when i-spin is ignored

~“LSJ
E2 (ro)

jg,/EiL+2_£ /5

AANAA

x<un)"1/2BsTT,<x§)‘¥.

In these equations

) .
T oo

"N

xw(L()zL()z’;lL)(L()L()

0 O

a 3-j symbo

- oL/2,d4_ , 2+l
=L (dr = )unl(r)

1

’2 2

JLSIX(J 3T;872L;

+LOLOY

)

1’58 L;

L

r

1
2

*

(*

unk(r)

Ieys(g g

b §Ta

9B ;TATBT

1 R -
§S)S(JAJBJ,JJ tT’)

() Q)
,QLrO)unl(rO)

(A.7)

(A.8)

(A.9)
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There are four terms.in the above sum and L is a phase
which is positive for the (+)(+) and (-)(-) terms and
negati&e for the (-)(+) and (+)(-) terms.

The net éffect of including these additional terms in
_ELSJ(rO) is.to damp out contributions to exchange scattering
which céme from the'nuclear interior. This is reasonable
as the momenta of the projectile and bound particié are
much larger in this region than they are outside the nucleus.
The exchange scatteriﬁg here should sample momentum components

of the interdction much larger than AS- a value determined

by considering the assymptotic conditions.




APPENDIX B

TRANSITION DENSITIES AND FORM FACTORS

l. Harmonic Oscillator Wave Functions

Throughout this work, the single particle bound state

wave functions used are those for a particle bound in a

harmonic oscillator potential. This is a necessity because

a complex description of the target nuclei is beihg attempted.

- The radial part of these wave functions are given by60

-1/4

n+2+1 2.2

(r)=m (on+28-1) 11 ng () (B.1).

i

Ye

where the prinéiple quantum number runs from 1 to » and

(a2r2)k.

nol oy a1 K (2n+29-1)11
Pnz(r)=kgoz RS e (B.2)

(n-k-1)'k!(2g+2k+1)!!

The size parameter, o, 1s given in F'-1 by

a=[5271/2 = (Mheglr2

156 (Aw) 1”2 (B.3)

where ©hww is the energy Separating the major shells of the

potential expressed in MeV. Eq. (B.1) and Eq.(B.2) are some-

| what more convenient than the more commonly encountered rela-
tions which give unz(r) in terms of the associated Laguerre

>polynomials. The first few Pnz(r) are
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llz(r) = 1

P22(r)=§&%§ - olr?
_ 1.(28+43)(2045)
P (r) = 51 I

‘ (B.4)

44

—.(2£+5)a2r2+a r'}

From Eq. (2.58), Eq. (2.59), Eq. (2.46"'), and

Eg. (2.47"') it follows that the transition densities can

be written

FLSJ,T(r) - .E‘MLSJ,T

3 (33 )un,z,(r)unz(r) | (B.5)
LSJ = ) wbST, ...y - :
Fo-(r) = jjaMTT'(JJ )un,z,(r)unz(r) , (B.6)
where
LSI,T, ..oy _ /=0 1 L
M (337) =/2T<T, TN, WMy =M, ITBMT ><3 Trb,ra—rb|2ra>
A "B A B
RN A e ~-1/2 AN
XS(JAJBJ;TATBT;JJ )i (4m) /25 JALSJIT
.’ X o~ . . - l 1
x<L200O|270>X(J 7532 L35 §s) (B.5")
M%E{(jj’) V28(3,353333 1o MY (T2 3 Sarss
- b2 ..A. - 1 l 7 '
x<L20O0|270>X(j"3T;% L35 58). (B.6")

Inspection of the above relations 1le

the transition density can always be

form when harmonic oscillator wave f

ads to the conclusion that
written in the following

unctions are used.
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N

' 2.2
LSJ §3J N3 N -a“r

F C

o ~T

(r) =N
Na =(Q+2')min | ‘ (B.7)
=(2+£’+2n+2n'—4)max

In writing this équation refefence.to T or 11" has been
dropped for convenience. Na or Nb is determined>by the contri-
buting_unlunaz, which yield the minimum or maximum values, res-
pectively, of the bracketed quantities. Note also that the
transition density is an even or odd function of r as the
parlty change in the transition is plus or minus, i.e. only
even or odd values of N are included in summing from N to
Nb'
2. Macroscopic Vibrational Model

Considerable success has attended the use of the macro-
Scopic vibrational model in describing inelastic scattering.
There are numerous references to this approach  in the liter-
ature - Ref 61 and 62 are but two of these. As there must
be a rough correspondence between the microséopic picture and
this macroscopic picture it is useful to review this model.
A modification of this model is used in the treatment of core
polarization which is discussed in Chapter 7 and Appendix D.
The followingvdiscussion is restricted to even target nuclei

which have ground state spin equal to zero.
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In this model the nucleus is likened to a quantized

drop of an incompréssible, non-viscous f{luid. The primary
excitations-of this system are small surface oscillations
(phonons) about spherical equilibrium. The surface of the
drop is given by

TN A L T |2 |

R(6,¢) = RO{1+LMQLMYLM(6,¢)—(MN) LMIaLMl } (B.8)

which conserves volume to second order in %;y» the deformation

parameter. The Hamiltonian for the system is

= Lol 2,1 2
i LM{2DL|”LM| + chlaLM| } (B.9)

where DL is the mass parameter for excitations of angular
momentum L and parity (—l)L, CL is the corresponding stiff-
ness parameter, and T M is the momentum conjugate to aLM'

In terms of the operators which create and annihilate phonons,

+ ' . . . .
CLM and CLM, the Hamiltonian is written

H:Z’I’lw(c+ 1

v oyt s) (B.10)

where wp = (CL/DL)l/2 is the frequency of the phonon
designated by L.
+ s .
The cLM and CLM obey boson commutation relatlons.
Il the hydrodynamic description of the system is adhered to
strictly, relations for DL and CL are easily obtained.

In practice it is necessary to treat them as free parameters.

it +
I'he TLM? o > CrM> and cry are related as follows




236

Aw
o L 1/2, + L+M
Ory = [1](555) et (-1) CL"M}
AC
"oy —i[i]_l(§5%)l/2{CLM—(—l)L+MC£’_M} (B.11)
R [i]—l(cL /200 401 4
LM A “Lm‘ch LM

where [1] is 1 for L even and i for L odd. Equations (B.11)
are»subjeCt to the conditions that the phonon states transform
under rotations and time reversal in the same manner as the
single particle wave functionst¢zz(§) which were'defined in
.Chapter 2 and that R(e,¢) has appropriate matrix elements

in such a represe-ntation.63 Note that these equatidns are

consistent with the classical reality condition q+ = (—1)Mx

LM
L,-M.

It is then assumed that the interaction between a
projectile and this liquid drop is only a function of the
distance between the projectile and the surface of the drop,
i.e. (r-R). Since only small vibrations are being considered
it is reasonable to make a Taylor series expansion of-the

interaction about R=R.. To-first order in a

0 thiS’expansion‘

LM
is

U(r-R) = U(r-Ry) - k(r)%MaLMYEM(;) ‘ - (B.12)

where k(r) = ROdU(r—RO)/dr. U(r-RO) is identified as the
optical potential which is spherical and describes the elastic
scattering. Assuming the usual Woods-Saxon form this potential

is written




U=—V(ex+1)‘1—iW(eX'+1)’l+uiwD a7 (7 +1

X
: 2 -1 4 SO -1- = |
+Gﬁ/mﬂc) VSr 5?(6 +1) L,O (B.13)

where x = (r—rOAl/3)/a,x'= (r—rOAl/3)/a s €tc. and to which

is added the Coulomb potential of a uniformly charged sphere
1/3

of radius rCA The potential contains a real volume term,

volume and surface imaginary terms, and a real volume spin-

orbit term. The diffuseness parameters are a,'a’, e e e

- 1/3 - _-1/3
o = Toh , RO —rOA P

Neglecting the Coulomb and spin orbit terms in the potential

and the radii are identified as R

leads to the following expression for k(r)

’ - ” g . - . o, e l" . .
k(r)=(VRO/a)——g——§+igWRO/a )——9———§+41(WDRO /a )9——i—~§?")'<B.1u)
(1+e) (1+e”) (1+e” ")~
where e=exp(r—RO/a),. « . . Before completing this discussion

by defining the form factor for inelastic scattering

FSLJ(r), it should be noted that the prescription (B.12) for

treating the deformation is not the only one which appears
in the literature61’6u, although it is the one used most
[requently. Futher Eq. (B.12) only provides for the
treatment of (L,0,L) t;iads for normal parity transitions.

In this model the form factor fecr the excitation of

a single phonon is

—LOL
i

(r) = =12 k(r)<L] o, |]0> . (B.15)
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Using Eq. (B.11) gives =

biry = —4F [11/’k<r>< L>1/2 | ~ (B.16)
L

thus inelastic scattering experiments provide a measure of
the'stiffness parameter. It is eommon practice to tabulate
the root mean square deformation in the ground state due

to zero point oscillations.

' Auw '
2 2 , L '
87 = <olhla,,l?0> = (2142) () (B.17)
which gives
“LOL L B,
F (1") = -1 [i]v2k(r) = . . (B.18)
L

In this discussion only the matter distribution{in
the drop has been considered. This fact and the restricj.
tion to lowest order is why the description applies only to
normal parity transitiohs. In addition the liquid drop
described here can only have excitations of quadrupole order
or higher. By introducing other variables, i.e. compressi-
bility; spin, and charge, the model can be generalized to
encompass .- a larger class of Vibrations.63’65 In Appendix C
‘ electromagpetic transitions are considered and thevmodel

is extended with the assumption of a uniform distribution

of charge throughout the volume of the drop.
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3. Reduced Matrix Elements and Transition Densities
for Various Transitions

In crder to calculate the tfansition densities it
is necessary to evaluate the reduced matrix elements of
ﬁhe'one body operators which appear in Eq. (2.58') and
Eq. (2.59'). 1In the occupation number representation a
one body operator is written

-~ » . + : )
0 =.% o = §8<a|o|3>aaa8 (B.19)

where a+ and a are the fermion creation and annihilation
operators which were introduced in. Chapter 2. They satisfy
anticommutation relations. When using i-spin the operator

of interest is

%’ §(r-1, ) IZ“
LSJ,T _ i LSI , . .T,.+ _ LsJ,T,.
0 = 1=1 ——r—2—— T (l)T (l) = i=lo (l) (B.ZO)
and when not using i-spin it is
© S(r-r.) g
LSJ _ ) 17 L8J,.y _ ) LSJ
OTT, = £ ————E——-l (i) = § o (1). (B.21)
r
In the form of Egq. (B.19) these become
LSJ, T _ ) wo - LSI,T,, + .
0 = jme OmT o ]JmT>aj,m/T,aJ.mT (B.207)
J'm t”
-4
ok5d <j’m’|oLSJ|jm>aT, . -a. (B.217)

J'm Tt "% jmt




In the discussion which follows RLSJ

LSJI

will be used for
<B| |0 |A> and a single subscript will be used on-

+ .
a and a to represent the quantum numbers jmt.

Single-Pérticle Transition

This 1is a trivial case and there is no need to

- introduce i-spin. fhe initial énd final states ére
|A>=a;|C> and |B>=aI|C>, respectively, where |C> denotes
a filléd shell state. The following result is easily

obtained.

LS . LSJ, . ' :
Rigs = lello IIJ2>61T’,T T (B.22)
, 2°1 ,
The,dTT, is used with Table 2 of Chapter 2 to determine

»ToTy
the force component which is needed. For example, consider.

a singlé.neutron transition in the (b,p') reaction. Then
T1=T2=—% and the transition goes through the proton-neutron
force. For the (p,n) reaction 1 must equal -1°= —% in

order for the ﬁransition to be allowed; therefore, the single
particle must iniﬁially be a neutron and a single proton

will be left in the final state.

;
|
Single Hole Transition o i
For this case the initial and final states are
2~ my o »
al|C>, respectively.

J Jqi-
|A>=(-1) a2|C> and |B>=(-1)

The purpose of the phase was mentioned previously. It

follows immediately that




b

241

R%iq % (—1);+jl—52+132311<j2|lOLSJIljl>6TT’,TlT2' (B.23)
Using the conjugation relation .
<32||oLSJ||j1>=<-1>S+J+j2'j13132'1<j1|loLSJI|;2> (.24)
gives fér Eq. (B.23)
Rﬁfi = _(-1§S<jl||oLSJ||j2>5TT,,T1T2. (B.25)

This relation shows that a neutron siﬁgle hole transition
in the (p,p”) reaction is the same as a neutron single
particle transition except for the phase factor (—1_)S which
may have some ef'fect when interferences is important. In

thev(p,n),réaction the initial state must be a proton hole

~and the final state i1s a neutron hole. This indicates the

significance of the interchange of T, and 1, in Eq. (B.25)

as compared to the ordering in Eq. (B.23).

Transitions to Particle-Hole States

The simplest excitations of closed shell nuclei are
particle-hole pairs. In light nuclei with equal neutron-
proton number i-spin is usually assumed to be a good

quantum number and a particle-hole state is written

JpTB 11
|B>=|J M_T M >= C, .7<j J m -m |J M ><z =t -1 |T_M >
BBBTB mpthth P°h P h'! BB 22p n BTB
TpTh
Jpdn




o § o-m 41/2-t .
x(-1) b h ha'a |e>. (B.26)

States of this form are obtained by diagonalizing a shell
model Hamiitonian in the space of particlé—hole pairs.
This procedure is referred to as thé Tamm-Dancoff Approxi-
ﬁation (T.D.A.) and it assumes that the ground state of
such a nucleus is a filled shell |4 =lc>.122 The reduced
matfix element descfibing transitions from the groung

state to the states (B.26) is

Lsd,T_ § B'B 5 ¢ -1_, 1,,.LSJ,T . 1 o

R > =355 J j /_J [TJ] <Jp§I,O > ||jh§>. (B.27)
p h "pP"h

Since the ground state is a filled shell the only allowed

values of JT are JBTB

For heavier nuclei with unequai neutron—protonE
number i-spin is usually ignored and particle-hole stétes
of the following form are obtained

jo-m
<j_J m —mhlJBMB>(—l) h hapah|C> (B.28)

Jh p h p

BB

T

JLT
|B>=|J_M_>= Z. c.B,
J.J Jp

h
m_m
h

A 'c

where t distinguishes between proton-proton holes and
neﬁtron—neutron holes. 1In this case the reduced matrix

elements.

B
P“h p

RN
J,p B “p

J
3 113, > (B.29)




‘ k | - are used. 'The subscript on R has T1=1" since the initial
and final states considered here are states of the same
nucleus. Note that the form factor has explicit proton

and neutron components when i-spin is not used.

Random Phase Approximation Vectors

The R.P.A. goes a step beyond the T.D.A. in treating
closed-shell nuclei. It takes into account in an approxi-
mate way that the ground state may have 2p-2h, U4p-Uh, etc.
and that the excited states may have 3p-3h, 5p-5h, etc.
components in addition to 1lp-1h combonents.l’2 The excitations
in the ground state are referred to as gound state correla-
tions (G.S.C.) The inclusion of these higher excitatibns
has an important efféct on transition rates as they allow
the excited state to be reached by destroying a particle-
hole péir as well as by creating one.

Disregarding i-spin an R.P.A. state vector is given

oy
v E : (B.30)
’ J T : J T J _M . )
' + . .
BMs Ipdn Ipdn IpMy Sh | oM
T

where |[C> is the generalized ground state and

+ In + -
AJ 1) . apah. (B.Sl)

BB

N o _ /L
M <Jthr) mpmh<JpJnmp mhIJBMB>\
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The second term in Eq. (B.30) represents the G.S.C. The

necessary reduced matrix elements are obtained by following

the procedure ‘ '
<B|O|A>=<C|QO|C> =<C|[Q,O]]C>:<C|[Q,O]|C> (B.32) '
where the fact Q|C>=0 is used in introducing the commu-
tator in the third step. It is easy to show that Eq. (B.29)
applies with the condition

J_T J_T JoT

c.B. = x,B, +(-1)5y B, (B.33)

Ipdp Tpdn Iody
Correspondingly for good l1-spin Eq. (B.27) prevails with

' J.T J_T ’ J_T | |
c,BB - x BB, (L1)StTy BB (B.34)
Jth Jth Jth : :
X and Y are generally in phase and they add in non-spin

flip amplitudes (for iso-scalar amplitudes .if Eq. (B.34) is
being considered) and the enhancement due to G.S.C. is .

apparent if it is noted that the vectors (B.30) satisfy

the normalization condition J(X°-Y°)=1 instead of jcl=1.

Like thevmacrqscopic vibrational model, the T.D.A. and R.P.A.
are schemes difeéted towards the explanation of low lying
"vibrational states in nuclei, The states (B.26), (B.28),

~and (B.30) may be called phonons.

Transitions Between States of j2 Configurations

Forgetting about i-spin the wave function for two

nucleons of the same type in the j2 configuration is
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[A>=|J M 1>=

aMy 33m1m2|J M, >a a2|C> , | (B.35)

/5 1™
where 1 again differentiates between protons and neutrons.
This wave function is normalized and vanishes unleés JA
is even. For a transition between two states of this type

LSJ J+1 R . LSJ R |
R =(-1) 2JJA{] :} J‘T}ﬂ”o 13> - (B.36)

B "A

: 5
where {} is a 6-j symbol’8 and t=1" because of the restric-

tion to like nucleons. The single particle reduced

matrix element vanishes unless L is even and when J=L and

S=1; therefore transitions starting at the state JA=O do

not proceed by Spin_flip.

ITransitions from 1p to 2p-lh States

In treating core polarization as presented in Chapter 7
and Appendix D transitions from a one particle to a two
particle-one hole state are encountered. A two particle-

one hole state is written

|B>=|J (J J )J 5 BMB mpmh <J Jhmp mhlJ MC><le m,y M IJ

mlMc

x(-1) Th mha{a;ahlc> (B.37)

where i-spin is not being used. The above wave function is
not normalized when p=1. This is not important at the

present time and will be discussed in Appendix D. The
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" reduced matrix element for the transition from a single-

particle state, §A>=a;|c>, to the state (B.37) is

LSJ . '
R™".=6, . ) §__ . T O0-1 . LSJ .
TT J17953,7, J,Jc TT ,TthJpJ <Jp[|o ]th>—
G+ +T+T
{6j t it %, L) Pl 03 3 JodyJd
pTp2JoTo NS cd1 M adnde
J17pd
. LSJ, . _ . o
x<J [ [o™ |15, -2 ‘ (B.38)

An alldwed transition is subject to the condition that
j2r2=jlrlzand/or jpr as expected. When jlrl=j212#jp1p only
the first term in Eq. (B.38) contributes and the reduced
matrix element is the.same as that fo; exciting a particle-
hole pair. This is seen by comparing with Eq. (B.29) aﬁd
noting thatt =1° in Eq. (B.38) when Tp=Th whic¢h is the
condition for a transition befween states in the same nucleus.
The second term in Eq. (B.38) differs from the first by

recoupling factors which appear simply because the role

of the active and spectator particle have been interchanged.

Transitions from 2p to 3p-1h States

' A general expression for a transition from a 2p state
to av3§—1h staﬁe 1s' somewhat cumbersome té write down and
tedious to dérivé. Further fractional pefcentage must be
considered when the three particles are alike and in the
same orbit. For the core polarization discussion in Appendix

D only a particular result is needed and this is all that

F
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will be given here. This result is for the case when the 2p
state is that of two like nucleons in a j2 configuration,
Bq. (B.35) gilves the wave function for such a state. The
3p-1h states which are connected to the states (B.35) by a -
one body operator can only have one particle in anvorbit

other than j. These particular 3p-lh states can be written

IB>=I[(JJ)JV,(Jth)JCJJBMB>

A N s
B /5 mlm2<JJmlm2lJvMV><Jthmp mhlJcMc><JchMchlJBMB>
M._M
vie
J—m '
B P h_+ +_+
x(-1) alaz‘pah|0> (B.39)

which is normalized as long as jpr#jT which is to be assumed.
This state vanishes unless JV is even.

The necessary reduced matrix element is

gESY. 8 i 37 <5 1o

-—'-‘6 (S ‘/ j > (B'}_‘O)
TT J,s9p Jyd Tt T T P D h

where again it is seen that the result is the séme as for
exciting a particle-hole pair with the 2p state playing the
role of a spectator. Also 1=1" when Tp=Th which hols for

transition between states of the same nucleus.

. Note on Phases
In all of the formulas presented in this paper the

phases of the bound state wave functions have beén fixed by
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demanding that .they be invariant under time .reversa'i and J
rotation of 180O ébout the y—axis.63 When iso-spin is | |
involved an extended time revérsal.operation is defined -
and a rotation of 180° about the y-axis in iso—spacé
must be included. Fixing the phases in this way is one,
but not the'ohly way, of guaranteeing the reality of
the bound state matrix elements of mény operators. This
phase convention explains the appearance for the izvin the.
definition of the single particle bound state wave functions
given in Chapter 2. Further it plays a role in the conjuga-
tion property of a matrix, e.g} Eq. (B.24).

Many workers do not use the il in their single particlé
- wave functions which is also a satisfactory phase convention.
Since the wave fuﬁctions of various people have been used in '
-obtaining the results of tﬁis paper the phase convention of
the formulas was not strictly adhered to in the calculations.
or course none of the physical results ﬁave been effected. .
It is generally quite easy to convert from one phase con=
vention to the other. This note serves simply as a reminder
that some of the tabulafed results which appear will not be

consistent with the formulas as far as phases are concerned.:

5. Multipole Coefficients

For Yukawa interactions and Gaussian interactions
closed forms éxist for the multipole coefficients. These
coefficients are defined in Eq. (2.43) and Eq. (2.44) and
‘appear as tSTL(rO;rl) and tSTT,L(rO;rl) in Eq. (2.46),

Eq. (2.47), and later equations. For the Yukawa interaction
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-mr
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L(rOl)—Ve /mr

01
s (B.Lll)

£p(rgsr=hnivyy (me On'*) (amr, )

and for the Gaussian interaction

-m2l"2
01

f{ryy)=ve (B.42)

—m2(r2+r2)
Ye 0 "1

o YeneusLe o oe 2
fL(rO,rl)—MﬂV1 JL( 2im rory

~In Eq. (B.41) h£+) denotes the spherical Hankel function

and r. and r, denote the lesser and the greater of Ty and ry.
A general force requires that Eq. (2.41) be handled
numeriéally. A reasonably fast routine has been written for

the calculation of form factors for the case of an interaction

of general radial form.




APPENDIX C

INELASTIC ELECTRON-NUCLEUS SCATTERING

The electromagnetic interaction between an electron
and a nucleus caﬁ'be-decomposed into longitudinal Coulomb,
transverse electric, and transverse magnetic multipoles.

The excitation of collective states in normal parityvtransi;
tions in the (e,e”) reaction proceeds predominatély through

the Coulomb multipoles. Restricting consideration to these

. cases the differential cross section, in Born Approximation,

is written55’56

o(8) = o,(6)[F(a(e))[® - (c.1)

wheré-oM(e) is the Mott cross section, i.e.
ou(®) = 4(ze?/me)?(k2/a" (0))cos2(0/2),  (c.2)

O is the scattering angle, q(6) is the magnitude of the

momentum transfer Q= k kf, and Ei and'Ef are the initial and

final momentum of the electron. The Mott cross section
describesrthe'elastic scattering of a high energy electron
by a point charge Most of the kinematics is contalned in

this term. F(q(e)) is the inelastic electron scatterlng form

factor which contains all of the nuclear structure 1nformation.

It is defined by
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|F(q)!2 = J£2MgMA|Zéfeiq'r<B|p(P)|A>d3r|2. (C.3)

Eq. (C.3) contains a nuclear matrix element of the

charge density operator which is written as follows

N
o(F) = § L7018 (5-F,) (c.1)
| =17 |
o(F) = el 5(7-7,) » (c.5)

when 1-spin 1s or is not used,'respectively. The sum on i

in Eq. (C.5) runs only over target protons while % 213 serves
as a proton counter when i—sbin is used. A little glgebra
leads to the following expressions for Eqg. (C.3) for the

cases defined in Eq. (C.4) and Eq. (C.5).

2J +1 oo ‘
2 B 1/2,-1 . LOL 2 2 -
|[F(q)|° = ETX:T gl(n/2) 7 g JL(qr)3 (r)r“dr] (C.4 )
~LOL, . ) oLOL,T
¢ r) = F *"(r
277 (r) = AR (r)
v 2J_+1 ’
) 2 _ BT Y, \1/2, -1 e, LOL 2.2 .
[F(q)|° = 23,71 fi(am)yz IOJL(QP)PP (r)r-dr| (C.S )
In these equations FgOL’T(r) and FEOL(r) are the transition

densities defined in Eq. (2.587) and Eq. (2.597), respectively.
The transition density defined in Eq. (2.587) is reaction

dependent because of the Clebsch-Gordan coefficient which

contalins the i—spin.projection gquantum numbers of the
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projectile. The subscript pp on FrOLsT

(r) in Eq. (C.47)
serves to specify the transition density for the (p,p7)
reaction,.i e. Ta=Tb=% In Eq. (C.57) the subscript p on
FLOL(r) defines the proton tran51tlon dens1ty, T=T —%.
It should be p01nted‘out that for the transitions
under consideration only the lowest allowed L-transfer
will be important. For transitions where more than one
L-transfer i1s likely to be important the treatment will
usually have to include the transverse multlpoles as well
as the 1ong1tud1na1 ones. In such cases the relationship
between the (e,e”) and (p,p”) reaction is not as direct as
that seen by comparing Eq. (C. 47) and Eq. (C.5”) with
Eq. (2.58") and Eq. (2.59"). For this case the inelastic

electron scattering form factor is related to the Bessel

transform of the proton transition density while the inelastic

nucleon scattering form factor is obtained by transforming

the proton and neutron transition densities with the

appropriate multipole coefficient of the two—body inter-

action.

In practice it 1s necessary to include two corrections
in Eq. (C.47) and Eq. (C.57). This is accomplished by

multipiying these relations by fg(q) Where55
f(q) = eXp[—q2(a§—l/a2Af/u]. _ (C.6)

This éerves to correct for the finite size of the proton

(first term) and for center of mass motion (second term)
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which is necessary because the shell modei wave functions
afe referred to the center of the oscillator well., The
parameter ag_fixes the size of the proton.distribution
which has been taken to be Gaussian, a is the harmonic
oscillator constant, and A is the target mass. In the
calculations of this work a§=.M3F2 is used. .In principle
center of mass corrections should be included in the
(p,pf) calculations also. This is difficult because the
D.W.A. is being used and this smallAcorrection is ignored
as a matter of convenience.

A closed expression for the inelastic electron
scattering form factor can be obtained when harmonic
oscillator wave funciions are used by inserting Eq. (B.7)
intovK. (C.47) or Eq. (C.57) and using the following
integration formula

2 2 2 2
{we—a r’~J\)(qr)r“kldrcl“[%—(Lﬁ\)):I(q/20Lv)\)[2oLuI“(l-ﬂ}[l_le—q /o

(C.7)
A (2(v-1)+1 [ v+1 ] /ba?)

where T() denotes the I'-function, F(||) is the confluent

nypergeometric function,  and Jv is the ordinary Bessel

function. The confluent hypergeometric function is definea

by
o n
( )nz

FOolz) = 1) S
n

Ao=13A =A(A+1)...(A+n-1) nxl (c.8)

A

Pg=lsp =0lp+1). .. (p#n-1) n

v

-
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and is a finite polynomial when A is'an integer less than
or equal to zero. The spherical Bessel function and

orginary Bessel function are related by

Jplar) = Vet 3y (e, (.9

For a definite value of L it can be shown that

2J +1 2

|[F(a@) | P=norier @ x 1@ 117202 (@)exp (-0 20%)
A Z : L
N (C.10) .

b
x{% cﬁOL(L+N+1)z12“(L+N+2)/2F(%(L-N)|L+3/2|q2/ua2)}2
. |

where n=1/4 when i-~spin is being used and n=1 when it 1is
not used.' The correction factor’f2(q) is defined in Eq.
(c.6). |

The macroscopic vibrational model might also be
applied to inelastic electron scattering. The treatment
is the same as that for inelastic nucleon scattering
which was outlined in Section 2 of Appendix B, but deforma-
tion of the charge density is considered in place of the’
deformation of the potential for nucleon scattering. The

is

charge density expanded to first order in the oM
p(r-R)=e(r-Ro)-Ry—gz— rmermirm (C.11)

. Where p(r—Ro) is the spherical ground state charge distri-

bution. Assuming a Woods-Saxon form
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| =Ry -1
p(r-Ry) = po[1+exp(—g—~)] ' (0.12)
and p, is fixed by the condition fpd3r=Ze. In this model

the inelastic electron scattering form factor for the

excitation of a single phonon of order L is
2

4R ' :
|F(Q>|2 = L “3 (qr)h(r)rzdr|2
it i) |
: (C.13)
' dp(r—RO)
h(r) = Ry—gp——

A normal parity y-transition involving a collective
state will proceed predominately through a single trans-
verse electric multipole. The long wave-length approxi-
nation is valid for y»tranSitions and in this particular
instance the inverse electromagnetic lifetime is given

by56

2
Cw_=8mci— (L+1)

Y e oty g2

2L+1

k B(EL)

(C.14)

B(EL)=M% jé[rLYIM(r)<B]p(?)|A>d3r]2
i B .

where L gives the multipolarity of the radiation, k is its

wavenumber, and B(EL) is the reduced transition probability.

Note that the latter quantity is directional in that

2JB+1
»2JA+1

B(EL;JA+JB) = B(EL;JB+JA). : (C.15)

§
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From Eq. (C.4) and Eq. (C.5) it follows that
2d +1

B(EL) = EEEIT %]{ L+ LOL Ly ap 12 f (c.16)
C2J+1 :
B(EL) = 2J§+1 /e 2R () ar | 2 (e

for the case when i-spin is and is nkt used. For the
excitation of a single phonon in the!macroscopic vibra-- -

tional picture it follows that

B .
%17 Pn(r)ar|? (C.18)

B(EL;0-L)
which reduces to

B(EL;0~L) = (%%ROBL) - (C.19)

for the uniform charge distribution. These relétions show
that electric y-transitions provide information about.the
proton transition density, however, this information is
not as valuable as that obtained in inelastic electron
scattering experiments since the integrals in Eq. (C.16)
Eq. (C.l?) are moét sensitive to the tail of the density
whereas the Bessel transform of the transition density

samples different regions of the density as q'is varled.



APPENDIX D
CORE POLARIZATION

1. Introdﬁctign

In the opening paragraphs of Chapter 7, several
lapproa@hes wefenwntionedfbr estimating the effect of core
polarization on the properties of the low 1ying.states of
nuclei with a few nucleons outside of a closed shell,
There is one essential point in all of these methods—-
the basic configurations needed to describe the low
lying states of these nuclei are not those of the simple
shell model |An>’ which consist of valence nucleons dis-
tributed about a filled shell, but the configurations

given by first order perturbation theory

- oy Z o hn) ! —1 ¥ e
|An>—lAn>+C (By -E ) <cn|v xAn>]cn> (D.1)
: n n n
which contain admixtures of core excited states, |Cn>. In

kg. (D.1) E, and E. are the unperturbed energies of the
n n

states ]An> and ICn>, respectively, and V” is the inter-
actioh coupling the wvalence nucléons to the core.
In general, when there are more than one valence

'nucleons, the complete wave function for a particular state
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in the nucleus is given by a linear combination of the .l

configurations (D.1), i.e.
§' _
- Ay
]A)-n=f4n|An> _ (D.2)

where the\4ﬁ are  obtained by diagonalizing an effective
Hamiltonian for the nucleus in the basis {|An>;n=l, N}.
Matrix elements of the effective two-body interaction

between valence nucleons are defined by

<An|16ff|An,> <An|V|An,>+CnECn<An|V |cn><cnjv |A ~> (D.3)

The first term on the right in Eq. (D.3) is the usual shell

model matrix element \where V is the two-body force between
valence nﬁcleons, and the second term conteins the effect of
the coupling of the valence nucleons to the core. The ‘latter
term is similar, but not equivalent, to the energy correc- .

tion dictated by second order perturbation theory. EC is
. v n

an energy characteristic of the core excitation in the
state |Cn>' It can only be approximately fixed in a state
independent manner.

No attempt has been made at being complete in writing
down these formulas as they are discussed in detail in the
references cited in Chapter 7. In the language of Kuo
and Brown,[Veff is the renormalized G—matrix and there is
no distinction between V and V’/ which is identified as the
"bare" G-matrix. In applying Eq. (D.3) to systems with

two valence nucleons Kuo and Brown use an average energy
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k ~denominator for EC =E where E=-2fAw for positive parity
. n

states and -~hw for negative parity states.
Eq. (D.1) and Eq. (D.3) can be written somewhat more

compactly as

{;xn>=[1+(EA —HO)‘IPV‘]]AH> : tDal’)

n

éAn|)gfflAn>=<An'{V+V EV }|An,> (D.37)

where HO is the unperturbed Hamiltonian and

) :
P = Cn|cn><cn-| . | (D.4)

Matrix elements of one body operators between states of

the form (D.17) are given by

= N - 1 | _"l - - | "l, '
<Bn{T|An>—<Bn]{T+1(EAn—HO) PV7+V P(EBn—HO) r}[A >. (D.5)

The first term in_qu (D.5) is simply the direct action of T
on the valence nﬁcleons while the last two terms account for
the possibility of the transition being affected through the
intermediary of the core. This is analagous to Eq. (D.3)
where the shell model matrix element contains the effect of
the valence nucleonsvinteracting through their mutual force
and the second term allows them to interact through the
core,

The necessary form@lae for the specific modéls used

in this work will now be developed. The macroscoplc treat-
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ment of core polarization will be considered first as the
basic results are displayed in a somewhat more revealing

form than they are in the microscopic treatment.

2. Macroscopic Treatment of Core Polarization

When the macroscopic vibrational modelvis used to

describe the core V” is. given by
D NSRS
VoEm gk ) ppop Y () | - (D.6)

where the sum on i runs over the valence nucleons, kv(ri)=

-ROdU (ri—RO)/dri, and U (ri—RO) is the shell model potential

seen by the ith valence nucleon. The non—sphericel component

of the interaction of a projectile with such a system,
Eq. (B.12), has the same form except the opticalvpotential
appears in place of the shellvmodel potential. The one
-body operator appearing in Eq. (D.5) has two components,
T=T +T, | (D7)
where Tv is the valence component and Tc'is the‘core
component. For inelastic proton-nucleus scattering TV is
the force between the valence nucleons and the_proton
projectiles.and Tc’is the second term in Eq. (B.12). Iso—
spin is not considered in the treatment and the force_in
TV is taken to include the exchange interaction. \For ‘
normal parity electromagnetic transitions TV is the

density operator of Eq. (C.5) with the sum on i running

over valence protons and Tc is the second term in Eq. (C.11).

o
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_Introducing expliclt reference to the core, the
states lAn> and IBn> in Eq. (D.5) are written IAnO> and

anO>, respectively, and the projection operator is

) : : ») |
[—LCHICHL,JMJéﬁan,JMJlfLMICnLM><CnLM| (D.8)
IM_ Ch
J .

where Cn now refers only to ﬁhervalence configurationv
and LM designates a one phonon state. The first form of

P on the right in Eq; (D.8) contains staﬁes with good
total angular momentum while in the second form the
uncoupled representation is used. Also note that HO takes

the form
Hy=tU (ri—RO)+HC. . v (D.9)

where H,, the core Hamiltonian, is defined in Eq. (B.10).
The probability amplitude for the componeht[CnL;JMJ> in
the wave function (D.17) is (EA ~E, —ﬁwL)—l times
n “n
| | Je.Ta Jo o oa
CRL3dIVIA >=6,- [1](-1)
_ A
n A

Wy 1/2
(==) <k >
2CL v

2

(S

x<CnI!YL|[An>. (D.1")}

A little algebra gives the following result for Eq. (D.5)

. 2 24-1
<B T8 =< |7 [a >+l (26 [0 ~thw )1 e /20, )

. ~Ly¥ 0 by (v yiL N
xf(r)li YLM‘P’J<Bn!ikv(‘i)l YLM(ri)lAn>} (D.10)
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~ where Q=E, -E; and f(r) is either k(r) (Eq. B.1l2) or '

. n n :
h(r)(Eq. C.11). This is the same as the result of Love and

Satchler'.15 Further it is easy to show that the second term

on the right in Egq. (D3) becomes

WP ) =-1 o y L "
<A |V - v [An>-LME (h@L/2cL)<An|ikv(ri)1 YLM(ri)ICn>
C, -
) ~L,¥ 2 :
x<Cn|ikV(ri)1 _YLM(ri)lAn,> o (D.11)

where it must be remembers that the states ICn> are
simply shell model states. Using closure Egq. (D.11l) becomes
<A |V’EV’|A L= ,
n E n ;
| (D.12)

- z [
P /20 DA [ G ik (ry Dk, (r g )Y gy (g )Yy (e ) [A) >

where the self energy terms 1=J have been excluded as
thelr effect is assumed to be incorporated into the shell
model potential.

Egq. (D.10) and Eq. (D.12) areiﬁhe essentiai relations.
for the macroscopic treatment of core polarization. Note
that the collective model Hamiltonian has only bne sihgle

phonon state for each value of LM. As was pointed out in

" Section 1 of Chapter 7, this does not have any physical

significance With réspect to the actual core nucleus. The
model 1s used here as a vehicle fof parameterizing the
core polarization effects. Ih‘some calculationSJHwL_and
CL will characterize a physical core state and in others
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they deflne an "effective" core phonon. In discﬁssing the
macroscopic vibrational model in Appendix B it was pointed
out that only vibrations of quadrupole order or higher

fell within the framework of the model. This restriction
is ignored here with the note>that generalilizations required
to bring in other vibrations may not preserve the form of

k 'k, and h°2 which have been given previously.

V’
The inelastic proton-nucleus scattering form factor
corresponding to the transition matrix element (D.10) is

~ ) : (o 0]

FLSJ(P)anLSJ(r)_éSO 0, k(r)_ L ) fokv(r )P LOL (r*)r
GﬁwI)Ev L (D.13)
G, =— ——s == D 2 (A, ) >>0Q
Yoaue)? O T O

where the superscript n indicates that only a transition
between basic shell model configurations is being consid-
ered. 'The sum on 11~ is necessary in general since the
form [lactor may have neutron and proton components even
when the initial and final states are simple sheil model
configurations. For example, think of a transition between
S;ates.formed from a proton and a neutron in the same
orbital., The fact that the subscript tt” does not éppear
on kv(r’) amounts to neglecting any differences between
neutron and proton wells for the same orbital. From Eq.

(B.6) it follows that Eq. (D.13) can be written

~

Tm Ly (L (ey-6g 6 <k k()] (D.11)
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where

&h% L(r) {’VST L(r r )u . ,(r')unz(r’)r’zdr’ | (D.15)

| ' : as in Eq. (2.477) and
) _°° ’ - - ﬂ2' - .
<kv>—j°kv(r Ju - -(ru  (r7)r"“ar”. | (D.16)
In Eq. (D.14) the contribution due to core polarization
appears as a modification of the radial form factor. This

2 2

opposite to that of I ;-(r) at large r. Since k(r) is posi-

|

1_ modification 1s scaled by the factor 6L<kv> which has sign
tive it 1eads to enhancement of the transition. Further in
_this model the modification only appears in S=0 amplitudes.

| Deforming the spin-orbit term in the optical.potential would

| bring in the possibility of core polarization contributions
in'Spin-flip”amplitudes. Note that the fbrm.factor is-

LSJd

proportlonal to M ,(n) which is the geometrlcal factor

characteristic of the transition from the shell model state
|Aﬁ>‘to the state an>' As the selection rules.for fhe
transition are contained in this factor, it is clear that
they haVe not been effected by these considerations.

For normal parity electromagnetic transitions,

inelastic electron-nucleus scatterlng,or Y- tran31t10ns

F; (r) in Eq. (C.57) or Eq. (C.17) becomes

LOL( y_ ) LOL

F_ EMIE )8 ey qup -y (0D

1
11 —6L<kvéh(r)}.
2 2

nl(f)—e

(D.17)
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For the'(e,e’):reaction the correction factor (C.6) would
only be applied to the first term on the right in Eg. (D.17).
For»a uniform charge distribution the expression for B(EL),

Eq. (C.17),

2d_+1 3Z
B~ 1 2 LOL
B(LL)—§5-IT 5 [Lm7%(n )(<rL>6 N l+eL<kV>H-—- RrYY 1%
2 2
(D.18)
where the subscript ¢ denotes core and
L. o L ' 2
<r >—f0r un,g,(r)ung(r)r-dr. (D.19)

These relations are completely analagous to those for the
{p,p”) reaction and it is seen that there is a core contribution
even when the valence nucleons are neutrons. The transitions

~

are enhanced as 6L<kv> has the same sign as <rL> or un,g,(r)
unQ(r) at large r and h(r) is negative.

Results D.(14) and D.(17) can be obtained by restrict-
ing consideration entirely to the valence conflgurations and

assuming the interaction between the proton projectile and

the ith valence nucleon to have the fform

(D.20)

VE-R =V (E-F =k (ke (e b e v2 (B)Y ] (m)

or that the density operator for the ith valence nucleon is

0(F)=ey 6 (=T )-n(r)k (v, )2 6 yEM<r)yLM<§i> (D.21)

L

with eizO or 1 as the i1th valence nucleon is a neutron or a

proton, respectively. Iurther Eg. (I1,18) can be written
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2JB+1 1

=[
2JA+1 2ttt”

LOL L

B(EL)=g—— ,(n)<r >e T;]2 ' ' (D.22)

where €.~ 1s the effective charge defined by

- - 3 L A
eTT,~e6 1 1+EF ZceRc T GL. (D.23)
TT ,5 -2— ‘.r >

The above relations clearly display the renormalization

of transition operators due to core polarization. The
renormalization is dependent on the valence configuration.
This dependence appears in k, or <k >, <rL>, and in the

eL. Froﬁ‘Eq. (D.3) and Eq. (D.12) it also follows that the
renormalized force between the ith and Jth valence nucleons
is

r’ff(r —r ) V(r —r )+k (r )k (r )z (ﬁw /C )Y (r )Y

e LM(r )

(D.24)

which has the same'form as Eq. (D.20) which gives the force
between an unbound proton and a valence nucledn.

So far the question of configuration mixing has beén
ignOred.‘ This effect is contained in«Eq. (D.2) and can be
included by multiplying the right hand side of Eq. (D.14)
and Eq. (D.17) by“Aﬁf%E and summing over n. There is séme
difficulty in using this approach when there is a great deal
of configuration mixing as ambiguities may result in speci-
fying the state dependent bparameters which wére mentioned

above.
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When considering the coupling of the valence nucleéns
to a physical state of the core the eL,iS well defined as
ACL andgﬁmL_can be determiﬁed from the transition in the
core nucleus which starts at the ground state and ends at
- the state in question. The (p,p~) reaction the (e =e’)
'reactlon, or y-transitions can be used for this determination.
Love and Satchler15 16 assume 6 characterizes an effective
core phonon with th>>Q so that 6L=l/CL.- They consider
transitions in the (p,p”) reaction and GL is fixed from an
analysis of corresponding Y-transitions. Anotﬁer method
which is‘used in this work is to determine the GL from the
spectrum,

For example, ccinsider a nucleus with two like valence
rucleons ‘and assume thét these nucleons are restricted to
the (j)2 configuration. The low lying states of this
nucleus will have J=o+ 2¥,...(25-1)" and their energies
will be related to the matrix elements <(3)° J]T)ff}(J) J>,

From kq. {(D. ?M) it follows that

2 2 J .
DY 1D A=) 25V () Brm e > 20w (.25)

' J=23%2 s us. . . E ' -
Mi=(—1) dJJCW(JJJJ,LJ)<J!,YLI]J>2 (D.26!

where E_lQﬁwL/L )—~1/C =-0, consistent with the assumption

&

discussed above in regard to the transition matrix elements.
Examination of the behavior with L and ¢ of the Racah coefh
flcient in Kq. (D.26) shows that the second term in Eq.

(D.25) will give a strong attractlve Lunt”lhutlon to the
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J=0 matrix element and will give a repulsive contribution

to matrix e1ements for higher J provided the 6. fall off

L
sufficiently slowly with increasing L. This is the effect
S . 20-25

required to reproduce the observed spectrum” which in

turn can be used to fix the GL'S.>

Note that in computiﬁg the rendrmaliZation of the
bound state matrix elements by this prescription that no
contributions from abnormal parity states of the core afe
included. This is a direct result of the form assumed for
the valence core interaction, Eq. (D.6). In the microscopic

calculations of .Kuo and Brown20"25

these contributions are
shown to be small and repulsive. Nevertheless, the values
of eL corresponding to normal parity core excitations deter-
mined from the spectrﬁm will be somewhat too small because
repulsive terms are neglected. In this work this difficulty
is circumvented_by determining_the GL from the decomposition
of the G3p—lh contributions to the J=0 matrix elements
calculated by Kuo and Brown2%72°. Deficiencies in their
maﬁrixveléments should show up as correspoﬁding deficiencies
in the reéults of this work.

This proceaure can be extended to more complicated
caseé.-‘The essential criterion for its appliCability is
thatvthere are no more eL's to determine than there are
"matrix elements defined by the spectrum. In a more general
case;the'eL's which are determined may show some configuration
dependence which is, of course, expected. The inverse of
this process has.been used to renormalize bound state matrix
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elements in ﬁhe Pb calculations by True and Ford.94
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3. Microscopic Treatment of Core Polarization

In the completely microseopic calcuiations the
quantities to be determined are the proton and heutfon
transition densities; therefore, interest is in»the reduced
matrik elements of the operator defined in Egq. (B.21) and

Eq. (B.217).

One Nucleon Outside of a Closed Shell

For a nucleus with one nucleon outside of closed shell
the unperturbed valence configurations are the single particie
states defined in Section 3 of Appendix B. The necessary
reduced matrix element corresponding to the first term in
Eq. (D.5) is given by Eq. (B.22) and will be called R%f{(o)
where D refers to direct. The reduced matrix element corres-
ponding to second and third term in Eq. (D.S) will be called

RLS{(C) where C refers to core.

TT
In calculating R%E{(C), V7 is the "bare" G-matrix or

an approximation to it such as the K-K force and P projects

onto 2p-1h states.
P=p =(1+6 )"l ) 1 (33.0T .3 33" M ><(55.)d g 3d M7
2p-1h ij Jigd p*v’h’ P v’*h’
v , (D.27)

v e T
I(JJp)JV,Jh,J M~ > <Jmemle

3. - _
x(-1) b mha+a;ahlc> {D.28)
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For convenience reference to the quantum numbers T,Tp, and
Ty has been suppressed. In Eq. (D.27) only distinct pairs

(jjp) are included in the sum, i.e. (1,2) is not different

from (2,1) and only even values of J, are allowed when j=

jp. It 1s not hard to show that
_pl 2 -
P2p—lh"P2p—1h+P2p-1h | (D.29)

where P%b—lh includes only the terms in Eq. (D.27) with

IJ(Jth)JCSJ M ><J(Jpjh)Jc;J M| (D.30)
c .

with the prime indicating that terms with j=jp are excluded.
The state vectors appearing in Eq. (D.30) are defined

in Eq. (B.37)l Contributions from P%p—ih are excluded in

the calculations of this work. In the work reported in

Ref. 20-25 and Ref. 88 a quasi-boson assumption is made and

“intermediate states with a valence nucleon and like core

nucleon in the same orbital are allowed. This assumption

amounts to including terms with j=jp in Eq. (D.30) instead

1
2p-1h"

are only two extra-core nucleons in the intermediate states

of the manner prescribed by P In this case there
and it is not difficult to carry out the complete Calculation
while maintaining consistency with the Pauli principle;

however, this 1s not true when the intermediate states have
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more than two extra-core nucleons. In any event the neglected
contributions are likely to give only a small percentage of
the total effect.

In order to illusfrate the derivation of the formulas
used in the microscopic calculations note that the third

term in Eq. (D.5) takes the form

-H_)"1olSd
.0 TT

|3 ,my>
o (D.31)
- ) -1 . ST N - . LSJ,.
——jpjhE<ph> Iy IV 0p3,0953,><3,03 3, 0953 ymy [022% ]
Tp’[h

- - l ‘ — . 2 .
<Blv P(EBn”Ho) TlA>=<dymy [VPS_ 1 (E;

1

oMo

where E(ph)=Ep-—Eh+EJ.2:Ep—Eh and T and 19 have'been intro-
troduced .explicitly. In writing Eq. (D.31) use is made c.f
Eq. (8.38) which shows that j must equal J, or jp and'Jc
must equal J., Since the sum of jjp in Eq}'(D.BO) includes
distiﬁct pairs and j#jp one is free to choose j=j2 and
sum over jp#j2.- Further, the matrix element of V vanishes
unless j1m1=J’M’. In"the occupation number representation

V 1s written
V=% 1 <aB|V|y6>a+a+a a (D.32)
oaBy$§ B7a"y™¢8 *

where <aB|V|ys> is an unsymmetrized two-body matrix element.

Using Eq. (D.32) it can be shown that bound state matrix

element in Eq. (D.31) is given by
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J +J2+J A pan_ .

<J1 V13,63 )J,J1 ; (-1) P 379351 g I, J—?KJljh,j2jp;J’)
I7313,
(D.33)
where'b(Jljh,jsz;J’)=[(1+aj ; )(1+53 ; y11/2
: ' 1h 2°p :
XV(jljh,j2jp;J‘T=l) . (T1=Th;T2=Tp>
(D.34)

{V(J1 h,J2Jp;J T=O)+V(jljh,32jp;J T=1)} (Tl#rh;Tg#Tp)

with V(jljh;j2jp;J’T) designating a two-body matrix element
between antisymmetrized two-particle states coupled to total
angular momentum J~ and iso-spin T. Iﬁ deriving this result
using Eq. (D.32) contractions leading to one-body potential
terms in Eq. (D.33) are neglected. For the (p,p”) reaction

and electromagnetic transition t.=1. and Tp=T When the

1 "2 h*
valence nucleon and excited core nucleon are of the same type
only the T=1 part of the partlcle ~core 1nteract10n 1s
effective, whereas both the T=0 and T=1 parts of thls inter-
action are effective when these nucleons are different. The
produot of the matrix element }D.33) and _--E(ph)_1 is the
probability amplitude for the (ph) component in the final
state wave functlon |

Combining Eq. (D.33) and Eq. (B.38) gives the following
expfession for the reduced matrix element corresponding to

Eq. (D.3l)

J J + J A A
. 2 AN |
GTT',T T E(ph)~ ( 1) JJdpdg
hp

LSJ(C )=-

L
p Jh
p'h
J*
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l. | x%'J Jpjhz"v’(Jljh,Jgp;J')’<JplloLSJlljh>- - (D.35)
‘ SIREEPY

A similar expression can be obtained for the reduced matrix

element corresponding to the second term in Eq. (D.5). This

LSJ

is called R™"<
TT

(Cl) and differs from Eq. (D.35) by a phase
and the interchange of jl and jg. The sum of the two contri-

butions from core polarization to the transition density is

.

LSJ , oy _oLSJ LSJ ) -1, . LST, .
TpTh
. J’+,j +j ‘/\ A A
: =2 . _ p 1l 227 5 -1
A(legphJ) J,GTT,’Tth( 1) J Jndq (D.36)

. T . A"/\ . . . . . - _ S+J . . . . . . -
x[f3,3,9 ’? S pdqsdpndnasd D+(-1) IpInd [V(353553p313597)]
WJodyd 7l J1d,9

where the double prime on the sum over jpjh indicates that

the first term in [] is not included when jpT and the

second term in [] is omitted when Jpr=J2T2. |
It was pointed out previously that there is no breaking
of the valence transition selection rules when the macro-

scoplc treatment of core polarization is used. Consider the

transition where the valence nucleon goes from an s orbit

1/2
to the d5/2 orbit. ' Without core polarization this transition
can only go with L-transfer equal to 2. From Eq. (D.36) it
can be seen that L=4 is also allowed, i.e. assume |C> con-

. P . -1
tains a filled p-shell and consider a f‘7/2—p3/2 particle-
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hole pair which gives a contribution for L=.. This point
is probably academic as the L=14 contribution to the transi-
tion is not 1likely to be as iﬁportant as that from L#2,

but it does indicate that core polarization can efféct the

valence transition selection rules.

Two Nucleons Outside of a Closed Shell

For twb nucleons outside of a closed shell the only
transitions consideréd are between states wheré the valence
configurations are the alléwed couplings of two like
nucleons in the same orbit. The wave functions for these

cbnfigurations were defined in Eq. (B.35) and Eq. (B.36)
LSJ

gives RTT,(D). For this case
_>l _Z Y . by - - * » . b3 R » -
PfP3p_1h—jpjh[(JJ)JV(Jth)JC]J M™>(33)9,(3 3y )3, 19 "M (D.37)
JVJC
JM”

where reference to T,Tp, and N is again suppressed and the
sum excludes terms with j=jp and odd values of JV. The
state vectors appearing in the projection operator were

defined in Eq,.(B.39). Using the notation of the last section

LSJ
RTL(C,)=-,
TT 2 Jth

T‘pTh‘

I, B(on) <) | VI [(35)3, (35,0319

*<[(33)9, (33,0955 1022 ()2, (D.38)

where Eq. (B.40) has been used alongiwith the properties

of V to eliminate some of the summation.
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The matrix element of V appearing in Eq. (D.38) is

<(J)2JBIV![(jj)JA<3p3h)JJJB>=
J+3-j o

2z (-1) - In? 3,372 103 39 FJJ ]

iJdn J

A {
{JhJ J

kTI(JhJ,JpJ 377).(D.39)
L A

Multiplying result (D.39) by -E(ph) ' gives the probability
amplitude for the (ph) component in the final state wave
function. 1Inserting the result of Eq. (B.40) and Eq. (D.39)

into Eq. (D.38) leads to

_ J+3=3. =37 n n on
LSJ(C )=-2. ZJ 6. E(pn)7H(=1) h 37,943
TpTh
J-
X )J JpJ .J1 J
\JhJ Jj \JJBJA
e e e e LSJ
x J(JhJ,JpJ;J )< 1™ 15,2 (D.40)

Combining this result with the corresponding result for

LSJ(C ) gives the following result.

Re2l(e)=- L Bon)Macsena) <y, [ 10557 |5 >
p
p h
p'n (D.41)
J+j-3 =J" R
AGpna)=2d.(-1)" T TP 5425 ] L1+ (-1) 5

[ ( )
NI 3. I35
f. Lo (1532 t
WJyd J B"AJ

X (33 5353597)
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As in the valence transition L must be even and when

-J=L and S=1 A(jphJ) vanishes; therefore, spin-flip is still

forbldden for a transition starting from the state J -O
The 1nclu51on of core polarization does not lead to any

breaking of the valence transition selection rules in these

‘transitions. When'JA=O,_L=J=JB, and S=0, A(jphJ) becomes
.LI 2 J +J+J,\ )
A(jphd)=ntt I (_1)7p h (3353,5397) (D.b2)
J J -~
| P

Phase of Microscopic Core Polarization Contributions

The formula obtained for_treating core polarization
using the macroscoplc vibrational model to describe the
core clearly displayed the relative phase of the core and

S
L J(

direct contributions to transitions. The phase of R C)

defined in Eq. (D.36) and Eq. (D.41) with respect to the
corresponding RLS{(D) i1s not apparent from 1nspectlon. It
is useful to examine this phase relation.

To do this it is necessary to express the two-body

matrix element in terms of multipoles of the two body'force.

1 aon A J+3, +j. ’
','\‘:f . R . = Z = _ J '*O . . _ h 1 . . -
L°S"J7 ., L°s"g7. . . PIphd; »
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pJ,hd, 5 '
Ig-1-q ju (rgduy (ry)Vvg. - Q(r srq)uy (e duy (v )rorldrodr1
(D.4bk)
+fu (r )u (r )LfS ‘L Q(ro,r )u (r )u (r )r rldrodrl
y "
Vv E (r. :r)=- " | {<L 2’200 |£10><L ,Q,hOO ll O>}£’n2£n|2
- - 3 ' - " . rd
SL°QT0’TI L",L <L 2200|£lo><L 2h00]2p0>
1" " fty - 4
xw(z L Qllh,L L7Yw(g zpzl h’ L )VS L"Q(ro,r ) (D.4s)

This expression for the two-body matrix element is obtained
by following the procedure used in Chapter 2 for decomposing
the D.W.A. transition amplitude Q designates the_p—p(n—n)

or p-n force as Tth is the same or opposite to THT 1
E

Vs-L Q(ro,r ) 1s the exchange interaction defined by Eq. (2.23),

- -

and M - (JJ7) are the geometrical ‘actors for the sing.e

\

particle transition density defined according to Eq. (B.6)

and Eq. (B.67).  The second integral in Eq. (D.44) 1is the
exchange integral which is expected to be in phase with the
direct integral for a short range even state force since

U S L Q(ro,r) VS L Q(ro,r ) for a zero range even state force.

U31ng Eq. (D. 43) in the definition
“LSJ )= Z,( 1) pJ

F(r;J

;
19290 } V33150,35397)

s
\

LSJ||J-p> (D.46)

x<j |10

leéds to
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S S DU
F(r;d d,d dglsa)=(-1)" 1 "5 uS <323 Jug (r)uy (r)
. Tt

) S+81, . . .

Jp»J3L787,18;Q) (D.47)
and

| 3p+1
Pr3d,d10,5p180)=(-1)7 (-1) % e e, (G291 )uy (0 ()

S, .. e |
X s (1SD(I 3,0 8, T3L7S7,0850) (.48

where
N : hJ
. . =3/2%20-2 PI N5 [ ogey
D(J 30,0y ,95L787 ,LS;Q)=2 Jpd TIgep g My T (Ipdp)
LSJ . L°S*J LSJ : ‘
XMTth (Jth)MT2T (J,3,)/M (J2J ) (D.M9)

. With these relations Eq. (D.36) can be written

LSJ LSJd -1
‘(C)— 12 (J2J1)Jth T ’TpThE(ph) up(r)uh(r)>
p Th
x, bg (- 1)S+S +1ID(313,3 3, 95L°87,L83Q) . (D.50)

The sum on S” can be removed as only the term S°=S gives a

- nonvanishing contribution. This gives

LS{(C)—- ?Si (j2jl)2JzJ Sirs o o E(ph)“lup(r)uh(r)
271 p h *’ph
e -

foD(jlngth,J;L S,LS;Q). (D.51)
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LSJ
TT”

using Eq. (D.42) in Eq. (D.41). This is

A similar result is obtained for the R-°%(C) obtained by

JoJ 2,.J0J , . . ) -1
Ro-(C)===M_""(3j)2 &, &__.__ E(ph) ~u (r)u (r)
TT j T Jth TT,TpT p ‘h
Tp Th
xD(333,dy,593590,305Q). (D.52)

There is no sum on L” in Eq. (D.52) as the ‘transition being
considered here is of normal parity and has only one allowed
value of J. Similarly in Eq. (D.51) only L°=J contributes
to the triad (LSJ)=(J0oJ).

Eq. (D.51) and Eq. (D.52) have the form needed to see
the efféct of core polarization, as treated in this micro-
scopic picture, on transitions. In both equations the
negative of the geometrical factor for the valence transition
appears as an overall multiplicative factor. This does not
mean that violations of the valence transition selection rules

are not possible since this geometrical factor also appears

"1in the denominator of D. Only triads allowed in the valence

transitions will be considered here.

To see the phase it is only necessary to consider
particle-~hole pairs whose radiél wave funotions are similar
to those of the active valence nucleon. The largest values

PIyhi, : . : .
of IS’L’Q will occur in these 1nstanc§s and this radial

integral will have the sign of the S'Q component of the two

bbdy force. Inspection of Eq. (D.49) shows that
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AERPY
SLQ ?
for the triads (JOJ) and (J1J) the direct and core polariza-

D(jlj2jpjh,J;LS,LS;Q) has the same sign as I thereforé,
tion contributions~will,be in phase if the corresponding
component bf the.two—body force is attractive. Only the
"spin-flip" component of the p-p(n-n) force used in thié

work is repulsive. Because of this when the valénce nucleons
are protons (neutrons), proton-proton hole (neutron-neutron
hole)'exéitationswill decrease the (J1J) transition amplitude.
The same arguments hold for the triads (J£1,1,J) al£hough
there is an additional complication because the phase depends
on the sum of two terms. When D(jljszth;LS,LS;Q) is
dominant the conclusions above will hold. This is likely

to be true for the (J-1,1,J) triad as D(Ls;LS) will by
proportlonal to the L=J-1 multipole coefficient of the two—
body force while D(LS LS) will be proportlonal to the L=J+1
multipole coeffecient. For the triad (J+1,1,J) this

situation is reversed.

b, Microscopichmpirical Formula
Here a formula for computing, from the effective charges,
the enhancement of a cross section in the (p,p”) reaction

due to core polarization,is derived on the basis of micro-

‘'scoplc considerations alone. The argument is orginally due

to Atkinson and Madsen19 and is given here in the notation
of this paper.
For a normal parlty transition with some degree of

collectivity the triad (LOL) gives the domlnant contribution
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to the cross section. The form factor designated by this

triad is

LOL( )= f LOL(r, LOL

(ryr”)F Y+ F (r;r )F (r*)}r

ODL O L

(D.53)
LOL

LOL and Fn are the proton

as specified in Eq. (2.59"). Fp
and neuﬁron transition densities, respéctively, andﬂi) L
and VO [, @re the multipole coefflclents of the non-"spin-

fllp"components of the p-p and p~n forces with the exchange

interaction included. Correspondingly for y-decay Eq.(C.17)

gives

B(EL)—iji:i 107 PO () ar| 262, (D.54)
The neutron and proton transition densities ha&e two
components,

T LOL< )_D LOL(P)+C LOL (D.55)

(3 I B

where D is the direct or valence component and C is the
core component.

Two assumptions make it possible to relate, algebra-
ically, the effective charges of the valence nucleons to
analagous enhancement factors for the (p,p”) reaction. One
1s to neglect radial differences between the proton and
neutron transition densities and their direct and core
componénté. The second is to assume that different com-

ponents of the projectile-target interaction have the same
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radial form Or?that "equivalent" components with the same
radial form can be defined. The 1F range "equivalent" impulse

approximation pseudo-potential given in Chapter 3 can be

-used in this context. The local approximation to the exchange’

component ¢of the D;W.A. fransition amplitude i1s an implicit
uncertainty in the second assumption.

The total protonitransition density can be written

1 . 1
P (T)=5{F (T)+F_ (T) }+3(F_(T)-F (1)) (D.56)

where Fn(T) has been introduced so that Fp(T) is expressed
in termé of iso-scalar and iso-vector components. An iso-
scalar transition is defined by the condition Fp(T)=Fn(T).
In terms of the iso-scalar and iso-vector effective_charges,

Fp(T)iFn(T)

e /= - ' (D.57)
{? Fp(p)-Fn<D>

Eq. (D. 56) becomes
F_(T)=3e {F_(D)+F_(D)}+ie_ {F (D)-F (D)}
P 270" p n 2° 17 p n-
=epr(D)+enFn(D) | | . (D.58)
where the proton and neutron effective charges are

Correspondingly,



