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Abstract—The development of model-based processing tech-
niques in ocean acoustics is well-known evolving from the
pure statistical approach of maximum likelihood parameter
estimation, matched-field processing and sequential model-based
processing for Gaussian uncertainties. More recent model-based
techniques such as unscented Kalman filtering (UKF) and sequen-
tial Markov chain Monte Carlo (MCMC) methods using particle
filters (PF) have been developed to improve both unimodal
distribution estimates (UKF) as well as multimodal estimates (PF).
In this paper we apply both techniques to provide enhanced signal
estimates for acoustic hydrophone measurements on a vertical
array and compare their performance. We use a normal-mode
propagation solution to provide synthetic data in order to make
the comparison and demonstrate the approach which will open
the area to direct extensions such as localization, broadband
processing, inversion, etc. We show how the normal-mode model
can be incorporated directly into the processors along with
the measurement array enabling the resulting enhancement
capabilities.

I. INTRODUCTION

Incorporating a propagation model into a signal processing

scheme has evolved over a long period of time where it

was recognized that by embedding a physics-based represen-

tation can significantly improve the processing [1]-[5]. One

approach, matched-field processing is based on comparing

the measured pressure-field to that predicted by a propaga-

tion model to estimate source range and depth [3]-[5]. In

ocean acoustics there are many problems of interest [6]-

[11] governed by propagation models of varying degrees of

sophistication. Here we are interested in a shallow water

environment characterized by a normal-mode model. However,

we are primarily interested in investigating the application

and performance of the so-called “next generation” of model-

based signal processing algorithms, primarily the unscented

Kalman filter (UKF) and the particle filter (PF) with the goal of

analyzing their performance on synthetic data generated from

a simple propagator developed using SNAP, an established

normal-mode propagation model [6].

We investigate the development of a “model-based signal

enhancer” that embeds a forward propagator into the pro-

cessing scheme essentially mimicking previous model-based

efforts that used a class of linearized processors (linearized

and extended Kalman filters (LZKF, EKF)) [12], [13], [19].

In order to construct the model-based processor (MBP), we

first characterize the normal-mode model in terms of a state-

space representation enabling a general framework for signal

processing.

Model-based signal processing is concerned with the incor-

poration of environmental (propagation, seabed, sound speed,

etc.), measurement (sensor arrays) and noise (ambient, ship-

ping, surface, etc.) models along with measured data into a so-

phisticated processing algorithm capable of detecting, filtering

(estimating) and localizing an acoustic source (target) in the

complex ocean environment as well as adaptively estimating

the model parameters themselves. These techniques are not

constrained to a stationary environment which is essential

in the ever changing ocean. Not only does the model-based

approach offer a means of estimating various quantities of

high interest, but it also provides a methodology to statistically

evaluate its performance on-line [12]. Model-based techniques

have been around for quite a while and have found their way

into ocean acoustics [11].

Model-based processing is a direct approach that uses in-situ

measurements. More specifically, the acoustic measurements

are combined with a set of model parameters usually obtained

from a priori information or a sophisticated simulator that

solves the underlying boundary value problem to extract the

initial parameters/states in order to construct the forward

propagator and initialize the algorithm. The algorithm then

uses the incoming data to update the parameter set jointly

with the acoustic signal processing task (enhancement). In the

following, we define a processor whose enhanced states are

the estimated modal functions.

Background for our problem as well as the new processors

is given in Section II. The design of the MBP for a shallow

ocean acoustic problem is discussed in Section III and the

results are given where we compare processor performance.

We summarize and discuss our results in the final section.

II. BACKGROUND

Model-based signal processing algorithms are based on a

well-defined procedure. A mathematical model of the under-

lying phenomenology is developed in the form of a state-

space representation which allows propagation modeling and

measurement uncertainties to be represented by stochastic

processes. The states, in our case, the modal functions of the

normal-mode model are to be estimated by a MBP. Note that

if the model is assumed to be Gauss-Markov, then the resulting

optimal processor is the well-known Kalman filter in the linear

case [12].

For our ocean acoustic signal enhancement problem we

assume a horizontally-stratified ocean of depth h with a known

horizontal source range rs and depth zs and that the acoustic

energy from a point source can be modeled as a trapped wave

governed by the Helmholtz equation. The standard separation

of variables technique leads to a set of ordinary differential



equations after separation of variables. Removing the time

dependence and invoking the far-field approximation of the

Hankel function, we obtain the familiar normal-mode acoustic

pressure propagation model [6],

p(rs, z) =

M
∑

m=1

qφm(zs)φm(z)
e−αr(m)rs

√

κr(m)rs

ejκr(m)rs (1)

where p is the acoustic pressure; q is the source amplitude;

φm is the mth modal function; α is the modal attenuation;

κr(m) is the horizontal wave number associated with the mth

mode (as before); and rs is the horizontal range.

By assuming a known horizontal range a priori, we obtain

a range solution given by the Hankel function, H0(κrrs).
Therefore, in this case, the state-space model reduces to the

“depth only” [11] simplifying Eq. 1. By defining the modal

coefficient

βm(rs, zs) = qφm(zs)
e−αr(m)rs

√

κr(m)rs

ejκr(m)rs (2)

then Eq. 1 becomes

p(rs, z) =

M
∑

m=1

βm(rs, zs)φm(z) (3)

The resulting depth relation is an eigenvalue equation in z

with

d2

dz2
φm(z) + κ2

z(m)φm(z) = 0, m = 1, · · · , M (4)

whose eigensolutions {φm(z)} are the so called modal func-

tions and κz is the wave number in the z-direction. These

solutions depend on the sound speed profile, c(z), and the

boundary conditions at the surface and bottom as well as the

corresponding dispersion relation given by

κ2 =
ω2

c2(z)
= κ2

r(m) + κ2
z(m), m = 1, . . . , M (5)

where κr(m) is the mth horizontal wave number in the r

direction and ω is the harmonic source frequency. Eq. 1

can easily be placed into state-space form, resulting in the

following state equation for the mth mode:

d

dz
φm(z) = Am(z)φm(z) (6)

with

φm(z) =

[

φm(z)
d
dz

φm(z)

]

=

[

φm1(z)
φm2(z)

]

(7)

and

Am(z) =

[

0 1
−κ2

z(m) 0

]

(8)

This leads to the following 2M -dimensional Gauss-Markov

representation of the model:

d

dz
φ(z) = A(z)φ(z) + w(z) (9)

where w(z) = [w1 w2 . . . w2M ]T is additive, zero-mean

Gaussian noise with corresponding covariance matrix, Rww.

The system matrix A(z) is defined as

A(z) =







A1(z) · · · 0
...

. . .
...

0 · · · AM (z)






(10)

and the overall state vector is

φ(z) = [φ11 φ12 | φ21 φ22 | . . . | φM1 φM2]
T (11)

This leads to the measurement equations, which we write as

p(rs, z) = C
T (rs, zs)φ(z) + v(z) (12)

where

C
T (rs, zs) = [β1(rs, zs) 0 | · · · | βM (rs, zs) 0] (13)

The random noise terms w(z) and v(z) can be assumed

Gaussian and zero-mean with respective covariance matrices,

Rww and Rvv. The measurement noise (v(z)) can be used

to represent the “lumped” effects of near-field acoustic noise

field, flow noise on the hydrophone and electronic noise. The

modal noise (w(z)) can be used to represent the “lumped”

uncertainty of sound speed errors, distant shipping noise,

errors in the boundary conditions, sea state effects and ocean

inhomogeneities that propagate through the ocean acoustic

system dynamics (normal-mode model). These assumptions

result in a Gauss-Markov model with optimal solution to the

state estimation problem a Kalman filter [13].

Since our array spatially samples the pressure-field, we

choose to discretize the differential state equations using a

central difference approach for improved numerical stability,

that is, from Eq. 4 we have

d2

dz2
φm ≈

φm(z`) − 2φm(z`−1) + φm(z`−2)

4z2
`

(14)

for 4z` := z` − z`−1. Applying this approximation to Eq. 4

gives

φm(z`)− 2φm(z`−1)+φm(z`−2)+4z2
` κ2

z(m)φm(z`−1) = 0

where z` is the location of the `-th sensor. Defining the discrete

modal state vector as φm(z`) := [φm(z`−2) | φm(z`−1)]
T , we

obtain the discrete form of our state-space model given by Eq.

6 with the A-submatrices defined by

Am(z) :=

[

0 1
−1 2 −4z2

` κ2
z(m)

]

; m = 1, · · · , M (15)



Fig. 1. Unscented Kalman filter algorithm flow diagram: initialization,
prediction, update and innovation with t the index variable.

Before we attempt to describe the “new approaches” to the

estimation problem, let us put these techniques in perspective.

The UKF is an alternative to the nonlinear or extended Kalman

filter processor applied successfully in many of the model-

based ocean acoustic applications [1]-[11]. Like the EKF it

is still restricted to a unimodal distribution (single peak),

but that distribution need not be Gaussian. It also performs

a linearization (statistical), but not of the system dynamical

model, but of an inherent nonlinear vector transformation

requiring “sigma points” which deterministically characterize

the underlying unimodal distribution. These points have been

pre-calculated for the Gaussian case [13]. It has been shown

that the UKF clearly outperforms the EKF and its variants

(iterated EKF, higher order EKFs, etc.). and is more accurate

and precise besides being much easier to implement, since

Jacobian are no longer required.

A detailed flow diagram of the UKF is shown in Fig. 1

where we note the basic predictor/update structure. Much of

the algorithm is devoted to the statistical linearization in which

regression estimators are used to perform the transformation

while the usual Kalman filtering equations are used to perform

the updates. We refer the interested reader to the current texts

or basic papers for more details [14]-[19].

A particle filter, on the other hand, is a completely different

approach to nonlinear filtering in that it removes the restriction

of additive Gaussian noise sources and is clearly capable of

characterizing multimodal distributions. In fact, it might be

easier to think of the PF as a histogram or kernel density

like estimator in the sense that it is an empirical probability

mass function (PMF) that approximates the desired posterior

distribution such that statistical inferences can easily be per-

formed and statistics extracted directly. Here the idea is a

radical change in thinking where we attempt to develop an

empirical estimation of the posterior distribution following a

purely Bayesian approach using Monte Carlo (MC) sampling

theory as its enabling foundation. As one might expect the

computational burden of the PF is much higher that of KF,

since it must provide an estimate of the underlying state

posterior distribution component-by-component at each z`-

step along with the fact that the number of samples to

characterize the distribution is equal to the number of particles.

p̂[φ(z`)|Pz] =

Np
∑

i=1

Ŵi(z`)δ
(

φ(z`) − φi(z`)
)

∀z (16)

Ŵi(z`) ∝ P̂r[φi(z`)] is the estimated weights at depth z`;

φi(z`) is the i-th particle at depth z`;

p̂[·] is the estimated empirical distribution;

Pz is the set of batch pressure-field measurements,

Pz = {p(z1) · · · p(zL)}.

So we see that once the underlying posterior is available, the

estimates of important statistics can be extracted directly. For

instance, the maximum a posteriori (MAP) estimate is simply

found by locating the location of the particular particle x̂i(z`)
corresponding to the maximum of the PMF, that is

Φ̂MAP
i (z) = maxi p̂[φi(z)|Pz] (17)

A detailed flow diagram of the particle filter (bootstrap)

algorithm is shown in Fig. 2 illustrating the prediction and

update steps along with a resampling algorithm to provide

convergence. Again more details can be found in the refer-

enced textbooks and papers [14]-[19]. Note also that if we

place the EKF/UKF into this framework, then we see that

the underlying posterior distribution has already been decided

to be multivariate Gaussian with the objective to extract the

corresponding conditional mean and covariance as accurately

as possible. Therefore, we see that the UKF provide the

multivariate posterior solution

p̂[φ(z`)|Pz] = (2π)Nx/2|Rφφ(z`|z`)|
−1/2

exp
{

− 1
2(φ(z`) − φ̂(z`|z`))

T R−1
φφ(z`|z`)(φ(z`) − φ̂(z`|z`))

}

(18)

where φ̂(z`|z`) is the conditional modal mean at depth z`

and Rφφ(z`|z`) is the conditional modal covariance based on

pressure-field measurements up to depth z`.

So we see that there exists a fundamental philosophical

difference between the UKF (Kalman) processor and the PF

processor. Their implementations are completely different as

well: one based on approximating the required distribution

through statistical linearization and one through an empirical

PMF estimator.

III. MODEL-BASED OCEAN ACOUSTIC

PROCESSING

In this section we develop the basic processors and apply

them to the normal-mode signal enhancement problem defined

more formally in terms of our state-space representations as:



Fig. 2. Bootstrap particle filter algorithm flow diagram: prediction, update

and resampling with t the index variable.

GIVEN a set of noisy pressure-field and sound speed measure-

ments, [{p(rs, z`)}, {c(z`)}] and the underlying state-space

model of Eqs. 6 and 12, FIND the “best” (minimum error vari-

ance) estimate of the modal functions, that is, {φ̂m(z|z)}; m =
1, · · · , M and measurements (enhanced) {p̂(rs, z`)}.

A. Simulation

We synthesized data using the SNAP normal-mode propa-

gation model assume a shallow ocean environment of 100m

depth with a unity amplitude, 100Hz point source located at

25m and a range of 10km. The sound speed profile followed

a summer pattern [6]. Here a 100-element vertical array is

deployed from the bottom with 1.0m separation spanning the

entire water column and clearly over-sampling to avoid any

potential artifacts in synthesizing the pressure-field. The SNAP

solution supported 4 modes with corresponding average hori-

zontal wave numbers: {0.417, 0.413, 0.407, 0.400 } m−1.

B. Results

We performed a series of “tuning” runs for both the UKF

and PF. We primarily adjusted the process noise covariance

matrix for each of the modal functions and then executed an

100 member ensemble of realizations using these parameters.

The particle filter was designed with the same parameters and

500 particles were used to characterize the posterior PMF

at each depth. Resampling was applied at every iteration of

the PF [19] to avoid any potential degradation. The resulting

figures show the averaged MAP PF estimates (in thick red

lines) while the UKF are in the dotted turquoise line. In Fig. 3,

we see the enhanced (predicted) pressure-field estimates (thick

red line) along with the UKF estimates and raw data. It is clear

from this figure that both estimators are capable of tracking

and enhancing the pressure-field. Using classical performance

metrics, the zero-mean whiteness tests, both processors satisfy

the criteria of unbiasedness (zero-mean: 2.9× 10−10 < 0.25)

Fig. 3. PF and UKF Pressure-Field Estimation: Raw Data, UKF, PF MAP.

Fig. 4. PF and UKF Pressure-Field Estimation: Zero-Mean/Whiteness and

WSSR statistical tests.

and uncorrelated residuals (innovations), that is, less than 5%
exceeding the bound (4.7%) as illustrated in Fig. 4. The

weighted sum-squared residual (WSSR) test is also applied

with satisfactory results, that is, no samples exceed the thresh-

old (see [13] for details).

The modal estimates for both the UKF and PF are shown

in Fig. 5 along with the raw data (blue circles). It appears

from the figure that the PF tracks slightly better than the

UKF over the ensemble. The allocation of the particles are

shown in Fig. 6 where we observe the four modal PMFs along

exhibiting multimodal estimates and just how the particles

are allocated to the highest probability regions. That explains

why the PF performs slightly better. Further analysis of the

complete modal PMFs indicate the multimodal evolution of

the posterior PMF and the enhanced pressure-field PMF are

shown in Fig. 7-9.

IV. SUMMARY

In this paper we have developed on-line model-based solu-

tions to the ocean acoustic signal processing problem based

on the normal-mode propagation model and a vertical sensor

array measurement system. The algorithms employed were the

unscented Kalman filter and the particle filter both modern



Fig. 5. PF and UKF Modal (State) Estimation (Modes 1-4): Raw Data, UKF,

PF Conditional Mean, PF MAP.

Fig. 6. PF Modal (State) PMFs (Modes 1-4): Particle grouping (coalesense).

Fig. 7. PF and UKF Modal (State) PMF Estimation (Modes 1-2).

Fig. 8. PF and UKF Modal (State) PMF Estimation (Modes 3-4).

Fig. 9. PF Pressure-Field PMF Estimation (particle vs. time vs. probability.

approaches to apply to this problem. We compared their

performances and found slightly better performance of the

PF over a 100-member ensemble. Much more effort must

be applied to gain a full understanding of applying these

approaches to usual ocean acoustic problems (localization,

tracking, inversion, etc.). Our future efforts will be focused

on extending the processors to those problems.
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