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ABSTRACT

SOME OBSERVATIONS CONCERNING THE USE OF REALISTIC FORCES IN

A MICROSCOPIC DESCRIPTION OF THE INELASTIC SCATTERING

OF NUCLEONS FROM NUCLEI AT MEDIUM ENERGIES

BY

Fred L. Petrovich

The problem of describing, in a microscopic picture,

the process of inelastic nucleon-nucleus scattering at inci-

dent energies in the 15-70 MeV range is of current interest.

Of primary interest are the properties of the projec-

tile-target interaction. In this work several models for

this interaction are investigated by diredt calculation.

All of the interaction models considered are consistent with

some portion of the data concerning the free two-nucleon

force; hence, the term "realistic forces" which appears in
the title of this paper. To be specific, it is assumed that
the projectile-target interaction is given by (1) a pseudo-

potential derived from the impulse approximation, (2) the

long range part of the Kallio-Kolltveit potential (K-K force)
which is known to be a good approximation to the central

part of the shell model reaction matrix, and (3) a Yukawa

force derived from effective range theory.
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This study is restricted in that the local distorted

wave approximation (D.W.A.) is used throughout and no consider-

ation is given to components of the interaction with compli-

cated spin dependence such as the tensor and £·s parts.

Approximations are made to treat the exchange component of

the D.W.A. transition amplitude which is non-local. This

component appears because of the required antisymmetrization

of the projectile-target wave function and it has been neg-

lected in most recent work on this problem. These approxi-

mations are discussed and some comparisons with exact calcu-

lations are presented.

Application is made to (p,p ) transitions in closed

and pseudo-closed shell nuclei. Random phase approximation

(R.P.A.) state vectors are used to describe the states of

the target nuclei.  Studies of the (e,e') reaction and the

(p,p') reaction (at incident energies in excess of 100

MeV) have shown that these vectors give a good description

of the transitions considered; therefore, thes·e calculations

provide a test for the proposed interaction models. The

results obtained with all three interaction models are shown

to be in reasonable agreement with experiment, although the

Yukawa effective range force appears to be somewhat poorer

than the other two at incident energies below 30 MeV. The

inclusion of exchange plays an essential.part in giving this

agreement. In most instances deficiencies in the shapes of

the theoretical angular distributions are noted.
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Further application is made to transition involving

low lying states in nuclei which possess one or two nucleons
outside of a closed shell. The purpose is to study core

polatization effects which are known to be important in
these transitions. The effects are estimated in calcula-

tions which use either a microscopic model or the macroscopic
vibrational model to describe the core. Emphasis is on the

completely microscopic calculations which assume that the

core can be described by a zero order shell model Hamiltonian

and that only the effect of simple particle-hole excitations
of this core with energies up to roughly 26(11 need by consid-
ered. The coupling between the valence nucleons and the

core is treated by first order perturbation theory and the

K-K force is taken to be the coupling interaction. This

model is essentially the same as the one used recently by

Kuo and Brown in work on the spectra of nuclei of this type.

Contributions to (p,p') cross sections due to core polariza-
tion are large. The relation between the e ffect of core

polarization on the spectrum and in inelastic proton-nucleus

scattering is examined. The microscopic model doesn't do too

badly on the (p,p') cross sections, i.e. mass polarization
effects. The experimental data is underestimated somewhat.

However, effective charges for corresponding y-transitions,

i.e. charge polarization e ffects, are badly underestimated.

One case is found where this model does badly, on the mass

polarization. This is explained by explicitly taking into

account the effect of a highly collective state in the core

nucleus.
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From this study it is concluded that a reasonable

description of this class of reactions is obtained using

'Fealistic forces" provided the treatment includes the effects

of (1) antisymmetrization and (2) long range correlations in

the target nuclei, in particular, core correlations (R.P.A.)

and core polarization.
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CHAPTER 1

INTRODUCTION

There are several factors responsible for the current

interest in the microscopic description of inelastic nucleon-·

nucleus scattering at medium energies, i.e. incident energies

ranging from 15-70 MeV. Most important are recent advances

in the theory of nuclear structure which provide a des-

cription of a variety of nuclear states in terms of the

motions of the individual nucleons which comprise these

systems.1,2  The medium energy region is of particular inter-

est primarily because it is the best source of data on these

reactions. This is credited to the new sector-focussed

cyclotrons and the large tandem accelerators.

Much has been said in the literature about this problem.

Ref. 3-7 are a representative sample of papers and a rea-

sonably good bibliography is contained therein. These papers

consider some of the formal aspects of the problem and discuss

those features of inelastic nucleon-nucleus scattering which

make these reactions valuable for studying nuclear structure.

Emphasis is on the distorted wave approximation (D.W.A.);

however, a good discussion of the coupled channels method is

gi ven   in   Re f. 5. The treatment of the non-local D.W.A.

1



--

2

transition amplitude is discussed in Ref. 3. This is
t

encountered when the required antisymmetrization of the

projectile-target wave functions is taken into account.

The results of several calculations are also avail-

ab le. In these works the local D.W.A. is used and the
8-14

question of antisymmetrization is ignored. It is assumed

that the projectile-target interaction can be expressed as

a sum of two-body interactions between the projectile „and

individual target nucleons. The two-body interaction is

taken to be local and scalar, separately in spin, i-spin,

and coordinate space. Various radial forms are used and      

the strength and range parameters are fixed by direct

calculation and comparison with experiment. Simple shell

model wave functions are used to describe the target nuclei.

Application is restricted to the (p,p') and (p,n) reactions

(a limitation imposed by the experimental data) and the

transitions considered serve to isolate different components

of the interaction. As far as the weak components of the

force are concerned, the information extracted in this manner

shows some consistency; however,-these analyses yield a

  large range of values for the strength of·the strong, non-

"spin-flip" components of the force. In addition these

strengths are considerably larger than that expected from a

knowledge of the free two-nucleon force.

t In this work the terms local and non-local D.W.A. are
used·to specify the character of the operator appearing in              Ithe D.W.A. transition amplitude, i.e. local or non-local in
the projectile coordinate.
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In related calculations the description of the target

nuclei is improved so as to introduce explicitly the effects

due to core polarization in those transitions which proceed

through the strong parts of the interaction. The macro-15,16

scopic vibrational model is used to describe the core and a

closure assumption makes it possible to fix the core para-

meters from experimental y-transition rates. The effects are

large and much smaller interaction strengths result when they
are included. It is likely that core polarization can account

for many of the inconsistencies noted in the earlier works.

The effects due to antisymmetrization are contained
in the exchange component of the transition amplitude which

is necessarily non-local. Its properties are presently

being investigated. Initial results indicate that it cannot

be neglected and that its importance is a function of inci-

dent nucleon energy, multipolarity of transition, radial

form and exchange nature of the two-body force, and initial
17-19and final target states. This dependence places restric-

tions on the two-body interaction and implies a re-evaluation

of some of the conclusions obtained in analyses in which

antisymmetrization is ignored.

Considerable success has attended the use of "realistic
20-25forces" in the bound state problem. The theoretical

foundations of this approach are reviewed in several

places. ' (Ref. 27 due to MacFarlane is an excellent
1.26-29

article.)  The major step is this treatment is the intro-

duction of the shell model reaction matrix, or G-matrix, as
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t +the interaction between bound nucleons. This is obtained

directly from a two-nucleon potential in a manner which

takes into account the presence of other nucleons in the

nucleus and eliminates the need for using wave functions with

short range two-particle correlations. The G-matrix used

in Ref. 20-25 is derived from the Hamada-Johnston (H-J)

potential which fits the nucleon-nucleon scattering data up

to 300 MeV. Application has been made to nuclei not more
30

than two nucleons away from a closed shell.

The success of this treatment of the bound state problem

is very encouraging. Because of its fundamental nature, it

avoids many of the difficulties associated with commonly

used empirical methods where the interaction is essentially
20left free. The biggest difficulty is the compensatory

relation between the particular calculation which is per-

formed (the proper calculation is, of course, not known

a'priori) and the interaction which is so determined. These

remarks need not be confined to the bound state problem.
8-14

As an example, note that the initial empirical efforts

on the inelastic nucleon-nucleus scattering problem conceal

the importance of core polarization and antisymmetrization.

The purpose of this paper is to explore a parallel

treatment of the microscopic description of inelastic nucleon-

ItThe G-matrix re ferred to here is often called the
"bare" G-matrix. This provides a means of differentiating

'between matrix elements of this operator and corresponding
matrix elements which implicitly contain effects other than
interaction of nucleons through this operator alone, e.g.
core polarization effects.
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nucleus scattering. Here, asserted a'priori, are three

models for the projectile-target interaction. All of these

relate directly to the free two-nucleon force. The word

models is used because no attempt at a precise derivation of

the projectile-target interaction is made. This hopefully

can be done within the framework of the many body theory of

these reactions in a manner analagous to that followed in

the treatment of the bound state problem.  In this work the

asserted interaction models are simply investigated by

direct calculation. In related works they are used to

calculate opti'cal potentials for elastic nucleon-nucleus

31,32r             scattering in the medium energy region.

To be specific, it is assumed that the projectile-

target interaction is given by (1) a pseudo-potential derived

from the impulse approximation, (2) the long range part of

the Kallio-Kolltveit potential (K-K force) which is known

to be a good approximation to the central part of the shell

model reaction matrix, and (3) a Yukawa force derived from

effective range theory. These interactions have the same

forms, i.e. local, scalar, e t c. . . . ,a s those used in

previous investigations and all calculations are carried out

using the local D.W.A. Any effects due to long range corre-

lations--for example core polarization effects--are included

explicitly in the target wave functions. Antisymmetrization

is treated approximately in the impulse approximation and

the effects are contained implicitly in the pseudo-potential.

For the case of the reaction matrix and effective range
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interactions a local approximation to the exchange component

of the D.W.A. transition amplitude is included in the calcu-
lations.

33The impulse approximation is a free scattering approxi-

mation which can be derived from the formal multiple scatter-
ing solution to the nucleon-nucleus scattering problem which

34-38was developed by Watson and collaborators. This approxi-

mation has been applied with success to inelastic proton-

nucleus scattering primarily at incident energies greater than

100 MeV. It is generally assumed to be invalid at
39-44

energies lower than 100 MeV; however, there are indications

that it might give good results at energies as low as

50 MeV. The pseudo-potential is simply a fit to the.
36,45

Fourier transform of the free two-nucleon scattering amplitude
which is calculated from the H-J potential, off the energy

shell, i.e. using nucleon-nucleus kinematics in place of
nucleon-nucleon kinematics.

The Kallio-Kolltveit potential contains a hard core
46and has an exponential radial form. It fits the nucleon-

nucleon S-wave phase shifts up to 300 MeV. The long range

part of this potential is defined by the Scott-Moskowski

separation method, 1.e. a separation distance is determined
47 .

(it turns out to be of the order of lF) below which the

potential is ·set to zero. The separation method gives the

leading term in a perturbation expansion for the components
of the reaction matrix which act·in states of even relative

orbital angular momentum. This force is a good approximation
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to the central part of the G-matrix used in Ref. 20-24.

The latter is derived from a more complete potential and con-

tains additional detail. Application of the K-K force to

16the calculation of the low energy spectrum of 0 in    R e f.     4 6

was one of the first attempts to use "realistic forces" in

the bound state problem. In evaluating bound state matrix

elements it is assumed that the K-K force acts Only in

relative s-states.

The impulse approximation pseudo-potential and K-K

force are selected because it is possible that they are valid

representations of the projectile-target interaction asymp-

totically, i.e. far outside and deep inside the nucleus,

respectively. Reference to the high energy features of

nucleon-nucleon scattering is contained in the potentials

from which they are derived. It is of interest to see how

these interaction models differ from the forces of regular

functional form which are obtained in the shape independent

analysis of low energy nucleon-nucleon scattering data. 48,49

To this end calculations are performed with a Yukawa effective

range force. Consideration by way of discussion is also

given to Gaussian and exponential effective range interactions.

There is an imaginary division of the remainder of this

paper into two parts. Details relating to the interaction

models, D.W.A. calculations, and exchange approximation are

contained in Chapters 2-5 and a few Appendices. Applications

and results are presented in Chapters 6 and 7 with Chapter 8

reserved for final remarks. To be a bit more specific, a
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discussion of the antisymmetrized D.W.A. is given in Chapter 2.

The approximation used to treat exchange is also developed             I

here.  The impulse approximation pseudo-potential is presented

in Chapter 3. Chapter 4 contains some rough arguments con-

cerning the possible character of the actual projectile-

target interaction and its relation to the K-K force and

impulse approximation pseudo-potential. The effective range

forces are introduced in Chapter 5 where some of the pro-

"                    "perties of the approximate exchange component of the D.W.A.

transition amplitude are discussed and a few results obtained

with exchange treated approximately are compared with results

of exact calculations. At this point the K-K force and18,19

effective range forces are compared on the basis of this

approximation.

Applications, mainly to (p,p') transitions in closed
12   16    40

and pseudo-closed shell nuclei, i.e. C    0 ,C a , and

Pb , are considered in Chapter 6. Random phase approxima-
208

tion (R.P.A.) state vectors are used to describe the target

nuceli. Studies of the (p,p') reaction at incident
50-54

40-44
energies above 100 MeV and studies of the (e,e')

reaction indicate that these vectors give a good des-55,56 .

cription of the transitions considered. These transitions

serve to test the proposed interaction models at least to

within·the quality of the approximation used to treat anti-

symmetrization. Some inelastic electron scattering results

are presented in order to provide a frame of reference for

examining the (p,p') differential cross sections which are

presented.
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                 Chapter 7 is devoted to the treatment of transitions

involving low lying states in nuclei which possess one or

two nucleons outside of a closed shell. Core polarization
15-16plays an important part in these transitions ' and has

an equally important effect on the relative spacing of these
20-25low lying levels. The effects of core polarization are

estimated in calculations which use either a microscopic

model or the macroscopic vibrational model to describe the

core. Emphasis is on the completely microscopic calculations

which assume that the core can be described by a zero-order

shell model Hamiltonian and that only the effect of simple

particle-hole excitations up to roughly *Mw in energy need

be considered. The coupling between the valence nucleons

and the core is treated by first order perturbation theory

and the K-K force is taken to be the coupling interaction.

This is essentially the model first used by Horie and Arima

57
in calculating quadrupole moments  and it is the same picture

that Kuo and Brown have used in Ref. 20-25. Differential

cross sections for (p,p') transitions and Y-transition rates

are calculated. For the most part, the K-K force is used

for the projectile-target interaction.  The completely micro-

scopic (p,p') calculations are amusing as they constitute a

first attempt to calculate the observed cross sections

directly from a knowledge of the two-nucleon force. The

relation between the effect of core polarization on the spect-

rum and in transitions is examined. Conclusions are drawn as

to the validity of the particle-hole model.



CHAPTER 2

DETAILS OF THE DISTORTED WAVE APPROXIMATION

1.  D.W.A. Transition Amplitude and Cross Section

The antisymmetrized distorted wave transition amplitude

for the inelastic nucleon-nucleus scattering reaction

k a.A+kbb,B.(where k is the relative momentum of the targeta'

and projectile, the small letters represent the internal

projectile quantum numbers, and the capital letters are

used to specify the state of the target) is given by 3,16,17

TDw=<BII a +arIA>rp p

I

xm-- <X  :  (0)¢p(1) t(0,1)Ix    (O)tr(1)-x    (1)0r(O), (1)
aillb    mb mb a a a a

where a local interaction model is implied and provision

is made for the presence of spin-orbit coupling in the

optical potential. In this expression t(0,1) denotes

the two-body interaction, the X's are the distorted waves

which describe the relative motion of the projectile and

target under the influence of the optical potential, and

co-factor expansions of the target wave functions are

employed. The latter account for the presence of the crea-

tion (destruction) operators a  (a) and the single particle

bound state wave functions  $ in the relation. The arguments

10
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0 and 1 refer to all nucleon coordinates and fix the manner

in which the integrals are to be taken.

The first integral in Eq. (1) is the usual direct matrix

element while the second is the exchange component of the

transition amplitude. In the former the same particle is

unbound in both the initial and final states, but in the

latter the particle which is unbound initially is captured

into the nucleus and a target particle is expelled into the

final unbound state.

The distorted waves are solutions to a one body

Schrodinger equation which contains the optical potential.

Spin projection is not a good quantum number when this

potential contains a spin-orbit term. In Eq. (1) X ,
mama

(X ,  ) is the m'(m.' ) spin projection component of the
mbmb a  b

solution with initial spin projection ma(mb).  It is clear

that spin orbit coupling gives rise to "spin-flip" in ine:Lastic

scattering over and above that which occurs through direct

interaction via t. Note further the standard use of the

superscripts on the distorted waves to specify the boundary

conditions which they satisfy.

From the form of the transition amplitude it is seen

that inelastic nucleon-nucleus scattering is represented by

a one-body operator in the distorted wave approximation, i.e.

transitions are allowed between components of the target               I

wave functions which differ only in the state of a single

nucleon. A state of the target nucleus is defined by

its total angular momentum, projection, and additional

quantum numbers; the internal state of the projectile nucleon
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is fixed by giving its spin and i-spin projection; thus
. .

AEDAJAMA' a Em T . BEa J M
and  b Emb Tb

0 Further   a     and  ba a B B B'

will be used for miTa and m Tb' respectively.

Scattering experiments are most frequently performed

with unpolarized beams and targets. Under these conditions

the differential cross section for inelastic nucleon-nucleus

scattering is obtained by introducing kinematical factors

and appropriately summing and averaging over projections.

This gives

k
dc = (U  12  b    1

(10                2'     F  2(2JA+1 )     I  BITDW 1 2                                          (2)2 Trd M M

mamb

where v is the reduced mass of the projectile-nucleus

system.

2.  Form Factors

Without loss of generality the j-j coupling represen-

tation can be selected as the single particle basis, ie.
...#.

p=n £J m T  and r=n£jmT, which gives

-
m

tp(1)=m »-<11.3 mimilj*m >0£*(Al)11 mi j· T >

k s

(3)
m

tr(1)=mIm <£  mjlmsljm>$££(Pl)1 · ms  T>
E S

58where <abaBIcy> is a Clebsch-Gordan coefficient. It is

convenient to rewrite Eq. (1) as

'1
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TDW=m m ;· fxiI, t (PO)<v, Xit'  (Fl)d3r0d3rl           (4)aa

where

< V > = < B l  p ap+ a r 1 A, m Im, < £, i m im   I j ,m, > < £ 12· m gm s ' j m>
i s

mgms

m'*                     m
x{6(PO-Fl)ftgo (Fz)<biplt(0,2)1air>0£Z(F2)d3r2

'

m m
-0£**(Pl)<bipit(0,1)Ir,a'>0£ (FO)}              (5)

with the bra-ket notation applying to integration over the

internal coordinates only.

The quantity <V>, called the partial matrix element,

contains all of the nuclear structure information for a

particular transition. It also contains the details of the

interaction model and the selection rules which govern the

reaction. It is an effective one-body operator in the

projectile subspace. Examination of Eq. (5) shows that <V>

is non-local, that is it depends on F  and rl.  Here this

non-locality arises due to the presence of the exchange

component of the transition amplitude; however, had t been

assumed non-local the direct component of the transition

amplitude would also contribute to the non-locality in <V>.

The general rotational properties of the partial matrix

element can be exploited to reduce the distorted wave calcu-

lations for all transitions to a common form. It can be

3shown quite generally that <V> can be written
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<v>= I i-LF 1/2-In 
LSJ LSJ,M  0'rl'-

(r - ·h'Bia'A)(-1) <JAJMA'MB-MAIJBMB>

11
x<2 2 ma'-mb-IS mi-m ><LSM,mi-m |J,MB-MA> (6)

where M=M -M +m'-m'. F transforms under rotation ofB  A  b  a    LSJ,M
*        -Lthe coordinate system as Y the i insures convenientLM'

time reversal properties, and L, S, and J satisfy the vector

relations

3=3 -3
---

L=J-S. (7)B A S=sa-sb+S=O,1

It is clear that L,S, and J are the angular momenta trans-

ferred to the target nucleus through t in the inelastic

collision. If i-spin is considered to be a good quantum

number for the target nucleus Eq. (6) can be rewritten as

I  .-L T 1/2-m'b<V>=- 1 F
LSJT LSJ,M( 0'rlia-A,b'B)(-1) <JAJMA'MB-MAIJBMB>

11
x<.2 2 mi,m  Smi-m »<LSM,mi-m |J,MB-MA,

,1
(8)

x<TATMTA'MTB-MTAITBMT ><  TTb,Ta-Tbl  Ta>

where T=TB-TA=Ea-tb+T=O,1 and MT -MT =Ta-Tb.  Eq. (8) reduces
B   A                    1

to Eq. (6) by defining

IT                                     ,1
FL,SJ,M=T  FLSJ,M<TATMT 'MTB-MTA' TBMII'3,<  T'rb'Ta-'[b|2  Ta>·     (9)

This expansion of the partial matrix element can be used to

write the transition amplitude as
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I -                  LMmbma
TDW=LSJJ STAJMA 'MB-MA I JBMB> BSJ (10)

1/2where J=[2J+1] and

LMm m
B   b a=    1

m /Ill    0

-L 1/2-m'
SJ .-F - (-1)

b< LSM ;mi-m    J, M-m.+m    >a b J D a
M'

*<1  1 m ,-mb*   Smi-mt;»22

xffx   b(FO)FLSJ,M.Xm.m (Fl)d3rod3rl.             (11)
(+)

aa

The cross section, Eq. (2), then becomes

k  2J +1 LMm
da =( W  12  b

B
I  i I B   bma 2

dn   2Ah2'  ka 2(2JA+  mbma'LS SJ
| (12)

JM

with the interference between different S and L for a given

J occuring as a direct consequence of the spin-orbit coupling

in the optical potential. In practice this interference is

found to be weak. As partial wave expansions of the distorted

waves are used in evaluating the integral in Eq. (11) the

multipole components of F (P  r ) are needed.  They areLSJ,M 0' 1

defined as follows:

T   SJ            *
FLSJ,M(-rO'-rl)=LLL FLL L (r ,rl)YL M (PO)YL M (Pl)a b a b b b a a

M Mab

x<Lb LaMbMa|LM>       '                       (13)
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SJ
FLL  L (rO'rl)=MIM <LbLaMbMa |LM>b a b a

A

xffFLSJ,M< 0' 1)YLbMb(r )YL M (rl)d00dnl   (14)aa

The reduction has been achieved. All of the "physics"

for a particular transition is contained in the F
LLb La(r ,rl)

SJ

which are independent of projection quantum numbers and are

functions of the radial coordinates r  and rl.  Given these
quantities the distorted wave cross section is obtained by

  computing and summing the B as prescribed by Eq. (11)
LMmbma
S3

and Eq. (12). Unfortunately, the calculation is still not

easy.  It will be seen that each of these multipole components

is a fairly complicated quantity as far as computation is
SJconcerned. Further F (r ,r ) is associated with'  LL L 0   1ba

angular momentum transfer L, S, and J to the target nucleus

with the projectile undergoing a transition from the state

of relative angular momentum L  to Lb.  Even though only aa

few values of L, S, and J are expected to contribute to a

transition there may be as many as twenty partial waves used

in the calculation of a cross section in the energy region

of interest here.
The point is that the FLLbLa(r ,rl) are

S3

not only complicated, but many of them are required.

For the direct, or local component of the partial

matrix element an additional separation can be made.
A

SJ -LSJ 6(rO-rl) Lh      L
FLL L (r ,rl)=F (ro) 

2      4     (-1)  b<LbLOO'Lao,3  (15)b a                  r
0
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Using result (15) in Eq. (13), recoupling a spherical har-

monic, and using the closure property of spherical harmonics

gives for this case

- LSJ *   A

FLSJ,M(FO'rl)=F (r )YLM(ro)6(Po-Fl)· (16)

When Eq. (16) can be used the calculation of the cross

section is considerably easier because the "physics" is
-LSJthen contained in the F (r ) which are few in number and

depend on only one radial coordinate. In addition explicit
LMm mause of Eq. (16) in Eq. (11) gives an expression for B
SJ

which is much simpler than the one obtained by using Eq. (13)

in Eq. (11). Computational difficulties associated with the

treatment of non-local partial matrix elements have been the

major reason for neglecting the effects due to antisymmetri-

zation in the past. Fortunately, this problem is well on

its way to solution. 16,17

In this work an attempt is made to account approxi-

mately for antisymmetrization in an expression of the form

(16). The calculations are then essentially reduced to
-LSJ     t

constructing the form factors F
(p  

These have two
LSJ

components - D   (r ) which comes from the direct component
-LSJ

of the transition amplitude and E (rl) which approxi-

mately represents terms coming from the exchange component.

.1. It is F (-r  r 1 which is properly referred to as
LSJ,M  0' 1'

-LSJa form factor. When using the local D.W.A. F (rl) is the

essential part of F
(-rO'-rl).  In this work the term formLSJ,M

LSJfactor will refer to F
(r  
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Two approximations are used--one with the impulse approxi-

mation and another for the case of the K-K and effective

range forces. The approximations differ only in detail--

not in spirit. They are discussed in Section 6 of this
LSJ

chapter.  Explicit identification of E   (r ) is made when
using the K-K and effective range forces, whereas it is

implicit in the impulse approximation pseudo-potential.

Returning to the discussion of the complete partial
matrix element Eq. (13) is used to rewrite Eq. (6) as

T -L 1/2-m'
<v>=L§J i- (-1)

b < J AJ MA ' MB - MA 1 J BMB, <     mi, - m    Sm  - m  >
LMa a
LMbb

x<LSM,mi-mb-IJ,MB-MA><Lb LaMbMa|LM,

xy*L M
(80)YL M (rl)FLLbLa(r ,rl)                     (17)b b a a

In the next two sections of this chapter it will be shown

that Eq. (5) can be written in the above form, thus allowing

identification of the F (r_,r ). The discussion is
SJ
LL L U   1ba

restricted to the static interactions being considered in

this work. These have the form

t(0,1)=t (r )+t (r  )3·3+t  (r  ) - ·9+t  (   )-  - -  -00 01 01  01  0  1  10  01 TO  1  11 rol,GO'Glro'Tl

=I (-1)X+Yt  (r  ) S
81        ST -01'a-x(0)C (1)T y(0)TyT(1) (18)
Xy

where c (T ) are the usual spherical tensor components of the

spin (i-spin) operator and al=TO=l.
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3.  Integration Over Internal Coordinates

Using Eq. (18) the following result is obtained for

the integrals over internal nucleon coordinates in Eq. (5)

<b;p|t(0,1)|a;r>= T(-1)X+Yt  (r  )<1 Sm'.-Allm,><1 Sm All m,>ST 01 2 a' '2  b 2 s   ' 2  "*s
Ay

1    il  1  il .
X<FTTa,-y | 2 Tb ><FTTy I FT >

x{<illas'Ii>< 1|T 112>J (19)
T.,1 ,2

<b;plt(0,1)|r,a'>=I (-1)1+Yt  (r  )<1 Sm ,<1 m'ill m'>ST,       ST  01  2   s'-A 12 mb  2  a" 12  s
XY

7      ,1    1    11
x<STT,-y '2Tb><2TTay iFT,>

1,i S·· T,,1 ,2
x{ <2 1  I a     I    · > < 1  IT 1 1 2>k (20)

where <aa 0bBIcy>=<cbyBIaa><al|0bllb> is the convention

58adopted for the Wigner-Eckart Theorem. The following

recoupling identity

<tsms,-Alt  m »St  Sm Al·   ms-,=s x.3.2W(1  1  1  1.   SS-)2 2 2 2'

x(-1)
<2 S 'NIa,-A 1 2 mb><2 S'",s  1 2 111 > (21)

9'-S+A'+A+1.1
,

''ll 1 ™ A'Il_

and its i-spin counterpart is used in Eq. (20). Then the

fact that
-

<12  (   )   ,=( )

is used and summation indices are interchanged to give
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<b;plt(0,1)|r,a'>=I (_1)x+ytE (r 1-is , _Allin'>              <
ST' ST  01'<2 ma' '2 b
XY

x<.21 Smsx'21 ms-,<21 TT .-y'21 Tb»a.

x<   TTY 1 3.T . > { < 211 1 as 1 1 i> <i l l TT 1 1 21> 3
2

(22)

where

A

t:1'(rol)=SI'l-(-1)SCS+TLT S.2 .2W(1 21 21  ;s.s)W(1 1 1 1;T-T)

xt     ( 1
(23)S-T, rO1

58with W indicating a Racah coefficient.  Eq. (22) can be
summarized as <b'sp t(0,1) r,a'>=<b',p tE(0,1)la'sr>.

EThe coefficients in the expansion of tsT(rol) in terms
e'T'of t  (r  ) which is given in Eq. (23) will be called,AuST 01 £ST '

E        Y   S'T that is tST(r'01)=S'T'74ST Vs-T-(r ). They are given in Table 1.01

ETABLE 1.--Coefficients for expansion of t (r ) in termsST 01

o f t,  C   1S T' rO1''

S'T' a S'T
J-\ ST

ST 00 10 01 11

00            1         3          3         94            F           F           Ir
10               1 3

4   4   -4
01       1     3      1     _34     F    +F     ,T

11             1          1          1          1F    --4    -4     F
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It is not obvious from the above table, but the relationship
between th(0,1) and t(0,1) can be stated very simply.  To

see this note the following alternative expansion for t(0,1).

t(0,1) = s VTS (  SvTS(rol)PTS (25)

Here PTS=PTPs with PT and PS representing the usual i-spin

and spin projection operators - PO=  ( 1-El · 3 ) and
Pl=  (3+30.31) for the case of ordinary spin.  Unlike the

previous relations for t(0,1) ahd tE(0,1), where the sub-

scripts S and T referred to the unit of spin and i-spin

which could be transferred from the projectile to the target

nucleon through the corresponding part of the interaction,

the subscripts on VTS(rol) indicate that it is the component

of the interaction which acts when the projectile and target

nucleons are coupled to total spin S and total i-spin T.

SO SE TE TOCommonly used is the notation V  =V   V  =V   V  =V   V  =V00 ' 10 ' 01 ' 11

where SO, SE, TE, and TO refer to singlet odd, singlet even,

triplet even, and triplet odd components of the interaction,

respectively.

Expanding Eq. (25) and regrouping terms as in Eq. (18)

gives the following relations between tsT(rol) and VTS(rol)·

t o- (VOO+3Vo].+3vlo+9Vll)

t10= (-VOO+VO ].-3· rlo-'-3 r       )11

(26)

t01= (-VOO-3V +V +3V )01  10   11

tll=I.6.(VOO-vol-V.10+Vll)
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Similarly using Eq. (23) it follows that:

t O= (VOO-3v01-3V +9V )10   11

t o= EC-Voo-Vol+3v +3V )10   11
(27)

tEl= 1IC-VOO+3v01-V10+3V11)

t l= (VOO+Vo +V10+Vll)

The right hand sides of Eq. (26) and Eq. (27) differ only

by the signs of the even state terms. For the case of an

even state force tE(0,1)=-t(0,1) and for .an odd state force
tE(0,1)=t(0,1). Remembering that the transition amplitude

is proportional to the difference between the direct and

exchange components, it is clear (insofar as the integration

over internal coordinates is concerned) that the exchange

amplitude contributes constructively to the direct amplitude

for the even components of the interaction and destructively
for the odd components. This result is a direct consequence

of the fact that the internal wave function of the two nucleons

is symmetric for odd states and antisymmetric for even states.

It could have been seen more easily by coupling the internal

coordinates of the projectile and target nucleons to good

spin and i-spin before integrating in Eq. (19) and Eq. (20).

This was not done, however, since Eq. (19) and Eq. (22) have
the form that is needed for the remainder of this disucssion.

It is interesting to note that because of antisymmetri-

zation, "spin-flip" and "i-spin-flip" through direct inter-
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action is allowed even if it is strictly forbidden by the

form of the interaction. To see this note that a Wigner

force t(0,1)=t00(rol) leads to tE(0,1)= [t00(rol)+t10(rol)x

30·Bi+tO1(rol)To'91+tll(rol)Bo·3190'91]·  Such consequences

appear formally because of the introduction of the pseudo-

interaction tE(0,1) into the exchange amplitude, but it

should be remembered that this is simply a convenient way

of cataloging the manner in which the incident projectile

can be captured by the target with expulsion of a target

nucleon into the final projectile state. To conclude this

section note that the partial matrix element Eq. (5) can

now be written as

:V>=<BII a+a I A> I™,<£-  mims* I j 'm*><g  mgms'jm>rp p r  mg„,s
m Ems

.

m m
x{6(rl-Pl) f¢Ef:*( 2)<b;pit(0,2)|a;r>$£ (r2)d3r2-

.

m m
0£  (rl)<b;pltE(0,1)la;r>0£ (PO)}.                  (28)

4.  Final Reduction of Partial Matrix Element

Since the components of <V> which correspond to the

ti-ansfer of total angular momentum J are of interest it is

convenient to couple the creation and annihilation operator

in Eq. (28) to good J.

AJM (j'T';JT)= I.<j'jmi-m|JMJ>(-1)j-ma+ ,a (29)mm j -m'T jmT3
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The phase factor (-1) -m insures that A has the correctJM3
transformation properties under rotation. If i-spin is

considered to be a good quantum number additional coupling

to good T is necessary.

TM
I +1 1 , 1/2-T

AJM (j -j)=TT--2 2T ,-TITMT, (-1) AJM (j'T';j T)        (30)

For these two cases it immediately follows that

<8 I a+a  A>= .I (-1)j-m<j,jm',-m|JMJ><JAJMAMJIJBMB,pr p r JmT
-.
Jm T
JM.

3

x <JB 11 AJ ( j ' T ' ; j T ) 11 JA > (31)

and

<B I  rapar I A>=  jIT (-1 ) j-m<j -jm',-m i JMJ><JAJMAMJ |JAMB>
-.
Jm T
JM.

3
TM

T

1/2-T 1 1

x(-1)     <2 2 T-,-T|TMT><TATMTAMTITBMT ,

x<JBTBI IAT(j  j ) | | JATA> ' (32)

Eq. (31) or Eq. (32) and the results of Eq. (19) and

Eq. (22) are inserted into Eq. (28) and a recoupling operation

is performed to introduce the transferred orbital angular

momentum. The necessary identity is



25

m .   (-1) j-m<j -jm-,-m  JMJ><12  Sms X    ms ><£t mEms I jm>

A

--2
x<£-3.  mimJ'j,m,>=I    '/Zj IjL     (-1)L-£+2'-<LSMA  JMJ>LM

£-

x<Lf.Mm£| 2 'm£,>X (j 'jJ; 2 '£L.1  1 S). (33)'2 2

Rearranging some Clebsch-Gordan coe fficients, summing  over

indices if necessary, and comparing with Eq. (17) allows

the identification

*                      *         . -         SJ
I  YL M (00)YL M Crl)FLL L (r ,rl)<LbLaMbMa'LM>=L M b b a a b aaa

LbMb

m£m£
I.iL2jj-E2£.-1-S X ( j-jJ;£-EL;12   S) B(JT) I ,<LEMmZ £*mi>

.

L-£+E'           m               m
x(-1) {6(30-Fl) $£' ( 2)tsT(r02)0£ (P2)d3r2-

.-m m
0£'=(Pl)tsT(rol)0521(-rO) ' (34)

58In these relations X (abc;def;ghi) is a 9-j symbol and

A

i 1

B( JT)=/FT<TATMT'MT -MT 'TBMT >< TTb'Ta-rb |2Ta>A  B   A      B

x<JBTB||A (j j) |JATA> (35)

for the case of good i-spin or

3.
An

1B(JT) =T  'T<< TT, Ta-Tb | 21T ><2TTb J Ta-Tb |  Ta,<JB | |AJ(j 'T ';j T) | |JA>

(36)
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al./.when i-spin is not considered to be a good quantum number
for the target.

The meaning of the reduced matrix elements appearing
in Eq. (35) and Eq. (36) can be illustrated by writing them

in a somewhat more familiar form. By inverting the Wigner-
Eckart Theorem the reduced matrix element appearing in Eq.
(36) can be written as follows.

<aBJBIIAJ(j T-;jT)'laAJA,=M MJ<JAJMAMJ|JBMB>(-1)j- 

x<j'jm',-m|JMJ>

.+
x<aBJBMB'aj,m'T'a |a J M>  (37)jmT  A A A

The Greek letters have been re-introduced to allow complete

specification of the nuclear states. Since A and B are

antisymmetric states containing n nucleons it follows that

<aBJBMB' aj 'm-T-ajm'rlaAJAMA =a     M  <aBJEME| aj,m,T-10'PJPMP>
Ppp

x<aPJPMplajmT'aAJAMA>       (38)

where the complete set of antisymmetric states composed of
n-1 nucleons has been introduced. The reduced matrix

elements in Eq. (35) and Eq. (36) are simply related to the
coefficients of fractional parentage (c.f.p.)59 and all

results can be put in the form of the usual fractional parent-
58age expansion. The definitive relation is
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<aPJPMP|ajmT'aAJAMA>=nl/2<apjp;j T|}aAJA><JPJMPm|JAMA>·   (39)

Using results (38) and (39) in Eq. (37) and summing over pro-

jections gives:

-- -1< aB J B 1 1 AJ· ( j ' T' ;j T)1 1 aA J A > = S ( J AJ B J ; j j ' T T ' ) J j '

S(JAJBJ;jj'TT')=  I n<a J ;jT|}aAJA><a J :j'T'I}aBJB> (40)a J PP ppiPP

A A 3  -J+J- j.
x{JAj'W( j j'JAJB;JJp) (-1) P A   }.

For the case of good i-spin it follows that:

A A      7 A

< aBJ BTB 1 1 AJ ( j,j ) 1 1 aAJATB> =S ( JAJBJ ; TATET ; j j ' ) Jj '- iT ( 2 ) - 1/2

S(JAJBJ;TATBT;jj,)=aJ T n<a J T ;j|}a J T>Ppp A A APP P

x<a    J    T     :j'  } aBJBTB > (41)Ppp

J -JA+J-j '
x{ A  W(jj,JAJB;JJP)(-1) P        }

0                   T -T +T-1/2
x{T A  W (     ·    TATB ; TTP )  ( -1)    P       A                     }  .

The spectroscopic amplitudes S which have been introduced

are simply partial sums of the complete fractional parentage

expansion of the partial matrix element. They contain the

weighting imposed by the nuclear structure for the contribution

to the transition due to a single nucleon going from the

initial state j(j T) to the final state j'(j'T'). The factors
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appearing in Eq. (40) and (41) which have not been included

in S guarantee a convenient interpretation of the remaining

factors in Eq. (34).

When i-spin is not considered to be a good quantum

number it id useful to redefine the interaction by per-

forming the sum over T when Eq. (36) is used in Eq. (34),

i.e. define

tST   T   T T- (r o l) -  2<2 TT, Ta-Tb I T -><2lTTb ' Ta-Tb |2lza>tST(r  i)       (·42)ab

E
with a corresponding relation for t  (r  ).  Table 2 gives01

the coefficients in the above expansion for the various

combinations of i-spin projections. The ·first entry in each

column is the coefficient for T=0 while the second is for T=1.

I-spin projection equal to   denotes a proton and -  denotes
a neutron. Incompatible projection combinations are indicated

or neutron scattering the proton-proton and neutron-neutron

interaction is t +t while the neutron-proton interactionSO  Sl

is t -t Further it illustrates that only the iso-vectorSO Sl

part of the interaction contributes to the charge exchange

reactions. Since it will always be clear what reaction is

being considered no ambiguity should result if the subscripts

T Tb are dropped from t in Eq. (42).  For the (p,p') reactiona

it is aldo convenient to use the subscripts pp and pn corres-

ponding to.Ta=T= 1 and T =-T=  , respectively.
a
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TABLE 2.--Interaction components when i-spin is not used.
.

TT

REACTION Ta Tb 1 1 1 1 1 1 1 122 -2 -2 2 -2      -2 2
11

(P,P,) - -
1,1 1,-122                   -

1   1(n,n') -- .-- 1,-1 1,122            -

1   1(p,n) 2 -2
- - 0,2

11
(n,p)        -2 2          -        -       0,2         -

Now Eq. (40)-(42) are incorporated into Eq. (34). In

addition t(r  ) tE(rol), and 6(PD-P ) are expanded in spherical01 '  '

harmonics. This expansion is defined by

*
f(r  )-I f ( )Y  C  )Y  (  ) (43)01 -LM L r0;rl  LM rO  LM  1

with

1

fL(roirl)=2Af  PL(cosa)f(r )dcosa (44)01-1

where a is the angle between P  and P .  The single particle
m

wave functions are 0£ (r)=i u  (r)Y   (r).  The followingni im
£

integration formula facilitates the inversion of the resulting

expression.

A A
A A A

fYL M (r)YL M (r)YL3M3(r)dn=(4A)-1/2L L L-1<L L OO|L3O>1 1 2 2 1 2 3   1. 2
M

x<L1L2M1M21 L3'-M3,(-1)
3

(45)
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Contraction of Clebsch-Gordan coefficients and recoupling

in the exchange component, as was done previously in inte-

grating over the internal, coordinates  (see  Eq.  (21) ) , gives
for the case of good i-spin

SJ
FLL L (rO,rl)ba

j .,/F T<TATMT 'Mrf -MT 'TBMT ><1 TT  T -T 11[ >2    b'a   b 2 a
T A B A  B

.L-£'-2
AAA A---

xi      /5 jEE'LSJTZ(j'jJ;£'EL;   S)S(J J J'T T T;jj')A B'A B

A   A .A -0 i.£ 6(r.-r )
x(41)-1{LaLbL  ISTL(r )<££'00|LO><LaLbOOILO>   2  1r

0

*

_un* f.'(rl)ung(rO) ,(-1)L'L,2W (£ Lb£'La;L'L)< f,I OO | LbO>

x<£'L'OO|L 0>t    ( )}. (46)E
a   STL' TO;rl

For the case i-spin is ignored,

SJ
FLL L (r0,rl)=ba

I.42-iL- 2,- 2
AA- --A

j j               ,/2 j ZE'LSJX(j 'j J; £'EL;1  S )S (JAJBJ; j j 'Tr ')
D

TT

6(ro-rl)
x(4A)-l{LaLbL-2IS <'L<ro)<££'OO LO><LaLb OO LO>    2r

0

*                     T'- 0_un'g-(rl)un£(ro) -(-1)U L"-W(£Lb£'La;L'L)<ZL'OO Lb O>

x<£'L'OojLao>t Tr-L'(r ;rl)}· (47)

I
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In these expressions

E -t   r  *
ISTL=Jun'£-(r2)tSTL(rO;r2)unt(r2)r22dr2 (46 )

and

1,1 r*I   . =Iu
(r2)tSTT'L(r ;r2)unt(r2)r22dr2 (47')STT L ' n'£

Using the symmetry properties of the Clebsch-Gordan
coefficients it is easy to see that the first term in Eq. (46)
and Eq. (47) has the form indicated in Eq. (15). Identifica-

-LSJtion of D (rO) follows directly.

LSJ
D   (r )= I .'/Y T<T TM- .M- -M,  1 TBM  ><1'I.T. T -7 |lr >0 jj-

A  TA' TB TA TB  2  b"a 'b,2 2T

xS(JAJBJ;TATBT;jj')

1  6(rl-r2)  LSJxj<j,211     2     T   (2)'rT(2)1 Ij >tSTI,(r ;rl)r drl (46")
r
2

DLSJ(.r-)=. .6- S(JAJBJ;jj''rT')U  JJ
.

TT

6(r -r )
. . .1 1 1 2 LSJ -

(47")xj<J 11    2    T   (2)1|j>tSTT'L(roirl)rldrlr
2

Thi spin-angle tensor has been introduced, i.e.

LSJ T
TM  =MA<LSMA|JMJ>i LYLMCA ,3

and the reduced matrix elements appearing in these relations

are given by
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6(r -r )<j.11
1 2  T (2»T(2)1'j >= ....

1  2   LSJ

r
2

.L+£-32' -1/2
AAA&-A1    (4 TT) 6-j 2.LSJT<LEOO | 2 'O>X( j 'j J ; £ 'EL ;.2    )

*                                                                                                      It 1
XU (r )u  ( 1 (46  )n'£'  1  ng rl

and

6(r -r )1  2   LSJ
<  ||    2    T   (2)11 j>=

r
2

.L+2-2- -1/2 ------ 1 1.1 (4'IT) 42jiLSJ<LZOO|ZO>-X(jjJ;£'iL'- - S}
'2 2  '

*

xun.2.(r )u  (r ) (47"')1  n£  1 '

"                                                         „The  /Y and i-spin factors  in  Eq.   ( 46  )  and  Eq.   ( 47 ) appear

because the partial matrix element contains the integrations

over internal projectile coordinates.

Examination of the above relations shows that the direct

component of the partial matrix. element for a given L depends

on only one multipole coefficient of the interaction while the

exchange component depends on several of these coefficients.

In addition one of the more interesting consequences of anti-

symmetrization is noted. This concerns the relation between

the L-transfer and parity change (AE) in a transition. In

inelastic nucleon-nucleus scattering no change in the intrinsic

parity of the projectile is involved, thus any change in the

parity of the target during a transition requires a correspond-

ing change in parity in the state of relative projectile-target
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motion. This condition is displayed in Eq. (46) and (47)
L +L

where it is obvious that AA=(-1) =(-1) These
a b £+£.

same relations illustrate that the direct component of the
Ltransition amplitude vanishes unless AA=(-1) . Such a

relation does not exist for the exchange component and there

will be contributions to the cross sections when AN*(-1)L.

In the local D.W.A. one has the selection rules indicated

in Eq. (7) along with those given in Eq. (8) for i-spin and

the additional relation between L-transfer and AA. For a

given value of J, (LSJ) can take the values (J,O,J) and

(J,l,J)  or (J-1,1,J)  and (J+1,1,J).   With the inclusion of the

exchange component all four triads are allowed for a given J.
LThe contributions to the cross Section with (-1) 0AA are

referred to as non-normal trans fers.

5. Zero-Range Interaction

A special case of some interest is an interaction of

zero-range, ·i.e. t(rol)=T (Po-Fl) which leads to t(rl;rl)=

6(rl-rl)
T           which does not depend on L; therefore the multipole2r

0

coefficient of the exchange interaction can be factored out of

the sum over L- in Eq. (46) and (47). The sum then yields

L'

 .(-1)  L-2W(£Lb£'La;L'L)<EL'OO|LbO><£-L'OO|LaO,=

- / '3

LaLbL-'-<££'00|LO><LaLbOOILO>

SJwhich gives the exchange component of FLL L (rl;rl) the same
D a

form as the direct component. The following expressions are
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-LSJ
obtained for F   (r ) for the case of good i-spin and the
case when i-spin is ignored, respectively.

LSJ

F   (r )= I-/F 'i'<TATMT 'MT 'TBMT ><1 TT0  jj
T            A B B  2   b'Ta-Tbl Ta,

xS(JAJBJ;TATBT;jj.)(TST-T T)

..1,,6(ro-r2)  LSJ
x<J -1| T            ( 2)T T(2)1 1  j

Ii> (48)22r
0

or

LSJ
(r )=j                             E

F         ,/Y S(JAJBJ;jj'TT')(T -T     )STT'L STT'L.
TT

6(r -r )
X<j .11 0  2   LSJ

2    T (2)1'j>. (49)r
0

It is clear that the effect of antisymmetrization in the limit

of zero range is simply to renormalize the strength of the

interaction. Further, non-normal transfers are not allowed

in·this limit.

6.  Approximate Treatment of Antisymmetrization

The approximations used to treat antisymmetrization in

this work are based on the fact the exchange scatterihg, as

compared to the direct scattering, is sensitive to a partic-

ular momentum component of the two-body interaction. To see

this note the form which the basic integrals of the D.W.A.

transition amplitude, Eq. (1), have in a momentum represen-

tation.
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I      =(21r) -9dir

,  (-)* -   *                          . (t)xjxb (k' (50)
1) P(kl+k2-k )t(121-2 1)0r(22)Xa  (21)dT

I   = (27T)-9ex

x/X l)*(kf)$ (kl+k2-ki)tE(Ik -k2|)0r(k2)x + (kl)dz (51)

In the direct scattering the projectile goes from the initial

state kl to the final state ki by transferring momentum

q=kl-ki to the bound particle.  In the exchange scattering

the projectile is captured and transfers momentum p=ki-22

to the bound particle thereby expelling it from the target

with momentum 21.  Introducing the initial and final relative

momentum k and k' of the two nucleons it follows that:

q=k-k'
(52)

P 2= (k2+k,2)_q2

To the extent that the scattering is governed by the kinematics

of the nucleon-nucleus system, i.e. on the average the bound

particle is initially at rest in the lab and for scattering

at a particular angle in the nucleon-nucleus center of mass

the average value of q is the assymptotic value, it follows

that:

k,2=k2,N-1 22N
(53)

P 2= 4k 2-  (12=k2LAB
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where N is the number of particles in the target and it has

been assumed that no energy is lost in exciting the target.

For the case of the K-K and effective range forces the
exchange integral is. approximated by evaluating tE(lki-221 )
at k AB and removing it from the integral.  In a coordinate
representation Eq. (51) becomes

E  2   . (-1* - *- (+) -   3Iex=t (kLAB)jxb   (ro)$p(rl)6(PO-Fl)tr(Fl)Xa  (r0)d-r0d3rl. (54)

-LSJThe following expressions result for E   (r ):

-LSJ
E           ( r   ) =   j .&-  <T AT MT  ' MTB- MT A  1 TBMTB , <  T Tb '  Ta- Tb      Ta >

T

xS ( JAJBJ ; TATBT ; j j ')A(1) ( A2 )ST   0

x <j.211 2    T (2)TT(2)1'j > (55)
1  6(ro-r2)  LSJ

r
0

.LSJ (1)   2,E   (r )= I,/1 3(JAJBJ;jj 'TT')A (A }0 jj STT'  0'
.

TT

6(r -r )
X <j .ll 0  2   LSJ2          T        (2)1'j> (56)r

0

--

-i X·r
A(1)(A2)=[-fe 0ltE(r  )d3r ] (57)01 01  2  2X =X

0

22   2In Eq. (57) X =k =2ME     /0   where  M is the nucleon mass.0 LAB LAB

This is the simplest approximation which can be made to

treat the exchange component of the D.W.A. transition
-«LSJ

amplitude.  Comparing the above relations for E   (r ) with
-vLSJ

those for D   (r ) in Section 4 of this chapter leads to
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the following qualitative conclusions about the properties

of exchange scattering as treated in this approximation.

(i) The angular distribution for exchange scattering will .fall

off slower in angle than that for direct scattering.

(ii) The importance of exchange scattering will increase as

the energy decreases.

(iii) The importance of exchange scattering with respect to

direct scattering should increase with increasing L-

transfer.

(iv) The direct and exchange amplitudes will be roughly in phase.

These conclusions require assumptions regarding the behavior of
the multipole coefficients and Fourier transforms of the inter-

actions being consiaered, i.e. A (AO) increases with decreas-
(1)  2

ing 12 and tL(r ;rl) falls off with increasing L.  The assumed

behaviour is typical and the qualitative observations are in

17-19agreement with the results of exact calculations.

Quantitative comparisons are made in Chapter 5.

One can object to this approximation for two reasons:

(i) it does not preserve the possibility of non-normal trans-

fers and (ii) the validity of taking tE(12 -221) out of

integral in Eq. (51) is strictly valid only at high energies

where the importance of exchange scattering is diminished.

The quantitative comparisons in Chapter 5 serve as an

answer to the latter objection. Because of objection

(i) it is necessary that non-normal transfers be unimportant

if this approximation is to be useful. One reason for

favoring normal transfers over non-normal transfers is that

the latter only contribute through the exchahge amplitude.
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.1For the case of a Serber interaction and isoscalar, normal

parity transitions (this being a hypothetical situation

similar to most of the actual cases considered in this work)

a stronger argument can be given. A normal parity transition
J£is defined by the condition Aw=(-1) where J£ is the lowest

allowed J-transfer. For this case the dominant normal

transfer is specified by the triad (J£OJ£) and the corres-

ponding non-normal trans fers are specified by (J£11,1,J£).
An isoscalar transition proceeds through the T-0.multipoles

of the interaction. For ai Serber interaction t is three00

times stronger than t which introduces at least a factor10

of nine difference in magnitude between normal and non-normal

trans fers. In addition collective e ffects inthe target

nuclei will be displayed in (JOJ) triads. For·the case of
J +1
£

an abnormal parity transition, i.e. 8*=(-1) , the factor

of nine goes the other way.  Neglecting the non-normal trans-

fers may be serious here.

By expanding tE(Ikf-221) in Eq. (51) in a Taylor series

2                                  .  -LSJabout
XO, additional terms can be included in E (rl).  These

will correct for the finite spread of momentum components in

the distorted and bound state wave functions and will intro-
*

duce some dependence on the local momentum transfers. In

principle this series conserves the possibility of non-normal

transfers. It is presently being studied only with the hope

of improving the results for normal transfers. The series

is developed formally in Appendix A, but will not be discussed

in this paper.



39

 
The t-matrix for free two-nucleon scattering is a

2    2function of q,p, and q·p. The dependence on p is related

to the fact that it includes the effect of exchange scattering.

The pseudo-potential used in this work is determined from those

components of the free two-nucleon t-matrix which are off

the two-nucleon energy shell as prescribed above, i.e. Eq. (53).

On the average, exchange scattering is thus being treated in

essentially the same way. The pseudo-potential is strongly

energy dependent. It might have been better to include only the

effects of direct scattering in this pseudo-potential and

treat antisymmetrization in a consistent way throughout.

7.  Transition Densities

It is convenient to introduce the transition densities.

These are

LSJ,T                                   1          il
A

F      rl)=  ./F T<T TM   M  -MA  T'T   TAITBMT8 <2 TTb,Ta-Tb'2 Ta,A   B

xS(JAJBJ;TATBT;jj')

6(r -r )
x <j.ill 1  2   LSJ

2             T           (2)T T(2)1 1 j i> (58)
r
1

and

LSJ. 6(rl-r2)  LSJF T T  '  (r-   ) =  0     , 46    S (JAJBJ; j j  'T T  ')<j   1
1

T (2)  j>. (59)1  JJ                              2r
1

Deleting reference to the fractional parentage expansion

these relations can be rewritten as



40

D,LSJ,T(rl)=47 'Ii;  <TATMTA'MTB-MT | TBMT >< Trb,Ta-Tb| Ta>                        <
N

< JBTB I ' i l . .T (1)T (i)||JATA> (58,)
r 6(r,-ri)  LSJ -  T

2
r
1

and

iLSJ ' 6(rl-ri)
D   .(r. )=,/F <JBI II               LSJTT 1 2    T   (i)'IJA> (59')

r
1

The sum on i in Eq. (58') runs over all target nucleons while

in Eq. (59') the sum on i runs only over those target nucleons

consistent with the subscript  TT'  on FLS (r.). For example,
TT   1

in the (p,p') reaction this sum would run over either target

protons or target neutrons. The form factors are related to

the transition densities by the following expressions.

0  T' STL r ;rl 111 LSJ (r )=I (1/ C )FLSJ,T(r )r 2dr (58")

 LSJ (r )= I /7 (r ·r )FLSJ(r )  2dr0     TT '    STT 'L    0-1    TT-#1  rl 1 (59'1)

In Eq. (58") and Eq. (59")1/L(r0;rl) represents either the

appropriate multipole coefficient of the impulse approximation

pseudo-potential or

6(r.-rl)
tL(r0;rl)+A(1)(A02)   u2r

0                                                   -

when the K-K or effective range forces are used.

Note that in introducing the transition densities an

additional partition of the inelastic nucleon-nucleus

1

9.
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scattering calculations has been achieved. The first

separated the details of the interaction model and nuclear

structure from the distorted wave calculation. Here the

details of structure are separated from the radial form of

the interaction and the effects of antisymmetrization.

Detailed formulae for calculating F (rl) and F
(rl 

-LSJ LSJ

for the cases of interest in this work are given in Appendix

B.  The manner in which the transitions densities are related

to the inelastic electron-nucleus scattering form factors

and the reduced matrix elements for y-transitions is discussed

in Appendix C. This is important as it provides the means

for calibrating the nuclear wave functions used in testing

the interaction models in this work. The relation of the

transition densities to these reactions is independent of

the approximations involved in treating inelastic nucleon-

nucleus scattering in the local D.W.A.



CHAPTER 3

IMPULSE APPROXIMATION PSEUDO-POTENTIAL

The free two nucleon scattering amplitude has the

form33

A A A A A A A

'»1= A + BGO·n-al'n+C(30+-al) 'n+E30·qal'q+F-00·pal'P (1)

A /\ A - A

where q=q/jq , q=k'-k; n=E/ n , R=kxk'; and p=qxn.  Here k

and k' are the initial and final relative momenta of the two·

nuclaons and q is the momentum transfer. The unit vectors
A          .          A

(q,n,p) form a right handed coordinate system and the
222coefficients A,B,C,E, and F are functions of q,q+p, and

--

q·p as well as iso-spin, i.e.

A =
 (3Al+AO)+ (Al-Ao)TO·Tl (2)

where A  is the coefficient for the singlet i-spin state

and Al is the coefficient for the triplet i-spin state.  The

free two-nucleon t-matrix is related to '»l by

4Ah2t=- M *l· (3)

Note  that 74 can be written as follows

'»l =A+  (B+E+F)GO'31 + other terms                 (4)

42
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where the other terms are the parts of the scattering
amplitude which are not scalar in spin'space. The components

32of »1 have been calculated from the H-J potential using

nucleon-nucleus kinematics (as prescribed in Section 6 Of

Chapter 2) for lab energies of 19.6, 27.5, 40, 50, 60, 95,

2125,  and  155  MeV. This gives 74  as a function  of  q      E
'  LAB'

and N. The dependence on N is weak which is evident from

Eq. (2.53) and only the N=12 results are used in this

work.

A typical set of results are shown in Fig. 1 which

shows the real part (the free two nucleon scattering ampli-

tude is, of course, complex) of  (3Al+A ) as a function of

q ror E =19.6, 50, and 125 MeV. The components of theLAB

scattering amplitude which are not scalar in spin space

are small for lab energies below 100 MeV. This is good as

this study is restricted to those components of the inter-

action which can be expressed in the form of Eq. (2.18).

The pseudo-potential is obtained simply by inserting

the first two terms on the right in Eq. (4) into Eq. (3) and

taking the Fourier transform of the resulting relation. As

-mr
a matter of convenience a Yukawa radial form, i.e. Ve /mr

has been assumed for the components of the pseudo-potential.

'1'his is tantamount to fitting the components of M(q2) to

-MY          (me + 9 2  )-1.
41

The strength and range parameters of the various components

of t(-r;ELAB) are read off graphs of the form of Fig. 1.
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Figure  1.--Real  part  of the  (3An+Al) component  of  the free two-nucleon scattering
amplitude as a function of q.  TMe calculation is off the energy shell with N=12.
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The range m is determined roughly by the half maximum and               

the quantity  3 is proportional to the value of the scatter-
m

ing amplitude in the forward direction (q=0). The constant

of proportionality is-41.5 MeV·F2 with the scattering amp-

V                3litude given in F and -- given in MeV·F .
m3

The strength and range parameters for the spin, i-

spin components and p-p (n-n) and n-p spin components of

the pseudo-potential are given in Table 1 for E =20-60LAB
Me V. Two Yukawa fits to the scattering amplitude have also

been made although they have not been used in any calcula-

tions. Unlike the one Yukawa fits which only fit the

scattering amplitude closely in the forward direction, these

fit it quite well over the entire range of q displayed in

Fig. 1. The parameters for these two Yukawa fits are avail-

able but will not be given here.

Inspection of Table 1 shows that the pseudo-potential

has a large imaginary part.  The real part of  (Al-A ) and

both the real and imaginary parts of the spin-flip, non-i-

spin-flip part of the scattering amplitude vary quite

strongly with energy and are not fit very well by the Yukawa

function. The former indicates large non-localities and the

latter indicates that the two Yukawa fits should probably

be used in these cases. Neglecting these difficulties for

 (Al-AO) is not serious because the imaginary part, which is

-comparable to the real part, is fairly well determined.

For the purpose of facilitating comparison of the

various components of the pseudo-potential with each other



3TABLE 1.--Strength and range parameters for components of impulse approximation pseudo-potential, S is V/m  in Mer·Fand m is inverse.range in F-1.  Two numbers appear in each column.  The first is for the real part of the pseudo-
potential and the second, in parenthesis, is for the imaginary part.

ELAB[MeVj                VOO                       ' Vlo                           Vol                           Vll
S m s m s m s m

20 -19.5(-52.4) 1.34(1.59) 12.4(8.30) 2.50(1.58) -6.06(24.9) .950(1.83) 9.57(16.6) ·782·(1.68)

30 -24.6(-41.1) 1.22(1.52) 8.67(4.72) 2.50(1.50) -.960(19.9) .880(1.78) 10.8(12.2) .818(1,68)

40 -24.1(-33.4) 1.16(1.46) 6.19(.023) 2.50(1.65) 1.12(15.7) 2.50(1.65) 11.6(9.54) .808(1.68)

50 -24.9(-28.4) 1.15(1.39) 4.56(.015) 2.50(1.88) 2.37(13.9) 2.50(1.53) 11.8(7.68) .780(1.60)

60 -25.0(-25.2) 1.15(1.31) 3.29(.005) 1.30(1.95) 2.70(11.9) 2.50(1.43) 12.0.(6.23) .750(1.55)  -cr
Ch

ELAB[MeV]               VO                        Vl                          VO                          VlPP PP Pn PnS                           m                        S                       m                            S                           m                          S                           m

20 -24.4(-27.6) 1.16(1.47) 22.2(25.3) 1.94(1.63) -13.3(-75.5) 1.80(1.60) 3.32(-8.20) 2.50(1.84)

30 -23.2(-20.7) 1.10(1.40) 19.5(21.8) 1.42(1.69) -21.2(-62.3) 1.45(1.58) -2.08(-7.45) .245(1.72)

40 -22.8(-16.7) 1.19(1.32) 17·8(12.9) 1.16(1.70) -25·2(-49.8) 1.32(1.50) -5.24(-6.65) .420(1.60)

50 -22.7(-14.5) 1.06(1.22) 16.4(9.12) .960(1.72) -27·1(-42.3) 1.24(1.38) -7.25(-6.23) .550(1.40)

60 -22.4(-13.4) 1.08(1.22) 15·6(7·05) .880(1.66) -28.0(-36.9) 1.23(1.30) -8.72(-5.60) .650(1.30)

t
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         and

with corresponding components of other interactions

real lF range Yukawa "equivalent" to this interaction has
been determined over the energy region from 20 to 60 MeV.

This is given in Table 2.  The real lF range Yukawa form

has been selected as it is the form which has been popular
in recent analyses. This "equivalent" interaction is ho

more than. a rough representation of the actual pseudo-

potential, i.e. in a calculation it won't reproduce pre-

cisely the multipole and state dependence of the prototype.

From the table it is seen that the pseudo-potential is

similar to a Serber force and the strengths of the components

decrease fairly rapidly with energy. The latter effect is a

direct result of the decreasing importance of the exchange

component of the scattering amplitude.

TABLE 2.--Strengths for real lF range Yukawa "equivalent" to
impulse approximation pseudo-potential. All values are in MeV.

E             V            V     V      V   ,V      V
0 1 0 1

LAB   VOO    10 Vol 11 PP PP np np

20 -86.9 33.6 45·9 38.3 -53.2 59.5 -123 -17.2

30 -69.3 23·1 35.4 29.5 -38.6 46.1 -103 -12.8

40 -56.3 15.5 26.0 20.5 -34.9 30.1 -81.8 -10.9

50 -48.8 11.4 22.1 15·9  -29.8  22.2  -67.4  - 9.6

60    -43.8 4.3 18.3 13·6 -25·5 18.0 -59.1  - 9.2



CHAPTER 4

THE PROJECTILE-TARGET INTERACTION

By analogy with the bound state problem the two-body

interaction to be used in nucleon-nucleus scattering cal-

culations is given by the integral equation

t= v-v      t                          (1)
Q

e-i£

where v is the nucleon-nucleon potential, Q is the Pauli

operator, and e is the energy denominator defining the many

body Green's function - defined in accord with the conven-
1.20tions of Kuo and Brown. The presence of the ie in

Eq. (1) makes t complex. It is possible to express t in

terms of the operator

t  = v-v   t (2)B        e  B

which is real. This expression is

t = tB-17TtBQ 6(e)t. (3)

If the imaginary part of t is small, and from the deformed

optical potential description of inelastic nucleon-nucleus

scattering (see Section 2 of Appendix B) it is expected to

48
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be small with respect to the real part in the medium
energy region, Eq. (3) can be approximated as

t-tB-iwtBQ6(e)tB (3')

This argument, which is based on the relative magnitude of

the real and imaginary part of the inelastic scattering form

factors given by that model, is valid only in the region of

the target nucleus where the form factor is appreciable.

Eq. (2) formally is equivalent to the definition for
1-20the bound state reaction matrix, '   ,but it must be remem-

bered that the energy denominator, e, appropriate for the

scattering problem is not the same as that for the bound

Atate problem. Kuo and Brown have solved Eq. (2) for the

bound state problem ' taking the H-J potential for the
1 20

nucleon-nucleon interaction. Using the Scott-Moskowski

separation method, 47 they have shown that the attractive,

even components of tB are well represented by

tBE vt-vTZ e vT£ (4)

where v£ is the long range part of the H-J potential and
v £ is the long range part of the tensor component of this

potential.

The second term· in Eq. (4) only acts in triplet states

and is given approximately by                                             '

»„1
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-vT£  vT£p-<e8, vT (13) + --L v 2(r·)S (5)<e> TE 12

where vT£(r) is the radial part of the long range part of

tensor component of the H-J potential S is the "tensor"'  12

operator, and <e> is a mean energy denominator which is·

highly state dependent.  The state dependence of <e> will be

discussed in a moment.  The first term on the right in Eq. (5)

gives a very important contribution to the central, triplet

even component of tB while the second term gives a small

(10%) contribution to the even tensor component of tB.

In writing Eq. (4) several terms in the Scott-Moskowski

expansion have been omitted. They 'consist principally, for

the H-J potential, of a contribution ts from the repulsive

core. and various second order terms· including a cross-term

between ts and v£.  These additional terms are state

dependent, but their net effect is small. They will be

ignored. Note that Eq. (4) comprises a local interaction

in configuration space.

The odd components of the nucleon-nucleon potential

are repulsive; therefore, the corresponding components of tB

can not be obtained from the Scott-Moskowski expansion since

it does not exist. Kuo and Brown use the reference spect-
1.20rum method ' to treat the odd components. This does not

yield a configuration space interaction.  In- any event, tB
is repulsive in singlet odd states and has some attractive

triplet odd matrix elements. In binding energy calculations,
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the net e ffect of these odd state interactions is negligible,

therefore, it is concluded that the average effect of the odd

state interactions is small.

The contribution to the triplet even component of tB

contained in Eq. (5) is state dependent due to its dependence

on <e>. Equivalently it is density dependent. The mean

energy denominator <e> is state dependent because of its

connection to the Pauli operator which appears on the left

in Eq. (5), i.e. as the e ffect of Q is reduced as the density

decreases,the strong tensor interaction between relative s

and d states is felt more strongly and this must be accounted

for by a decrease in <e>. This effect is very clear in

nuclear matter calculations. At low density contributions

to the binding energy from relative 3Sl states are consider-

ably larger than those from the lS state, showing the full

strength of the tensor force. At observed densities the

two contributions are about equal. For high densities the

 S contribution is the greater - an effect which is an

important aid to nuclear saturation.

An estimate of this effect can be obtained by compar-

ing calculations of  the bound state matrix elements for two

free nucleons in a nucleus, without the presence of other

nucleons, and with those where the presence of other nucleons
16is taken into account. In the first case, taking 0 as an

example66the 3Sl matrix elements are -16 MeV, while with the

Pauli Principle taken into account they are -9 MeV.  The 130

matrix elements are -8 MeV and very quite slowly with
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density. Thus the average s-state matrix element, which is
.1

by far,the largest, varies from -8 1/2 MeV in the nuclear
interior to -12 MeV far outside the nticleus.

This somewhat lengthy discussion of the bound state

reaction matrix has been given with a view towards assuming

that it is equivalent to tB for the scattering problem,

i.e. differences between the propagator of Eq. (2) for the

bound state problem and the scattering problem (in the ,
energy region of interest here) do not alter tB appreciably.
The stability of the separation distances (they remain

essentially constant up to 30 MeV in the two-nucleon center

of mass) for the important even components of tB supports

this hypothesis. With this assumption, near the target

tE = tE-iAtEQ6(e)tE

0 (6)
t =0

where the superscripts E and o stand for even and odd,

respectively, and

E T 8 2t =v (r) (triplet states)B    £- 283 VT£
(7)

S
=V (singlet states)£

where the superscripts T and S denote triplet and singlet,

respectively.

In writing Eq. (6) the odd state components of t are

being neglected and in writing Eq. (7) the second order
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contribution to the tensor force has been dropped. The state

dependence of the triplet component of t  could be incor-
porated in Eq. (7) by defining <e> to be a function of the

local density.

Now consider the region far outside the target nucleus

where the density ds low and the effect of other nucleons is

negligible.  Here the propagator in Eq. (1), Q/e,

becomes the propagator for two free nucleons, 1/e , and t is

given locally by t. , i.e. the pseudo-potential given
impulse

in Chapter 3 which was derived from the free two-nucleon

scattering amplitude. The tensor force now makes itself

felt with full strength, but not in the real part of the

literaction. The approximation of Eq. (3') is no longer

valid, and the optical theorem forces the strength into the

imaginary part of the interaction. The large imaginary

component of the pseudo-potential is evident in Table 1

shown in Chapter 3.

Combining,these local arguments leads to a picture

of' a force which is primarily real inside the nucleus where

the effect of the tensor in generating an effective central

force is somewhat damped, going over to the impulse approxi-

mation at large distances, i.e. a force which has a large

imaginary component. This asymptotic region is, however

likely to be at a density where all form factors are quite

negligible. That is to say the picture of the force in the

region of the target, which is where the scattering takes

place, is of prime importance. In summary, near the target t



is expected to be complex and density dependent. The real

part is expected to increase outside the nuclear surface

by about 50% on the average; the imaginary part to be quite

small in the interior, peaked outside the nuclear surface,

as all the form factors involved in evaluating t  Q6(e)t 
are peaked at the nuclear surface, but small for incident

energies up to about 40 MeV. At much higher energies this

is not true.

As the incident energy increases then the difference

between 2 and 1- becomes less important and the impulsee e
0

approximation becomes valid. However it should be pointed

out that this approach asymptotically at high energies is

quite slow. The impulse approximation is still a poor

approximation at 150 MeV, even though it predicts cross-

sections correctly. Its order of magnitude is quite good,

but it's phase, i.e. the relative strength of the real

and imaginary part of the interaction, is quite wrong as

is shown by the fact that the ground state expectation

value of t. does not give the optical potential (realimpulse

and imaginary part), and that variables likely to be sensi-

tive to the phase, like polarization, are by no means pre-

dicted successfully. It works better at 1 GeV, though the
40-43

44tests then are not as stringent. Therefore, t is to approach

t.       only slowly for the energy region we are consider-impulse

ing. On the other hand, as far as its magnitude is con-

cerned, disregarding its phase, the impulse approximation

might not be too far out.

L
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The arguments which have been presented above are very

rough and, in fact, they could be wrong in detail. They
are  intended  more  as a suggestion than actual truth.    The

resolution of the points which have been made is a problem

related to, but separate from, the purpose of this work
which is to determine whether or not one make some sense

out of inelastic nucleon-nucleus scattering using the inter-
actions which are already available and convenient to use

in D.W.A. calculations. These are, of course, the impulse

approximation pseudo-potential and the interaction defined
in Eq. (6) and Eq. (7). It should also be mentioned that an

essentially identical discussion of t has been given,
67independently, by Satchler. He has also made some estimates%

of the imaginary part of t.

The Kallio-Kolltveit potential is an s-state potential
46with triplet even and singlet even components defined by

i

Vkk(r) -   4- 00 r<c

= -A.e r>c-ai(r-c)
1

-1 -1where AT=475.0 MeV, aT=2.5214F  , AS=330.8 Mev, as=2.4021F
and C=0.4F. The long range part of this potential is known

to give a good representation the central components of t 
as defined in Eq. (7). In the calculations of this work,

Ethe non-central parts and the imaginary part of tB are neglected

and the K-K force is taken to represent its central part of
F
t .  Fixed separation distances, ds=l.025F and dT=0.925F,

are used throughout.  The K-K force acts only in relative
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s-states, but since this is an inconvenient restriction for

D.W.A. calculations it is allowed to act in all even states.

This leads to a slight overestimation of t .  Density depen-

dent versions of the K-K force have been proposed by Green.
68These account for the variation of t  with <e> in Eq. (7).

These forces are not examined in this paper.

In lowest order calculations, all of the bound state forces

discussed here are found to give a reasonable account of the

real part of the optical potential in the medium energy region;

therefore, at least the spin, isospin averages of the monopole

components of these forces are adequate for the scattering
31.32problem. '

In detail the K-K force gives larger well depths,

smaller mean square radii, and somewhat poorer agreement with

phenomenological potentials than do the other forces. A rea-

sonable estimate of the imaginary part of the optical potential

has also been obtained with these forces. The impulse approxi-

mation pseudo-potential failed to describe the optical potential

in that it gikes too small a real component and a very large

imaginary component, i.e. its phase is incorrect.

1 1A real lF range Yukawa equivalent 1' to the K-K force

(A) has been determined. It ds compared with other "equi-

valent" interactions in Table 1. These are the impulse

approximation pseudo-potential for E =60 MeV (B), theLab

empirical interaction of Ball and Cerny determined from69

0T

studies of the  (He3,  HeJ  )  and (He3,t) reactions in lp-shell

nuclei  (C), the interaction  used by Glendenning  and ·Veneroni4

in studies of the Ni isotopes in the (p,p') reaction (D),
70     14and the interaction used by True in N shell
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model calculations (E). The agreement between the forces is

almost complete. The lab energy of 60 MeV was selected for

t.       , because·the implicit exchange contribution to thisimpulse

force should be diminished here. Note that only the magni-

tude of the strengths for interaction C are given. The

analysis did not give any conclusive information as to the

actual exchange mixture of the force. Further, a guess of

the magnitude of enhancement effects in the target nuclei

was used in arriving at the value of V for force C. These00

effects are considerably smaller in lp-shell nuclei than

they are in heavier elements. The overall agreement Of

these forces is very satisfactory.

TABLE 1:--Comparison of strengths of various real lF range
Yukawa "equivalent" interactions. All values are in MeV.  A
is the K-K force, B is timpulse at ELAB=60 MeV, C is the inter-
action determined Ball and Cerny, D is the interaction of
Glendenning and Veneroni, and E is the interaction of True.

0      1     0      1Force   V        V       V   'V     V      V     V      V00 10 01 11 PP PP Pn Pn

A -36.2 6.30 17·8 12.1 -18.4 18.4 -54 -5.75

B -43.8 4.30 18.3 13·6 -25·5 18.0 -59.1 -9.20

c ]30-401 |11-271 1211 I17|
69

4D -40.5 6.80 20.2 13·5 -20.3 20.3 -60.7 -6.70

E -41.1 7.40 20.0 13.7 -21.1 21.1 -61.1 -6.30
70



CHAPTER 5

THE APPROXIMATE TREATMENT OF ANTISYMMETRIZATION

In this chapter some results obtained with anti-

symmetrization treated approximately (as discussed in Section

6 of Chapter 2) are compared with corresponding results obtained

with the ·exchange component of the D.W.A. transition amplitude

treated properly. The exact results are due to J. Atkinson

and V. Madsen. A modification of the D.R.C. (Direct
17-19

Reaction Calculation) code available at Lawrence Radiation

Laboratory, Livermore, California has been used in obtain-

71ing-these results. · This code is restricted to inter-

actions with radial dependence which can be easily expressed

as a combination of not more than three Yukawa functions.

Because of this all comparisons are for interactions with

Yukawa radial form. No direct information concerning this·

approximation, is available for the interaction of primary

interest in this work--the K-K force. The recently developed

non-local D.W.A. code at Oak Ridge National Laboratory has

been set up to handle interactions of this type, i.e. which

have a "hole" in them, and new results should be forth-
16

coming.

58
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1.  Yukawa Function

The essential ingredient of the approximation under
consideration is the Fourier transform of the interaction.

For the Yukawa function

V(r) = Ve /mr
-mr

(1)

this transform is given by

V(A 2) = (4,TV/m) (A2+m2)-1 .                    (2)

Table 1 gives the value of this transform as a function of the
lab energy for m=0.5, 1.0, 1.5, 2.0, 2.5, and 3.OF-1.  V has

been taken to be 1 MeV and it is to be remembered that the lab

energy and X are related by X =2ME/21 . The last row in this
2                        2         2

table gives the ratio of the Fourier transform at 20 MeV with
respect to that at 80 MeV. These energies span the region of

interest in this work and this ratio is indicative, within the
framework of this approximation, of the relationship between

the range.of the interaction and the energy dependence of the

exchange component of D.W.A. transition amplitude. It is

seen that this ratio decreases with the range and is approach-

ing one in the zero range limit.

9o2.  Transitions in Zr  +p

Dependence on Energy and Multipole

The ratio of the exchange integrated cross section to
the direct integrated ·cross section has been given for the

L=O,2,4,6, and 8 transitions in the Zr9l(p,p') Zr90* reaction
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TABLE 1. Fourier transform of Yukawa interactions of various
ranges as a function of the lab energy.

r

V(E)[Mev. F3]
-1

m(F  )
E(MeV)      .5 1.0 1.5 2.0 2.5 3.0

0 101 12.6 3.72 1.57 .804 .465

10 34.0 8.44 3.06 1.40 .746 .441

20 20.5 6.36 2.60 1.26 .696 .420

30 14.6 5.10 2.26 1.15 .651 .400

40 11.4 4.25 1.99 1.06 .613 ·382

50 9.33 3.65 1.79 .975 .578 ·366

60 7.90 3.20 1.62 .906 ·547 .351

70 6.85 2.84 1.48 .847 ·520 .337

80        6.04 . 2.56 1.36 ·794 .495 ·325

90 5.41 2.33 1.26 ·748 .472 .313

100 4.89 2.14 1.17 .707 ..451 .302

V(20) 3.40 2.48 1.91 1.59 1.41 1.29
V(80

at 18.8 MeV as a function of the inverse range of an interaction

of, Yukawa radial form. For the L=2 transition the c  /0
18

ex  dir
ratio has been calculated as a function of energy with the

range of the force fixed at lF. A Serber exchange mixture
19

has been assumed, and j-j coup,ling wave functions for two
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protons  in  the lg9/2 orbit  were  used to describe the target. 1-

The 18.8 MeV optical parameters of Ref. 8 have been used

throughout. Results obtained approximately are compared
with the exact results in Fig. 1. The exact results are shown

as dashed lines and the approximate results are indicated by
solid lines. In the lower graph the corresponding results

are bracketed and labeled with the L-transfer.

The importance of exchange ihcreases with increasing

multipole and with decreasing energy. Note that a  /0ex dir
deviates more from 1, the zero range value, as the range

of the force increases. For L=6 and L=8 a is greater thanex

adir' The approximate values of a  /a    for L=4 are aboutex dir

one, but the exact values are less than one. Qualitatively,

the agreement of the approximate results with the exact

results is quite good. The approximate results overestimate

the exact results except for the case L=8. The agreement

between the approximate and exact values of G /G improvesex dir
with increasing energy. There is no pronounced change in the

agreement as the force range becomes shorter except for the

L=8 case. The approximation is improving with increasing

i , +          +          +
7% be more precise the 0  ground state and 0,2,4,6+ and 8 excited states are considered to be due to the allowed

couplings of two lgg/E protons.  The allowed normal transfers 'are specified by the  riads (J,O,J) and (J,l,J) where the
trans ferred J must be the same as the total angular momentumof the final state. The (J,l,J) contribution vanishes due toa structure selection rule. Two non-normal transfers,
(Jil,1,J), are·also allowed. Only the contributions due to
normal transfers are being considered in the following discuss-
ion, therefore it is unambiguous to specify each transition by
the L-transfer implying the contribution due to the triad (J,O,J).



62

11 l i l l i
.4

2/" (p,p')  L=2
m=I F'

.3                 EXACT
APPROXIMATE

2    - .2        \\\\
\00\\ ....

.1

1 1 l i l l I
20 30  40 50 60 70 80 90 100

E   ( MeV)

10.0-\11'lll
\\

\\%---\ ---

\\ -L•8---
-ill----- --- L-6

If)=.-'--- L'Z

2/ ----- - 1- L.q-----
2= --0-- _----5--1
tv - k< --K/K ///\ - / /

../ /, /
b j- / /0 11 1

I
11-             // 2/90(p, p') E= 18.8MeV-1

Z          /           - EXACT
1

1 - APPROXIMATE
I

-

1 ---  L•O [(lgw:)2; (2pv:)21

1111111
4 .8 1.2 1.6 20 24 2.8 32

m IN F-1

Figure 1.--Comparison of approximate and exact results showing  the
variation with energy and interaction range of the ratio of the
exchange to the direct integrated cross section for several multi-
poles in the Zr90(p,p') reaction.
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multipole which is very good since the contribution from the

exchange component of the transition amplitude is becoming

more important at the same time. The last effect is consistent

with the fact that transitions of high multipolarity are not

sensitive to the details of the nuclear interior which are

ignored in  the approximation.

The result indicated by the center line and labeled .

L=0 in the lower graph of Fig. 1 is interesting. This approxi-

mate result was obtained by considering the ground state and
90first 0 state of Zr to be described by more realistic

configuration mixed wave functions involving both the lg9/2
and 2p proton levels.8 The ratio c  /a    for this case1/2 ex dir

is quite different than the result obtained using only the

unrealistic (lg /2)2 configuration.  This indicates that the

contribution to cross sections due to exchange can be quite

sensitive to the wave functions involved.

Total Cross Section (Direct + Exchange)

If maximum interference between the direct and exchange

amplitudes is assumed it follows that the total inte€rate·-1

cross section (direct plus exchange) is given by

-/ rz +  /5    ) 2
=  (1+1- ) a = ac (3)

Fe.x-- 2
aT -cv'dir ex V a dir dir.dir

This assumption is quite good. It has been shown that the

direct and exact exchange amplitudes are essentially in phase

except for extreme forward and backward angles. This is true18,19

to a greater extent in the approximate calculations. Table 2
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displays the values of a and a      /a      as a functionExact Approx  Exact
-1of L for m=£ and 2.OF  .  Eq. (3) has been used to determine

and a  /6    values have been taken from Fig. 1. The numbersex dir

in the table indicate a maximum error of 40% in the approxi--

mate total cross section.  This occurs for L=O and m=.8F-1.

To illustrate the rate of improvement of the approximation
with increasing energy note that a      /a      goes from 1.15

Approx Exact
to 1.02 as E goes from 30 to 50 MeV for the L=2 transition

with m=lF-1 given in Fig. 1. a goes from 2.17 to 1.95Exact
over the same energy region indicating that the enhancement

of the direct cross section due to exchange is decreasing

fairly slowly with increasing energy for this particular

multipole.

TABLE 2.--Comparison of approximate and exact values of a,
the enhancement of the direct cross section due to exchange,for two values of the interaction range appearing in Fig. 1.

m=·.8F- 1 -1m=2.OF
L aApprox GAPprox

'Exact  Exact 'Exact =Exact

0 1.44 1.40 2.40 1.35

2 2.00 1.32 2.77 1.26

4 3.04 1.35 3.33 1.29

6 5.66 1.22 4.58 1.19

8- 14.8 .804 6.82 ·978
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                  Fig. 2 shows the direct,exchange,and total integrated
cross sections as a function of multipole for the cases
m=.5F-1 and m=3.OF-1 of Fig. 1.  Both the approximate and

exact.results are shown for c and a and maximum interfer-ex      T

ence has been assumed in obtaining aT.  The absolute normal-

ization of the results is arbitrary, but the relative magni-

tude of each,for each force range,is as shown. This figure

illustrates how a falls off slower with L than does aT                                     dir
due to the contribution from c --an effect which is not veryex
pronounced for m=3F-1--and how the fairly large errors in the

approximate values of a  /0    are not so strongly reflectedex dir

in aT'

Fig. 3 compares the behavior, as a function of multipole,

of aT(Exact) for the 2F range force with a for forcesdir
with m=l.0 and 1.5F-1.  The behavior is similar.  A previous

empirical analysis of these transitions, in which antisymmet-

rization was ignored, led to the conclusion. that a lF range

Yukawa interaction reprgduced the observed multipole depend-
8ence of the cross sections. A longer range would have been

selected had antisymmetrization been taken into account.

Angular Distributions

The direct (D) and approximate exchange (E) angular

distributions for the 2F range Yukawa force are shown in

Fig. 4. All curves have been normalized to one at peak.  With

the exception of the L=0 transition the exchange angular
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distributions fall off only slightly slower with angle than        

do the direct and,for the lower multipoles)the latter exhibit

quite a bit more structure. Both the direct and approximate

exchange angular distributions for the .33F range Yukawa force

are essentially the same as the approximate exchange angular

distributions shown in Fig. 4.

In Fig. 5 the L=2 direct (D) and exact exchange (E)

angular distributions given by a Yukawa force with a range

slightly longer than lF are compared. Comparing these with
18

the L=2 results in Fig. 4 indicates that the approximate

exchange angular distributions may fall off faster with

angle than do the exact exchange angular distributions. This

also might be multipole dependent, but no comparison is

available for the higher multipoles. The differences, for

large angles, between both the direct and exchange angular

distributions shown in Fig. 5 and those which correspond in

Fig. 4 is attributable to the fact that the spin-orbit term

in the optical potential has been excluded in obtaining the

results shown in Fig. 5. Inclusion of optical spin-orbit

coupling is found to have no,effect on the ratios of inte-

grated cross sections discussed previously.

Form Factors

The direct and exchange form factors corresponding to
the results given in Fig. 2 are shown in Fig. 6.  The overall

normalization for each' force range is again arbitrary with

the relative scaling given correctly. For the short range
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-1force (m=3.OF ) all of the form factors including the exchange       I
(zero range) form factor are similar in shape with the peak
magnitude of the exchange form factor assuming a value inter-
mediate to those for the L=0,2 and L=4,6,8 direct form factors.
This  ordering is preserved for the long range force  (m=:5F-1) ;
however, the differences in peak magnitude of the direct form
factors is much more pronounced. Here the direct form factors

are also much broader than the exchange form factor and peak
at larger radii. The differences in peak radii between the
L=0,2,4,6, and 8 direct form factors is not very large for

either force range. Examination of these form factors

emphasizes again that a multipole independent assumption has
been made about the exchange scattering and that the variation
of a  /9    is due mostly to the changes in the direct scatter-ex dir

ing. The exact results call for additional multipole and

energy dependence in the exchange scattering.

Relation of Energy Dependence
to Interaction Form

It is found for both the long range and short range
Yukawa interactions that the approximate

Gex/a ratios aredir
given to within 5% by taking the square of the ratio of the

areas under the appropriate form factor curves. The area is

defined as the product of the peak magnitude and the half
width of the curve. To what extent this will be true for
other transition densities and forces with different radial
forms is not known. For example, it has been noted that



6

Z,90 (p,pl)   E=1 8 8 Mev
Yukowo Force (Serber Mixture)

5- m„.5/0L=0                                                     -

Zero range
4-

3- L=2                                             -

2- ,-*../                  \                                                                                                                                -/
/                    L.4

U                                 /          L• 6  6 1- /                    \                                              -

i                 ./ /                      L. 8*

1 0 ---- --1
k 6   '                                           re

E Zr  (p,p') E, 188 Mev

  L=O Yukowa Force (Serber M xture)
5                                     =2,                                                                                                              m.3. OF-'

\     L=4

L=6
Zero range

4                                         L=8

3

2

\

\\\
0

1//1             1 1/lilli t i l l , 10.6 1 2 1 8 2A 30 36 4.2 4.8 5.4 6.0 6.6 72 78 84 90 96 10.2 10.8 IIA 12.0

r(F)--I
Figure 6.--Direct and exchange form factors corresponding to
results of Figure 2.

L



73

1 L=0,2,4,6, and 8 form factors obtained from the (lg /2)2

transition density with a Gaussian interaction of 2F range              
exhibit a much larger spread in peak positions than is seen
for the 2F range Yukawa force. 9

Nonetheless, this observation indicates that the energy
dependence of c /G for a given transition density anddir ex

multipole can be written

a
-ex (E) = [A(1)(E)]2 K (4)Gdir

with K, the ratio of the integrated cross section obtained
with a 6-function force of unit strength to the direct

integrated cross section, being roughly constant. Eq. (4)
implies that

C
(1) (1)       aSex (El) . [A  (El)/A  (E2)]2 -ex (E2) · (5)dir vdir

Fig. 7 gives adir' Gex' and aT as a function of energy
for  the L=2 transition  and  the lF range Yukawa force. The
conventions are the same as those for Fig. 2. This figure

simply illustrates that aT drops off faster with energy than
does a due to the behavior of c . that the approximationdir ex'

is improving with increasing energy, and that large errors
are not observed in (T even at the lower energies.  The result
indicated by the center line and labeled a (F.T.) has beenex
obtained by fixing K from the value of a  /0    at 25 MeV andex dir
then using Eq. (5) to get this ratio at the higher energies.
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The value of a is then easily extracted given a Theex dir'
agreement between aex (Approx) and cex (F.T.) is quite good.t

This relation can be used with Eq. (3) to estimate, for

a particular transition and force, the ratio of the enhance-
ment of the direct total cross section due to exchange at
two different energies given the value of a  /0    at oneex dir
energy. Table 3 gives the values of a(20)/a(80) which have

been obtained through the use of these relations for the

L=O,2,4,6, and 8 transitions in Zr ' for Yukawa forces with
-1m=.5, 1.0, 1.5, 2.0, 2.5, and 3.OF The values of a  /aex dir

at 20 MeV are those shown in the lower graph of Fig. 1.  The

differences between these ratios for the different multiples
increase with the force range. For the 2F range force the

energy dependence of aT should be quite different for the

various multipoles provided the direct total cross sections

vary slowly with energy, i.e.  aT for the higher multipoles
should fall off faster with energy than for the lower

multipoles where c is making a smaller contribution. Thisex

is an example of an effect due to antisymmetrization which

might be used to study the properties of the projectile-

target interaction.

Non-Normal Trans fers

The cross sections for the non-normal transfer specified

by the triad (J-1,1,J) have been calculated for these five
19transitions for a lF range force. In all cases they were

found to be smaller than the corresponding normal exchange

tNote that cex(Exact) and aex(F.T.) will only agree if the
extrapolation is for energies above 40 MeV; however, reasonable
approximate values of a (see Eq. (31)) might be obtained-overthe entire energy region.
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TABLE 3.--Approximate energy dependence of enhancement of
direct cross section due to exchange as a function of multi-pole and range of a Yukawa force.

m[F-1] a(20)/a(80)
L=0 L=2 L=4 L=6 L=8

0.5 1.31 1.60 2.27 3.26 5.10

1.0 1.56 1.74 2.07 2.47 3.22

1.5 1.54 1.62 1.75 1.92 2.10

2.0 1.43 1.47 1.52 1.60 1.67

2.5 1.33 1.35 1.38 1.41 1.45

3.0 1.30 1.26 1.27 1.29 1.32

cross sections. Only for the L=8 transition, where exchange

scattering is dominant, was an appreciable contribution to

a  obtained.  Here the (718) component gave 25% of GT.  This

is encouraging, however, it must be noted that the S=0 and

S=1 components of the proton-proton force are equal in magni-

tude. If the component of the force contributing to the

non-normal transfer was larger than that contributing to the

normal transfer (as in the hypothetical.situation outlined in
Section 6 of Chapter 2) the non-normal transfer would clearly

be more important for the L=8 transition and might be impor-

tant for the lower multipoles also.

3.  Transitions in C    0  , and Ca + P.
12   16        40

As a further check,comparison calculations have been

performed for some of the transitions which are being used
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in this work to "calibrate" the effective interaction.

These are the excitation of the 1 T=1 (Q=-15.1 MeV), 2 T=O
(Q=-4.43 MeV) and 3-T=O (Q=-9.63 MeV) levels of C by 28.0512

and 45.5 MeV protons, the excitation of the 3-T=0 (Q=-6.13 MeV)
level of 0 by 24.5 MeV protons and the excitation of the

16

3-T=O (Q=-3.73 MeV) and 5-T=O (Q=-4.48 MeV) levels of Ca 40

by 25 and 55 MeV protons. The experimental results to be
12                        40shown for C at 45.5 MeV and for Ca at 55 MeV have been

72 45 12published '   while the results for C at 25 MeV is the
unpublished work of P. Locard and S. Austin. The experimental

16                       40results for 0 at 24.5 MeV and for Ca at 25 MeV are the

unpublished work of W. Benenson and C. Gruhn, respectively.
In these calculations the interaction was taken to be the

lF range Yukawa '6quivalent" to  the K-K force which was given
in Chapter 4. The wave functions used in these calcula-

tions are specified in the following chapter. For the time

being it is sufficient to say that both the exact and approxi-
mate results have been obtained in a consistent manner from
these wave functions. Optical spin-orbit coupling has
beem omitted and the optical parameters used are given in .
the next chapter.

Only normal transfers have been considered. The targets
+being considered all have 0 ground states, therefore the J-

transfer must equal the total angular momentum of the final

state. All of the transitions except the one ending at the
+              121 T=1 state of C are of normal parity. For these only the
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cross section specified by the triad (J,O,J) has been cal-

culated while that specified by (J-1,1,J) has been calculated

for the abnormal parity transition.

The exact and approximate results are compared with

each other and with experiment in Fig. 8,9, and 10.  The

total differential cross sections are shown in all cases.

The dashed curves are the approximate results and the solid

curves are the exact results. The direct differential cross

sections and the approximate and exact exchange differential

cross sections are shown only in Fig. 8 which gives the

12results for the L=3 transition in C Here the direct

angular distributions are shown as center lines and dashed

and solid curves are used to designate the approximate and

exact exchange angular distributions, respectively. No

ambiguity results from not distinguishing the exchange and

total differential cross sections in this figure as the latter

are always larger. Not much need be said about the differ-

ences between the exact and approximate results. It is quite

clear that no serious discrepancies have been introduced ln

treating exchange by this approximation. The differences

that are observed are generally consistent with those noted

in discussing the Zr results, i.e. the approximate total
90

differential cross sections tend to overestimate the exact

ones at the lower energies by less than 40% and.the differ-

ences all but vanish at the high energies. The shapes are

generally consistent with some deviations being noted at
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12      16forward angles for the L=3 transitions in C and 0 The

only peculiarity that is observed occurs for these same

cases--here it is found that the approximate results tend

to underestimate the exact results. In the light of the

other results which have been presented this is not expected

and an explanation is not readily available.

The value of G and the approximate values of Cdir ex
12

and cT for the L=3 transition in C   at 28.05 MeV are 6.59,
12.9, and 36.5 mb, respectively. At 45.5 MeV the values

7.48, 7.46, and 28.8 mb are obtained.  Note that adir has
changed only slightly with energy and that G  /aex dir
(28.05) = 1.96 and a /0 (45.5) = ·997 which are in theex dir

ratio 1.97. The value one would predict using Eq. (5) and

Table 1 is 1.86.

The comparison of the results with experiment is of

some interest. It is found that this lF range Yukawa force

yields results which are in reasonable agreement with experi-

ment at the lower energies but appreciably overestimate the

higher energy data. Thus it is concluded that the experi-
t

mental data favor an interaction whose range is longer than

lF.

4. Summary

Although the results which have been presented do not

constitute a complete study of the approximation it is felt

that they demonstrate that it is probably qualitatively

tthe optical parameters used in the calculation for         the L=3 transition in 016 were not very good.  Better para-
meters are given in Ref. 73·  The results shown in Fig. 10
should be reduced by a factor of 2-3.
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correct over the entire medium energy region and may be               i
11quantitatively valid at energies exceeding 40 MeV. For the

lighter nuclei considered it was found that the shapes of the
total differential cross sections computed approximately were
in reasonable agreement with those computed exactly with the

12      16possible exception of the L=3 transitions in C and 0

Here differences are noted between the exact and approximate
exchange angular distributions. ·Differences were also noted

90for the L=2 transition in Zr The energy dependence of
c   and a has been related to that of c through theex      T                              dir
Fourier transform of the force being used. Further, it would
appear that the damping of exchange scattering in the nuclear
interior, i.e. the correction terms discussed in Appendix A,
would improve the approximate results.  As the exact calcula-
tion of the exchange transition amplitude is quite involved

it is felt that this approximation and the relations based
on it can be put to good use in any analysis of the effects

due to antisymmetrization.

5.  K-K Force

The singlet even and triplet even components of the K-K
force have the form

V(r) = 0 r Sd

-mr (6)= Ve r>d

which lead to the following expression for the Fourier
transform.
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V( 12)=4'rrVe -Ind(1112+A2)-2 si AdI (rr12+12) (md-1)+2m2]

(7)+cosAd[d(m2+12)+2m]}

As this force acts only in even states the A(l)(A2) are

given directly by the Fourier transform of the appropriate
component of the interaction. Table 4 gives the strengths

of all components of A The notation A and A    A
(1)

SE TE' ST'

and A P and AP  is used.  The last row in this table gives
the 20 to 80 MeV ratios as was done in Table 1.

The values of these ratios, as compared to those given
for the Yukawa functions, are illustrative of the· long range
character of the K-K interaction. The results of Section 3

of this chapter indicated that·a long range force is needed.
(1)The behavior of the A (E) is, for the most part, regular.

The extreme long range behavior of A and the fairly short10
range character of APn indicate that a great deal of cancel-

lation has taken place in constructing them. This leads

one to suspect that these components of the interaction are
not well determined.

Unlike interactions with regular functional forms, the
long range behavior of the K-K interaction is not reflected
in its range parameter. It is attributable, instead, to
the presence of the "hole" in the interaction. To see this

it is only necessary to note that

00

V(A2) = 4 Af 1 (Ar)V(r)r2dr
(8)      

'O.0
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TABLE 4.--Strengths of components of exchange interaction for K-K force as afunction of the lab energy. Fixed separation distances are assumed.

E[Me V] A(1)(E)[MeV.F3]
A        A        A        A       A       A       APP      A P     A n    - ApnSE TE      00      10     01     11     0                       1

0 -868 -1200 -388 87·8 171 129 -217 217 -558 -41.5
10 -660 - 946 -301 64.6 136 100 -165 165 -437 -35.7
20 -500 - 745 -234 47.2 108 77.8 -125 125 -342 -30.7

1

30 -376 - 585 -180 33.9 86.3 60.1 -94.0 94.0 -267 -26.2
40 -278 - 457 -138 23·7 68.2 45·9 -69.6 69.6 -206 -22.3         5
50 -201 - 352 -104 15·7 53.4 34,6 -50.3 50.3 -157 -18.9
60 -140 - 267 -76.2- 9.54 41.2 25.4 -34,9 34.9 -117 -159
70 -90.6 - 196 -53.8 4.72 31.2 17·9 -22.7 22.7 -850 -13.2
80 -51.3 - 139 -35.6 ·958 22.8 11.9 -12.8 12.8 -58.4 -10.9

(20/80) 9.75 5.36 6.57 49.4 5.18 6.57 9.75 9.75 5.87 2.82

--i
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and to remember that the main envelope of the Bessel

function appearing in this integral is confined to values
1                                          -1of r--. Since X and X 8O are roughly 1 and 2 F , respec-A          20

tively, while the cutoff radii are approximately lF, it is

clear that this main envelope is falling within the "hole".

Continuous exponential functions with the same range
parameters as the singlet even and triplet even components

of the K-K force give (20/80) ratios of 2.05 and 1.96,

respectively, as compared with the corresponding values of

9.75 and 5.36 given in Table 4.

It is interesting to estimate the effect of the energy

dependence of the separation distances (which is being

neglected in this work) on the values of A (E) given in
(1)

Table 4. To do this it is assumed that

d  = 1.025 + (.05/60)(E-20)S

(9)

dt = 0.925 + (.03/60)(E-20)

where E is in MeV. These linear relations represent reason-

ably well the energy dependence of the cutoff radii as cal-
46culated by Kallio and Kolltveit. Table 5 contains the

(1)results obtained for·A (E) under this assumption. The

values of A (20) given in Table 5 are identical to those
(1)

given in Table 4 as the separation distances have been fixed

at this energy. It is seen that A is quite sensitive toSE

this change while the effect on A is smaller insofar asTE

the (20/80) ratios are concerned. The energy dependence of
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TABLE 5.--Same as  Table 4 except separation distances vary with energyaccording to Eq. (9).

E[MeV     ASE     ATE     AOO     A10    Ao     All    A P     A P    A n     A  

A(1)(E)[MeV.F3]

0 -884 -121 -393 90.0 172 131 -221 221 -566 -4.12
10 -667 -952 -304 65·6 137 101 -167 167 -440 -35.6
20 -500 -745 -234 47.2 108 77.8 -125 125 -342 -30.7
30 -370 -580 -178 33.1 85.6 59.3 -92.4 92.4 -264 -26.3

CO.
----7

40 -267 -446 -134 22.2 67.0 44.6 -66.8 66.8 -201 -22.4
50 -186 -338 -98.2 13·8 51.7 32.7 -46.6 46.6 -150 -18.9
60 -122 -249 -69.6 7.32 39.1 23·2 -30.5 30.5 -109 -15.9
70 -71.2 -177 -46.5 2.32 28.7 15·5 -17.8 17·8 -75.1 -13.2
80 -31.1 -117 -27.8 -1.50 20.0 9.26 -7.77 7.77 -47.8 -10.8

(20/80) 16.1 6.37 8.41 -31.6 5.42 8.41 16.10 16.1 7.16 2.86
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J
the separation distance is somewhat more pronounced

in the former case. The differences between Tables 4

and 5 taken with the related effect on the direct component
of the transition amplitude are large enough to produce

noticeable differences in calculations; however,it is doubt-
ful that they will be more important than the effects of the

density dependence, imaginary component, and odd state

components of the interaction which are also being neglected

in this work. Further, most of the available data lies in
the energy region from 20-50 MeV and none of the strong

transitions observed are likely to isolate the singlet even

component of the interaction where the effect is the largest.

6.  Effective Range Forces

It has already been noted that the (20/80) ratios

for typical Yukawa forces are much smaller than most of

those appearing in Table 4. In fact, since the long range

limit of the Yukawa function is the Coulomb potential, the

maximum value of (20/80) for the Yukawa is 4. The Gaussian

function, 1ts Fourier transform, and the relation for the
(20/80) ratio are given below.

22
V(r) = Ve (10)

-m r

_3/2  -12/4m2
V(12)=V"3 e (11)

m

1 0-1 0             2V(20)/V(80) = exp( 2 -) = e (12)
·731/m

4m
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For an interaction of exponential form the corresponding
relations are:

-mrV(r) = Ve
(13)

V(A 2) =
8Avm

(m2+A 2)2
(14)

V(20)/V(80) =
(15)

(m2+A 80)2

(m2+A 2 )220

Eq. (14) follows directly from Eq. (7) in the limit' as d goes
to zero. Note that V(20)/V(80) for the Gaussian form can
assume any value from 1 to oo whereas V(20)/V(80) for the_
exponential function can vary only from 1 to 16.

The Fourier transforms of the components of the K-K
force clearly cannot be matched with a Yukawa function over
the 0-80 MeV energy range. It was found that this matching
could not be achieved with an exponential function either.
For example, an exponential function with V=-59.7 MeV and
m=.636F-1 gives the same value for (20/80) as the singlet

even component of the K-K force; however, it gives V(0)=
5840 MeV.F3 which is about six times the value given in

(1)
Table 4 for the K-K force (ASE (0)).  In addition, V(E) for             I
E intermediate to 20 and 80 MeV are smaller than correspond-

(1)                                                       'ing values of A (E). A reasonably good match can be obtainedSE

with Gaussian functions. Gaussian interactions with V=

-34.9 MeV and m=.567F and V=-67.3 MeV and m=.660 give the·
-1

same (20/80) ratios as the singlet even and triplet



90

even components of the K-K force, respectively. They also
give V(0)=-1070 and -1300 MeV.F3 which are reasonable agree-

ment with the corresponding K-K force volume ingetrals.

Table 6 contains the pertinent data for Gaussian,

exponential, and Yukawa forces which fit the scattering

lengths and effective ranges which are sufficient to

characterize low energy nucleon-nucleon scattering48,49

Fig. 11 shows the Fourier transforms of these forces compared

with that for the K-K force. The transforms for the K-K

,force are bowed slightly upwards on the graphs, while those

for the Gaussian are straight lines. Both the exponential

and Yukawa transforms are bowed downwards. From the figure

it is concluded that the Gaussian effective range force is

quite similar to the K-K force and that the Yukawa effective

range force shows the greatest deviation from it. This is

consistent with the remarks made in the preceding paragraph.

In fact the strengths and ranges for the Gaussian functions

given in Table 6 are nearly the same as those  obtained by

matching to the K-K force.

These conclusions are not surprising. Like the

effective range forces, the K-K force is consistent with the

low energy nucleon-nucleon scattering data. It is evident

from Fig. 11 that all of the forces are similar (on the

average) for small values of E(<20 MeV).  The Gaussian func-

tion has properties similar to the K-K force and when the two

are forced to correspond over a small region (0-20 MeV) they

1.



91

automatically are similar over a much wider region (0-80 MeV).
On the other hand two dissimilar functions forced to corres-

pond over a small region will not correspond over a wider
interval.

TABLE 6.--Forces which are consistent with low energy nucleon-
nucleon scattering data.

Singlet Even Triplet Even

Gaussian V(MeV) -39.5 -71.0

m(F-1) .637 .676

V(0)(MeV.F3) -850 -1279

V(20)/V(80) 6.06 4.95

Exponential V(MeV) -138 -186

m(F-1)        1 1.58 1.48

V(0)(MeV.F3) -880 -1442
1 V(20)/V(80) 3.39 3.71

Yukawa V(MeV) -41.5
1 -47.6

m(F-1) .855 .633

V(0)(MeV.F3) -957 -2060

V(20)/V(80) 2.72 3.14

The Yukawa effective range force has been selected for
calculations in order to see how sensitive inelastic nucleon-
nuc·leus scattering is to the differences noted in Fig. 11.
In using this force it is assumed that there is no interaction
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FOURIER TRANSFORMS OF
K-K AND EFFECTIVE
RANGE FORCES
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Figure 11.--Comparison of Fourier transform of singleteven and triplet even components of the K-K force with
those of Gaussian (G)exponential , (E) and Yukawa(Y) effec-tive range forces.
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in odd states as is done for the K-K force. Table 7 gives
(1)the values of A (E) for the components of this force.

The format is the same as that of Table 4 for the K-K force.

Note added in proof: A set of calculations from the.

O.R.N.L. group have just been made available through a pre-
74                      90        90*print. These are for the Zr (p,p )Zr reaction at

18.8 MeV and 61.4 MeV and for the Zr (p,p )Zr reaction
92        92*

at 19.4 MeV.  Again the L=O,2,4,6, and 8 transitions in Zr9'
,2have been considered and (lg
)  wave functions have been              I

9/2
92used. In Zr the L=0,2, and 4 transitions corresponding to

the (2d5/2)2 neutron configuration have been treated.  The

long range part of the Hamada-Johnston (H-J) potential, includ-
inA the second order tensor contributions to the triplet-even

interaction, has been used for the projectile-target inter-
action. The odd state components of this interaction have

been neglected and ·a separation distance of 1.05 F was used.

In these calculations the exchange component of the D.W.A.

transition amplitude has been treated exactly and a  /aex dir
ratios have been given.

These calculations have been repeated using the K-K

force and the approximate treatment of exchange of this work.
The results are compared in Fig. 1'. This comparison is rea-

sonable because of the similarity of K-K force and the H-J
interaction used above as was pointed out in Chapter 4.  The

discrepancies between the exact and approximate results shown
in Fig. l' are much larger than any noted in the comparisons

made in Chapter 5. For L=0 in Zr at 18.8 MeV the90



TABLE 7.--Strengths of components of exchange interaction for Yukawa
effective range force as function of the lab energy

E[MeV] (1)
A   (E)[MeV.F3]

A                                                                             A                    A                                            A P                 APP              AP
n APnSE     ATE     AOO      10     01.   All                      0

0 -957 -2060 -565 50.9 326 188 -239 239 -891 -137
10 -574 _927 -281 49.7 138 93.8 -143 143 -419 -441

20 -410 -598 -189 39.4 86.5 63.0 -102 102 -275 -23·5

30 -318 -441 -142 32.1 62.9 47·5 -79.6 79.6 -205 -154
/0

40 -261 -350 -114 27·0 49.3 38.2 -65·1 65·1 -164 -11.2
t.

50 -220 -290 -95.7 23·2 40.6 31.9 -55.1 55.1 -136 -8.66

60 -191 -247 -82.2 20.4 34.4 27·4 -47·8 47·8 -117 -703

70 -169 -216 -72.0 18.1 29.9 24.0 -42.1 42.1 -102 -5.89

80 -151 -191 -64.1 16.3 26.4 21.4 -37.7 37.7 -90.5 -5.05

(20/80) 2.72 3.14 2.95 2.42 3.28 2.95 2.72 2.72 3.04 4.65
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Figure 1'.--Comparison of exact results obtained with long
range part of H-J potential with approximate results given
by K-K force.
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approximate value of a /a for the K-K force is about
ex dir

10 times the exact value 6btained for the H-J force. For

L=2 the approximate value is 4.7 times the exact value and

for L=8 the approximate value falls about a factor of 2

below the exact value. Uncertainties this large might

amount to factors of 1.5-3 in the magnitude of the complete

cross sections. Also note that the. results indicate that

the approximation is over-estimating the energy dependence

due to exchange.

They have also reported that the Gaussian effective

range force gives c la
'

ratios which are in agreementex dir

with those obtained with the long range part of the H-J

potential. It is also estimated from their results that the

H-J force gives somewhat weaker (25%) cross sections than

the K-K force. Similar differences between the H-J and

K-K forces were noted by Slanina in his optical potential

calculations. 31,32



CHAPTER 6

STUDY OF INTERACTION MODELS

IN D.W.A. CALCULATIONS

As a matter of convenience this chapter is divided

into two sections, i.e. Section A and Section B. The D.W.A.

results obtained with the impulse approximation pseudo-

potential, the K-K force, and the Yukawa effective range
12       40force for select transitions in C and Ca are presented

in Section A. Section B is devoted to a random collection

of results. Some (e,e') results are presented and occasional

reference is made to (p,p') studies at energies in excess

of 100 MeV. The (e,e') results (at least electric multi-

pole transitions) test only the proton activity in the

transitions. This is sufficient, at least for N=Z nuclei

where protons and neutrons play symmetric roles.

In viewihg the results to be presented, keep in mind

that a detailed fit to the experimental data is ·not the

point of these calculations. An investigation of the .inter-

action models with respect to the gross features of the

experimental data is all that has been attempted.

97
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1.  Section A

The transitions considered here are the L=0, 2, and
12                                     403 transitions in C and the L=3 and 5 transitions in Ca

which were introduced in Section 3 of Chapter· 5.t  The L=O
12transition in C is an abnormal parity T=1 transition. It

tests the t components of the. interactions. The other11

four transitions are normal parity T=0 transitions which

test the t components of the interactions. Some of the00

results of Section B provide information concerning other

components of the projectile-target interaction.

50Fig. 1 displays the R.P.A. vector for the 1 T=1

(Q=-15.1 MeV) state in C The analytic expressions for12

the L=O and L=2 transition densities (Section 1 of Appendix

B) are given along with graphs of these functions. The

1harmonic oscillator constant is also specified, i.e.ck=.610F-
32,55a value consistent with elastic electron scattering.

The calculation of the transition densities from the R.P.A.

vectors is discussed in Section 3 of Appendix B. Note that

011,1 211.1
F     (r) is considerably larger than F , (r) and that

both peak somewhat inside the nuclear surface. Only the

(011,1) triad is considered in the (p,p') calculations of

this work.

 See discussion of Fig. 8-10 in Chapter 5.
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C 12

1+ T= 1 (Q=-15.1 MeV)
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\              /                    2 1 1,1\/\/
-.10 \»/

01234567

r(F) -
Figure 1.--R.P.A. vector and transition densities

for 1+T=1(Q=-15.1 MeV) level of (12,
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JJT JTThe phases of X. . and Y. . appearing in Fig. 1 differJpJh J   J,_
P fl

 h+1/2from those given in Ref. 50 by the.factor (-1) The

reason  for this phase ·adjustment  has been given elsewhere. 41-43

It is made for all the R.P.A. vectors which are taken from

Ref. 50-53 for use in this work. From Fig. 1 it is clear
that the R.P.A. is saying that the 1 T=1 state in C is very

12

nearly a pure lp -lp particle-hole pair. It is well1/2 3/2

known that such a wave function predicts an electromagnetic
56Ml form factor which is much larger than experiment.

Investigation of this level, via the impulse approximation,
in the (p,p') reaction at 156 MeV showed that reducing the

L=0 transition density by (3.3) is sufficient to produce
1/2

a theoretical result which is in reasonable agreement with
42,43experiment. Such a ·factor is consistent with· the electro-

011· 1magnetic studies. The expression for F ' (r) and the

graph of this function in Fig. 1 already contain this reduc-
tion factor.

1 .Fig. 2-5 contain information, corresponding to that of

Fig. 1, for the four remaining, normal parity excitations
12       40in C and Ca The R.P.A. vectors shown have been taken

from Ref. 50, 50, 54, and 51, respectively.  These normal                

parity vectors exhibit considerably more mixing than the
abnormal parity vector of Fig. 1. Examination of the size
of the Y-amplitudes indicates that the effect of ground                  

state correlations is much more important for normal parity
transitions than for abnormal parity transitions. Here
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Figure 2.--R.P.A. vector, transition densities, with theoretical
and experimental inelastic electron scattering form factors for
the 2+T=O(Q=-4.43 MeV) level of C12.
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Ca
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Figure 4.--Same as Figure 2 for 3-T=O(Q=-3.73 MeV) level of Ca40.
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I again it is seen that the transition densities peak inside
JlJ.0the nuclear surface and that the F ' (r) transition densi-

ties can be neglected. The harmonic oscillator constant for
40Ca is taken from Ref. 32.

Also contained in these figures is a comparison of the

theoretical and experimental inelastic electron scattering

form factors for the excitation of these levels. The calcu-

lation of the theoretical (e,e') form factors from the transi-

tion densities is discussed in Appendix C. These results

are essentially the same as those contained in Ref. 55. They

have been recalculated more as a check than for any other rea-

son. and are shown fer completeness. The overall agreedent

between theory and experiment is quite good, although the
40data for Ca is admittedly sparse. The ground state corre-

lations are responsible for factors 1.5-3 in the theoretical

form factors which are from four to an order of magnitude

larger than results obtained in single particle-hole excita-
55tion models. The enhancement effects are largest for the

40L=3 transition, in Ca The mixing in the R.P.A. vector

for this transition is evident from Fig. 4.

Looking at these results a bit more closely, it is
12seen that the L=2 transitions for C gives a result for

|F(q) 2 which is about 15-20% too small.  The theoretical               '

12form factor for the L=3 transition in C has about the

right magnitude, but it peaks at slightly too large a value

of q. Ref. 55 extends the comparison of theory and experi-

1ment for these two transitions up to about q=3.5F- 0 The

theoretical results overestimate the data in this region
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which could be an indication that the theoretical transition

densities are too largd in the interior of the nucleus. The

experimental data for the L=3 transition in Ca is ambiguous
40

and it is seen that the theoretical result in Fig. 4 falls

in between the two sets of data points which are in disagree-

ment. The corresponding result of Ref. 55 has been obtained

with the R.P.A. vector given in Ref. 51 and it is in agree-

ment with the upper set of data points in Fig. 4.  The

experimental data for the L=5 transition is also not very

definitive. It appears that the theoretical result here

could be a little too large and might peak at much too large

a value of q.

It is concluded from this discussion that (1) the

transition densities presented in Fig. 1-5 should not be

responsible for any gross discrepancies in the (p,p') results

which are to be shown and (2) the effects of long range

correlations, which are included in the R.P.A. vectors, are

playing an important part in building up the magnitude of

these transition densities. Better transition densities

12have been constructed for the L=2 and L=3 transitions ln C

75by fitting directly to the experimental (e,e') data. These

have not been used as they do not differ , a great deal from

those presented here and the differences are well within the

uncertaintles associated with the local reduction of the

D.W.A. transition amplitude. The (e,e') data for Ca   is
40

not sufficiently accurate and complete to even allow con-
sideration of improving the transition densities.
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12D.W.A. calculations have been performed for C (P,P,)
12*                             40        40*C    at 28.05 and 45.5 MeV and Ca (p,p')Ca at 25 and

55 Mev. The differential cross sections obtained for the

above transitions using the impulse approximation pseudo-
potential are compared with experiment in Fig. 6-8.  Cor-

responding results for the K-K force are shown in Fig. 9-11

and those for the Yukawa effective range force are given in

Fig. 12-14. The total differential cross sections for the

L=3 transition in C are decomposed into direct and exchange
12

components in Fig. 10 (K-K force) and Fig. 13 (Yukawa effec-

tive range force). Optical parameters used in the calcula-

tions are given and referenced  in  Table 1. The form used

for this potential is given in Eq. (B.13). A tabulation

of the theoretical total integrated cross sections, aT'
is contained in Table 2. Values of c and c for thedir ex
K-K force and Yukawa effective range force are also displayed

in this table.

A quick glance at Fig. 6-14 shows that all of these

forces are giving a fair reproduction of the data. For the

normal parity transitions it is found that the results obtained
with the impulse approximation pseudo-potential and the K-K

force best reproduce the data. The impulse approximation

gives results which are slightly smaller in magnitude than
the K-K force. These differences are no larger than 20%.

The results for the Yukawa effective range force are found

to underestimate these cross sections at the lower energies,

but at the higher energies they are very close to the results
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40TABLE 1.--Optical parameters used in C12 and Ca   calculations of this work.  Well depths are
in MeV and radii and diffuseness parameters are in F.

Target   E       V      W    W     r      a     r'   a'     V     r     a     r     ReferenceL                         0            0           s so SO    C

C 28.05 48.06 0 3.92 1.13 .578 1.379 .570 9.32 1.125 .573 1.20     7612

c12 45·5 34.5 4.9    0 1.22 .67 1.40 ·70 7.5 1.22 0.67 1.20     77
40

Ca      25 47.2 1.78 4.83 1.17 .703 1.288 .653 5.59 1.17 .703 1.20     78
40

Ca      55 41.1 7.2    0 1.18 .70 1.40 ·70 7.50 1.18 ·70 1.20     77a      E
--1

 Extrapolated from 40 MeV parameters for Al and Fe27       54
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TABLE 2.--Integrated cross sections corresponding to
results      shown in Fig. 6-14. Decomposition of integrated cross section,

aT, into c and a is given for the K-K force and the Yukawadir ex
effective range force. All cross sections are in mb.

Target E(MeV) J1 Force a (mb) G (mb) CT(mb)dir ex

KK 1.22 .470 3.18

1+ ER 1.33 .303 2.86

IA 3.05

KK 22.4 33.5 1.02

28.05    2  ER 17·9 21.3 73.6

IA 94.0

KK 5.06 12.9 30.1

3 ER 4.06 8.22 22.1

c12
IA 26.9

KK 1.06 .150 1.99

1+ ER 1.30 .122 2.18

IA 2.08

KK 17.0 9.12 47.0

45·5     2+ ER 13.0 7.42 37.6

IA 39.7

KK 4.75 4.28 16.1

3- ER 3.63 3.48 13·4

IA 13·9

KK 16.1 14.6 58.2

3- ER 12.2 9.14 39.6

IA 52.925
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TABLE 2.--Continued.

Target E (MeV) J" Force a (mb) a (mb) CT(mb)dir ex

KK 2.21 8.35 16.9

5- ER 1.79 5.26 12.6

Ca40
IA 14.5

KK 15·5 2.51 29.4

3- ER 11.7 2.44 23·7

IA 22.6
55

KK 2.28 1.32 6.30

5- ER 1.69 1.28 5.64

IA 5.15
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obtained with the other two forces. Differences between the

K-K force and t'he Yukawa effective range force were also

noted in Ref. 32, i.e. the Yukawa effective range force over-

estimated the real well depth and the mean square radius of

the real part of the optical potential, giving much poorer

agreement with phenomenological potentials than the K-K force.

The differences between the K-K force and the Yukawa

effective range force for these normal parity transitions

can be understood from Table 2 and/or comparison of Fig. 10

and 13. From Table 2 it is clear that the values of c dir
for these two forces do not show any pronounced energy

dependence. The K-K force gives slightly larger values of

adir' The values of c do vary significantly with energy,ex

with those for the K-K force exhibiting the sharpest energy

dependence. Because of the slower drop-off with energy of

a   for the Yukawa effective range force, the magnitude ofex

the total differential cross sections it produces catch up

with those for the K-K fOrce as the energy increases.

Differences of this type were suggested in the discussion

of these forces in Section 6 of Chapter 5. It was also

pointed out in Section 3 of Chapter 5 that forces of longer

range than a lF range Yukawa were necessary to reproduce

the energy dependence of the experimental cross sections

a condition satisfied by both of the above forces. As a

result of the note added to Chapter 5 no conclusion will

be drawn concerning the significance of the differences

between these two forces in relation to the data. This
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4 note indicates that the approximate treatment of anti-

symmetrization is better for Yukawa forces than for the K-K
force which would leave any conclusion open to question.

Recently, Agassi and Schaeffer79 have obtained a good

40fit to the 55 MeV data for the L=3 transition in Ca In

their calculation antisymmetrization was treated exactly and           1
they used a Serber force of Yukawa form with a range of
1.37F. This force is similar to the Yukawa effective range            I
force used in this work. They used the R.P.A. vector of

Ref. 53 to describe this transition. Their result is con-

sistent with this work. They also found that the force CAL,

used in the calculation of the state vectors, fails to repro-
auce the data for this case.

For the abnormal parity transition, Fig. 6, 9, and 12,

the magnitude of the theoretical cross sections obtained

with all three forces are in reasonable agreement at both

energies.  Actually, at the lower energy aT for the Yukawa

effective range force is slightly smaller than aT for the K-K
force. This situation reverses at the higher energy; therefore,
the trend is the same as in the other cases. As this is an

L=O transition exchange is not as important. Further the

values of adir for the Yukawa effective range force are
larger than those for the K-K force which is a reversal of
the results for the normal parity transitions. This is

simply a reflection of the differencesbetween the forces at

large radii. For the K-K force a decreases a little withdir

energy and a for  the  Yuk awa effective range force remainsdir
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almost constant. Unlike the normal parity transitions, there U
are noticeable shape differences in the theoretical differ-

ential cross sections for this transition with the experi-

mental data favoring the results obtained with the impulse

approximation pseudo-potential. It is concluded that the

cross sections for this transition are sensitive to the pre-

cise shape and phase of the two-body force.

The theoretical cross sections have a tendency to fall

off too slowly with increasing angle and they don't show

enough structure. No attempt has been made to try and improve

the shape agreement between the theoretical and experimental

angular distributions. It is known that better shapes would

result if the theoretical form factors could be pushed out

radially. The density dependence and the imaginary part of

the projectile-target interactjon might produce this effect.

It has been observed in many cases that the direct

cross sections computed with the K-K force show good shape

agreement with the experimental angular distribution. This

shape agreement is then lost when the exchange component is

included. This does not happen with the Yukawa effective

range force.

The reason for this is that the direct form factors

for the K-K force·are more surfaced peaked than those for

the Yukawa effective range fcrce. This is evident in Fig. 15
12where the direct form factors for the L=2 transitions in C

are compared. Also shown are the complete form factors

(with exchange) for 28.05 MeV.  The total form factors peak
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well inside the direct form factors. The difference in peak

positions for the direct form factors-in this figure is about

.4F, wheteas this difference for the total form factors is

only about .lF. The latter accounts for the similarity of

the final results for the two forces. The long tai] on the

form factors for the Yukawa effective range force does not

aid in- giving better shapes.

The cross sections shown in Fig. 10 and 13 are not

extremely good examples of the above point. Here the total

cross sections show fairly good shape agreement with the

data out to at least 100 degrees. The direct cross sections

show too much structure. It is noted, however, that the K-K

direct cross sections show more structure than those for

the Yukawa effective range force which is consistent with

form factor differences like those djsplayed in Fig. 15.

It would appear that some of the deficiencies in the

angular distributions of Fig. 6-14 are attributable to

deficiencies in the transition densities. In particular,

the fact that the angular distributions for the L=3 transi-

12                                       40tion in C.  and those for the L=5 transition in Ca peak

at too large an angle appears to be consistent with the

(e,e') results which have been shown. The impulse approxi-

mation pseudo-potential and the Yukawa effective range force
12yield cross sections for the L=2 transition in C which

fall under the data. The (e,e') results suggested this.

The K-K cross sections do not reproduce this discrepancy.
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As a result of the uncertainties in'the approximate0 treatment of antisymmetrization it is suspected that the

magnitude of the differential cross sections for the K-K

force might be overestimated appreciably, at least at the
lower energies. This effect will be greatest for the L=0

transition and will become less important with increasing L.
It has already been suggested that the L=2 result is being

overestimated from the comparison of the (e,e') and (p,p')
calculations. It has recently been indicated that the

tensor force might be important for the abnormal parity L=0
8otransition. Including it is found to improve the shape

agreement between theory and experiment at 45.5 MeV, parti-

cularly at forward angles. It may be that the approximate

treatment of exchange is masking the need for this contri-
bution to this transition.

2.  Section B

Target Li6

.6The J ,T values for the first three states of Li  are
14

1 , 0; 3 , 0; and 0 , 1. The second state is observed at

2.18 MeV above the first which is the ground state. The

third lies 3.56 MeV above the ground state. Differential

cross sections have been measured for the Li6(p,p,)Li6*

81(Q=-2.18 and -3.56 MeV) reactions at 24.4 MeV. Theoretical

cross sections have been calculated using the K-K force.

Shell model, LS-coupled wave functions have been used to

describe the target  and the value a=  . 581F has been assumed
-1
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14for the harmonic oscillator constant. The optical para-        

meters are also given in Ref. 14. For the Q=-2.18 MeV transi-

tion only the contribution from the triad (202,0) is important

and only the triad (011,1) is allowed for the Q=-3.56 Mev

transition; therefore, the components of the force which

are involved are t and t respectively. The results00 11'

are shown in Fig. 16.

The agreement between theory and experiment is poor.

The L=2 cross section is badly underestimated and the L=0

cross section is overestimated. In addition, the latter

result does not show any of the structure displayed in the

data. Similar agreement with experiment is obtained when

these wave functions are used in the analysis of the (e,e')
82                             83reaction. Fig. 17 shows a rough fit to the experimental

(e,e') form factor for the L=2 transition. Adjacent to
84

it is the result which is obtained using the transition

density, empirically determined from this·fit, to calculate

the corresponding (p,p') cross section with the assumption

that the transition still goes through the t   part of the00

K-K force. The correspondence between the (e,e') and

(p,p') results is good and it is concluded thdt the LS-

coupled wave functions do not give a good description of

the target.

Excellent fits to inelastic electron scattering data

have been obtained, for both the transitions under discus-
82sion, on the basis of the cluster model. A parallel

analysis of the (p,p') data is planned. This possibly could
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be extended to transitions which have been observed in

neighboring nuclei. It may be necessary to improve the treat-

ment of antisymmetrization and to include the tensor force in

this work, particularly for the case of the L=0 transition.

These points were previously made with·respect to the L=O
transition in C which was discussed in Section A of this

12

chapter.

Target C
12

+              12There is a 2 T=1 state in C at Q=-16.1 MeV. The

triads (202,1) and (212,1) can contribute to the excitation

of this level in the (p,p,) reaction. The components of the

projectile-target interaction which are involved are t and01
t respectively. Both triads make appreciable contribu-11'

tions to the cross section as is seen in Fig. 18. This is

to be contrasted with the situation for normal parity T=O

transition where only the non-"spin-flip" contributions

were found to be important. Here the impulse approximation             I

pseudo-potential has been used with the R.P.A. vector of

Ref. 50. The data is from Ref. 72 and all parameters are

fixed as in the previous C calculations. The total cross
12

section shown has been obtained by .summing the (202,1) and

(212,1) components incoherently. No significant change

occurs when a coherent sum is performed. The magnitude of

the theoretical result is in reasonable agreement with

experiment, but the shape is quite poor. A comparable fit
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,„           to the 156 MeV (p,p') data has been obtained using this
42.43vector, ' so this result is an indication that the t

01'
component of the "realistic" interactions is not unreasonable.

16
Target 0

Fig. 19 shows the theoretical result obtained with

the K-K force for the excitation of the 3-T=0(Q=-6.13 MeV)
16level of 0 by 24.7 MeV incident protons. The data is the

same as that shown in Fig. 5.10. This is an L=3 transition

which goes through the t component of the force. The R.P.A.00

vector of Ref. 50 was used in the calculation and the harmonic
1oscillator constant was set at a=.559F- 0 The agreement

between theory and experimeht is good; however, since this
calculation was performed better optical parameters have

been obtained and it has been shown that the Gillet vector

does not give a good fit to the inelastic electron scattering
73form factor. Correcting these deficiencies leads to a

theoretical result which falls about a factor of 1.5 below

the data. An explanation of this discrepancy is not presently

available.

Target Ca'
40

Theoretical cross sections have been calculated for the

excitation of the 3-T=O(Q=-6.28 MeV) and the 2-T=O(Q=-6.02
4oMev) states in Ca  +p at 24.5 MeV. These are preliminary

40results which have been obtained in a study of the Ca  (p,p')
40*Ca data collected by C. Gruhn and collaborators. The
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Figure 19.--Comparison of theoretical and experimental differ-      -ential cross sections for the excitation of 3-T=0(Q=-6.13 MeV)level of 016 by 24.7 MeV protons.  The K-K force is used for
the projectile-target interaction.
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impulse approximation pseudo-potential has been used in these
calculations, R.P.A. vectors are from Ref. 54, and all para-
meters are fixed as before.  Only the triads (303,0) and

(112,0) have been considered and these transitions go through
t   and t respectively.00 10'

The L=3 cross section is shown on the left in Fig. 20

where it is compared with the result shown previously for the
40excitation of the first 3-T=O state in Ca There is a

noticeable difference in the shape of the two experimental

angular distributions. This difference is not related to the

difference in Q for the two transitions. The magnitude of

the cross section for the second L=3 excitation is an order

of magnitude lower than that for the first. The theoretical

calculations reproduce the data quite well. In detail the

change in shape comes about because of differences in the

dominant configurations of the R.P.A. vectors, i.e. the

lf7/2-ld3/2 particle-hole pair is the largest component of
the first state vector (see Fig. 4) while it is the 2p   -

3/2
ld3/2 particle-hole pair which is most important in the
second. Because of the node in the 2p radial wave func-3/2
tion, the transition density for the second excitation is

large and negative in the interior and has a positive peak

just outside the nuclear surface. From Fig. 4 it is seen

that the transition density for the first excitation is
small and negative in the interior and has a dominant positive
peak just inside the surface. The former simulates a some-

what larger diffracting object and hence the cross section for
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'  Figure 20.--Theoretical and experimental differential cross sections for the excitation
of the 3-T=O (Q=-6.28 MeV) and 2-T=O (Q=-6.02 MeV) levels of Ca40 by 24.5 MeV protons.
Results for excitation of first 3-T=O level in Ca40 are also shown for comparison.  The
impulse approximation pseudo-potential is used for projectile-target interaction.
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this case falls off faster with increasing angle. This is an

amusing comparison as it demonstrates some sensitivity to a

particular detail of the target wave function.

The result for the L=1 transition is shown on the right

in Fig. 20. The magnitude of the theoretical cross section

is seen to be in reasonable agreement with experiment, but
there is no apparent correlation in shape. The R.P.A. says

that this state is almost a. single lf -ld particle-hole7/2 3/2
I

pair. It would be interesting to examine the effect of the

tensor force in this transition.

i

208
Target Pb

Theoretical differential crosa sections have been

calculated for the excitation of the 3-(Q=-2.62 MeV) and
2085-(Q=-3.11 MeV) levels of Pb at 40.0 MeV and 24.5 MeV,

respectively. Experimental data for the former transition

is given in Ref. 77 and 85 and in Ref. 11 for the latter

transition. Optical parameters used in the calculations

are to be found in these same references. The K-K force

is used, the R.P.A. vectors are from Ref. 52, and a was
)

taken to be .405F-1.  The results are compared with the data

in Fig. 21. The agreement betwedn theory and experiment for

the L=3 transition is not bad, but the L=5 result falls a

factor of 2-3 below the data.

The proton and neutron L=3 transition densities are

almost identical; therefore, this transition tests the t 00
component of the force. Using this same vector to calculate
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Figure 21.--Theoretical and experimental differential cross
pbf81ons for 3- (Q=-2.62 MeV) and 5- (Q=-3.10 MeV) levels inby 40 and 24.5 MeV protons, respectively. For the L=3
transition the dots are the data points from Ref. 77 and the
circles are the data points from Ref. 85. The K-K force is
used for the projectile-target interaction.
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the form factor for inelastic electron scattering, a fit to

the data is obtained which is comparable to that shown in
Fig. 21. Nothing can be said about the L=5 transition as

83

there is no (e,e') data available although the poor result is
probably a reflection of a deficiency in the R.P.A. vector
for this transition.

1-T=O Excitations
12

C   is known.to have a 1-T=O level at Q=-10.8 MeV and
40the same JT,T is assigned to the Q=-5.90 MeV level in C

R.P.A. vectors are available for these states in Ref. 50

and 54, respectively. These vectors contain a spurious

component which represent translational motion of the center

of mass of the target rather than internal excitation of the

target. These vectors have been "cleaned" by constructing
the corresponding spurious states and projecting them

86,87

out.  Theoretical results obtained with the K-K force, using

both the original vectors (spurious) and the clean vectors,

are compared with each other and with the data in Fig. 22.
The magnitude of the cross sections is not given satisfactorily

in these calculations, but it is interesting that the clean

vectors reproduce the shape of the experimental angular dis-
tributions quite well as compared to the spurious vectors.

As the projection technique is not rigorous it is difficult

to say more about these results.
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CHAPTER 7

CORE POLARIZATION IN INELASTIC
PROTON-NUCLEUS SCATTERING

1.  Introduction

In this chapter the calculations are extended to (p,p')
transitions involving low lying states in nuclei which
possess one or two nucleons outside of a closed shell.
The importance of core polarization on the low lying

spectra of these nuclei and in these transitions has been

discussed by many authors. Several methods have been used

for estimating these effects which can be expressed most
simply as a renormalization of operators acting on the
valence nucleons, e.g. the effective two-body force between
valence nucleons and the effective charge of a valence
nucleon.

One method is a perturbative treatment of the particle-

hole excitations of the core which are induced by the valence
nucleons. This is carried out to lowest order and particle-

hole  excitations up to about  31'lw in energy are included.
In following this procedure the interaction of one

core nucleon with another core nucleon is neglected, i.e.
a zeroth-order shell model Hamiltonian describes the core.

139
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As the interaction between core nucleons is
responsible for        

the existence of low lying collective states in the core

nucleus, it is clear that this method does not include the

contributions from these states.

This approach is used by Kuo and Brown in their20-25,54 .

attempt to explain the spectra of nuclei with one or two

valence nucleons. They have shown, looking in a systematic
16    40    48    56way at nuclei in the vicinity of 0

, Ca , Ca Ni

88        208Sr ,     an d Pb , that core polarization gives rise to a

strong pairing e ffect which is the major feature of

the observed spectra. Horie and Arima were among the

first to use this method in their calculation of quadrupole
57moments. Recently, Federman and Zamick have .used this

model to examine some of the properties of the effective

charges for quadrupole transitions for nucleons outside of
40     '  56       88Ca and Ni cores. These studies have been extended to

other nuclei and additional efforts have been directed at89

estimating the validity of neglecting low-lying collective

states of the core nucleus. 90,91

An alternative method is to use the macroscopic vibra-

tional model to describe the core. The inter-92,93,15,16

action between the valence nucleons and the core is treated

in a manner completely analogous to that discussed in

Section 2 of Appendix B where the interaction of a pro-

jectile with a nucleus, so describe4 was considered. The

eigenstates of the macroscopic vibrational Hamiltonian need

not correspond to physical states of the core as the model

is used as a vehicle for parameterization. Under the
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'             assumption that the core strength is at an energy large

compared to any of the energy differences between the

valence nucleons involved, the role of a given core multipole

in the core polarization process is fixed by a single para-

meter, CL' the stiffness parameter for multipole L.  The

renormalization of the two-body forces between nucleons

outside the core (bound and/or unbound) as well as the

effective charge are easily expressed in terms of these

parameters.  Using this method, and fixing the CL on the

15,16basis of empirical effective charges, Love and Satchler

have demonstrated that core polarization can give a very

important, even dominant, contribution to (p,p') cross

sections.

Another variant is to consider the coupling of the

valence nucleons to low lying physical states of the core.

The macroscopic vibrational model can be used to param-

eterize the physical core states, although more consistent

calculations would use microscopic wave functions for the

core states--such as R.P.A. vectors. The energies of these

core states are often comparable with the energy differences

between valence nucleons and this has to be taken into

account. This method has been used extensively in the

lead region. Calculations of this type are useful
93,94

in examining the particle-hole model with respect to

neglecting low-lying collective states of the core.
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Atkinson and Madsen have given yet another procedure

for relating the effect of core polarization in electro-

19magnetic transitions to the effect in the (p,p') reaction.

All these models are .attempts to enlarge the vector space

used in shell model calculations in an easy to handle way

and, at the moment, rest on a very empirical rather than

<   theoretical foundation. These models are discussed in ·more

detail in Appendix D. At any rate the main purpose of the

present chapter of this paper is to extend, to the scatter-

ing problem, the microscopic perturbative calculation of

Kuo and Brown.

Due to the selection rules, transitions generally

give more detailed information about the nature of core

polarization than bound state calculations. For example,

consider a nucleus with two like valence nucleons which

are restricted to the (j) configuratioh. Such a nucleus
2

+will have a 0 ground state. It is shown in Appendix D

that the pairing effect on the ground state binding energy

is due to the coherent effect of a number of core multi-

pole excitations, whereas transitions between the states

of the (j) configuration which start or end at the ground
2

state depend essentially on only one core multipole. The

(p,p') reaction is particularly useful for studying core

polarization since the available experimental data, unlike

that for electromagnetic transition rates, is not limited

primarily to quadrupole and octupole transitions.

5
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50·    90 .89 209Ti  ,Z r  , k  , and Bi are the nuclei considered

in this paper.  The first two have two valence protons and

the last two have a single valence proton. In all cases
the 3P-lh (or 2p-lh) components of the target wave func-

tions are included as prescribed in Appendix D. The K-K

force is used as the interaction between core and valence

nucleons.  Angular distributions for the (p,p') reaction
and effective charges are calculated and compared with

experiment.  In the (p,p') calculations the K-K ,force
is also used for the projectile target interaction.  These

calculations constitute an attempt to reproduce the (p,p')
experimental data from a completely microscopic model with

the assumption that the projectile and target nucleons all
interact via the same force which in turn ls closely

related to the free two-nucleon potential.

As an  example of a particularly convenient

way to relate the effect of core polarization on the

spectrum and in transitions, calculations are carried out
50       90for Ti and Zr   using the macroscopic vibrational des-

cription of the core and fixing the core parameters from
the bound state matrix elements of Kuo and Brown. This

procedure is discussed in Appendix D.  All results are

reviewed with respect to coupling to physical core states

and in light of the empirical formula of Madsen and Atkinson.
209A very interesting result is obtained in the case of Bi

where it is found that the transition considered is

dominated by a single core phonon.
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2.   ·Calculations and Results -- Ti , Zr , I50    90  ..89

Macroscopic Vibrational Model add Relation between
Core Polarization in Spectra and Transitions

(Zr90 and Ti50)

90                           +In Zr the  transitions. from  the 0 ground state .

+++to.the 0,2,4, 6 , and 8  states with Q=-1.75, -2.18,
-3.07, -3.45, and -3.58 MeV, respectively, for,18.8 Mev

incident protons are considered. .The transitions from the

0  ground state to the 2  and 4  levels of Ti5  with

Q=-1.55 and -2.68 MeV for 17.5 and 40 MeV incident protons

90are also treated. The two 0 levels in Zr result from

the mixing of the (lg /2)2 and (2Pl/2)2 proton configura-

tions where the ratio of g to p amplitudes in the ground

state is about three quarters. This ratio has been fixed

.both theoretically and experimentally.8.9.54,95,96  The

1 2 , 4 , 6 , and 8  states in question in this nucleus are

50
due to two protons in the lg orbit. The states in Ti

9/2

! are described as two valence protons in the lf shell.
7/2

1

+
5

There is also a 6 state due to this configuration, but

it has not been resolved in inelastic proton scattering

i             experiments.

j                    For these cases the multipole decomposition of the

3p-lh contributions to the <(j )201'1/eff'(j)20> matrix elements

25.54
1 have.been given. ' Comparison of the decomposition with

2                    Eq.  (D.25)  and- Eq. (·D.26) allows the extraction of the

;              parameters <kv>fet,·  A knowledge of.<kv> is required to
1'.

             determine the parameters -<kv>eL which are needed to calculate

F
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'

the transition matrix elements. Following Bohr and

Mottelson63 <kv> is taken to be 50 MeV in these calculations.
Estimates of this quantity, based on reasonable finite
potential wells, for various orbitals in several nuclei

15-16produce values from roughly 35-75 MeV. ' Uncertainties

in the value of <kv> are probably the major source of error
in making this comparison between the spectrum and transi-
tions.

Table 1 gives the values of <k >0 deduced in thisv L
manner. For Zr90.<k >0 =.119, which is the same as the value3v 2
given in Ref. 15 and 16. The latter value was extracted                

from the effective charge and can be obtained without                   
knowing <kv>.  It should be pointed out that the potential              
wells used in these references had <k >-70 MeV. In the                 V

last column of Table 1 the parameter CL is tabulated.  This             
parameter represents the effective stiffness of the core to
2 _pole surface vibrations and is simply the inverse of eL.

·50From the table it is seen.that the core of Ti is somewhat
softer than the core of Zr and the L=2 vibrations are most

90

important in both cases. This is expected as is the indicated
increase in core stiffness to higher order vibrations. The

indicated core coupling is by no means negligible, however,
even for the highest core multipole. Note the large mono-

88pole coupling indicated for 2Pl/2 protons outside the Sr
core. On the basis of nuclear compressibility, L=0 vibrations
are not expected to be so important.
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TABLE 1.--Extraction of <k >0L from bound state matrixV
elements of Kuo and Brown.

Zr90

'0     LC

L    j    <(j)20 'G3p-lh||(j)20>(MeV) ML    <k >8v L (MeV)

0
1 9/2 -.020 .0796 .00504 9920

2 1g -.578 .0970 .119 4209/2
4 1g -.359 .0900 .079 6339/2
6 1g -.218 .0770 .057 8779/2
8 1g -.122 ·542 .045 11109/2

0 2p -.241 .0796 .061 8201/2

Ti 50

CLL     j     <(j)20 'G3P-lh| 1 (j)20>(MeV)       M      <k >0
v  L  (MeV)

0 ]f -.033 .0796 .00892 56107/2
2 1f -.753 .0950 .159 3147/2
4 1f -.460 .0839 .110 4557/2
6 1f -.233 .0602 .0775 6457/2
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The admixture of a core excited component in a shell
model configuration is proportional to <kv>2/CLEWL (see
Eq. (D.1")). Assuming the hydrodynamical values for the
mass parameter D2 gives 9.2 and 10.8 MeV for the energies
of the effective quadrupole phonon in Zr and Ti90       50

Using these energies and the C2 of Table 1 in Eq. (D.1")
leads to values of 12% and 14% for the L=2 core admixtures
in the ground states of Zr and Ti Admixtures this

90       50

large are not completely tolerable in view of the per-
turbative treatment being used. Ref. 15 and 16 report

907% L=2 core admixture in the ground state of Zr The

discrepancy cannot be accounted for by differences in
the values of <k > and C which have been used here andv 2
in those works.

As an example of the pairing effect which is

due to the core polarization, the results of shell
50       90model calculations of Kuo and Brown for Ti and Zr

are shown in Fig. 1. Theoretical results. obtained with

and without the inclusion of core polarization are com-
pared with experiment. For both of the spectra shown
the zero of energy is that of two non-interacting protons
in the lowest available orbit outside of the filled core.

The experimental energies have been plotted with the
97aid of the mass tables of Mattauch et al. The experi-

·50mental energies for Ti have been shifted by .4 MeV

i-i
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Figure 1.--Results of shell model calculations of Kuo and Brown for Zr9  and

Ti are compared with experiment. Spectra labeled G+G are results with50
3p-lh

core polarization included while the label G designates results when core polar-

ization is ignored.
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because the Coulomb interaction was not included in the

shell model matrix elements.

The figure clearly shows that core polarization gives

a large attractive contribution to the J=0 matrix elements,

a small attractive contribution to the J=2 matrix elements,

and repulsive contributions to matrix elements of higher

J.  In both cases the theoretical 2 energy is too high.
+

For Zr both of the 0  states and the 4+ state need to be
90

pulled down.

The theoretical results for TI are in better agree-
50

90         50ment with experiment than are those for Zr The Ti

results are for a full lf-2p shell calculation while only

the 2Pl/2 and
lg crbits were included in the Zr calcu-90
9/2

lation. Note that the ground state energy in Ti is 2.90
50

MeV below the unperturbed value.
<(l f7/2)2016'1 eff| (lf7/2)20>

has the value -2.068 MeV with -.869 MeV coming from the bare

force and -1.199 MeV as a result of core polarization. The

additional -.832 MeV ground state binding energy is due to

very sm  l  dmixtures (less than 5%) of (lf5/2)2, (2p3/2)2,and (2p )  components in the ground state wave function.

For Zr90

<(1g9/2)20|  eff|(lg9/2)2 0>=-.57 MeV-1.01 MeV

<(2Pl/2)2011/eff|(2Pl/2)20>=-.121 MeV-.0105 MeV
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where the first number in each case is the bare matrix element

and the second is the 3p-lh correction. An additional -.3 MeV

is added to the first matrix element to account for excitation

of the two valence protons to the (lg )  configuration and
2

7/2
-.2 MeV is added to the second matrix element to estimate

the effect of configurations with two 2p holes. A pure3/2
(lf )  calculation for Ti would probably also underbind

2                   50
7/2

+
the 0 ground state.

In summary, the perturbative treatment of core polariza-

tion gives a dramatic contribution to the theoretical results;

however, the underbinding of the 0 and 2 states indicates
++

that the effect is being. underestimated. It is uncertain how

these deficiencies are distributed between the different

core multipoles.  Further, the choice <kv>=50 MeV may result in

contributions to transitions from core polarization which are

somewhat larger than the matrix elements of Kuo and Brown
90actually imply--at least for Zr

Microscopic Transition Densities (Zr9l and Ti50)

90In the completely microscopic calculations for Zr and

Ti   (detailed formulae are given in Section 3 of Appendix D)
50

particle-hole pairs have been taken from the following shells:

Zr90
Particles:  2d, lg7/2'33,lh,2f,3p,li13/2,2%9/2
Holes: ld,2s,lf 2p (and lg '2P for neutrons only)' 3/2 5/2 1/2

50               '  5/2'
Particles: 2p lf lg,2d,3S

Ti
Holes: lp,ld,2s and lf (for neutrons only)7/2 ·
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These orbits include all the particle-hole excitations with
energies up to roughly 24'iw, except those proton-proton hole
excitations for which the particle level is the same as the
valence orbitals, i.e. in Zr the proton particle-hole

90

pairs lg9/2-jh and 2Pl/2-jh are neglected as are lf7/2-jh
·50proton excitations in Ti The single particle energy

levels have been taken from the Nilsson chart at zero deform-
ation. The parameter,Fiw which fixes both the harmonic
oscillator wave functions and the energy denominators has
been taken to be 9.1 and 10.5 MeV for Zr9l and Ti50,
respectively.

The composition of the core transition densities,
LOL LOL                                     90F   (C) and Fn  (C), for the L=2-8 transitions in Zr   and

the L=2-6 transitions in Ti are displayed in Tables 2 and
50

3.  The important particle-hole pairs are listed with their
energy denominators. The amplitude of the state

1 [(jj)L(jpjh)L]O> in the   (j 2)0> ground state, AG' and the
amplitude of the state  [(jj)0( j Ih)L]L> in the  (j)2L>
excited state, AE' are listed along with the fractional
contributions, %, of a particular particle-hole excitation
to its respective core transition density (either proton or
neutron). Observe that in Zr it is only the states with

90

j=lg9/2 that are involved in the L=2-8 transitions.  For
the definition of the amplitudes see Eq. (D.39). The ratio

LOL LOLof F (C) to F (C) is also given in each case--denoted byn P
N/P.

1



90TABLE 2.--Composition of core transition densities for L=2-8 transitions in Zr

Zr90

L=2 (N/P)=5.35 [16.8%]

Protons Neutrons

p          h      E(ph)[MeV]      AG       AE       %         A        A        %GE

1h 1f 12.5 -.058 -.026 .391 -.172 -.077 .20911/2 7/2
1h 1f 14.5 -.051 -.023 ·310 -.130 -.058 .1399/2 5/2

P
1g ld 15·0 -.045 -0.20 .22·2 -.114 -.051 .1057/2 3/2

2 f        2p 15.0 -.013 -.006 .0517/2 3/2

*li
1gg/213/2 13.0 -.156 -.070 .218

*2d 1
Zg/2

T=.974 T=.940

5/2 3.5 +.273 +.122 .269

L=4(N/P=5.09) [10.7%]

Protons Neutrons

p          h      E(ph)[MeV]      AG       AE       %         AG       AE       %

1h 1f 14.5 -.033 -.011 .153 -.072 -.024 .0659/2       5/2
1h 1f 9.5 -.042 -0.14 .09711/2 5/2

-p
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TABLE 2.--Continued

1h lf- .. 12.5 -.021 -. 0 0 7 .105 -.102 -.034 .10611/2 (/2-

1h 2P 3/2 10.5 -.039 -.013 .234 -.108 -.036 .12711/2

1g ld 15.0 -.027 -.009 .0897/2 3/2

1g ld 17·0 .018 .006 .0597/2 5/2
lg        2s 16.0 .021 .007 .097 .060 '

.020 .0517/2 1/2

li        ld 26.0 .015 .005 .07713/2 5/2

*lh
2Pl/2 14.0 -.063 -.021 .0579/2

P*lg        1g 4.0 -.171 -.057
.1 0 0                           w

7/2 5/2
*2d        1g 3.5 .153 .051 .1235/2 5/2
*li

lg9/2 13·0 -.096 -.032 .11113/2

T=.911 T=.745

L=6(N/P=6.41) [8.5%]

Protons Neutrons
p           h      E(ph)[MeV]     A                             G       AE       %G          A            %             A
1h 1f 14.5 -.018 -.005 .0959/2 5/2
1h 1f 17·5 .018 .005 .1059/2 7/2
1h 21.... 15.5 .018 .005 .164 '050 .014 '0699/2 - '3/2



TABLE 2.--Continued.

1h 1f 9.5 _.036 -·.010 .204 _.065 -.018 .06411/2 5/2

1h 1f 12.5 -.007 -.002 .054 -.061 _.017 .06611/2 7/2
1h                    2p                         10.. 5. -.014 -.004 .078 _.050 -.014 .05011/2 3/2

1g ld 17·0 .025 .007 .204 .061 .017 .0877/2 5/2

li 2s 25·0 .011 .003 .06113/2 1/2

*lh        2P            9.011/2 1/2 -.075 -.021 .089

*lg        1g 4.0 -.187 -.052 .2067/2 9/2

*2d
1 gg/25/2 3.5 .094 .026 ·072         w*

*2d 1
g9/2 6.0 -.083 _.023 .1033/2

*li        1g 13.0 -.·061 _.017 .07713/2 9/2

T=.965 T=.883

L=8(N/P=7.70) [5.7%]
Protons Neutrons

p           h      E(ph)[MeV.]      AG       AE       %         AG .     AE       %

1h 1f 17.5 .016 .004 .304 .0459/2 7/2 .011 .108

1h lf 9.5 -.033 -.008 ·571 _.07811/2 5/2 -.019 .183

li ld 24.0 .008 .002 .10013/2 3/2

-p



TABLE 2.--Continued.

*lg
1g9/2 4.0 -.214 -.052 .5647/2

*li 1
g9/2 13·0 -.037 -.009 .05613/2

T=.975 T=.911

5
Ul



TABLE 3.--Composition  of core transition densities for L=2-6 transitions in Ti50.

Ti 50

L=2 (N/P=5.58) [33.0%]

Protons Neutrons

p        h     E(ph)[MeV]    AG       AE      %        AG      AE      %

1g ld 15·5 -.065 -.029 .451 -.186 -.083 .2169/2 5/2

1g ld 17·7 -.054 -.024 .309 -.136 -.061 .1447/2 3/2

lf      lp 20.9 -.036 -.016 .1585/2 1/2
1-J

*2Pj/2 lf7/2 3.0 ..474 .212 .474

*lf 1f 4.5 -.210 -.094 .0815/2 7/2

T=.918 T=.915

„

L=4 (N/P=6.06) [15·5%]

Protons Neutrons
p        h     E(ph)[MeV]     AG      AE      %        AG      AE      %

1 g 2s 14.3 -.033 -.011 .234 -.096 -.032 .1079/2 1/2

1g 2s 19.3 .023 .0075 .134 .063 .021 .0637/2 1/2

1g ld 15·5 -.018 -.0061 .120 -.010 -.0033 .1039/2 5/2

J



TABLE 3.--Continued.

1gg/2
ld 12.7 -.042 -.014 .1733/2

1g ld 20.5 .022 .0072 .1007/2 5/2

1g ld 17.7 -.028 -.0092 .140 -.066 -.0227/2 3/2 .054

lf      lp 22.5 .028 .0092 .1805/2 3/2 ..072 .024 .079

*2P 1f 3.0 .234 .0783/2 7/2 .187

*2P 1f 5.0 .048 ,0161/2 7/2 .156

*lf 1f 4.5 -.264 -.088 .2205/2 7/2

T=1.081 T=.969 Ul
P

--1

L=6 (N/P=8.60) [11.2%]
Protons Neutrons

p        h     E(ph)[MeV]     AG      AE      %        AG      AE      %

1g ld 12.7 -.036 -.010 ·580 -.090 _.025 .1639/2 3/2

1g ld 20.5 .023 .0063 ·369 .058 .0167/2 5/2 .112

1g ld 15.5 -.050 -.014 .0559/2 5/2

*lf 1f 4.5 -·310 -.086 .6755/2 7/2

T=.949 T=1.005



158

The transition densities are, of course, functions of

radial position within the target nucleus. The radial

LOL
dependence of the valence transition density, F   (D),
is given by un£(r)u  (r) while the radial dependence ofn£

the contribution of a particular particle-hole excitation

to its core transition density is given by un £ (r)u- g (r).
PP f th     h

The particle-hole excitations which give important contri-

butions almost invariably satisfy the condition

Un E (r)un £ (r)-ung(r)ung(r),
PP h h

i.e. have radial wave functions similar in shape to those of

the active valence nucleons. This fact was expected and

used to fix the sign the radial integrals in arguing the

phase of the effect of core polarization on transitions in

Section 3 of Appendix D. Exceptions occur, for the most part,

only when a particularly small energy denominator is involved.

Since the radial wave functions of the valence nucleons are

nodeless for these cases it is not surprising that most of

the important particle-hole excitations are formed from

orbitals with nodeless radial wave functions.

LOL LOL LOL
The essential point is that F   (D), F   (C), Fn  (C),

and their important individual components have the same sign

and approximately the same radial shape. This fact, which

is a result of direct calculation, was assumed in deriving

the empirical formula for enhancement factors due to core

polarization in Section 4 of Appendix D. It also justifies
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comparison of the transition densities and their components
through percentages and ratios as is done in Table 2 and 3.

In the tables only those particle-hole excitations which

make up at least 5% of their respective transition densities

are listed. In each case the total fraction of the complete

core transition density due to the listed particle-hole
excitations is given. This is designated by T. This number
illustrates the importance of contributions not included in

the tables.

Relatively few particle-hole pairs make important

contributions to the transition densities, particularly for

the L=2 transitions, the L=6 transition in Ti5  and the L=8

transition in Zr9 .  It is also noted that for the L=2

transitions the following cbndition is highly favored.

1                       1j =2 +- j =t +-
P P-2 h h-2 | P- h|=L=2

This was also noted by Zamick and Federman in their calcula-
tions of quadrupole effective charges. For the L=6 transi-

88

50                              90tion in Ti and the L=8 transition in Zr a similar condi-

tion is favored , namely:

  =£ il -1
P P 2 h  h 2

j =2 +- jp+Jh=L=6 or 8

These results follow from Eq. (D.52) and Eq. (D.49) which

show that the contribution of a particular particle-hole

pair to the transition density is proportional to (2j +1)xLOL
IMT T (jhjp)]2 which is essentially given by

Ph
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(2jp+1)(2jh+1) < jp  jh L  2
1/2 -1/2 0  

It can be shown that vector addition coefficients of the

above type achieve their maximum value when the conditions

63cited above are fulfilled.

The increased fractionization of the core polarization

strength for the transitions with intermediate L-transfers

OCCurs because the above coupling conditions are not satis-

fied simultaneously with the condition that the particle

and hole orbitals have nodeless radial wave functions, i.e.

particle-hole excitations with nodeless radial wave func-(

tions that do not satisfy the coupling condition are as

favorable as those satisfying the reversed conditions.

The percentages given ih the brackets for each transi-

tion are the admixture of particle-hole pairs coupled to L

in the ground state. This is obtained by summing the

squares of the AG.  There are 16.8% L=2 particle-hole

90pairs in the (lg /2)2 component of the ground state of Zr

50The L=2 admixture in the ground state of Ti is 33%. These

values are to be compared with the corresponding values of

12% and 14% obtained using the macroscopic vibrational model to

describe the core. The comparison is relative as the energy

denominators used in obtaining the latter values are somewhat

arbitrary.

The core transition densities which have been obtained

here would be essentially unchanged if average
energy             

denominators of 14.5 and 17.1 MeV were used in place of
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IL
          the Nilsson denominators for

Zr and Ti  , respectively,
90       50

in all instances except when the particle and hole occupy

sub-levels of the same principle shell. These average

energy denominators are somewhat smaller than the values
26w assumed by Kuo and Brown. The Nilsson scheme gives

25,54

small energy denominators when the particle and hole are
in the same principle-shell. This is consistent with Kuo
and Brown's use of empirical energy differences for these

cases. Because of their smallness, it is these energy
denominators which are most uncertain. Further it is evident

that the transition densities are very sensitive to these

small energy denominators since the 2d5/2-lg9/2 and 1 7/2-
lg9/2 neutron-neutron hole pairs in Zr9O and the 2p   -

3/2
1f and lf -lf neutron-neutron hole pairs in Ti7/2 5/2 7/2

50

(all of which have small energy denominators) appear in

the wave functions with fairly large amplitudes. It is

estimated that a factor of two change in these small denom-
inators could make 20-40% changes in the magnitude of the

transition densities obtained, with the core transition
50densities in Ti being slightly more sensitive to this

90change than those for Zr
50

For Ti  , the differences betwe6n the L=2 ground state core

admixtures obtained in the microscopic calculations as com-

pared to those obtained in the macroscopic parameterization

are attributable to differences in the energy denominators

used here and in Ref. 25. Most notably, the latter

        quotes larger values for the small energy denominators in
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Ti than have been used in this work. Specifically it gives
50

E(ph)=4.8, 6.82, and 8.75 MeV for the 2p -lf 2P   -3/2 7/2' 1/2
1f and lf -lf neutron-neutron hole excitations,7/2' 5/2 7/2
respectively. Corresponding values used in this work are

3.0, 5.0, and 4.5 MeV.  Replacing the smaller energy denom-

inators by the larger ones reduces the L=2 ground state
50admixtures in Ti from 33% to 18% and a 20% decrease in the

magnitude of the corresponding neutron core transition density.

Probably the most startling feature of the results

presented in Tables 2 and. 3 is the large imbalance between

the proton-proton hole and neutron-neutron hole core polar-

ization contributions. The difference is so large as to

seem unreasonable. It is the natural result of these cal-

culations for three reasons. The first is simply the differ-

ence in strength between the neutron-proton and proton-

proton forces which results in an average increase of about

2.75 in the importance of a particular neutron-neutron hole

as compared with the corresponding proton-proton hole. The

second is the presence of the excess core neutrons which

contribute neutron-neutron holes via small energy denom-

inators. From 45-70% of the neutron core transition densi-

ties result from excess neutrons. Such contributions are

indicated by an asterick in the tables. The last reason is

the neglect of the proton particle-hole pairs for which the

particle level is that of the valence protons. Federman
88and Zamick included such contributions in their investi-

gation of quadrupole transition rates and found that they
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  gave roughly 35% of the core polarization due to protons.
b They observed a neutron-proton imbalance in their results,

but they considered evenly closed cores so it was due only              
to the n-p and p-p forces difference.

9oL=0 Transition in Zr

The L=0 transition in Zr needs separate discussion.
90

As was mentioned previously the ground state wave function
+and 0 (Q=-1.75 MeV) wave function are mutually orthogonal

combinations of the (lg )2 and (2P )2 configurations,. 9/2 1/2
i.e.

10+(g.s.)>= .61(lg9/2)20>-.81(2Pl/2)20>

210+(Q=-1.75 MeV)>=.81(lg )20>+.61(2p ) o>9/2 1/2

The transition density has two components--a (lg   )2 com-
9/2

ponent and a (2p )  component corresponding to the matrix
2

1/2
elements

.48<(lg  )20 ITI(lg  )20>9/2 5/2

- .4 8< (2 p         )2 0  IT|(2p         )2 0>1/2 1/2

Strictly speaking the theory also allows for contributions
corresponding to the matrix elements:

·3 6< (2 p )2 0 I T I(l g        )2 0>1/2 9/2

1                                                                                                                                                                                -
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-.64<(lg9/2)2OITI(2Pl/2)20>

There is no valence contribution to these matrix elements

as the initial and final valence configurations differ in the

state of more than one particle. Further the 3P-lh inter-

mediate states which can contribute must have two protons

in the lg (2P ) orbit and a third proton in the 2p9/2 1/2 1/2

(lg   ) orbit--all coupled to a proton hole. These are9/2

neglected. Similar contributions, corresponding to the

matrix elements

-.8<(lg9/2)2L|T|(2pl/2)20>.

have been neglected in treating the other transitions in               I
90                                                                 1Zr

The structure of the transition density for the L=0

transition is illustrated in Fig. 2. Shown at the top are
000 000 000 000 000

F   (D)[D], F   (C)[p-B], F   (T)=F   (D)+F   (C)[D+p-5],
000 000and Fn  (T)=Fn  (C)[n-R] for the (lg   )2 configuration.9/2

Corresponding information for the (2p )  configuration is
2

1/2
shown in the middle. The complete valence transition

density [D], the complete proton transition density'[P], and

the complete neutron transitian density [N] are shown at

the bottom. Here [D] is the sum of the two curves labeled

[D] in the top two drawings, [P·] is the sum of the curves

labeled [D+p-p], and [N] is the sum of the curves labeled

[n-R].
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TRANSITION DENSITY
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Figure 2.--Structure of transition density

for L=O transition in Zr90.
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As in the previous cases, neutron core excitation are

found to be more important than proton core excitations.

The complete proton transition density does not differ

appreciably from the complete valence transition density.
000

The interior minimum of F   (D) has been increased, the
surface maximum has been decreased and shifted slightly

000
outward, and a longer tail.appears as a result of F   (C).
The core transition densities are oscillatory and are not

too similar to the valence transition densitities. Only

t particle-hole pairs with j =jh contribute to the core

transition densities. As the available particle and hole

levels with the same total angular momentum do not have the

same principle quantum number, the oscillatory shape results.

The small core transition densities for the (lg9/2)
2

configuration is understood in terms of the poor overlap of

u14(r)u14(r) with un £ (r)unhgh(r) when n tn .  The overlapPP
of u (r)u  (r) with u . (r)unhgh(r)(np0nh) is better, which21 21 npip

explains the larger core transition densities obtained for

the (2p
) configuration. In the latter case, the radial
2

1/2

integrals (see Section 3 of Appendix D) still have the sign

of the two-body force and the difference in sign between the

core transition densities and the valence transition density

for large r is just the difference between u21(r)u21(r) and

Un g (r) (r)(n 0n ) at large r. The net effect of core
      unh £h P  h

polarization will be an enhancement of this transition,

although it occurs as a result of inhibition of the (2Pl/2)2      
contribution to the transition.
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All particle-hole pairs which contribute to this trans-
ition are listed in Table 4 with their energy denominators
and the amplitudes AG.  AE is not given since it is equal to
A  for this case. Percentage contributions are not givenG

either since differehces in radial shape between the various
components do not allow such a comparison. Ground state
admixtures are given in brackets as before. These are quite
small. Excitations involving excess core neutrons are indi-
cated with an asterik. They do not contribute to this trans-
ition via small energy denominators and thus do not play a
special role in this case.

Microscopic Transition Density for Transitionto Q=-.908 MeV State of Y89
1

89  The excitation of the Q=-.908 MeV level of Y for
I incident protons of 18.9, 24.5, and 61.2 MeV is considered.

In the ground state of this nucleus the valence proton is in
the 2p shell and for the excited state being considered1/2

it is in the lg /2 orbit.  The triads (LSJ) which can contri-
bute to this transition are (314), (514), (505), and (515).
None of these are forbidden in the simple shell model inter-
pretation of this transition so there is no breaking of the
valence transition selection rules because of core polar-
ization. It is found that the contributions from (514) and
(515) are small enough to be neglected. The microscopic
transition densities for the (314) and (505) triads have
been calculated by taking particle-hole pairs from the

<        following levels:

:
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TABLE 4.--Composition of core transition densities for
L=0 transition in Zr90.

Zr90

L=O(lg9/2)2 [<.5%]

Protons Neutrons
p           h        E(ph)[MeV]        AG            AG

2f 1f 17·0 .0008 .01207/2 7/2
3P          2p 18.0 .0004 .00073/2 3/2

2d ld 16.5      ' -.0017 -.02985/2 5/2

3s 2s 18.0 -.0056 -.01461/2 1/2

2d ld 17·0 -.0080 -.02383/2 3/2

2f 1f 17·0 .0066 .00935/2 5/2

*3p         2p 17.5 .00051/2 1/2

*2g         1g 18.0 .04759/2 5/2

L=0(2p )2  [2.9%]1/2
Protons Neutrons

p           h        E(ph)[MeV]        AG            AG

2f 1f 17·0. .0101 .01637/2. 7/2
3p         2p 18.0 .0430 .10443/2 3/2

2d ld 16.5 .0241 .0486
5/2 5/2

3s 2s 18.0 .0218 .0610  .1/2 1/2

2d ld 17·0 .0060 .04093/2 3/2

2f 1f 17.0 .0005 .01555/2 5/2

*3p         2P 17.5 .07861/2 1/2

*2g         1g 18.0 .0265. 9/2 5/2
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Particles:  2d, lg7/2' 35, lh, 2 f,3P, li13/2'2g9/2

Holes:  lf  2p   (and 2p     lg    for neutrons only)' 3/2 1/2' 9/2

N6te that this transition involves a change in parity--thus

the particle-hole pairs contributing to the core polarization

here are not the same as those involved in the Zr .transitions90

which have been considered. The orbits listed include all
the particle-hole pairs with energies up to roughly liw with

the exception of the lg9/2-jh and 2pl/2-jh proton excita-
tions. By including the 2g and li particle levels a9/2 13/2
few 3660 excitations are brought in. The constant Alw has been

90fixed at 9.1 MeV for this case--the same as for Zr

The composition of F314(c), F314(C), F595(C), and
F505(C) is given in Table 5.  The format of this table is

the same as that of Tables 2 and 3.  AE is the amplitude of
the state 12p (j jh)J;9/2> in the | lg > excited state1/2 ·p 5/2

and AG is the amplitude of the state | 1g (j 3 )J;1/2> in
9/2  P h

the | 2Pl/2, ground state.  For the expression for calculating
these amplitudes see Eq. (D.33). The J=4 ground state admix-

tures are almost zero while the J=5 ground state admixtures
are just slightly smaller than the L=6 ground state admixtures

90which were obtained for Zr
314 314F   (C) is larger than Fn  (C) as is indicated by the

N/P ratio of -.383.  The minus sign indicates that F   (C)
314

is opposite in sign to F314(D) while F314(C) has the sameP

sign as F (D). The sign difference is a result of the
314
P



TABLE 5.--Composition of core transition den@ities for transition to Q=-.908 MeV
level of Y89.

Y89
J=4(N/P=-.383) [ .8%]

Protons Neutrons
p        h      E(ph)[MeV]      AG       AE       %        AG        AE        %

lg7/2 lf7/2
10.0 .032 ..013 .071 -.011 -.005 .071

2d 1f 9.5 -.014 -.006 .144 .010 .005 .0835/2 7/2
3s lf 12.0 .027 .008 .074 -.006 -.002 .0531/2 7/2

--4

2d
2P 3/25/2 7.5 .054 .021 .248 -.012 -.005 .152         0

li 1f 19.0 -.019 -.011 .07813/2 7/2
li lf 16.0 .037 .025 .290 -.011 -.006 .23213/2 5/2

*lh                   6.5 -·011 -.005 .15211/2  lg9/2

*lh9/2 lg9/2. 11.5 -.011 -.005 .083

T=.905 T=.826

J=5(N/P=3.84) [7.2%]
Protons Neutrons

p        h      E(ph)[MeV]      A        A        %        A         A         %G          E                     G           E

1f 10.0 .016 -.027 .101 -.075 -.025 .077
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TABLE 5.--Continued

1g lf 7.0 .024 .017 .128 .0957/2 5/2 .088 .039
2d 1f 9.5 .017 .0085/2 7/2 .051

2d 1f 6.5 .0895/2 5/2 -.003 .195 .100 .044 .124
2d 1f 12.0 .005 -.0163/2 7/2 .070 -.065 -.018 .064

1 g        2p 8.0 .008 _.0477/2 3/2 .275 -.118 -.052 .174
li lf 19.0 _.023 -.00313/2 7/2 .085 -.036 -.020 .059

li13/2 2P
3/2 17,0 -.034      0 .115 -.042 -.030 .098

*lh        lg           6.5
11/2 5/2 .130 .063 .216        Y

T=1.020 T=.907
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repulsive character of the "spin-flip" component of the p-p

force. The "spin-flip" component of the p-n force is weak

314and attractive which explains the sign and size of Fn  (C).
These conclusions are based on the discussion of Section 3

of Appendix D. The contribution to the transition from the

triad (314) is reduced as a result of core polarization.

This is a well known result first used to explain the slow

M# y-decay of the Q=-.908 MeV level to the ground state.98,99

505 505The results for F
(C) and Fn  (C) are similar toP

those obtained for the core transition densities describing
50the L=2-8 and L=2-6 transitions in Zr9  and Ti  , respectively.

F505(C), F505(C), and their major components are similar

in shape and have the same sign as F505(D).  F505(C) is

larger than F (C), but N/P=3.84 is considerably smaller505
P

90       50than the values obtained for Zr and Ti core transition

densities. The reason for this is the decreased importance

of excitations involving the excess core neutrons. About

50566% of F505(C) and about 46% of Fn  (C) is due to particle-

hole pairs which satisfy the coupling conditions given before.

Some fractionization occurs because the overlap of u  (r)u14(r)21

with un g (r)u    (r) is somewhat more ambiguous than in then e
PP h h

90       50case of Zr an d Ti Essentially the same results would be·

obtained for all the core transition densities if an average

energy denominator of 11.1 MeV is used without exception.

This is slightly greater than ]Atw, the value appropriate

for negative parity transitions.
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Angular Distributions (Zr , Ti , and Y89)
90    50

Figure 3 shows the angular distributions which have

9obeen calculated for the L=2-8 transitions in Zr in the

(p,p') reaction at 18.8 MeV. The data shown is from Ref. 8.

The results for the L=2 and 4 transitions in Ti for the50

(p,p') reaction at 17.5 and 40.0 MeV are compared with experi-

ment in Figure 4. The 17.5 MeV data was taken from the liter-

ature and the 40.0 MeV data is the unpublished work 6f100                                                                  1

B. Preedom. Theoretical differential cross sections obtained

for the excitation of the Q=-.908 MeV level of Y for incident89

protons of 18.9 MeV, 24.5 MeV, and 61.2 MeV are compared

with experiment in Figure 5. The data comes from Ref. 10,
Ref. 101, and.Ref. 102, respectively.

In Figure 3 and 4 the solid curves are the results of

the completely microscopic calculations and the dashed curves

are the results of the calculations which use the macroscopic

vibrational model to describe the core with the core para-

meters fixed from the bound state calculations. The solid

curves in Figure 5 are the complete differential cross sections

and the dashed curve represents the L=5 component of this

cross section. The L=3 component is shown only for the

61.2 MeV case where it appears as a center line. The optical

parameters used in these calculations are given and referenced

in Table 6. The notation is the same as used in Eq. (B.13)

and the same geometry is used for the volume and surface

imaginary terms.
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90    50       89TABLE 6.--Optical parameters used in calculating the Zr  , Ti , and Y angular distributions.
Well depths are in MeV and radii and diffuseness parameters are in F.

Target E  (MeV)  V    W  W    r    a  r'    a'  V    r   a    r   Ref.
LAB                    D     0           0           s .s o SO C

90Zr 18.8 52.0 0.0 9.25 1.20 .70 1.25 .65 6.2 1.20 ·70 1.25    8

Ti 17·5 48.0 0.0 11.0 1.25 .65 1.25 .47 0.0    -      - 1.25 100
50(1)

Ti 40.0 44.8 8.1 0.0 1.169  .755  1.403 .441 6.51 1.169 .755 1.20 76a   M
50(1)

Y 89 18.9 52.6 O.0 9.8 1.20 .70 1.25 .65 5.70 1.20 .70 1.25   10
--1

Y 89 24.5 SAME AS 18.9 MeV

Y89 61.2 39.5 5.12 2.54 1.20 .69 1.40 .53 6.00 1.20 .69 1.20 102

Ti 17·5 48.3 0.0 10.68 1.236 .60 1.261 .52 10.0 1.236 .60 1.236 103
50(2)

Ti 40.0 44.85 7.82 1.14 1.16 .75 1.37 .630   6.04  1.064  .738  1.25  104b
50(2)

a 54Parameters for Fe used here.

b                 54Parameters for Fe used here with V and W varied to provide good fit to elastic cross
section.
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Two sets of parameters are given for Ti The first
50

set (1) was used for the completely microscopic calculations
and the second set (2) were used in the calculations using the
macroscopic vibrational description of the core. Set (2)
give better fits to the elastic scattering data, but were
not available until the microscopic calculations were com-
pleted. As the differences between the two sets of para-
meters are not sufficiently large to alter the conclusions
of this work, the microscopic calculations were not repeated
with the improved parameters.

The overall agreement of the theoretical angular distribu-
tions with experiment is fairly good with the possible exception
of the L=8 transition in Zr . The general tendency is for the

90

theoretical results to underestimate the data slightly (by
factors less than two), but it appears as if at least a
rough account of the relative magnitude of the differential
cross sections of different multipolarity in Zr and Ti90       50

has been achieved. The results of the microscopic calcula-
tions are in good agreement with the results of the calcula-
tions which use the microscopic vibrational description of

t
 

the core. This is expected as the latter are only intended
to display, more directly, the relation between the renormal-
ization of the force acting between bound nucleons and the

tThe agreement between the microscopic and macro-scopic results for Ti50 is a little poorer than for Zr90.This is attributed mostly to the differences in the energydenominators used in this work and in Ref. 25 which werepreviously pointed out.

4
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renormalization of the force between a bound and an unbound

nucleon. The macroscopic model gives angular distributions

with somewhat better shapes than the microscopic calculations.

This is particularly evident for the L=2 transitions.

It is interesting to note that the prescription for

calculating cross sections which is being followed here leads

to the conclusion that the L=3, abnormal parity component of

the Y cross section is appreciable. Other analyses have
89

assumed that the angular distribution is totally due to L=5

transfer. The presence of the L=3 component of the10,101,102

cross section is supported by the data--particularly at

61.2 MeV where it broadens the forward  peak  in the angular
distribution. The apparent dip in this angular distribution
at about 250 is not reproduced by the calculation. In order

to reproduce this feature of the data both the relative magni:-
tudes, widths, and peak positions of the L=3 and L=5 com-

ponents of the angular distribution would have to be given

precisely. The approximations and assumptions employed in

this work are too crude to give such fine details of angular

distributions.

For the sake of completeness the integrated cross

sections corresponding to the microscopic. results of Fig. 3,

4, and 5 are decomposed into their direct and exchange com-

ponents in Table 7. The results in the table are consistent

with the observations of Chapter 5.
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TABLE 7.--Decomposition of integrated cross sections corres-
ponding to results shown in Fig. 3, 4, and 5 into direct and
exchange components.  All cross sections are'given in mb.

Target E   (MeV)   L   a        a        aT     a  /0LAB dir ex ex dir

2 .997 .482 2.84 .481

90Zr 18.8      4 .165 .156 .627 .945

6 .0207 .0550 .137 2.66

8 .00116 .0163 .0236 14.1

17·5      2 4.89 2.70 14.5 .553

Ti                    4 .643 .911 2.94 i.42
50

40.0      2 3.93 .884 8.30 .224

4 .680 ·340 1.86 .500

18.9      3 ·0402 .0303 .127 .754

5 '.0988 .143 .441 1.45
89Y          24.5      3 .0496 .0329 .150 .664

5 .124 .165 ·532 1.33

61.2 3 .9768 .00473 .116 .0616

5 .189 .0330 ·361 .175

Form Factors for L=2 Transitions
in Zr and Ti90       50

The form factors for the microscopic calculations are

obtained by folding in the appropriate multipole coefficient

of the K-K force and exchange interaction with the complete

transition densities obtained by combining the valence and

core transition densities.
The folding procedure is               

defined in Eq. (2.59").  When the macroscopic vibrational

E
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description of the core is used the form factors are defined
n LSJby Eq. (D.13) where F (r) denotes the valence form

factor.

The form factors given by the microscopic and macro-
9oscopic models for the L=2 transition in Zr at 18.8 MeV

50and in Ti   at 17.5 and 40 MeV are compared in Fig. 6, 7,

and 8, respectively. The valence form factors are labeled

D and shown as a solid line in the figures. They are the

same in both the microscopic and macroscopic pictures. The

total form factors, which include the effect of core polar-

ization, as given by the macroscopic model are represented

by dashed curves labeled D+C (Macro). These are complex

and both the real and imaginary components are shown in the

figures. The total microscopic form factors are represented

by center lines labeled D+C (Micro). These are real.

Strictly speaking one expects the projectile-target inter-
-

action to be complex which would lead to complex form factors

in the microscopic calculations also.

The total microscopic form factors and the real part of

the total macroscopic form f'actors are similar in shape to the

direct form factors, although they both peak at slightly

larger radii. The total macroscopic form factors peak at

the largest radii in all cases shown. The better angular

distributions given by the macroscopic calculations is attri-

butable largely to the latter observation although the imag-

inary part of the macroscopic form factors does play some

         part in the improved shapes.
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Enhancement Factors

In order to examine more carefully the role of core

polarization in these results, the square of the enhancement
factors obtained in these calculations are given in Table 8.

These are simply the ratio of the integrated cross section

obtained with core polarization to the integrated cross
section obtained without core polarization. They are

2denoted by E where the subscript p appears because theP

valence nucleons are protons in all cases being considered.
Except for the abnormal parity L=3 component of the Y cross89

section, the values of E are of the order of 10. This
2

P

illustrates that core polarization plays an extremely

important role in the (p,p') reaction. Experimental values

of E are given for the transitions in Zr and Ti  .  For
2                                   90       50
P

the L=2 and L=4 transitions in Zr these have been obtained
90

by normalizing the theoretical angular distribution for the
0

valence transition to the data at 40 . For the L=6 and L=8
90    0       0transitions in Zr

, 60 and 70 were used to compute E .
2

P
For Ti5O at 17.5 Meg, E2 was determined by comparing the

0theory and data at 400, but at 40 MeV the hump at 51  in the

experimental L=2 angular distribution and the flat spot at

35° in experimental L=4 angular distribution were used for

the point of normalization. In all cases good "eye" fits

to the data have been achieved. Experimental enhancement

factors have not been obtained for the Y transition because89

the cross section contains two components.
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TABLE 8.--Theoretica.1 and experimental values for the square
of the enhancement factors corresponding to the results of
Fig. 3, 4, and 5.  For prescription used to calculate E2(Exp)

see text.

Target    E   (MeV)    L    E (Micro ) E2(Macro) £2(Exp)
2

LAB               p

2 18.9 16.5 33.2

Zr 18.8       4 12.7 12.2 20.3
90

6 9.56 11.0 18.4

8 7.62 11.0 55.2

Ti 17·5       2 17.2 10.8 18.9
50

4. 12.8 9.1 19.4

Ti 40.0       2 19.8 13·7 19.8
50

4 14.9 12.7 18.2

y           18.9       3        ·62989

5       9.14

Y89         24.5       3        .641

5       9.55

Y89     .   61.2       3        ·617

5      10.3
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Beyond any uncertainties associated with normalizing

the theoretical results to the experimental data, the experi-
mental values of £2 given in Table 8 are subject to any

errors contained in the approximate treatment of antisymmet-
rization used in this work. For example consider the results
of Love et al which were discussed in the note added to

74
--

Chapter 5. Using the central part of H-J force for the

projectile-target interaction and treating antisymmetrization

exactly, for the L=2 valence transition in Zr they obtain
90

adir=.0412mb, cex=.00415mb, and aT=.0689mb with aex/adir=.1.
The results of this work are c =·0524mb, a  =.0246mb, anddir ex

aT=.150mb with a /0 = 470. The first set of results givesex dir '
90E (Exp)=72.5 for the L=2 transition in Zr

Taking for c the values obtained in this work fordir

the K-K force, using the a  /a    ratios of Love et alex dir

shown in Fig. (5.1'), and assuming maximum interference (see
Eq. (5.3)) suggests that a proper treatment of exchange

r 90might lead to the following modifications of the Zr results

which have been shown.

(1) Values of 62(Exp)=54.7, 33.8, 23.2, and 35.1

might result for L=2, 4, 6, and 8.

(2) The microscopic angular distributions for the

L=2, 4, and 6 transitions of Fig. 3 may be reduced

by factors of 1.65, 1.66, and 1.26, respectively,

while the L=8 angular distribution may be increased

by 1.57· Here it has been assumed that the complete
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differential cross sections will be effected in

the same way as the differential cross section for

the valence transition. This is not strictly true

since neutron excitations contribute to the former

and the n-p and p-p forces do not have the same

radial shape.

(3) The macroscopic angular distributed of Fig. 3 may be

multiplied by factors of 1/1.12, 1/1.14, 1/1.07,

and 1.15 in the order L=2-8. These cross sections

are more stable than the microscopic ones since the

core contributions are not effected by the uncertain-

ties in question.

(4),Under the assumption of (2) the values of E (Micro)
,will not be changed.

(5) From (3) it follows that 62(Macro) will be 24.2,

17·8, 13.9, and 8.09 for L=2-8.

The main point here is that the results of this work might be

biased so as to improve the agreement of theory and experiment
for L=2-6 trans fers.

The indicated modifications improve the consistency of

theory and experiment for L=2-8, but at the same time

result in somewhat poorer absolute agreement. With the modi-

fications the microscopic L=2 cross section is too low by a

factor of 2.9 while the L=8 cross section is a factor of 4.6
under the data. Inclusion of the· L=7 non-normal transfer

in the 8  calculation might then remove most of the discrepancy    
between the two results. Finally observe that the agreement
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between the microscopic and macroscopic results is not strongly

effected by the uncertainties due to the exchange approximation,
although the microscopic results for the L=2, 4, and 6 transi-

tions will be shifted downward 20% with respect to the macro-
scopic results while the L=8 results might be brought into

essentially complete agreement. The fact that the macroscopic

cross sections may be larger than the microscopic cross

sections could reflect that a larger value of <kv> should be
used in these calculations.

The value of £2(Exp) for the L=2 and L=4 transitions

in Ti are found to be about equal,  roughly 19, and the
50

data provides no indication that this number varies with

energy. It would be useful to have results with exchange

treated exactly to check these points. Except for the magni-
tude of 62 it is expected that the observations will be up-

held. Guessing that the cross sections for these valence

transitions are being overestimated by the same amount as
90for Zr   leads to a modified value for 62(Exp) of about 31

at 17.5 MeV.

2It is found that E (Macro) for the L=2 transition is a,P
little larger than for the L=4 transition and both are too

small by about a factor of two at 17.5 MeV. They also

increase a little with energy. E2 (Macro) for the ·L=2 transi-

tion at 17.5 MeV might be modified to a value of 13 which

is about 2.3 times smaller than the modified experimental

value.     The  fact  that 62 (Micro ) are larger  than £2 (Macro)
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has already been explained.  The values for £2(Micro) increase

slightly with energy as is expected since the shorter range

n-p force is a factor in the complete cross section while
only the p-p force is involved in the valence transition.

67Calculations have been carried by Satchler et al. for

the single particle transition in Y at 18.9 and 61.4 MeV.
89

The H-J force has been used and exchange has been treated

exactly. Comparing their results with the results of this

work indicates that the approximate treatment of exchange

is not introducing any serious discrepancies here. This is

expected as the dominant multipole is L=5 in this case. The

comparison also indicates that somewhat smaller (less than

a factor of 2) cross sections would be obtained with the H-J

force. This is also true for the L=2 transition in Zr where90

the K-K force gives the modified experimental value, E =54.7,
2while E =72 is obtained for the H-J force from Ref. 74. InP

any event it appears as if the results obtained here for
this transition in Y are somewhat better than those

89

50       90obtained for Ti   and Zr

L=0 Transition in Zr90

An experimental differential cross section is available

for the excitation of the 0 (Q=-1.75 MeV) level of Zr in90

the (p,p') reaction at 12.7 MeV.105  Ref. 8 also gives an

upper limit for this cross section for incident protons of



191

18.8 MeV. This is about 20 vb between 40° and 60°. A calcula-

tion of the differential cross section for the valence transi-

tion at 18.8 MeV gives a result which is in agreement with

this upper limit. The decomposition of the integrated cross

section for this case is adir=,0453 mb, aex=.0392 mb, aT=.169 mb,
and a  /0 =.865. This ratio is much larger than a  /a     22ex dir ex  dir='
which is obtained when it is assumed that only lg9/2 protons
are involved in the L=0 transition (see Fig. 5.1'). This

same effect was observed for Yukawa forces in the discussion
of Fig. 5.1.  Core polarization gives 62=9.35. for this.transi-

tion which destroys the agreement with experiment. Assuming

that a  /a    is 10 times too large which is inferred fromex dir
Fig. 5.1' leads to a result which is only about 4 times greater

than the upper limit.

A calculation with core polarization was made for compari-
son with the 12.7 MeV data. Optical parameters were taken
from Ref. 105. The  direct and total (direct plus exchange)

differential cross sections are shown with the data in Fig. 9.

The shape of the theoretical cross sections are not in good

agreement with the data and it is seen that there is a large

exchange contribution. Again assuming that the effect of

exchange is being overestimated leads to a result which is not

very different than the direct differential cross section

shown. This is in accord with the data insofar as overall

magnitude is concerned. Love et al have indicated a value
74

of 10 is needed for £  based on their calculation of the  differential cross section for the valence transition using
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            the K-B reaction matrix. This is roughly the value obtained
          in this work.

0
Note that the data has a deep minimum at 60  - the

region where the upper limit of the 18.8 MeV cross section

was fixed - and observe that because of the poor shape agree-

ment this point is badly overestimated. It has been suggested

that the shape of the theoretical result can be'improved by
9,105damping the form factor in the nuclear interior. An

angular distribution with a better shape has been obtained

in Ref. 105 from a macroscopic form factor representing a

breathing mode. 65

Effective Charges

Table 9 contains the effective charges for the electric
L
2 -pole component of the transition rates for the transitions

under consideration. Experimental values are given for the

L=2 transitions. These have been extracted from transition

rates given in the indicated references on the basis of the

harmonic oscillator wave functions used in this work. Note

that there are two experimental values given for the quadru-
90pole effective charge in Zr The two numbers do not agree

with each other and the larger number is the most recent

result.

The results for e (Micro) are simply the squareeff

roots of the ratios of the B(EL) computed with the complete
LOL.

proton transition density, F (T), to the B(EL) computedP
LOL

with the valence transition density, F   (D).  For the
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LTABLE 9.--Effective charges for electric 2 -pole component
of transition amplitudes for the transitions under consider-

ation in Zr90, Ti50, and Y89.

Nucleus   L e (Micro)  e      e   (Macro) e (Exp)eff eff eff eff

2 1.23 1.79 2.08  2.3+.415,106
Zr        4 1.19 1.65 1.73

90                                              l3.2+.2

6 1.13 1.51 1.52

8 1.08 1.34 1.41

Ti        2 1.19 1.67 1.92 1.81.2107
50

4, 1.15 1.54 1.64

Y89       5 1.18 1.46

definition of B(EL) see Eq. (C.17) or Eq. (D.54).  Eq. (D.23)
has been used to calculate e (Macro). In these calculationseff

L   Lit has been assumed that R /<r >=1.  Actual values of thisC

quantity based on reasonable finite well wave functions for

various orbitals in different nuclei vary from .6-1.5. 15,16,108

The quantity e
is obtained by taking F   (C) to be given

LOL
eff

by -LF (C)+Fn  (C)].
1- LOL LOL
2   P

The quadrupole effective charges given by the micro-

scopic model fall far short of the experimental values. The

macroscopic model gives reasonable agreement with experiment

if the smaller value for the L=2 effective charge in Zr is90

assumed to be correct. The values of e are in bettereff
agreement with e (Macro) and e (Exp) than are e (Micro).eff eff eff
The substitution used in calculating e is strictly valid        eff
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        only.in
the limit of iso-scalar core excitation - a condition

which might be closer to reality than the microscopic calcu-
lations indicate because of the correlations between core

nucleons which are neglected in that picture. Note that the

values for eeff(Macro) are subject to a assumption similar to

the one made in calculating e , i.e. only the overall effecteff
of core polarization is contained in the values of <kv>20 L
extracted from the Kuo-Brown matrix elements and an indepen-

dent assumption as to how this effect is divided up into

neutron and proton components is made in writing down Eq. (D.23).

It is concluded that the proton-neutron imbalance pre-

dicted by the microscopic calculations is not consistent with

experiment. Experiment appears to favor something more like
iso-scalar core excitation. This point will be examined in             I

more detail in a short while. It should also be pointed out
that the inclusion of those proton-proton hole excitations

where the proton is in the valence orbital will not be
tsufficient to remedy this situation. Finally, there is no

information indicating that these calculations are giving a

fair description of the relative variation of e as aeff
function of multipole. Additional experimental y-dacay data

would prove useful in examining this point.

Coupling to Physical Core States

Collective model analysis of the first 2 excitation
+

88                                                               iin Sr which has been observed at 1.84 MeV in the (p,p')

t

See note at end of this chapter.
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10reaction at 18.9 MeV yields the value
82=.13· Several

other low lying 2  states are also observed.  A 4  state is

believed to exist at 4.05 MeV but it has not been resolved

experimentally.  The first 2  (Q=-3.82 MeV) and first

48
4  (Q=-6.33 MeV) levels in Ca   have also been observed in

the (p,p') reaction  at. 25,  30,  35,  and  40  Mev. 109 Values  of

82-.17 and 84-.09 have been extracted from a collective model

analysis of this data. From Eq. (B.17) it follows that
88C =272 MeV for the Sr levels and C2=330 MeV and C4=3516 MeV2

48for the Ca levels. From the experimental data it is esti-
88

mated that first 4  state in Sr   has 84-.04 which gives

(4 104.  These values of (2 are comparable to those which

appear in Table 1 of this chapter.  The values of C4 given

here are roughly an order of magnitude larger than the corres-

ponding values appearing in that table.

The appearance of.phonons in the core nuclei which have

strengths comparable to the effective core phonon associated

with the uncorrelated particle-hole model introduces serious

reservations concerning the use of this model. Kuo has

already made this point. A case where such a core phonon
90

is dominant will be discussed in Section 3 of this chapter.

The general consistency of 82 values extracted from analysis

of the (p,p') reaction and (e,e') experiments indicates that

such phonons have comparable proton and neutron transition

densities; therefore, they will give a better account of the

charge and mass polarization effects in these L=2 transitions

than the particle-hole model does.
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C4 values for the first 4  states in Ca  and48

88
Sr could be indicative that the particle-hole model might be
better for the states of higher multipolarity; however, ·the
results obtained for L=4 transitions do not compare more

favorably with experiment than those for L=2 transitions. No
-                              88strong 5 state has been observed in Sr The results obtained.

for the single particle transition in Y89 compare quite well

with experiment--better than those for Ti and Zr This
.50       90

may suggest that there is something quite different about
negative parity and positive parity transitions; however, the
differences are not so large as to allow an unambiguous con-
clusion. Calculations with exchange treated exactly are
needed to see exactly how big these differences are. Also
the M4 y-transition rate must be calculated as a check on

the L=3 component of the cross section, although the shape
agreement between theory and experiment at 61.4 MeV suggests

that it is given fairly well.

Microscopic Empirical Formula

For a normal parity transition the microscopic empirical
formula of Atkinson and Madsen, Eq. (D.63), provides a rela-

tionship between the enhancement due to core polarization,
E, of a valence transition in the (p,p') reaction and the

nature of the effective charge. For a transition involving
valence protons Eq. (D.63) is conveniently rewritten as

E  =f  +a fP p n
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where  f =e ,  is the observed e ffective charge, which is given           
by the ratio of the total proton transition density to the

valence proton transition density; fn is the ratio of the

neutron core transition density to the valence proton transi-

tion density; and a is the ratio of the strength of the n-p

force to the p-p force. For the K-K force a is about 2.5.

The effective charge gives a measure of the enhancement of

a y-transition rate due to core polarization. It is clear

that the corresponding enhancement factor for the (p,p') reac-

tion should be much larger than the effective charge if fn '
is comparable to e . This is simply a result of the fact thatP

the K-K force gives more weight to neutron excitations than

proton excitations in the (p,p') reaction.

When the valence particles are neutrons Eq. (D.63)

can be written

E   =f   +f/a.nn          p

Now f =en' is the effective charge, which is given by the ratio
of the proton core transition density to the valence neutron

transition density and f is the ratio of the total neutronn
transition density to the valence neutron transition density.

The fact that proton excitations are given 2.5 times less

weight than neutron excitations in the (p,p') reaction is

again clearly displayed in the formula. For fixed f and fP   n
the enhancement factors for the case of valence will be much

smaller than for the case of valence protons. This occurs

because a large weight has been assigned to the valence

transition when the valence particles are neutrons.
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The smaller enhancement factors for neutron valence particles,
as compared to proton valence particles, do not imply smaller

core polarization effects.

The iso-scalar and iso-vector effective charges are
related to f and f

n by:P

el = f ifn for proton valence particles
1

= f 'f for neutron valence particles
1

 }                        „P

An iso-scalar transition corresponds to the condition f =fP  n
which is equivalent to el=0.  Transitions with iso-scalar
core excitation are defined by f  = f +1 which is the sameDP
as e =1. For proton valence particles and fixed e , the

iso-scalar condition implies larger values of e than does
1 P

the condition of iso-scalar core excitation, i.e. a larger

neutron core transition density is implied by the first
condition. For neutron valence particles and fixed en'
the condition of iso-scalar core excitation implies a larger
neutron core transition density and a larger  n than does
the iso-scalar condition. Both of these conditions imply
strong correlations between protons and neutrons when core
polarization is large. Whenever there is a great deal of
core polarization the differences between the conditions will

not be very significant.
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The experimental relationship between E (E ) and e (e )     P n P  n
for the lowest quadrupole transitions in Zr (A), Ti (B),

90       50

58Ni  (C), and Pb207(D) is shown in Fig. 10.  Values of E (£ )
P  n

and 6 (e ) which lie within the boxes drawn in the figureP  n

are consistent with the experimental data. The experimental
90      .50data for Zr and Ti has been discussed previously. The

lower limit On E for these two transitions are the resultsP

of this work, i.e. they have been obtained from the K-K
force with exchange treated approximately: The upper limit

On E for Zr is obtained from the results of Love, Satchler,
90

P

and collaborators for the H-J force with exchange
67,74

treated exactly. The intermediate value of E for Zr90
P

(indicated by the horizontal line through the middle of the

box) are the results for the K-K force, modified to correct

for the deficiencies in the approximate treatment of exchange.
This was also discussed previously. The upper and inter-
mediate values of E for Ti are estimates based on the

50
P

corresponding Zr results.90

Ni and Pb are two other nuclei which have been
58       207

considered in the course of this investigation. They have

not been discussed in this paper. The Pb results have207

117    58been reported elsewhere. Ni has been discussed by
88Zamick and Federman. Both of these nuclei have valence

neutrons. The transition in Ni is from the 0 ground state
58

+                                           207to the 2 state at 1.33 MeV and the transition in Pb is

the 3P -2f (Q=-.570 MeV) neutron-hole transition. The1/2 5/2
58       207effective charges for Ni   and Pb come from Ref. 88 and
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Figure 10.--Experimental relationship between ED(En) and
e (en) for quadrupole transitions in Zr90(A), T150(B), Ni58(C),
aRd Pb207(D).  Results of theoretical calculations are alsoshown.
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Ref. 94, respectively. The experimental (p,p') cross sections
for Pb comes from Ref. 107 while that for Ni comes from

207                                      58

Ref. 5. The lower limits on e are again the results ofn

this work and the upper and intermediate values on e  forn
Pb are based on the results of Ref. 67. The upper and

207

58intermediate values of e for Ni are only estimates.n

Also shown in Fig. 10 are lines corresponding to the

iso-scalar condition and the condition of iso-scalar core

excitation. The solid lines are for valence protons and the

dashed lines are for valence neutrons. Observe that above

the iso-scalar line you have more neutron excitation than

proton excitation in the transition. Below the iso-scalar

line this situation is reversed.

The experimental data is not terribly definitive, but

the boxes definitely tend to stay somewhere in the vicinity

of the iso-scalar and the iso-scalar core lines, i.e. the

data implies that there are strong correlations between pro-

ton and neutron excitations in these transitions. For Zr90

Ti , and Ni the data says that the total proton transition
50        58

density is equal to or greater than the total neutron transi-

tion density. This is consistent with the findings of
118Schaeffer who has studied the (p,p') data and the y-decay

+      -                  88    90data for the first 2 and 3 excitations in Sr
, Zr , and

the Ni isotopes. For Pb the data implies more neutron
207

excitation than proton excitation. It should also be pointed

out that the results shown here are not inconsistent with

proton and neutron excitation in the ratio Z/N which has been
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suggested from comparitive studies of the (a,a') data and
119        90    50        58y-transition rates. For Zr

, Ti , and Ni the Z/N
condition is not too different from the iso-scalar condition
and for Pb it implies quite a bit more neutron excitation

207

than proton excitation.

58The data favors the iso-scalar condition for Ni   and

207the condition of iso-scalar core excitation for Pb For
Zr and Ti it is difficult to distinguish between the two
90       50

conditions from the data.  The lower limits on E  imply that
iso-scalar core excitation is required. The upper li*its

on E favor the iso-scalar condition. In reaching thisP

conclusion the higher value of e for Zr has been con-
90

P

experimental data on quadrupole y-transition rates in Ca
42

and Ti indicates that iso-scalar core excitation is favored
50

in the lf shell. The results presented here are
120

7/2

consistent with this finding, but they do not substantiate it.

In conjunction with Fig. 10, experimental values of
f  and f for these transitions are presented in Table 10.Pn
Two sets of values are given for each transition--one for
the upper limits on E and E and one for the lower limits.Pn
They are labeled E> and e< , respectively.

The results of the particle-hole calculations for

Zr
, Ti

, Ni , and Pb. are also given in Fig. 10 and
90    50    58        207

Table 10. In the figure these results are indicated by the

points A, B, C, and D, respectively. For Zr , Ti , and
90    50
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TABLE 10.--Experimental and theoretical values for the
normalized proton and neutron transition densitigs for quad-
rupole transitions in Zr90, Ti50, Ni59, and Pb20(.

Experiment
Nucleus          E                E              Theory>                        <

ff  ff  ff
p n p n p n

Zr 2.30 2.30 2.30 1.30 1.41 1.34a
90

2.55 2.1lb

Ti 1.80 1.80 1.80 0.80 1.22 1.14a
50

1.81 1.61b

Ni 1.90 1.90 1.90 1.90 1.20 1.4oa
58

Pb 2.13 1.13 2.13 1.13 1.30 0.45a
207

 Results obtained from particle-hole calculation.

b
Results obtained with renormalized force.

Ni the results for the particle-hole model fall very near
58

207the iso-scalar lines. For Pb the particle-hole model

gives a result near the iso-scalar core line.t  In all cases

t
The reader is warned not to attach too much significance

to this particular result.  For Zr90 and Ti50 the particle-
hole model predicts much larger neytron core excitation than
proton core excitation and for Ni50 there is much more proton
core excitation then neutron core excitation, i.e. valence
protons couple more strongly to core neutrons and valence
neutrons couple more strongly to core protons. The small
ratio of proton core excitations to neutron core excitations
for Pb207 is a result of the fact that the same harmonic
oscillator well was used for neutron and proton single particle
orbitals. This is tantamount to assuming there is neutron skin
for which there is no experimental evidence. The proton and
neutron wells probably should be adjusted so that the low lying
proton particle and hole orbitals have radii comparable to the
valence neutron orbitals. This will improve the overlap
between the low lying proton orbitals and the valence neutron
orbitals and a larger contribution from proton core excita-
tions will result.
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the particle-hole model underestimates both the enhancement

factor and the effective charge. From Table 10 it is clear

that the particle-hole model does not do too badly for the

neutron core transition density when the valence particles
are protons, but it tends to underestimate the proton core
transition density by a fairly large factor. For the case

of valence neutrons the model does fairly well for the protoh
core transition density and tends to underestimate the neu-
tron core transition by a substantial factor.  This simply
bears out what was said earlier, i.e. the neutron-proton
imbalance in the core transition densities, which is pre-
dicted by the particle-hole model, is not consistent With
experiment.

It is not too bothersome that the particle-hole calcula-
tions do note produce perfect agreement with the experimental
transition rates. It definitely gives a good qualitative
estimate of the overall effect of core polarization. It has

already been pointed out that it doesn't do a perfect job
for the spectrum, and that the question of fairly strong, low
lying core phonons cannot be ignored. Further, the coupling
between the valence particles and the core is a little too

strong (e.g. see amplitudes in Tables 2, 3 and 5 of this

chapter) to allow one to take first order perturbation theory
too seriously. The results of Kirson and Barret do, in

121

fact, demonstrate that the perturbation series for the

spectrum converges only slowly, if at all.
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It is interesting to follow up on a suggestion due to

Harvey to see if the results of the particle-hole calcula-
122

tion can be improved in a simple way. He points out that

Horie and Arima did not use the "bare" force (the K-K force
57

in this work) in calculating quadrupole moments within the

framework of the particle-hole model. Instead they used a

two-body force which was fit to the experimental spectrum,

i.e. a renormalized force in our language. He argues that

this procedure might give a much better estimate of effec-

tive transition operators than does the first order pertur-

bative calculation using the "bare" force. Just how good

this new estimate is depends on just how well the actual

renormalized force, which is a complicated operator, can

be represented by a two-body force determined from the

spectrum.

A calculation using this approach was made for the

90                                50L=2-8 transitions in Zr and the L=2-6 transitions in Ti

The renormalized force was taken to be of the form

9=V+G
3p-lh

where V denotes the K-K force and G was taken to be
3p-lh

separable, i.e.

* A A

G3P-lh = -kv(r)kv(r')6Tl  BLYL(r).YL(r').

The 0L are given in Table 1 of this chapter. The additional

assumption is made that G only acts in T=1 states.3p-lh
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Spectra typically require large renormalizations of the bare
20,27force only in T=1 states.

The results obtained for the quadrupole transition rates
90       50in Zr and Ti are shown in Fig. 10. They are labeled A'

and B', respectively. The corresponding values of f and fPn
are compared with the experimental values in Table 10.

Table 11 gives a breakdown of the results for all the multi-
poles in Zr and Ti and comparison is made with the results

90       50

of the perturbative calculation. Theoretical enhancement

factors are also compared with the experimental values.

TABLE 11.--Normalized proton and neutron transition densitiesas given by the particle-hole model and particle-hole modelwith renormalized force for L=2-8 transitions in Zr9l and forL=2-6 transitions in Ti50. Theoretical and experimental
enhancement factors are also shown.  For Zr90 the experimentalE, values are from Ref. 67.  The Ti50 6, values are estimates.

Nucleus L p-h Model Renorm. Force Experiment
f     f     &     f     f     €     6,    E<pnppnp

2  1.41 ·1.34 4.35 2.55 2.11 7.83 8.51 5.80
90Zr 4 1.25 1.06 3.56 1.62 1.37 5.05 7.45 4.52

6 1.14 0.84 3.09 1.30 0.95 3.68 6.19 4.52

8 1.08 0.60 2.58 1.16 O.61 2.69 6.30 7.48

2 1.22 1.14 4.24 1.81 1.61 5.84 6.35 4.36

Ti5l   4  1.16  0.92  3.74  1.40  1.11  4.18  6.26  4.32
6 1.07 0.63 2.65 1.18 0.70 2.93   --

--I
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The agreement between theory and experimental for the.
L=2 transitions is quite good. Both the proton and neutron
core transition densities have been increased as compared
to the perturbative results. The proton transition densities

have gone through the largest relative change. Differences

between the perturbative results and the results of the

calculations with the renormalized force decrease with

increasing multipole. The renormalized force gives a fairly
hefty boost to £  for the L=4 transitions and it producesP

a sizeable increase in the polarization charge for all

multipoles. It is difficult to discuss the multipole depen-
dence of E because of the fairly large uncertainties inP

the experimental values, i.e. €, and E< bracket a fairly
large range of values. It would be useful to have (e,e')

data for these transitions as it would provide information
on the multipole dependence of the effective charge. In

any event this procedure would appear to have some merit.
The calculation reported here is quite rough and a more

careful investigation of this approach is planned.
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3.  Single Proton lh -li (Q=-1.61 MeV)9/2 13/2209Transition in Bi

209 208The nucleus Bi has one proton outside a Pb core.

The valence proton is in the lh orbit for the ground9/2
state of this nucleus. The first excited state (Q=-1.609 MeV)

has the valence proton in the li level. Twenty triads13/2
(LSJ) contribute to the transition between these two levels.

The two most important ones are expected to be (112) and

(303). This is similar to the situation for the single
89proton transition in Y which has just been treated. One

might expect these two states to be connected by an M2

y-transition. In exciting the li level in the (p,p')13/2
reaction one might expect to observe a differential cross
section which is composed of (112) and (303) components in

89analogy with Y

Contrary to these expectations, the 1.609 MeV is

observed to decay to the ground state by an E3 Y-transition

with B(E3)=(1.3-2.0)x10 e b. The core nucleus,
-2 2 3 110,111

Pb , has a highly collective 3- state at 2.614 MeV. This
208

phonon is quite stable as a closely spaced septet of states
209are observed in Bi at roughly 2.6 MeV. The septet results

from the coupllng of the lh proton to the 3 phonon of9/2
Pb Another septet, formed by coupling a li

208

13/2 proton

to this same state, is expected at about 4.2 MeV. This is

89to be contrasted with the situation in Y where no strong

5- state is observed in the spectrum of the core nucleus,
88Sr
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208   2     209                              112       
The Pb (He ,d)Bi experiment has been performed

and some (He 3,d) strength is observed in the 13/2  member of

the septet at 2.602 MeV. Using the particle-vibration coupl-

113ing model Mottleson has estimated the mixing of the first

two 13/2+ states in Bi 209 The admixture of  the ·2.602  MeV

state into the 1.609 MeV state is E2=4.8x10-2.  In this

calculation the coupling matrix element was obtained from
208the y-decay of the 3- state of Pb The mixing of the

states accounts for the observed (He3,d) strengths.

209The 1.609 MeV state of Bi has been excited in the

(p,p') reaction at 39.5 MeV and a differential cross section
114 90is'available. Following Kuo's suggestion that the

particle-hole treatment of core polarization may not be

adequate when there is the possibility of contributions from

highly collective phonons of the core (which appears to be

the case for this transition) the cross section is calculated

in two ways: (1) including only 2p-lh components in the wave

functions, and (2) replacing the components with p-h coupled to

angular momentum Jc=3 by components which contain the 3
208core state of Pb. In the latter calculation the macro-

scopic vibrational model is used to describe the core. The

wave functions corresponding to calculation (1) will be

designated Set I while those corresponding to calculations

(2) will be called Set II.

Particle-hole pairs are formed from the shells shown

in Table 12. Harmonic-oscillator wave functions have been

used, and the energy denominators were taken in part from          
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TABLE 12.--Particle and hole orbitals used in microscopic
calculation. The absence of total angular-momentum subscript

indicates that both j=lil/2 orbits are included.

Particles Holes
Protons Neutrons Protons Neutrons

1h             li ld 1f9/2 11/2

2 f            2 g                    2 s            2p

3p            3d                     lf            1g

li            4s                     2p            2d

2 g            1j                     1g            3S

3d 2h 2d 1h

4 s            3 f                     3s            2f7/2
1j                                       .lh              3P15/2 11/2
2h li11/2 13/2

experiment and in part from the Nilsson scheme at zero
115

deformation. The size parameter hw is 6.8 MeV.

Ref. 113 gives <kv>=60 MeV and C3=649 MeV.  Analysis
208 208of the reaction Pb(P,P') Pb gives B -0.13 for this

3

state '

which is the only state with a large value of
77.85,116

B in Pb. The relation B =7 whco /2 C 1 implies
208 1/2.. ,1/2

3           '--  2      3'
C =543 MeV which is smaller than the value from Ref. 113 and3

2
corresponds to an admixture e =5.5x10 -2 of the 2.602-MeV,

123+ state in the 1.609-MeV, 123+ state. The smaller value of
C  is used in this work.
3
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In these calculations, as a matter of convenience, a

pseudo-potential has been used for the projectile-target

interaction. This pseudo-potential is known to give results

consistent with those obtained using the K-K force and

treating antisymmetrization approximately. The 2p-lh compo-

nents of the cross section have been included only in the

S=0 terms in the cross section because it is only in these

components that they add coherently. In using wave function

Set II the components of the wave functions containing the

core phonon contribute only to the (LSJ)=(303) component

of the cross section. The remaining 19 components are the

same in Sets I and II.

Figure 11 shows the total differential cross sections

obtained with wave function Set I and Set II. The (303)

components are also shown for both cases. The differential

cross section (II) gives a good fit to the experimental data.
The (303) (II) component is dominant as forward angles.

The enhancement due to core polarization, of (303) (II) is

about 200. Because of this large enhancement the valence

contribution to (303) (II) is small. Considering only this

component and neglecting the valence contribution, the data
2   -1places an upper limit on E =10 Wave function Set II gives

B (E 3 ) -2 . 4 x10 e b- which lS slightly larger than the experi-
-2 2 3

mental values.

The particle-hole model fails to reproduce the effect
-          208of the 3 phonon of Pb. The enhancement of (303) (I) is
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for both cases.
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about 13 which is an order of magnitude smaller than the

value obtained for (303) (II). This model predicts that

many components make important contributions to the total

differential cross section. In particulaarr, (303) (I) is

comparable in magnitude with (112) which involves the low-

est allowed L and J transfers. As the lowest J transfer

is highly favored in y-transitions, the particle-hole model

13+predicts that the 1.609 MeV,
2 state will decay to the

ground state predominantly by an MB transition which is in

contradiction to experiment.

It is concluded that highly collective core phonons

can play an extremely important part in the core polariza-

tion process. This is another indication that care must

be exercised in applying the uncorrelated particle-hole

model for core polarization.

NOTE added in proof:  A calculation was performed

to estimate the effect of exciting proton particles from

90       50the core into the valence orbitals in Zr and Ti

These excitations were treated the same as proton excita-

tions into orbitals outside the valence space, but ampli-

tudes of configurations with three particles in the same

orbit were multiplied by (n-2)/n (where n=2j+1) to account

for violations of the Pauli principle. Experimentally

observed single particle energy denominators were used

in the calculation. With these excitations included

90
eeff=l.41, 1.26, 1.14, and 1.08 for L=2-8 in Zr and
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50eeff=l.22, 1.16, and 1.07 for L=2-6 in Ti  .  These are not
much different than the results shown in Table 9 of this
chapter. The result for the L=2 transition in Zr shows90

the biggest change. Here quite a large contribution was
obtained from the 2p -2P proton particle-hole pair.1/2 3/2
These changes will not effect the (p,p') cross sections very
much as they are primarily sensitive to the neutron excita-
tions.

Note that the values for e (Macro) are somewhateff
larger than those for e even if the effect of the aboveeff
excitations are included. The assumption of the collective

model is that the charge transition density is Z/A times
the mass transition density. Thus one expects that eI

eff
should be slightly larger than eeff(Macro).  Coupling this

1

·90to the fact that Ref. 15 gives R2/<r2>>1 for Zr   again

suggests that a larger value of <k > than 50 MeV should beV

used in these calculations.



CHAPTER 8

SUMMARY AND CONCLUSIONS

It is felt that the results of this work, which are

admittedly rough, clearly demonstrate the feasibility of using
" realistic interactions" in describing the inelastic scatter-

ing of 15-70 MeV nucleons from nuclei in a microscopic picture.

The use of such interactions requires a fairly detailed

description of the target nuclei and it ·is necessary to
treat antisymmetrization. These two requirements are not

'

objectionable as the former is precisely the motivating

factor for·the microscopic approach while the latter should

yield useful information about the interaction as well as

the nuclear wave functions.

Three interaction models have been considered in this

work and the majority of the calculations which have been

performed provide information only about the strong central

components of these forces. The results obtained are sensi-

tive to the gross features of the force, i.e. strength and
range, and the impulse approximation pseudo-potential and

the K-K force appear to be somewhat better than the Yukawa

effective range force. The first two contain information

about the high momentum components of the free two nucleon

force while the third does not.  In work on the optical

potential, it was shown that the impulse approximation
31,32

216



217

pseudo-potential does not have the correct phase--a property

which is not examined in the inelastic scattering calculations--
and that the K-K force was better than the Yukawa effective

range force.

A convenient approximate treatment of antisymmetriza-

tion has been developed and used in this work. This approxi-

mation has been shown to be qualitatively correct in general

and gives good quantitive results for Yukawa forces of lF

range at incident energies in excess of 40 MeV. For Yukawa

forces of longer range and at lower energies the approxi-
mation is still fair, but it appears to be considerably

poorer for the K-K force. Although the K-K force is favored
theoretically, uncertainties due to this approximation make

it difficult to say that it is better than the Yukawa

effective range force solely on the basis 6f the inelastic

scattering data.

Finally it has been shown that a simple perturbative

treatment of the effects due to core polarization does

quite well in explaining the observed differential cross

sections for the excitation of low lying levels in several

nuclei with one or two protons outside of a closed shell.

Related effects such as the effective charge and the pair-

ing contribution to the ground energy of such nuclei have

also been considered. The models used in this work are

found not to be correct in detail, but the results obtained

are very encouraging and the use of inelastic nucleon-

nucleus scattering as a tool for studying these effects

should prove to be informative.
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APPENDIX A

APPROXIMATE SERIES FOR EXCHANGE COMPONENT
OF D.W.A. TRANSITION AMPLITUDE

Expanding th:(1 ki-221) in Eq. (2.51) in a Taylor series
about X2 keeping only the first two terms.and then trans-
forming back to a coordinate representation gives

Iex=-fx - *(PO)*P(Pl){} 6(301)0rCPO)xC+ (Fl)d3r0ddrl

(A.1)
  =A(1)(A2)-B(A2)(92  +12)

101

(1)where A   (A2) is defined in Eq. (2.57) and

(1)
B(X )- (A.2)

2  dA

0  d(12) x 2=A2.

2In Eq. (A.1) the V operator acts only on the 6-function.
The double integral (A.1) can be reduced to a single integral
in two ways.  One is to transform to an integral over d3rold3ro
and integrate over d3r The other is to transform to an01'

integral over d3rold3rl and again integrate over d3rol.  The
results obtained can be used to write the single integral in
the following symmetric form.

227                     1

-Il.----Ill-Ii 
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, (-)* -

(+)
Iex--Jxb   (rl)0r( l)< tp(rl)Xa  (rl)d3rl

  =A(1)(A )-B(X )(V2+A 2) (A.3)0 sym
+ +

( v 2+ X 2 )

1 2 2
0 sym  2= -[(V +AO) + (92+X2)]

Some algebra, which involves performing the V operations in
2

the integrand of Eq. (A.3), making use of the one body

Schrodinger equations which generate the X's and $'s, and

performing a partial integration over one half of the resulting

term which contains gradient operators, gives the following

result for the exchange integral.

(-)* *- -   (+)Iex--fxb   (-rl)0p(rl)A(X02;rl)0r(rl)Xa  (rl)d3rl

0         -   (+) --8(12)fx -)*(P1)V¢p(rl)'V4r(rl)Xa (rl)d3rl (A.4)

1     2
- 28(AO)fJ(p,r)·3(b,a)d3rl

In Eq. (A.4)

(1)  2.   2 1  2
A(XO;rl)=A   (AO)-[AO--(  +K2)]8(X2)2 Ka  b

(A.5)

1<2=k2-2  U(rl)0             ·

where U(rl) is the optical potential and

* - *

J (p,r) = tr(  l ) V$p (rl ) -¢p (rl ) Vcbr ( rl )

J(b,a)=x + ( l)Vx -)*(rl)-x -  (rl)VXa(Fl)
)*
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The first integral in Eq. (A.4) contains a dependence

on the magnitude of the local momentum of the projectile and
the second integral expresses dependence on the magnitude
of the local momentum of the bound particle. These two

integrals can be arranged to display the dependence on the

momenta of the projectile and bound particle in a symmetric

way; however, the form which is given is more convenient as
it does not explicitly refer to the binding energy and
potential of the bound particle. Both of these integrals

can be easily handled in the local D.W.A.

The third integral in Eq. (A.4) cannot be incorporated

conveniently in the local D.W.A. Contributions to non-normal

transfer come from this term which essentially takes into

account the fact that locally the projectile and bound

particle are moving in different directions. The integral

averages over these directions and the contributions for
normal transfers are expected to be small. In the plane

wave limit it can be shown that the integral vanishes for

normal transfers when 0  and tr are the same.
Neglectihg the last term in Eq. (A.4) it follows that

Le.J -LSJ -LSJ
E   (r )=El  (r )+E2 (ro) (A.6)

LSJwhere El  (rl) is given by Eq. (2.55) or Eq. (2.56) with the
(1) 2 -LSJ

replacement A   (10)+A(X ;r ).  E2  (rl) contains the

contribution from the second integral in Eq. (A.4). For the

case of good i-spin
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ZLSJ
b2  Cr )=

jj./IT<TATMT 'MT -MTAITBMT >< TT ,T -T 11 >
T A B B      ·2      ba      b  '2 T a

.L+ 1- E- AA-AA

xi         ,/Fj LSJTE(j 'jJ;£'EL;   S)S(JAJBJ;TATBT;jj')

x(471")-1/2BST(102) 3:- (A·7)

and when i-spin is ignored

CLSJ
 2  (r )=

T -.L+Z-£' A-A-

.9.421 ,/Fj LSJ-X ( j -j J ; £ 'EL;3.   S ) S (JAJBJ ; j j 'TT ' )JJ

x(41)-1/2BSTT'(AO)T. (A.8)

In these equations

I           T
, - /\

*() C)(r )ef. = (+),(-)(-1)1'() 71" _L )L()un,£Cro)ung o

xW(L  EL'  £'ilL)<I' L
L  (A.9)C) C)  1

(0 0 0,

where tis a 3-j symbol,   L'   =£'+1, L =2+1, and
Cabc\                        58
<a BY/ (t) (t)

(+)(_, = El/2(d  , £+1)   Cun £       1. ) dr 7 -F- ung.r)

(-)           1/2.dUng         r )      =      ( £ +1 )               C.dr    -     6) ung  (r )
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There are four terms in the above sum and A _ is a phase
which is positive for the (+)(+) and (-)(-) terms and
negative for the (-)(+) and (+)(-) terms.

The net effect of including these additional terms in
-LSJ
E   (r ) is to damp out contributions to exchange scattering
which come from the nuclear interior. This is reasonable

as the momenta of the projectile and bound particle are

much larger in this region than they are outside the nucleus.

The exchange scattering here should sample momentum components
I of the interaction much larger than X2- a value determined

by considering the assymptotic conditions.



APPENDIX B

TRANSITION DENSITIES AND FORM FACTORS

1.  Harmonic Oscillator Wave Functions

Throughout this work, the single particle bound state

wave functions used are those for a particle bound in a

harmonic oscillator potential. This is a necessity because

a complex description of the target nuclei is being attempted.

The radial part of these wave functions are given by
60

u  'r)=Ir-1/4[2n+£+1(n-1) ! 11/2a£+3/2rge-a2r2/2 p  (r)   (B.1).
nEC (2n+22-1)!! n£

where the principle quantum number runs from 1 to oo and

n-1
p  (r)= I 2k-n+1(-1)k (2n+2£-1)!! (a2r2)k. (B.2)n£ (n-k-1)!k!(22+2k+1)!!k=0

The size parameter, a, is given in F-1 by

a= [M   l l/2      =          MAN
1/2 1/2

E-*2]
=    . 1 5 6 Miw) (B.3)

where #w is the energy separating the major shells of the

potential expressed in MeV. Eq. (B.1) and Eq.(B.2) are some-

what more convenient than the more commonly encountered rela-

tions which give un£(r) in terms of the associated Laguerre

polynomials. The first few P
n£(r) are

232
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P  (r) = 1l2

22+3 2 2P (r) -a r232      2                                '          (804)

3£P  (r) =  <(2£+3 (2£+5) - (2£+5)a r +a r }
2 2  4 4

 

From Eq. (2.58), Eq. (2.59), Eq. (2.46"' ), and

Eq. (2.47"') it follows that the transition densities can
be written

LSJ T T  LSJ-TF   ' (r) = .9.M
' (   )un-8.(r)u (r) (B.5)JJ                     ng

LSJ T  LSJ   ,
FTT'(r) = j3'MTT'(jj )un'£'(r)u (r) (B.6)n£

where

LSJ T
M   ' (jj') =/FT<TATMTA'MTB-MTAITBMT ><1 TT liT >

8  2 b,Ta-Tb d a

....L+£-£' -1/2 A-A-AA

xS(JAJBJ;TATBT;j J )1 (4A) ,/F j ELSJT

x<LEOO £'0>3(j'jJ;£'£L;21  S) (B.5')

LSJ . .L+£-E. -1/2 AA"AA

MTT,(jj') = /FS(JAJBJ;jj'Tr )1 (47T ) ,/2-  j £LSJ

x<LZOO £'0>3(j,j J;£'EL;   S). (B.6')

Inspection of the above relations leads to the conclusion that

the transition density can always be written in the following

form when harmonic oscillator wave functions are used.



234
N
b

LSJ
T  LSJ N+3rNe-a2r2F   (r) =N' CN  aa

Na =<   -  min (B.7)

Nb =(£+£'+2n+2n'-4) max

In writing this equation reference to T or TT' has been

dropped for convenience.  Na or Nb is determined by the contri-

buting.ungun'£' which yield the minimum or maximum values, res-

pectively, of the bracketed quantities.  Note also that the

transition density is an even or odd function of r as the

parity change in the transition is plus or minus, i.e. only

even or odd values of N are included in summing from 'Na to
N
bo

2.  Macroscopic Vibrational Model

Considerable success has attended the use of the macro-

scopic vibrational model in describing inelastic scattering.

There are numerous references to this approach·in the liter-

ature - Ref. 61 and 62 are but two of these. As there must

be a rough correspondence between the microscopic picture and

this macroscopic picture it is useful to review this model.

A modification of this model is used in the treatment of core

polarization which is discussed in Chapter 7 and Appendix D.
The following discussion is restricted to even target nuclei

which have ground state spin equal to zero.
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In this model the nucleus is likened to a quantized
drop of an incompressible, non-viscous fluid. The primary

excitations of this system are small surface oscillations
(phonons) about spherical equilibrium. The surface of the

drop is given by

R(0,0) = R {1+ Ia  Y* (6,0)-(4y)-1 Ila  12}
0   LM LM LM LM' LM' (B.·8)

which conserves volume to second order in a the deformationLM'
parameter. The Hamiltonian for the system is

H=
 M  DLITI.LMI 2  +   CL|

aLM'2} (B.9)

where DL is the mass parameter for excitations of angular

momentum L and parity (-1)L, CL is the corresponding stiff-
1-less parameter, and 1 is the momentum conjugate to aLM LM

1 +

In terms of the operators which create and annihilate phonons,

CLM and c the Hamiltonian is writtenLM'

H= I Aw (c c +-) (B.10)
+1

LM L  LMLM 2

1/2
where wL = (CL/DL) is the frequency of the phonon

designated by L.

+
The c and c obey boson commutation relations.LM LM

If the hydrodynamic description of the system is adhered to

strictly,  relations for DL and CL are easily obtained.

In practice it is necessary to treat them as free parameters.
+'1'he 7r and c are related as followsLM' aLM' CLM' LM
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EW
L.1/2 L+M

aLM    =    [1] ( Fr)           {  C M+ ( -1)           cL   -M                                                                                      
              

L

0C
w   = -i[i]-1(-L)1/2{c  -(-1)L+Mc+   }               (B.11)LM 2(D

' LM L,-ML

c+  = [i]-1(CL 1/2,_ L  +
(1)

LM                              2,riwL            {ULM-i.CL   .IrLM }

where [i] is 1 for L even and i for L odd. Equations (B.11)

are subject to the conditions that the phonon states transform

under rotations and time reversal in the same manner as the
m

single particle wave functions $£ (r) which were defined in

Chapter 2 and that R(0,$) has appropriate matrix elements

in such a representation. Note that these equations are
63

consistent with the classical reality condition a+  = (-1)Mx
LM

a
L,-M.

It is then assumed that the interaction between a

projectile and this liquid drop is only a function of the

distance between the projectile and the surface of the drop,

i.e. (r-R). Since only small vibrations are being considered

it is reasonable to make a Taylor series expansion of the

interaction about R=R . To first order in a this expansion0                       LM

is

*

U(r-R) = U(r-R ) - k(r)I       (r)                  (B.12)LMaLMYLM

where k(r) = R dU(r-R )/dr.  U(r-R ) is identified as the

optical potential which is spherical and describes the elastic

scattering. Assuming the usual Woods-Saxon form this potential

is written
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U=-V(ex+1)-1-iW(ex,+1)-1+4iWD  77 (ex,/+1)-1

l d   X+
(4/mT[ C)2Vsr -(e sO+1)-1L.3 (B.13)dr

where x =
(r-r Al/3 )/a,x'= (r-r Al/3)/a , etc. and to which

is added the Coulomb potential of a uniformly charged sphere

of radius r A The potential contains a real volume term,
1/3

C

volume and surface imaginary terms, and a real volume spin-

orbit term. The diffuseness parameters are a, a, . . . .
.

and the radii are identified as RO = r        0 0
.01/3  R' =r'Al/3

Neglecting the Coulomb and spin orbit terms in the potential

leads to the following expression for k(r)

''(1-e' )k(r)=(VRO/a)  e  2&1<WRj/a,)  e 2+41(WDR8'/a'*)e - 1--(B.14)(1+e) (1+e') (1+e'-)-'

where e=exp(r-R /a),....  Before completing this discussion
by defining the form factor for inelastic scattering
*0 LJ
F · (r), it should be noted that the prescription (B.12) for

treating the deformation is not the only one which appears
61.64in the literature ' , although it is the one used most

frequently. Futher Eq.  (B.12 ) only provides for the

treatment of (L,O,L) triads for normal parity transitions.

In this model the form factor for the excitation of

a single phonon is

 LOL(r) = -iL'/F k(r)<LI |aLI |O> (B.15)
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Using Eq. (B.11) gives

I.LOL . al(r) = -iL[i]/Fk(r)(FC·L)1/2, (B.16)

thus inelastic scattering experiments provide a measure of

the stiffness parameter. It is common practice to tabulate

.the root mean square deformation in the ground state due
to zero point oscillations

4WBL = <O Ilty  1210> = (2L+1)(L)MI-LM' 2C (B.17)
L

which gives

-LOL                   BF            (r)     =    -i I' [i ] ,/Fk (r)    ·rL . (B.18)
L

In this discussion only the matter distribution in
the drop has been considered. This fact and the restric-

tion to lowest order is why the description applies only to
normal parity transitions. In addition the liquid drop

described here can only have excitations of quadrupole order
or higher. By introducing other variables, i.e. compressi-·

bility, spin, and charge, the model can be generalized to

encompass a larger class of vibrations. In Appendix C
63,65

electromagnetic transitions are considered and the model
is extended with the assumption of a uniform distribution

of charge throughout the volume of the drop.
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3.  Reduced Matrix Elements and Transition Densitiesfor Various Transitions

In order to caiculate the transition densities it                  
is necessary to evaluate the reduced matrix elements of
the one body operators which appear in Eq. (2.58') and

Eq. (2.59'). In the occupation number representation a

one body operator is written

O =.     qi  -   B<a < 018,a aB (B.19)

+
where a and a are the fermion creation and annihilation

operators which were introduced in Chapter 2. They satisfy
anticommutation relations. When using i-spin the operator

of interest is

N N

0      = i=l  -  2   T   (i)TT(i) = iflo   'T(i) (B.20)
LSJ,T I  6(r-ri) LSJ 9  LSJ

r

and when not using i-spin it is

r' 6(r-r.)            'LSJ   L
ITT  = i 21  TLSJ(i) =   0LSJ(i). (B.21)

r

In the form of Eq. (B.19) these become

LSJ ZY0         =   I     <j -m-T- LSJ,T jmT>a:-
jmT J m'T'ajmT (B.20')
....
J m T

0

LSJ I   .. ., LSJ0, = <J  m  10 Ijm>aj ,m'T'ajmT (B.21')TT   jm
j'm'
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In the discussion which follows R will be used for
LSJ

,i
<B  O ||A> and a single subscript will be used on

LSJ

+
a  and a to represent the quantum numbers jmT.

Single·Particle Transition

This is a trivial case and there is no need to

introduce i-spin. The initial and final states are

|A>=a2IC> and IB>=al C>, respectively, where |C> denotes
a filled shell state. The following result is easily

obtained.

LSJ . t, LSJR, = <Jl||o Ilj2
>6 (B.22)TT TT 'T271

The 6  -      is used with Table 2 of Chapter 2 to determine
TT ,T2Tl

the force component which is needed. For example, consider,

a single neutron transition in the (p,p') reaction. Then

Tl=T2=-  and the transition goes through the proton-neutron

force.  For the (p,n) reaction T must equal -T'= -  in

order for the transition to be allowed; therefore, the single

particle must initially be a neutron and a single proton

will be left in the final state.

Single Hole Transition               |

For this case the initial and final states are
 2-m2  1-mi

IA>=(-1) a2|C> and  B>=(-1) alIC>, respectively.

The purpose of the phase was mentioned previously.  It

follows immediately that
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LSJ J+jl-j2+10 - 7
R  , = (-1)TT                 j 2j 1-1<j 2 1 ' 0LSJ   1 j, >6 - .  (B,.23)

1  TT ,TlT2

Using the conjugation relation

LSJ S+J+j2-jl: : -1 LSJ
<j21lb " 1>=(-1) JlJ2 <jl'10 Ilj2> (B.24)

gives for Eq. (B.23)

LSJ
RTT- = -(-1)3<jllloLSJ  j2>6  ,     .              (B.25)

TT ,TlT2

This relation shows that a neutron single hole transition

in the (p,p') reaction is the same as .a neutron single
S

particle transition except for the phase factor (-1)  which

may have some ef'feet when interferences is important. In

the (p,n) reaction the initial state must be a proton hole

and the final state is a neutron hole. This indicates the

significance of the interchange of Tl and T2 in Eq. (B.25)

as compared to the ordering in Eq. (B.23).

Transitions to Particle-Hole States

The simplest excitations of closed shell nuclei are

particle-hole pairs. In light nuclei witn equal neutron-

proton number i-spin is usually assumed to be a good

quantum number and a particle-hole state is written

JT
|B>= JBMBTBMT >=mI  C.B B<j j m -m |J M ><liTB  p92 Jp h  P h P.h  B 8 2 2 p-ThITBMT 

TPTh
JpJh
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x(-1) h h
hapah IC>. (B.26)

j -m +1/2-T

States of this form are obtained by diagonalizing a shell

model Hamiltonian in the space of particle-hole pairs.

This proc dure is referred to as the Tamm-Dancoff Approxi-

mation (T.D.A.) and it assumes that the ground state of

such a nucleus is a filled shell |A> =|C>.1,2  The reduced
matrix element describing transitions from the ground

state to the states (B.26) is

RLSJ,T=JIjllc B :BJF j.p['1 B' B]-1<jp 'loLSJ,T    j 1> (B.27)h 2 ·

Since the ground state is a filled shell.the only allowed

values of JT are JBTB
e

For heavier nuclei with unequal neutron-proton

number i-spin is usually ignored and particle-hole states

of the following form are obtained

J T j-m j|B>= JBMB>=j Ij C.B. <j j m -mh'JBMB>(-1) h hara IC>  (B.28)P h P hJ J P h P P h
mm
Ph
T

where T  distinguishes between proton-proton holes and

neutron-neutron holes. In this case the reduced matrix

elements

RLSJ=.    CJBT 0
-

t'OLSJTr   J  J     j  jhjpJB]-<jpl I ||jh> (B.29)
P h   P
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are used. The subscript on R has T=T since the initial
*

and final states considered here are states of the same

nucleus. Note that the form factor has explicit proton

and neutron components when i-spin is not used.

Random Phase Approximation Vectors

The R.P.A. goes a step beyond the T.D.A. in treating
closed-shell nuclei. It takes into account in an approxi-
mate way that the ground state may have 2p-2h, 4p-4h, etc.

and that the excited states may have 3p-3h, 5p-5h, etc.

components in addition to lp-lh components. The excitations1,2

in the ground state are re ferred to as gound state correla-
tions (G.S.C.) The Inclusion of these higher excitations

has an important e ffect on transition rates as they allow

the excited state to be reached by destroying a particle-

hole pair as well as by creating one.

Disregarding i-spin an R.P.A. state vector is given

by

•1

|B>=IJBMB>=Q  M IC>BB
(B.30)

J T J T
Q .M =i   {X-rBi AJ+ M (jpjhT)-YjBj (-1)JB-MBAJ _  (jpjhT)3
B B 'Pvh  Upuh  B B p h B  B

T

where JC> is the generalized ground state and

 h-mh +A    (jnjhz)=mIm <j j m
-mh'JBMB>(-1) a  ai . (B.31).J   M

B B v P h
pnp Pn
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The second term in Eq. (B.30) represents the G.S.C. The

necessary reduced matrix elements are obtained by following
the procedure

<BIOIA>=<CIQ01c> =<Cl[Q,0]1(>1<Cl[Q,0]IC> (B.32)

where the fact QIC>=0 is used in introducing the commu-
tator in the third step. It is easy to show that Eq. (B.29)

applies with the condition

J T J T J TB       B        S  BC. . = X. . +(-1) Y. . . (B.33)3 3,    3 3/
Jp JhP n P n

Correspondingly for good i-spin Eq. (B.27) prevails with

J T J T J TB B B B S+TC.      X.    + (-1)   Y.-.B . (B.34)J j, J j,_ Jp JhP n p n

X and Y are generally in phase and they add in non-spin
flip amplitudes (for iso-scalar amplitudes.if Eq. (B.34) is

being consi.dered) and the enhancement due to G.S.C. is .
apparent if it is noted that the vectors (B.30) satisfy

the normalization condition I(X2_Y2)=1 instead of IC2=l.

Like the macroscopic vibrational model, the T.D.A. and R.P.A.

are schemes directed towards the explanation of low lying

vibrational states in nuclei.  The states (B.26), (B.28),
and (B.30) may be called phonons.

Transitions Between States of j Configurations
2

Forgetting about i-spin the wave function for two
nucleons of the same type in the j 2 configuration is
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|A>=IJAMAT>=  i
I ++

 mlm2
<jjmlm2'JAMA>alaZIC> (B.35)

where T again di f fe rentiates between protons and neutrons.

This wave function is normalized and vanishes unless JA
is even. For a transition between two states of this type

LSJ . J+1 -- CRTT =(-1)   2jJA j  j  4 <j'loLS.I1 j,
(B.36)EB JA 9

48where .{} is a 6-j symbol«  and T=T' because of the restric-
tion to like nucleons. The single particle reduced

matrix element vanishes unless L is even and when J=L and

S=l; therefore transitions starting at the state JA=0 do

not proceed by spin-flip.

Transitions from lp to 2p-lh States

In treating core polarization as presented in Chapter 7

and Appendix D transitions from a one particle to a two

particle-one hole state are encountered. A two particle-
one hole state is written

  B>= | J 1 (   pJ h ) J c ; JBME > =- I-  <j - jhmp-mh 1 JcMc > <j lJ cmlMc | JEMB>1.'pu'h 1.1
m M1c

jh-mh + +
X(-1) alapahIC> (B.37)

where i-spin is not being used. The above wave function is

not normalized when p=1. This is not important at the

present time and will be discussed in Appendix D. The
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reduced matrix element for the transition from a single-

particle state, IA>=a21(>, to the state (B.37) is

LSJR  ,=6.        6 6
A A

LSJ                            ITT   JlT/'j2T2 J,Jc TZ 'ThrpjPJ-1<jp'10   11jh>-

{6. jn+12*3+30 (-1)
1 (A A

JpTp,j2T2 TT 'Thrl J j  0 j J)
cl)2 h c,(

P,J851

x<jl||oLSJ  jh>.l (B.38)

An allowed transition is subject to the condition that

j2 T2=j1 T1 and/or jpTp as expected.  When jltl=j2 T24jptp only
the first term in Eq. (B. 38) contributes and the reduced

matrix element is the same as that for exciting a particle-

hole pair.  This is seen by comparing with Eq. (B.29) and
noting thatz =T' in Eq. (B.38) when

T =Th
which is the

condition for a transition between states in the same nucleus.
The second term in Eq. (B.38) differs from the first by

recoupling factors which appear simply because the role

of the active and spectator particle have been interchanged.

Transitions from 2p to 3P-lh States

A general expression for a transition from a 2p state

to a 3P-lh state is somewhat cumbersome to write down and
tedious to derive. Further fractional percentage must be

considered when the three particles are alike and in the

same orbit.  For the core polarization discussion in Appendix

D only a particular result is needed and this is all that
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will be given here. This result is for the case when the 2p

state is that of two like nucleons in a j configuration.
2

Eq. (B.35) gives the wave function for such a state. The

3p-lh states which are connected to the states (B.35) by a

one body operator can only have one particle in an orbit
other than j. These particular 3P-lh states can be written

IB>=1[(jj)Jv'(jpyh)Jc]JBMB>

=   r- In rn,<, j mlm2 1 JvMv> < j p j hmp-m  1 J cMc > <JvJ cMvMc I JBMB>

mp mh
MM
VC

x(-1) p-mh-+-+ +
 ldjapah IC> (B.39)

which is normalized as long as j T tj T which is to be assumed.PP
This state vanishes unless J is even.V

The necessary reduced matrix element is

T /1 T /\Al

RLO:=6 6 6, j J-1<j   0 Iljh> (B.40)
,, LSJ,

TT   Jv'JA J,Jc TT ,ThTP P     P

where again it is seen that the result is the same as for

exciting a particle-hole pair with the 2p state playing the

role of a spectator.  Also T=T' when T =Th which hols for
transition between states of the same nucleus.

4.  Note on Phases

In all of the formulas presented in this paper the

phases of the bound state wave functions have been fixed by

/
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demanding that they be invariant under time reversal and           
63rotation of 180° about the y-axis. When iso-spin is

involved an extended time reversal operation is defined
and a rotation of 180° about the y-axis in iso-space

must be included. Fixing the phases in this way is one,
but not the onlY way, of guaranteeing the reality of

the bound state matrix elements of many operators. This

phase convention explains the appearance for the i in the
£

definition of the single particle bound state wave functions

given in Chapter 2. Further it plays a role in the conjuga-

tion property of a matrix, e.g. Eq. (B.24).
.£Many workers do not use the 1 in their single particle

wave functions which is also a satisfactory phase convention.
Since the wave functions of various people have been used in
obtaining the results of this paper the phase convention of

the formulds was not strictly adhered to in the calculations.

Of course none of the physical results have been effected.

It is generally quite easy to convert from one phase con=
vention to the other. This note serves simply as a reminder

that some of the tabulated results which appear will not be

consistent with the formulas as far as phases are concerned.

5.  Multipole Coefficients

For Yukawa interactions and Gaussian interactions

closed forms exist for the multipole coefficients. These

coefficients are defined in Eq. (2.43) and Eq. (2.44) and

appear as tSTL(r ;rl) and tSTT-L(r ;rl) in Eq. (2.46),

Eq. (2.47), and later equations.  For the Yukawa interaction
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-mr
1'(r )=Ve /mr

01
01 01

(B.41)

fL (ro ; rl ) =4 TriVj L( imr ) h-C +   ( imr, )< L

and for the Gaussian interaction

f(r  )=Ve-m2rol01
(B.42)

fL(r ;rl)=4AviLj L(-2im2r r-)e-m2(rO+rl)
01

Ib Eq. (B.41) h +) denotes the spherical Hankel function

and r< and r, denote the lesser and the greater of r  and rl.
A general force requires that Eq. (2.44) be handled

numerically. A reasonably fast routine has been written for
the calculation of form factors for the case of an interaction

of general radial form.



APPENDIX C

INELASTIC ELECTRON-NUCLEUS SCATTERING

The electromagnetic interaction between an electron

and a nucleus can be decomposed into longitudinal Coulomb,

transverse electric, and transverse magnetic multipoles.

The excitation of collective states in normal parity transi-

tions in the (e,e') reaction proceeds predominately through
the Coulomb multipoles. Restricting consideration to these
cases the differential cross section, in Born Approximation,
is written55,56

c(e) = GM(0)IF(q(e))12 (C.1)

where GM(0) is the Mott cross section, i.e.

GM(e) = 4(Ze2/kc)2(k2/qi'(e))cos2(0/2), (C.2)

0 is the scattering angle, q(e) is the magnitude of the

momentum transfer q=ki-kf' and k. andkf are the initial and1
final momentum of the electron. The Mott cross section

describes the elastic scattering of a high energy electron
\

by a point charge. Most of the kinematics is contained in
this term. F(q(e)) is the inelastic electron scattering form
factor which contains all of the nuclear structure information.

It is defined by

250

1

1              4;
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|D'(q) 2 = 5-2 I  13- r.iq.r<B p(P)|A>d3r'2.A  M  M  'Ze J C (C.3)
BA

Eq. (C.3) contains a nuclear matrix element of the

charge density operator which is written as follows
N

P( ) =   i lr (i)6(r- i) (c.4)
T

.

p(P) = e  6(P-Pi) (c.5)

when i-spin is or is not used, respectively. The sum on i

in Eq. (C.5) runs only over target protons while * ITT serves
2 T O

as a proton counter when i-spin is used. A little algebra

leads to the following expressions for Eq. (C.3) for the

cases defined in Eq. (C.4) and Eq. (C.5).

2 J + 1 r CO

|F(q) 2 = 2JB+1
11

(A/2)1/2
Z-1  JL(qr)3LOL(r)r2dr 12 (C.4')

A

&LOL(r) = /FLOL,T(r)
T PP

2J +1 r
|F(q) 2 =   B ) . 1/2 -1,=_ LOL,   2   2

2J +1 L|(2A)   Z  JojL(qr)Fp  (r)r dr| (C.5')
A

In these equations FLOL,T(r) and FLOL(r) are the transitionPP

densities defined in Eq. (2.58') and Eq. (2.59'), respectively.

The transition density defined in Eq. (2.58') is reaction

dependent because of the Clebsch-Gordan coefficient which

contains the i-spin projection quantum numbers of the
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LOL.Tprojectile. The subscript pp on F ' (r) in Eq. (C.4')

serves to specify the transition density for the (p,p')

reaction, i.e. T =T. = .  In Eq. (C.5') the subscript p ona  D
LOL ,1F   (r) defines the proton transition density, T=T =-.

2

It should be pointed out that for the transitions

under consideration only the lowest allowed L-transfer

will be important. For transitions where more than one

L-transfer is likely to be important the treatment will

usually have to include the transverse multipoles as well

as the longitudinal ones. In such cases the relationship

between the (e,e') and (p,p') reaction is not as direct as

that seen by comparing Eq. (C. 4') and Eq. (C.5') with

Eq. (2.58") and Eq. (2.59"). For this case the inelastic

electron scattering form factor is related to the Bessel

transform of the proton transition density while the inelastic

nucleon scattering form factor is obtained by transforming

the proton and neutron transition densities with the

appropriate multipole coefficient of the two-body inter-

action.

In practice it is necessary to include two corrections

in Eq. (C.4') and Eq. (C.5'). This is accomplished by
2         55multiplying these relations by f (q) where

f(q) = exp[-q2(a2-1/a2AY/4]. (C.6)

This serves to correct for the finite size of the proton

(first term) and for center of mass motion (second term)



       which
is necessary because the shell model wave functions
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are referred to the center of the oscillator well. The
2

parameter a fixes the size of the proton distributionP

which has been taken to be Gaussian, a is the harmonic

oscillator constant, and A is the target mass. In the
calculations of this work a2=.43F2 is used.  In principle

center of mass corrections should be included in the

(p,p-) calculations also. This is difficult because the

D.W.A. is being used and this small correction is ignored
as a matter of convenience.

A closed expression for the inelastic electron

scattering form factor can be obtained when harmonic
oscillator wave functions are used by inserting Eq. (B.7)

into Eq. (C.4') or Eq. (C.5') and using the following

integration formula

2 2 2    2
  e-a r Jv(qr·)rV-ldr=P[ (P+v)](q/2a)v[2aPP(1+9]-le-q /4a

(C.7)
xF( (v-U)+llv+llq2/402)

where r() denotes the r-function, F(|1) is the confluent

hypergeometric function, and J is the ordinary Bessel
V

function. The confl·uent hypergeometric function is defined

by

F(Alplz) =  I  (A)nzn

n=0 (P)nn!

Ao=l;An=A(A+1)...(A+n-1) n21 (C.8)

PO=lipn=0(P+1)...(P+n-1) n23
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and is a finite polynomial when A is an integer less than        

or equal to zero. The spherical Bessel function and

orginary Bessel function are related by

i    A         -r

 L(qr) = 12qr JL+1/2(qr). (C.9)

For a definite value of L it can be shown that

2J +1   2
|F(q) 2=n2JB+1   -12(3)2L   x    [(2L+1)!!]-2f2(q)exp(-q2/2a2)

2 Z  U

N                                          (C.10)
rb LOL

x{  CN  (L+N+1)!12-(L+N+2)/2F( (L-NOIL+3/2|q2/402)32
a

where  n=1/4 when i-spin is being used and n=1 when it is

not used.  The correction factor f2(q) is defined in Eq.

(C.6).

The macroscopic vibrational model might also be

applied to inelastic electron scattering. The treatment

is the same as that for inelastic nucleon scattering

which was outlined in Section 2 of Appendix B, but deforma-

tion of the charge density is considered in place of the

deformation of the potential for nucleon scattering. The

charge density expanded to first order in the a isLM

p(r-R)=p(r-RO)-R (C.11)
dp(r-Ro) I     *

0 dr LMaLMYLM

where p(r-R ) is the spherical ground state charge distri-
bution. Assuming a Woods-Saxon form
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r-R
p(r-RO) = pO[1+expC a 0)1-1 (C.12)   c.

and p  is fixed by the condition fpd3r=Ze.  In this model

the inelastic electron scattering form factor for the

excitation of a single phonon of order L is
2

'F(q)14 = 2| - L(qr)h(r)r2dr 12
9 47T BL

(Ze)

(C.13)
dp(r-RO)h(r) = R0  dr

A normal parity y-transition involving a collective

state will proceed predominately through a single trans-
verse electric multipole. The long wave-length approxi-
nation is valid for y-transitions and in this particular

instance the inverse electromagnetic lifetime is given

by
56

2
w =8Ace (L+1) 2 L+1
y    c           2 k    B(EL)

L[(2 L+1)!!]

T  .1,  L
(C.14)

B(EL)=Mk lejr YLM(r)<B|p(r)|A>d3rl2
B

where L gives the multipolarity of the radiation, k is its

wavenumber, and B(EL) is the reduced transition probability.

Note that the latter quantity is directional in that

2J +1

B(EL;JA+JB) = 2J +1 8(EL;JB+JA)' (C.15)
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From Eq. (C.4) and Eq. (C.5) it follows that                      

2J +1B  1 ,- L+2 LOL
B(EL) = 2JA+1 Ell r  F

(r)dr12 (c.16)

2J +1
B      1 , roo  L+2  LOL            2

B(EL) - 2JA+1 2'JIr   Fp (r)dr| (C.17)

for the case when i-spin is and is not used. For the

excitation of a single phonon in the macroscopic vibra-

tional picture it follows that

B(EL;0-•L) = (· L)21.fIr
L+2

h(r)dr 12 (C.18)

which reduces to

B(EL;0+L) = (3 ZRLB )2 (C.19)47T 0 L

for the uniform charge distribution. These relations show

that electric y-transitions provide information about the

proton transition density, however, this information is
not as valuable as that obtained in inelastic electron

scattering experiments since the integrals in Eq. (C.16)

Eq. (C.17) are most sensitive to the tail of the density

whereas the Bessel transf.orm of the transition density

samples different regions of the density as q is varied.
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APPENDIX D

CORE POLARIZATION

1.  Introduction

In the opening paragraphs of Chapter 7, several

approaches were mentioned for estimating the effect of core

polarization on the properties of the low lying states of

nuclei with a few nucleons outside of a closed shell.

There is one essential point in all of these methods--

the basic configurations needed to describe the low

lying states of these nuclei are not those of the simple

shell model |A ,' which consist of valence nucleons dis-
tributed about a filled shell, but the configurations

given by first order perturbation theory

 An,='An,+  (F  -F )-1<CnIV- An,ICn, (D.1)-A       -- Cn           n          n

which contain admixtures of core excited states, |C ,.  In

Eq. (D.1) EA  and EC  are the unperturbed energies of the
n n

states  An> and ICn,' respectively, and V' is the inter-

action coupling the ·valence nucleons to the core.

In general, when there are more than one valence

nucleons, the complete wave function for a particular state

257
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in the nucleus is given by a linear combination of the

configurations (D.1), i.e.
N

1
A>=  I AA,IA > (D.2)n=l n' n

where the,4 are obtained by diagonalizing an effective
A
n

Hamiltonian for the nucleus in the basis {IAn,in=l, N}.

Matrix elements of the effective two-body interaction

between valence nucleons are defined by

<Anll, ff'An',=<An V An ,+  E 1<AnIV-Icn,<CnIV''An,> (D,3)n n

The first term on the right in Eq. (D.3) is the usual shell

model matrix  element,where V is the two-body force between
valence nucleons, and the second term contains the effect of
the coupling of the valence nucleons to the core. The latter

term is similar, but not equivalent, to the energy correc-

tion dictated by second order perturbation theory.  EC  is
n

an energy characteristic of the core excitation in the

state IC ,.  It  can only be approximately fixed in a state

independent manner.

No attempt has been made at being complete in writing

down these formulas as they are discussed in detail in the

references cited in Chapter 7. In the language of Kuo

and Brown /1/1 is the renormalized G-matrix and there is'  eff

no distinction between V and V' which is identified as the

"  b are"    G-mat ri x. In applying Eq. (D.3) to systems with

two valence nucleons Kuo and Brown use an average energy
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denominator for EC =E where E=-20w for positive parityn

states and -hw for negative parity states.

Eq. (D.1) and Eq. (D.3) can be written somewhat more

compactly as

 An,=[1+(EA -HO)-1PV']IAn, (D.1')
n

< An | 4 f f ' An, = < An   { V+ V -2V   } 1 An ,, (D..3')
E

where H  is the unperturbed Hamiltonian and

P= I Ic ><c I , (D.4)6           n          nn

Matrix elements of one body operators between·states of

the form (D.1') are given by

-       -

<Bn T An,=<Bn|{T+T(EA _HO)-1PV'+V'P(EB -HO)-lT}|An,. (D.5)n n

The first term in Equ (D.5) is simply the direct action of T

on the valence nucleons while the last two terms account for

the possibility of the transition being affected through the

intermediary of the core. This is analagous to Eq. (D.3)

where the shell model matrix element contains the effect of

the valence nucleons interacting through their mutual force

abd the second term allows them to interact through the

core.

The necessary formulae for the specific models used

in this work will now be developed. The macroscopic treat-
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ment of core polarization will be considered first as the

basic results are displayed in a somewhat more revealing

form than they are in the microscopic treatment.

'

2.  Macroscopic Treatment of Core Polarization

When the macroscopic vibrational model is used to

describe the core V' is.given by

* 6
V'=- kv(ri) MaLMYLM(ri) (D.6)

where the sum on i runs over the valence nucleons, kv(ri)=
-ROdU'(ri-RO)/dri, and U'(ri-RO) is the shell model potential
seen by the ith valence nucleon. The non-spherical component

of the interaction of a projectile with such a system,
Eq. (B.12), has the same form except the optical potential
appears in place of the shell model potential. The one
body operator appearing in Eq. (D.5) has two components,

T=T +T (D.7)V C

where T is the valence component and T is the coreV                                                                                                        C

component.  For inelastic proton-nucleus scattering Tv is
the force between the valence nucleons and the proton

projectiles and T  is the second term in Eq. (B.12).  Iso-C

spin is not considered in the treatment and the force in

T  is taken to include the exchange interaction. ForV

normal parity electromagnetic transitions Tv is the
density operator of Eq. (C.5) with the sum on i running

over valence protons and T  is the second term in Eq. (C.11).C
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Introducing explicit reference to the core, the
states IAn> and |Bn> in Eq. (D.5) are written IAnO> and
BnO,, respectively, and the projection operator is

p= I Ic L·JM ><C L JM I=I
'CnLM><CnLM| (D.8)L C'n'  J n' J' LMn

CJM                                                     n3

where C now re fers only to the valence configurationn

and LM designates a one phonon state. The first form of
P on the right in Eq. (D.8) contains states with good

total angular momentum while in the second form the
uncoupled representation is used. Also note that H takes

0
the form

HO= U'(ri-RO)+Hc (D.9)               1

where H . the core Hamiltonian, is defined in Eq. (B.10).C'

The probability amplitude for the component |CnL;JMJ> in                  
1                             1the wave function (D.1') is (EA -EC -FlwL) times                        nn   IA

3  -3   3
C A C kiw 1/2                          1n   n   n.  L<CnL;JIV'|An,=6 [i](-1) --- (20)  <kv>JJ

A                    J       Ln                   An

x<Cn||YLI'An,' (D.1")

A little algebra gives the following result for Eq. (D.5)
-                                -1< nIT|An,=<BnIT-IA >+I {26wL[Q2-('fiwI,)2] Griw]5/2CL)v  n  LM

xf(r)[i  YTM(r)]<Bn  kv(ri)iLYLM(rt)'An>} (D,10)1/1·1



262

where Q=EA -EB  and f(r) is either k(r) (Eq. B.12) or
n n

h(r)(Eq. C.11). This is the same as the result of Love and
15Satchler. Further it is easy to show that the second term

on the right in Eq. (D3) becomes

<An'V-  V''An,= ME-1(ZWL/2CL)<An| kv(ri)i YLM( i) |Cn>E
Cn

L*  -
x<Cn| kv(ri)i- YLM(ri)'An'  (D.11)

where it must be remembers that the states  Cn> are

simply shell model states. Using closure Eq. (D.11) becomes

<An'V- V*IAn ,=
(D.12)

T-1 1 - * A
 ME-      GAWL/2CL ) <An  |  i j kv ( r i  )kv ( r'j  ) YL vI (ri  ) YLM ( rj  )  |An,>

where the self energy terms i=j have been excluded as

their effect is assumed to be incorporated into the shell

model potential.

Eq. (D.10) and Eq. (D.12) are the essential relations

for the macroscopic treatment of core polarization. Note

that the collective model Hamiltonian has only one single

phonon state for each value of LM. As was pointed out in

Section 1 of Chapter 7, this does not have any physical

significance with respect to the actual core nucleus. The

model is used here as a vehicle for parameterizing the

core polarization e f·fects.   In some calculations AfwL and
CL will characterize a physical core state and in others
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they define an "effective" core phonon. In discussing the

macroscopic vibrational model in Appehdix B it was pointed
out that only vibrations of quadrupole order or higher

fell within the framework of the model. This restriction

is ignored here with the note that generalizations required
to bring in other vibrations may not preserve the form of

k . k, and h65 which have been given previously.V'

The inelastic proton-nucleus scattering form factor

corresponding to the transition matrix element (D.10) is

FLSJ(r)=nFLSJ(r)-6SOOLk(r)T .f kv(r )nFLOL (r')r'2dr,

GAWL)2    1                              (D.1
3)

ciL=- 2 2 » S Cl.  (41(oL)2>>Q2
Q      -(diwL)-              L

where the superscript n indicates that only a transition

between basic shell model configurations is being consid-
ered. The sum on TT' is necessary in general since the

form f'actor may have neutron and proton components even

when the initial and final states are simple shell model

configurations. For example, think of a transition between
states formed from a proton and a neutron in the same

orbital. The fact that the subscript TT' does not appear

on kv(r-) amounts to neglecting any differences between

neutron and proton wells for the same orbital. From Eq.
(B.6) it follows that Eq. (D.13) can be written

FLSJ(r)=T -M   (n){I  TE-L(r)-6 8 <k >k(r)} (D.14)SO L  v
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where                                        
                     

12&-  -LC r) "I-YSIT -L (r;r')un'£, ng(r')u (r')r'2dr' (D.15)

as in Eq. (2.47') and

<k >=f-k-(r')uv o v n'-,(r-)ung(r,)r,2dr'. (D.16)

In Eq. (D.14) the contribution due to core polarization

appears as a modification of the radial form factor. This

modification is scaled by the factor e <k > which has sign
L  v

opposite to that of I
STT'L' (r) at large r. Since  k(r) is posi-
£'£

tive it leads to enhancement of the transition. Further in

this model the modification only appears in S=0 amplitudes.

Deforming the spin-orbit term in the optical potential would

bring in the possibility of core polarization contributions

in 'bpin-flip"amplitudes. Note that the form factor is

proportional to M ,(n) which is the geometrical factor
LSJ
TT

characteristic of the transition from the shell model state

|A > to the state |B ,.  As the selection rules for the

transition are contained in this factor, it is clear that

they have not been effected by these considerations.

For normal parity electromagnetic transitions,

inelastic electron-nucleus scattering, or y-transitions,
LOLF    (r) in Eq. (C.5') or Eq. (C.17) becomes
P

LOL, T  LOL
FP  (r)=TT'MTT'(n){6TT''l lun'£'(r)ung(r)-IBL<kv>h(r)}.

22
(D.17)
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4
For the (e,e') reaction the correction factor (c.6) would
only be applied to the first term on the right in Eq. (D.17).

For a uniform charge distribution the expression for B(EL),
Eq. (C.17), is

2 J +1
B(EL)-

2,-IA+1 2 [Tff,MTT'(n)(<r'L>6.r r',1 1 +0 <k >  c RL)]2e2
8 1 Y  LOL                        3Z

L  v Fc

(D.18).

where the subscript c denotes core and

L  roo L
<r >=jor un-2-(r)u (r)r2dr. (D.19)n£

These relations are completely analagous to those for the

(p,p') reaction and :it is seen that there is a core contribution

even  when the valence nucleons are neutrons. The transitions

are enhanced as e <k > has the same sign as <rL> or u ,-,(r)L  v n i
u  (r) at large r and h(r) is negative.n £

Results D. (14) and D.(17) can be obtained by restrict-

ing consideration entirely to the valence configurations and
assuming the interaction between the proton projectile and

the ith valence nucleon to have the form

V(-r- i)-  ( - i)-k(r)kv(ri) MGLYLM(r)YLM(ri) (D.20)

or that the density operator for the ith valence nucleon is

„

9(2)=ti 6(P-Pi)-h(r)kv(ri) MBLYLM(r)YLM(ri) (D.21)

with ei=0 or 1 as the ith valence nucleon is a neutron or a

proton, respectively. Further Ec. (D,18) can be written



266

2J +1
B(EL)-  B   1  I MLOL,(n)<rL>e  ,]2

2JA+1 2 TZ' TT TT (D.22)

where e  , is the effective charge defined byTT

<k >
e  ,=e 6                    vTT      , 1 1+ iT zceR    L eL. (D.23)

TT 32 2 <r >

The above relations clearly display the renormalization
of transition operators due to core polarization. The

renormalization is dependent on the valence configuration.
This dependence appears in kv or <kv>, <rL>, and in the         -

eL.  From Eq. (D.3) and Eq. (D.12) it also follows that the
renormalized force between the ith and jth valence nucleons
is

l'eff(-ri-rj)=V( i-rj)+kv(ri)kv(r )I E-1(.f wL/C )Y  (r )Y  (- 1
j LM L  LM  i  LM rj.

(D.24)

which has the same form as Eq, (D.20) which gives the force
between an unbound proton and a valence nucleon.

So far the question of configuration mixing has been
ignored. This e ffect is contained in Eq.  (D.2) and can be

included by multiplying the right hand side of Eq. (D.14)
and    Eq.      (D.1 7 )    b y  ./1 AA: B

and summing over n. There is some

difficulty in using this approach when there is a great deal
of configuration mixing as ambiguities may result in speci-

fying the state dependent parameters which were mentioned
above.
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When considering the coupling of the valence nucleons

to a physical state of the core the eL is well defined as
C   and Lw   can be determined from the transition in theIj · L

core nucleus which starts at the ground state and ends at
the state in question. The (p,p') reaction, the (e, e')
reaction, or y-transitions can be used for this determination.

Love and Satchler15,16 assume eL characterizes an effective
core phonon with hwL>>Q so that eL=l/CL. They consider
transitions in the (p,p') reaction and BL is fixed from an             I
analysis of corresponding y-transitions. Another method

which is used in this work is to determine the 0L from the
spectrum.

For example, consider a nucleus with two like valerce
nucleons and assume that these nucleons are restricted to             I
the (j) configuration. The low lying states of this

2                                                                                                     1

+    +             +nucleus will have J=0 , 2 ,...(2j-1)  and their energies
.=will be related to the matrix elements <(j)ZJ'l',eff|(j)2J>

From Eq. (D.24) it follows that

2                  9               2 r   J<  C  j   )    -J|  ..p  e f f  I   (  j   )  2 J> = <  (  j   )  4 J.1  V      (  j   )  2 J  > - <k      >       L  O M (D.25)v   L L L

J    T - 0 - 7ML=(-1)'.'-d.Jjc W(Jjjj,LA)<jl IYLI I j>2
(D.26'

where 2-1-GriwL/CL)=-1/CL=-OL consistent with the assumption

discussed above in regard to the transition matrix elements.
Examination of the behavior with L and J of the Racah coef-             1
ficient in Eq. (D.26) shows that thd second term in Eq.

(D.25) will give a strong attractive contribution to the
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J=0 matrix element and will give a repulsive contribution
to matrix elements for higher J provi·ded the BL fall off
sufficiently slowly with increasing L. This is the effect

20-25required to reproduce the observed spectrum which in

turn can be used to fix the 8 's.
L

Note that in computing the renormalization of the

bound state matrix elements by this·prescription that no
'

contributions from abnormal parity states of the core are

included. This is a direct result of the form assumed for

the valence core interaction, Eq. (D.6). In the microscopic

calculations of,Kuo and Brown these contributions are
20-25

shown to be small and repulsive. Nevertheless, the values

of eL corresponding to normal parity core excitations deter-

mined from  the spectrum will be somewhat too small because

repulsive terms are neglected. In this work this difficulty

is circumvented by determining the eL from the decomposition       '

of the G3P-lh contributions to the J=0 matrix elements

calculated by Kuo and Brown .  ·Deficiencies in their
20-25

matrix elements should show up as corresponding deficiencies

in the results of this work.

This procedure can be extended to more complicated·

cases. The essential criterion for its applicability is

that there are no more 0 's to determine than there areL

matrix elements defined by the spectrum. In a more general

case the 0 's which are determined may show some configuration

dependence which is, of course , expected. The inverse of

this process has been used to renormalize bound state matrix
206                                94elements in the Pb calculations by True and Ford.
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3.  Microscopic Treatment of Core Polarization
In the completely microscopic calculations the

quantities to be determined are the proton and neutron

transition densities; therefore, interest is in the reduced
matrix elements of the operator defined in Eq. (B.21) and
Eq. (B.21').

One Nucleon Outside of a Closed Shell

For a nucleus with one nucleon outside of closed shell

the unperturbed valence configurations are the single particle
states defined in Section 3 of Appendix B. The necessary

reduced matrix element corresponding to the first term in
Eq. (D.5) is given by Eq. (B.22) and will be called R ,(D)

LSJ
TT

where D refers to direct. The reduced matrix element corres-
ponding to second and third term in Eq. (D.5) will be called
LSJ
R  ,(C) where C refers to core.TT

LSJIn calculating R ,(C), V' is the "bare" G-matrix orTT

an approximation to it such as the K-K. force and P projects
onto Zp-lh states.

P=P 2 p-l h=  (1+6 j j        ) -l j j  I  i             I   (j j p  )J v,  jh; J  'M'><  (jjp  ) J v, 3]:1   ; J  -M'   
P     P.h

3 3.M-
V

(D.27)

1(jjp)Jv,Ih;J'M->= Imm    <jjpmmp  JvMv><JvjhMv-mh I J'M'>
P

m Mhv

j    ml

x( -1  )     h-    Iia+ a  ah I C> <D.28)
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For convenience reference to the quantum
numbers T, T , and       

Th has been suppressed.  In Eq. (D.27) only distinct pairs

(jj ) are included in the sum, i.e. (1,2) is not different

from (2,1) and only even values of J are· allowed when j='V

j .  It is not hard to show that
P

1         2P =P +P (D.29)2p-lh 2p-lh  2p-lh

where Pl includes only the terms in Eq. (D.27) with
2p-lh

j=j  and
I .

P
.

2

 2p-lh=j   p jh|   ( pjh) Jc; J'M'><j (jpJh) Jc; J'M' | (D.30)

J   J'M.
C

with the prime indicating that terms with j=j are excluded.
P

The state vectors appearing in Eq. (D.30) are defined

in Eq. (B.37). Contributions from P are excluded in
1

2p-lh
the calculations of this work. In the work reported in

Ref. 20-25 and Ref. 88 a quasi-boson assumption is made and

intermediate states with a valence nucleon and like core

nucleon in the same orbital are allowed. This assumption

amounts to including terms with j=j  in Eq. (D.30) instead
1of the manner prescribed by P In this case there
2p-lh

are only two extra-core nucleons in the intermediate states

and it is not difficult to carry out the complete calculation

while maintaining consistency with the Pauli principle;

however, this is not true when the intermediate states have
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more  than two extra-core nucleons. In any event the neglected
contributions are likely to give only a small percentage of
the total effect.

In order to illustrate the derivation of the formulas
used in the microscopic calculations note that the third

term in Eq. (D.5) takes the form

<Bn'V-P(EB -Ho)-1TIAn,=<jlmllvp p-lh(Ejl-HO)-10LS Ij2m2>n

1

(D.31)

=- j  j hE ( Ph ) - 1 <j   1 V 1 j 2 C j p ],1 ) J ; j l, < j 2 C j p :fh ) J ; j iml 1 0  : 1 j 2m2 >
T  1
Ph

where E(ph)=E -Eh+Ej 2ZE -Eh and T  and T have been intro-h
troduced explicitly. In writing Eq. (D.31) use is made cf

Eq. (B.38) which shows that j  must equal jzor j  and J C

must equal J. Since the sum of jj in Eq. (D.30) includes
P

distinct pairs and j0j  one is free to choose j=j 2 and
sum over

jptj20 Further, the matrix element of V vanishes

unless jlml=J'M'.  In the occupation number representation

V is written

V= 2 aB 6<aBIVIY6>a+a+a
a (D.32)8 0 7 6

where <aBIVIY6> is an unsymmetrized two-body matrix element.

Using Eq. (D.32) it can be shown that bound state matrix

element in Eq. (D.31) is given by
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<jl VIj2(jp ih)J;jl>= ,(-1)jP+j2+J.,3,2Jj ].1-J jpji. 1*jljh'j2jp;J')
l , 1 25

(D.33)

1/2where b (jljh 'j2jp;J')=[ (1+6j . ) (1+6. . )]
1Jh J2JP

xv(jljh'j2jp;J'T=l) (Tl=Th;T2=T )P

(D.34)

x {V(jljh'j2jp;J'T=O)+V(jljh'j2jp;J'T=1)} (Tl*T ;T 0T )h 2 p

with V(j jh'j 2jp;J'T) designating a two-body matrix element
between antisymmetrized two-particle states coupled to total

angular momentum J' and iso-spin T. In deriving this result
using Eq. (D.32) contractions leading to one-body potential

terms in Eq. (D.33) are neglected. For the (p,p') reaction

and electromagnetic transition Tl=T2 and T =Th.  When the

valence nucleon and excited core nucleon are of the same type

only the T=1 part of the particle-core interaction is

effective, whereas both the T=0 and T=1 parts of this inter-
action are effective when these nucleons are different. The

product of the matrix element (D.33) and -E(ph) is the
-1

probability amplitude for the (ph) component in the final
state wave function.

Combining Eq. (D.33) and Eq. (B.38) gives the following

expression for the reduced matrix element corresponding to
Eq. (D.31)

LSJ                     I                                                                  j    + j    +J' A   .6    0R ,(C-)=-- 6 E(ph)-1(-1) 21 P 'E -1
TT 2 3 j TT .T T

P h 'h p             :         p i
T T
Ph
3'
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1- x -:-:p:h- ,St)(jl h'J2jp;J )<jpl 10    1 I jh>.
' LSJ

(D.35)            IV
2.1   J 1J 2. 

A similar expression can be obtained for the reduced matrix

element corresponding to the second term in Eq. (D.5). This

is called R .(C.) and differs from Eq. (D.35) by a phase
LSJ
TT   1

and the interchange of jl and j 2.  The sum of the two contri-

butions from core polarization to the transition density is
..

LSJ LSJ LSJ       I -1 LSJ
RTT'(c)=RTT'(Cl)+RTT.'(C2)=-jpjh E(ph)  A(jlj2phJ)<jj jo    jjp>

T  Th

J-'+j +j
A(jlj2phJ)= -6TT',ThTP(-1)

P 1  2jhjl-1 (D.36)

x[<jpjhJ- 3,5(jpjlpjhj2;J-)+(-1)S+J r. .   7  JpJhJ, lf(jpj 2, h l;J')]l.j  2 j  1 J 1 Lj lj 2J

where the double prime on the sum over jpjh indicates that
the first term in [] is·not included when j T =1-T and thep p '1 1
second term in [] is omitted when j T =j T .

PP 2 2

It was pointed out previously that there is no breaking
of the valence transition selection rules when the macro-

scopic treatment of core polarization is used. Consider the

transition where the valence nucleon goes from an s orbit1/2
to the d orbit. Without core polarization this transition5/2

can only go with L-transfer equal to 2. From Eq. (D.36) it

can be seen that L=4 is also allowed, i.e. assume IC> con-
-1tains a filled p-shell and consider a

fl/2-P3/2 particle-
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hole pair which gives a contribution for L=4.  This point
is probably academic as the L=4 contribution to the transi-

tion-is not likely to be as important as that from L=2,
but it does indicate that core polarization can effect the

valence transition selection rules.

Two Nucleons Outside of a Closed Shell

For two nucleons outside of a closed shell the only

transitions considered are between states where the valence

configurations are the allowed couplings of two like

nucleons in the same orbit. The wave functions for these

configurations were defined in Eq. (B.35) and Eq. (B.36)

gives R ,(D). For this case
LSJ
TT

.

p=P p-lh=j jh|I (  ) Jv(jpIh)Jc]J 'M'> <[(jj)Jv(jpIh)Jc]J 'M' | (D.3 7)
j vj c
J'M'

where reference to T,T , and Th is again suppressed and the
sum excludes terms with j=j and odd values of J . TheP                         V

state vectors appearing in the projection operator were

defined in Eq. (B.39). Using the notation of the last·section
.

LSJ
TTR  .(C )=-j jhE(ph)-1<(j)2JBIVI[(jj)JA(jpIh)J]JB>

T Th

LSJ
x < [ ( j j ) J A ( j p jh ) J ] JB 1 1 OT T '1 1(j) 2J A > (D.38)

where Eq. (B.40) has been used alonglwith the properties

of V to eliminate some of the summation.
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The matrix element of V appearing in Eq. (D.38) is

<(j)2JBIVI[(jj)JA(jpyh)J]JB>=

3+3-j -3.- --
'f.(-1) h   JAJJ-2   j jpjl'Jj  t 115(jhj'jpj;J ).(D. 39)

L-   h j    J  J      B   V Aj

Multiplying result (D.39) by -E(ph) gives the probability
-1

amplitude for the (ph) component in the final state wave

function. Inserting the result of Eq. (B.40) and Eq. (D.39)

into Eq. (D.38) leads to

LSJ 3+1-ill-J'- A   -A
R  .(C.)=-2.I. 6 E(ph) (-1) 3 3'C.

-1
TT 2 J J, TT-,T TP n h p                          P

T T
Ph
3.

r                                                                                -

x i j  jpj d ) Jj  j
Ljhj Jj ljJBJA

LSJ
x 6(jhj' P ;J')<jpllo Iljh>' (D.40)

Combining this result with the corresponding result for
LSJ
R  ,(C„) gives the following result.TT   1

.

TS
RU ·J(C)=-jIj E(ph)-lA(jphJ)<jhlloLSJ  j ,TT

Ph
T 1
P h (D.41)

A(jphJ)=2 ,(-1)J+j-j .-J,- 2- 6
S+J f    J' JAjh[l+(-1)    ]  j j Ji  4Jj 1 7 

lj h j    J  j   lf JBJA j

x?f(jhj'jpj;J-)
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As in the valence transition L must be even and when

J=L and S=1 A(jphJ) vanishes; therefore, spin-flip is still

forbidden for a transition starting from the state JA=O.
The inclusion of core polarization does not lead to any

: breaking of the valence transition selection rules in these

transitions.  When JA=O, L=J=JB' and S=O, A(jphJ) becomes
/\

4jh            +j+J.-
A(jphJ)=·x-r  .(-1) P J,2  F jpjhJ -1,1/ (jpj;jhj ;J') (p.42)

33
1.- j    j    J.J

Phase of Microscopic Core Polarization Contributions

The formula obtained for treating core polarization

using the macroscopic vibrational model to describe the

core clearly displayed the relative phase of the core and
LSJdirect contributions to transitions. The phase of R .(C)TT

defined in Eq. (D.36) and Eq. (D.41) with respect to the

corresponding R ,(D) is not apparent from inspection.  It
LSJ
TT

is useful to examine this phase relation.

To do this it is necessary to express the two-body

matrix element in terms of multipoles of the two body force.

...tlf (pj 1,hj 2 ; J) =L.  .J. [(-1 ) J
,
-fS.:  + h +  1

J j. (-1)Pl
< :p:»,    f    1

32313 3

xM   (jhjp)M 2Tl ( 2Jl)IS'L'Q (D.43)
L'S'J' .5.3. Pj 1hj2

Th TP
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I  lhj 2-r      
S 'L'Q  -J up croiul (rl)VS 'L'Q(r ;rl)u2(rl)uh(r )r rldr0drl

(D.44)

+ f up (ro ) ul ( rl ) *g  S,L 'Q ( r  ; rl ) u2 (r  ) uh (rl ) r0 r dr0 dr'l

E    (r or'=_ I {<L„,£2001£10><L„'£h  1£ 0>
.

0 -        0

lf S,L'Q     0'   I     L",L"'      <L'.2,200 1£10><L,£hOO '£PO;
}L"dL 11 T C

XW(£2£pglfh ;L"L-)W(£-2 £ 1 T Tl T 1 1    ,     3  T TE2 p 1 hil  1, 'VS'L"Q(r ;rl) (D.45)

This expression for the two-body matrix element is obtained

by following the procedure used in Chapter 2 for decomposing
the D.W.A. transition amplitude Q designates the p-p(n-n)

or p-n force as ThT  is the same or opposite to T2Tl
EV, (rl;rl) is the exchange interaction defined by Eq. (2.23),S L'Q

L'S'J'and M (jj') are the geometrical factors for the singleTT

particle transition density defined according to Eq. (B.6)
and Eq. (B.6'). The second integral in Eq. (D.44) is the

exchange integral which is expected to be in phase with the

direct integral for a short range even state force since
fir E
u S'L-Q(r ;r)=VS'L'Q(rl;rl) for a zero range even state force.

Using Eq. (D. 43) in the definition

3.+1 -
F(r;jlj2jpjKLSJ)= .(-1)

P J  '     jh         j p j h J          'lf  (j p   1  '  h  2  ;J  , )

9- r

lj2JlJ.1

32< jh|| oLSJ       , (D.46)

leads to
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 1+1- LSJ
F(r;jlj2jpjh*LSJ)=(-1) JlMT •r (j 2jl)up(r)uh(r)

L 2 L l

I  /   sts.XL,S'(-1) D(j.j i i  J;L'S',LS;Q) (D.47)1   2"p  h'

and

F(r;j2jlj-jJLSJ)=(-1)J(-1)jl+1MLSJ
1   Il (   2 j 1 ) up ( r ) uh ( r )

T2 Tl

XI' s'(-1)SD(jlj2jpjh'J;L'S',LS;Q)   (D.48)

where

-3/2 2"-2 P lh 2 L'S'JD(jlj2jpjh'J;L'S',LS;Q)=2 jpJ  Is'L'Q MT -  (jhjp)
'h LP

LSJ
xM     (jhjn)ML,S'J<jnjl)/MLSJ (j2jl) (D.49)Th TP 9  '2 Tl C

l 2 Tl

With these relations Eq. (D.36) can be wri.tten

LSJ
R  .(C)=-MLSJ (j2jl):I.TT                     6  ,-1. E(ph)-lu (r)uh(r)

72 Tl JPJh  TT  , Lp t.h

T  Th

xL s'[(-1)S+S'+1]D(jlj2jpjh'J;L'S *,LS;Q). (D.50)

The sum  on S' can be removed as only the term S'=S gives a
nonvanishing contribution. This gives

LSJ
RTT'(C)=- ML@J (j 2jl ) 2j I, 6  ,     E(ph)-lup (r) uh (r)

T2 Tl pJh TT ,Tp Lh

T  Th

x ,D(j1j2jpjh'J;L-S,LS;Q). (D.51)
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LSJA similar result is obtained for the R ,(C) obtained byTT
-

using Eq. (D.42) in Eq. (D.41). This is

JOJ 2 JOJ
RT T-(C)=-TM          (jj)2    .I.    6       .            E(ph)-1.u (r)u&(r)

J
TT

J    J,_     T T,T    TP n     P

T Th

xD(j j jpjh'J;JO,JO;Q). (D.52)

There is no sum on L- in Eq. (D.52) as the transition being

considered here is of normal parity and has only one allowed

value of J. Similarly in Eq. (D.51) only L'=J contributes

to the triad (LSJ)=(JOJ).

Eq. (D.51) and Eq. (D.52) have the form needed to see

the effect of core polarization, as treated in this micro-
scopic picture, on transitions. In both equations the

negative of the geometrical factor for the valence transition

appears as an overall multiplicative factor. This does not

mean that violations of the valence transition selection rules

are not possible since this geometrical factor also appears

in the denominator of D. Only triads allowed in the valence

transitions will be considered here.

To see the phase it is only necessary to consider

particle-hole pairs whose radial wave functions are similar

to those of the active valence nucleon. The largest values

of I
pjlhj 2
S'L'Q will occur in these instances and this radial

integral will have the sign of the S'Q component of the two

body force. Inspection of Eq. (D.49) shows that
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D(jlj 2jpjh'J;LS,LS;Q) has the same sign as I ; therefore,
pjihj2

SLQ
for the triads (JOJ) and (JlJ) the direct and core polariza-

tion contributions ·will. be in phase if the corresponding

component of the two-body force is attractive. Only the

"spin-flip" component of the p-p(n-n) force used in this

work is repulsive. Because of this when the valence nucleons

are protons (neutrons), proton-proton hole (neutron-neutron

hole) excitationswill decrease the (JlJ) transition amplitude.

The same arguments hold for the triads (Jil,1,J) although

there is an additional complication because the phase depends

on the sum of two terms. When D(jlj2jpjhJ;LS,LS;Q) is
dominant the conclusions above will hold. This is likely

to be true for the (J-1,1,J) triad as D(LS,LS) will by

proportional to the L=J-1 multipole coefficient of the two-

body force while D(L'S ,LS) will be proportional to the L=J+1

multipole coeffecient. For the triad (J+1,1,J) this

situation is reversed.

4.  Microscopic Empirical Formula

Here a formula for computing, from the effective charges,

the enhancement of a cross section in the (p,p') reaction

due to core polarization, is derived on the basis of micro-
scopic considerations alone. The argument is orginally due

to Atkinson and Madsen and is given here in the notation
19

of this paper.

For a normal parity transition with some degree of

collectivity the triad (LOL) gives the dominant contribution
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  to the cross section. The form factor designated by this
triad is

LOL
 ,           (r)= 0      7OPL(r;r-)FpOL(r=)+  7 nL(rir-)FLOL(r')}r'2dr'

(D.53)
LOL LOLas specified in Eq. (2.59"). F and F are the protonPn

and neutron transition densities, respectively,  and 9
Op L

and 'V are the multipole coefficients of the non-"spin-OnL

flip" components  of the  p-p  and p-n forces  with the exchange
interaction included. Correspondingly for y-decay Eq.(C.17)

gives

2J +1
B(EL)=  B   11/-  L+2 LOL2 J +1 2  0 r   F  (r)dr'Ze2. (D.54)A

The neutron and proton transition densities have two
components,

T LOL D LOL LOLF

(f )    C r ) =    li          C r ) + ( f)        C r

) (D.55)

wher'e D is the direct or valence component and C is the
cor'e  component.

Two assumptions make it possible to relate, algebra-
ically, the effective charges of the valence nucleons to
analagous enhancement factors for the (p,b') reaction. One

is to neglect radial differences between the proton and
neutron transition densities and their direct and core

components. The second is to assume that different com-

ponents of the projectile-target interaction have the same
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radial form or.  that "equivalent" components with the same

"                  "radial form can be defined. The lF range equivalent impulse

approximation pseudo-potential given in Chapter 3 can be

used in this context. The local approximation to the exchange

component of the D.W.A. transition amplitude is an implicit

uncertainty in the second assumption.

The total proton transition density can be written

Fp(T)= {FP(T)+Fn(T)}+ {FP(T)-Fn(T)} (D.56)

where Fn(T) has been introduced so that F (T) is expressed

in terms of iso-scalar and iso-vector components. An iso-

scalar transition is defined by the condition F (T)=Fn(T).

In terms of the iso-scalar and iso-vector effective charges,

F (T)+Fn(T)

e =FP(D)+Fn(D)
(D.57)

Eq. (D. 56) becomes

Fp (T )= e O{FP(D)+Fn(D) }+ ·e1{FP(D)-Fn(D) }

=e F
(D)+enFn(D) , (D.58)PP

where the proton and neutron effective charges are

e =1(p te
) (D.59)

p 2-0 1
dn

Correspondingly,


