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Introduction 

As part of the current design parameters of RHIC’, the expected systematic decapole 
error in the arc dipoles is stated to be [bk[  5 0.7, where ZIi is the decapole field harmonic 
in primed units, Le., at the reference orbit of 2.5 cm multiplied by lo4. However, for the 
most severe operating conditions at RHIC, i.e., lg7Au beams at 30 GeV/u, the decapole 
tolerance is calculated to be2 J b i  [ 5 0.56, or a factor of 1.25 less than the expected value. 

The mismatch between expected decapole error and the required tolerance has prompted 
the need for a decapole corrector system at RHIC. This decapole corrector system has been 
discussed in two previous reports3’ ‘. The corrector system previously proposed uses two 
families of correctors situated next to arc quadrupoles QF, QD. With this scheme a factor 
of about two reduction in the decapole error can be achieved.* 

More recently, an alternative decapole corrector system was discussed by N e ~ f f e r . ~ ? ~  
He proposed using three correctors, two situated next to arc quadrupoles QF, QD, and 
one at the mid-point of the arc dipole, QC. With this three corrector arrangement, it has 
been claimed that it is possible to get a reduction in the decapole error by factors of 1000 
or more6. 

In this report, the decapole corrector scheme proposed for RHIC is reviewed and the 
effectiveness of a two family scheme is compared with a three family scheme. Because the 
dipoles at RHIC have an unbroken 9.45 m length, it is not possible to implement directly 
the three corrector scheme discussed above. However, within the insertions, there is a 

region between QS - Q9 where the lattice functions exhibit similar behavior as in the arc 

‘RHIC Conceptual Design Manual, May 1989. BNL 52195. 
2F. Dell, H. Hahn, G. Parzen, M. Rhoades- Brown, A.G. Ruggiero, “Tolerances on 

3H. Hahn, Report AD/RHIC-22, (1987). 
4F. Dell, H. Hahn, G. Parzen, A. Ruggiero, “RHIC Decapole Correction Magnet Re- 

quirements ’,, RHIC Technical Note AD/RHIC-28. 
5D. Neuffer, “A Novel Method for Correcting the SSC Multipole Problem”, Report 

6D. Neuffer, “Multipole Correction in Synchrotrons, ” Proc. 1989 IEEE Accelerator 

Systematic Field Errors in RHIC Magnets ”, RHIC Technical Note AD/RHIC-58. 

SSC-172 (1988). 

Conference, Chicago, p.1432. 
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dipoles. It was pointed out by Claus that together with the original correctors at QF and 
QD, this region could be utilized to form a three family corrector scheme for decapole 
errors in RHIC. In fact, it will also be shown that by making the corrector strengths at 
QF, QD equal an adequate corrector scheme for RHIC can be introduced that uses only 
two families of power supplies. 

The Tuneshift Due to Decapole Errors 

Utilizing the formalism due to Jackson7, the first order perturbative expression for 
the tune shift due to a decapole error in the dipole magnet is given by, 

where b4 is related to the systematic error in primed units, 
the momentum deviation, and the total emittance is written as 

b4 = 10-4bi(2.5 ~ m ) - ~ ,  S is 

with 0 2  F 2 1. 

In equations (1) - (2), the average over the lattice functions (@L@,”X;) is defined by 

where L represents the length of one arc dipole, and N represents the total number of 
magnet elements. 

It is advantagous to rewrite equations (1)-(2) in terms of a single dimensionless vari- 
able defined by Ag = qAp, where Ag = SX,, and Ap = 4 1 .  Both X p o  and Po are 
defined at the focussing quadrupole. In terms of the independent variables q and F, 

A. Jackson, “ Tune Shifts  and Compensation from Sys temat ic  Field Components”, 
Report SSC-107 (1987). 
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When there are correctors at QF, QD and the mid-point of the arc dipole QC, equa- 
tions ( 5 )  and (6) also have contributions from the lattice functions at the positions of the 
correctors, 

where I is the effective length of the correctors, and we have scaled the contribution from 
the corrector matrix elements in terms of the ratio Z/L. In Table I, the matrix elements 
for the arc dipoles and the three correctors at QF, QD and the mid-point of the arc dipole 
QC are tabulated. 
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Table I. Lattice Dependent Components of the Decapole Tune Shift 

Dipole Corrector Q QF Corrector @ QD Corrector 0 QC- 

Component x b4 x ~ Q F W  x ~ Q D W  x bQCl/L 
( P J q ,  m4 34.8 78.13 1.87 24.92 

(PzPYXp),  m3 489.84 310.66 155.31 466.4 

( P : x D ) ,  m3 670 1.61 x 103 7.25 x 103 466.4 

(PYX,"), n-14 26.05 15.14 10.25 24.92 

(PzPYxp), m3 489.84 310.66 155.31 466.4 

(P,"XP), m3 556.25 54.38 851.56 466.4 

Dipole Length L = 9.45 m, Corrector Length I = 0.5 m 
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Two Corrector Scheme 

With a corrector near each of the quadrupoles QF and QD, the corrector strength is 

chosen such that the tune shifts due to the betatron motion in equations (7) and (8) is 

independent of F. This optimal condition corresponds to a v p ) / d F  = 0, avP' /dF = 0, 

and results in the conditions for the corrector strength, 

2 ( P 2 P y X p ) ~ ~ p  + ( P ; X p ) ~ 1 p  
i=QF,QD 

Note this condition is independent of Po and X p o .  Using the results of Table I, one finds, 

bb,Z = -0.98 x biL 

where these results are within 3% of those calculated in an earlier report4 

In Fig. 1, the quantity d 4 ) / b ; 7  is plotted as a function of q. At RHIC, the values 

7 M 1 are the most relevant. The tune shift shown corresponds to "'Au beams at 30 

GeV/u. For this case we use the values ET = 1.71 x mrad, and X,"o/Po = 0.051m 

at quadrupole QF. With the corrector values of (ll), the dipole tune shift is reduced by a 

factor of two. 
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Fig. 1 Plot of the x,y component of d4)/bk77 as a function of 7. The corrected values are 

shown for a two corrector scheme. 
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Three Corrector Scheme 

In this section we study the effectiveness of placing a corrector at the mid- point of 

the dipole, but recognize that such a scheme is only of theoretical interest at RHIC. With 

three correctors, we determine the optimal corrector strength by requiring the constraints 

v p )  = v p )  for all q and vi4), v p )  be independent of F. Simply equating (7) and (8) gives 

the following equation for the coefficients of q2 

Also, when equating (7) and (8), the F dependent components reduce to expressions 

that are identical to the requirement dv, / d F  = 0 and dv, / d F  = 0. From these expres- 

sions, we can write 

(4) (4) 

Utilizing the values in Table I, we find the solution 

b’QFZ = -0.1511 x bkL 

b b , l =  -0.1336 x biL (15) 

bbcZ= -0.9047 x bkL 

In Fig. 2, the quantity d4)/b:q is plotted forlg7Au beams at 30 GeV/u. Using the 

corrector strengths in equation (15), the tune shift can be reduced up to a factor of 800. 

Figure 2 also shows the effect of a &l% change in the optimal values of (15). This realistic 

variation in the corrector strength emphasizes the sensitivity of the three corrector scheme. 
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Fig. 2 Plot of the x,y component of ~ ( ~ ) / b k q  as a function of q. The corrected values are 

shown for the optimal three corrector scheme, and for f 1% of the optimal values. 
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Modified Three Corrector Scheme 

A simplified, yet adequate, corrector scheme may be readily found by equating bQ, 

and bQD in equations (12)-(14). For this case, the values in Table I now give the solution 

b'Qcl= -0.858 x bkL 

In Fig. 3, the quantity ~ ( ~ ) / b k q  is plotted for "'Au beams at 30 GeV/u. With the 

corrector strengths given by (16), the decapole tune shift is reduced by a factor of 80. 

The corrected tune shift is also less sensitive to &l% variation in the corrector strengths 

than the full three corrector scheme. Although this simplified corrector scheme is not 

as effective as the full three corrector scheme, the reduction in tune shift calculated here 

would be more than adequate for any foreseeable error, and has the virtue of only requiring 

two families of power supplies. 

Placing the Third Corrector in the Insertions at RHIC 

Up to now we have focussed on the three corrector scheme, with correctors at the 

mid-point of the arc dipole, and the quadrupoles QF, QD. At RHIC, the arc dipole is an 

unbroken 9.45 m long, so this scheme is not appropriate. 

At RHIC, however, there is adequate room in the insertion region to place a third 

corrector. Between Q8-Q9 the lattice functions have similar properties to an arc dipole. 

The ideal location for the third corrector would be between &8-Q9, where ,& = &. In 

Table II., values of the integral as defined by equation (4) are calculated using lattice 

functions that correspond to the optimal location in the insertion. 
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Table 11. Values of Decapole Tune Shift Components in the Insertion Region 

Component Corrector Q QC 

x bQC 1/L 

With these values, the modified three-corrector scheme (bb, = bbD) yields the fol- 

lowing corrector strengths 

b’Q,1= b b , l =  -0.1708 x biL 

(17) 

b&l= -0.6474 x bkL 

It is important to note that each corrector in the insertion would compensate for the 

decapole error in twelve dipoles. Thus the strength bbcl quoted in equation (17) should 

be multiplied by a factor of 12 to achieve the required correction for RHIC. 
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Fig. 3 Plot of the x,y component of d 4 ) / b k q  as a function of v. The corrected values are 

shown for the modified corrector scheme when b'QF = b'QD. 
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