Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress

Ronald O'Rourke
Specialist in Naval Affairs

March 19, 2012
Summary

The Aegis ballistic missile defense (BMD) program, which is carried out by the Missile Defense Agency (MDA) and the Navy, gives Navy Aegis cruisers and destroyers a capability for conducting BMD operations. Under MDA and Navy plans, the number of BMD-capable Navy Aegis ships is scheduled to grow from 24 at the end of FY2011 to 36 at the end of FY2018.

Under the Administration’s European Phased Adaptive Approach (EPAA) for European BMD operations, BMD-capable Aegis ships have begun operating in European waters to defend Europe from potential ballistic missile attacks from countries such as Iran. On October 5, 2011, the United States, Spain, and NATO jointly announced that, as part of the EPAA, four BMD-capable Aegis ships are to be forward-homeported (i.e., based) at Rota, Spain, in FY2014 and FY2015. BMD-capable Aegis ships also operate in the Western Pacific and the Persian Gulf to provide regional defense against potential ballistic missile attacks from countries such as North Korea and Iran.

The Aegis BMD program is funded mostly through MDA’s budget. The Navy’s budget provides additional funding for BMD-related efforts. MDA’s proposed FY2013 budget requests a total of $2,303.0 million in procurement and research and development funding for Aegis BMD efforts, including funding for Aegis Ashore sites that are to be part of the EPAA.

Issues for Congress for FY2013 include the reduction under the proposed FY2013 budget in the ramp-up rate for numbers of BMD-capable Aegis ships over the next few years; the U.S. economic impact of shifting four Aegis ships to Rota, Spain; U.S. vs. European naval contributions to European BMD; the lack of a target for simulating the endo-atmospheric (i.e., final) phase of flight of China’s DF-21 anti-ship ballistic missile; the capability of the SM-3 Block IIB Aegis BMD interceptor; and technical risk in the Aegis program.
Contents

Introduction.. 1

Background.. 1

Aegis Ships.. 1

Ticonderoga (CG-47) Class Aegis Cruisers .. 1

Arleigh Burke (DDG-51) Class Aegis Destroyers .. 2

Projected Aegis Ship Force Levels.. 2

Aegis Ships in Allied Navies... 3

Aegis BMD System... 3

Versions of Aegis BMD System.. 3

Aegis BMD Interceptor Missiles.. 3

European Phased Adaptive Approach (EPAA) for European BMD.. 6

Planned Numbers of BMD-Capable Aegis Ships and SM-3 Interceptors................................. 6

Home Ports of BMD-Capable Aegis Ships.. 8

Pacific vs. Atlantic Fleet Homeporting.. 8

October 5, 2011, Announcement of Homeporting in Spain.. 8

Aegis BMD Flight Tests ..11

Allied Participation and Interest in Aegis BMD Program... 12

Japan.. 12

Other Countries ..13

FY2013 Funding Request.. 14

Issues for Congress.. 15

Reduction in Ramp-Up Rate for BMD-Capable Aegis Ships ... 15

Demands for Aegis Ships in General... 18

U.S. Economic Impact of Shifting Four Aegis Ships to Rota, Spain.. 21

U.S. vs. European Naval Contributions to European BMD.. 23

Target for Simulating Endo-Atmospheric Flight of DF-21 ASBM.. 23

Capability of SM-3 Block IIB Interceptor... 24

Technical Risk in Aegis BMD Program.. 26

March 2011 GAO Report.. 27

April 2011 Press Report.. 30

Legislative Activity for FY2013.. 32

Summary of Action on FY2013 MDA Funding Request .. 32

Tables

Table 1. Versions of Aegis BMD System... 5
Table 2. Numbers of BMD-Capable Aegis Ships and SM-3 Missiles ... 7
Table 3. MDA Funding for Aegis BMD Efforts, FY2012-FY2017... 14
Table 4. Numbers of BMD-Capable Aegis Ships Under FY2012 and FY2013 Budgets 15
Table 5. Summary of Congressional Action on FY2013 Request for MDA Procurement and RDT&E Funding for Aegis BMD Program .. 32
Table A-1. Aegis BMD Flight Tests Since January 2002... 34
Appendixes
Appendix. Aegis BMD Flight Tests... 33

Contacts
Author Contact Information... 46
Introduction

This report provides background information and issues for Congress on the Aegis ballistic missile defense (BMD) program, which is carried out by the Missile Defense Agency (MDA) and the Navy, and gives Navy Aegis cruisers and destroyers a capability for conducting BMD operations. Congress’s decisions on the Aegis BMD program could significantly affect U.S. BMD capabilities and funding requirements, and the BMD-related industrial base.

Background

Aegis Ships

The Navy’s cruisers and destroyers are called Aegis ships because they are equipped with the Aegis ship combat system—an integrated collection of sensors, computers, software, displays, weapon launchers, and weapons named for the mythological shield that defended Zeus. The Aegis system was originally developed in the 1970s for defending ships against aircraft, anti-ship cruise missiles (ASCMs), surface threats, and subsurface threats. The system was first deployed by the Navy in 1983, and it has been updated many times since. The Navy’s Aegis ships include Ticonderoga (CG-47) class cruisers and Arleigh Burke (DDG-51) class destroyers.

Ticonderoga (CG-47) Class Aegis Cruisers

A total of 27 CG-47s were procured for the Navy between FY1978 and FY1988; the ships entered service between 1983 and 1994. The first five (CGs 47 through 51), which were built to an earlier technical standard in certain respects, were judged by the Navy to be too expensive to modernize and were removed from service in 2004-2005.

As a cost-saving measure, the Navy’s FY2013 budget proposes retiring 7 of the remaining 22 Aegis cruisers in FY2013 and FY2014, more than a decade before the end of their 35-year expected service lives. One of these seven ships has been given a capability for BMD operations; some or all of the other six were scheduled to be modified for BMD operations at some point.

1 The seven ships are Cowpens (CG-63), Anzio (CG-68), Vicksburg (CG-69), and Port Royal (CG-73), which are proposed for retirement in FY2013, and Gettysburg (CG-64), Chosin (CG-65), and Hue City (CG-66), which are proposed for retirement in FY2014. These ships entered service between 1991 (Cowpens) and 1994 (Port Royal); their 35-year service lives would extend to between 2026 and 2029. Port Royal was the last of the 27 ships in the class (i.e., it is the youngest ship in the class). Of the 22 Aegis cruisers currently in service, the oldest is Bunker Hill (CG-52), which entered service in 1986.

2 The ship that has already been given a capability for BMD operations is Port Royal (CG-73).
Arleigh Burke (DDG-51) Class Aegis Destroyers

62 Flight I/II and Flight IIA DDG-51s Procured in FY1985-FY2005

A total of 62 DDG-51s were procured for the Navy between FY1985 and FY2005; the first entered service in 1991 and the 62nd is scheduled to enter service in FY2012. The first 28 ships, known as Flight I/II DDG-51s, are scheduled to remain in service until age 35. The next 34 ships, known as Flight IIA DDG-51s, incorporate some design changes and are scheduled to remain in service until age 40.

No DDG-51s Procured in FY2006-FY2009

No DDG-51s were procured in FY2006-FY2009. The Navy during this period instead procured three Zumwalt (DDG-1000) class destroyers. The DDG-1000 design does not use the Aegis system and does not include a capability for conducting BMD operations. Navy plans do not call for modifying DDG-1000s to make them BMD-capable.

10 Flight IIA DDG-51s Procured or Programmed for FY2010-FY2016

Procurement of DDG-51s resumed in FY2010. One Flight IIA DDG-51 was procured in FY2010, two more were procured in FY2011, and a fourth was procured in FY2012. Navy plans call for procuring six more Flight IIA DDG-51s in FY2013-FY2016. The ship procured in FY2010 is scheduled to enter service in FY2016.

Flight III DDG-51s Programmed Starting in FY2016

Navy plans call for shifting to procurement of a new version of the DDG-51, called the Flight III version, starting in FY2016. The Flight III version is to be equipped with a new radar, called the Air and Missile Defense Radar (AMDR), that is more capable than the SPY-1 radar installed on all previous Aegis cruisers and destroyers.

Projected Aegis Ship Force Levels

The Navy’s FY2012 30-year (FY2012-FY2041) shipbuilding plan projects that the total number of Aegis cruisers and destroyers will grow from 84 at the end of FY2011 to a peak of 94 in FY2020 and FY2021, and then decline thereafter as CG-47s and older DDG-51s retire and are replaced by new DDG-51s on a less than one-for-one basis, reaching a minimum of 65 ships in FY2034 before growing back to 75 ships in FY2041. The Navy’s cruiser-destroyer force during this period is also to include the three DDG-1000s procured in FY2006-FY2009.

3 For more on the DDG-51 program, see CRS Report RL32109, Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress, by Ronald O'Rourke.

4 Of the two DDG-51s scheduled for procurement in FY2016, one is to be the final Flight IIA ship, and the other is to be the first Flight III ship.
Aegis Ships in Allied Navies

Sales of the Aegis system to allied countries began in the late 1980s. Allied countries that now operate, are building, or are planning to build Aegis-equipped ships include Japan, South Korea, Australia, Spain, and Norway.5

Aegis BMD System6

Aegis ships are given a capability for conducting BMD operations by incorporating changes to the Aegis system’s computers and software, and by arming the ships with BMD interceptor missiles. In-service Aegis ships can be modified to become BMD-capable ships, and DDG-51s procured in FY2010 and subsequent years are to be built from the start with a BMD capability.

Versions of Aegis BMD System

Currently fielded versions of the Aegis BMD system are called the 3.6.1 version and the newer and more capable 4.0.1 version. MDA and Navy plans call for fielding increasingly capable versions in coming years; these planned versions are called 5.0, 5.1, and 5.2. Improved versions feature improved processors and software, and are to be capable of using improved versions of the SM-3 interceptor missile (see Table 1).

MDA states that an in-service Aegis ship with a 3.6.1 BMD capability can be upgraded to a 4.0.1 BMD capability for about $45 million to $55 million.

Aegis BMD Interceptor Missiles

The BMD interceptor missiles used by Aegis ships are the Standard Missile-3 (SM-3) and the Standard Missile-2 Block IV (SM-2 Block IV). The SM-2 Block IV is to be succeeded in coming years by a BMD version of the new SM-6 interceptor.

SM-3 Midcourse Interceptor

The SM-3 is designed to intercept ballistic missiles above the atmosphere (i.e., exo-atmospheric intercept), in the midcourse phase of an enemy ballistic missile’s flight. It is equipped with a “hit-to-kill” warhead, called a kinetic warhead, that is designed to destroy a ballistic missile’s warhead by colliding with it.

MDA and Navy plans call for fielding increasingly capable versions of the SM-3 in coming years. The current version, called the SM-3 Block IA, is now being supplemented by the more capable SM-3 Block IB. These are to be followed by the SM-3 Block IIA and the SM-3 Block IIB.

5 The Norwegian ships are somewhat smaller than the other Aegis ships, and consequently carry a reduced-size version of the Aegis system that includes a smaller, less-powerful version of the SPY-1 radar.
6 Unless stated otherwise, information in this section is taken from MDA briefings on the Aegis BMD program given to CRS and CBO analysts in March 2010, March 2011, and March 2012.
Compared to the Block IA version, the Block IB version has an improved (two-color) target seeker, an advanced signal processor, and an improved divert/attitude control system for adjusting its course.

In contrast to the Block IA and IB versions, which have a 21-inch-diameter booster stage at the bottom but are 13.5 inches in diameter along the remainder of their lengths, the Block IIA version is to have a 21-inch diameter along its entire length. The increase in diameter to a uniform 21 inches provides more room for rocket fuel, permitting the Block IIA version to have a burnout velocity (a maximum velocity, reached at the time the propulsion stack burns out) that is greater than that of the Block IA and IB versions, as well as a larger-diameter kinetic warhead. The United States and Japan have cooperated in developing certain technologies for the Block IIA version, with Japan funding a significant share of the effort.

Compared to the Block IIA, the Block IIB version is to include a lighter kill vehicle, flexible propulsion, and upgraded fire control software.

MDA states that that SM-3 Block IBs have an estimated unit procurement cost of about $12 million to $15 million, and that SM-3 Block IIA have an estimated unit procurement cost of about $20 million to $24 million.

SM-2 and SM-6 Terminal Interceptors

The SM-2 Block IV is designed to intercept ballistic missiles inside the atmosphere (i.e., endo-atmospheric intercept), during the terminal phase of an enemy ballistic missile’s flight. It is equipped with a blast fragmentation warhead.

The existing inventory of SM-2 Block IVs—72 as of February 2012—was created by modifying SM-2s that were originally built to intercept aircraft and ASCMs. A total of 75 SM-2 Block IVs were modified, and three have been used in BMD flight tests, leaving the current remaining inventory of 72.

8 The cooperative research effort has been carried out under a U.S.-Japan memorandum of agreement signed in 1999. The effort has focused on risk reduction for four parts of the missile: the sensor, an advanced kinetic warhead, the second-stage propulsion, and a lightweight nose cone. The Block IIA development effort includes the development of a missile, called the Block II, as a stepping stone to the Block IIA. As a result, the Block IIA development effort has sometimes been called the Block II/IIA development effort. The Block II missile is not planned as a fielded capability.

9 Source: H.Rept. 111-491 of May 21, 2010 (the House Armed Services Committee report on H.R. 5136, the FY2011 defense authorization bill), p. 196.
MDA and Navy plans call for developing and procuring a more capable terminal-phase BMD interceptor based on the SM-6 air defense missile (the successor to the SM-2 air defense missile). The initial version of the SM-6 BMD interceptor, called Increment 1, is to enter service around 2015; a subsequent version, called Increment 2, is to enter service around 2018.

Table 1 summarizes the various versions of the Aegis BMD system and correlates them with the phases of the European Phased Adaptive Approach (or EPAA; see below) for European BMD operations.

<table>
<thead>
<tr>
<th>EPAA Phase</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Phase IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version of Aegis BMD system</td>
<td>3.6.1</td>
<td>4.0.1</td>
<td>5.0/5.0.1</td>
<td>5.1/5.1.1</td>
</tr>
<tr>
<td>Certified for initial use</td>
<td>2006</td>
<td>2012</td>
<td>2014</td>
<td>2018</td>
</tr>
<tr>
<td>OTE assessment</td>
<td>2008</td>
<td>2014</td>
<td>2016</td>
<td>2020</td>
</tr>
<tr>
<td>Mid-course interceptor(s) used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM-3 Block IA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SM-3 Block IB</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SM-3 Block IIA</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM-3 Block IIB</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Terminal-phase interceptor used</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM-2 Block IV</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SM-6 Increment 1</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SM-6 Increment 2</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Types of ballistic missiles that can be engaged</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRBM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MRBM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IRBM</td>
<td>Limited</td>
<td>Yes</td>
<td>Yes</td>
<td>Enhanced</td>
</tr>
<tr>
<td>ICBM</td>
<td>Noa</td>
<td>Noa</td>
<td>Noa</td>
<td>Limited</td>
</tr>
<tr>
<td>Launch or engage on remote capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch on remote</td>
<td>Initial</td>
<td>Enhanced</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Engage on remote</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Source: MDA briefings to CRS and the Congressional Budget Office (CBO), March 2010, March 2011, March 2012.

Notes: OTE is operational test and evaluation. SRBM is short-range ballistic missile; MRBM is medium-range ballistic missile; IRBM is intermediate-range ballistic missile; ICBM is intercontinental ballistic missile. **Launch on remote** is the ability to launch the interceptor using data from off-board sensors. **Engage on remote** is the ability to engage targets using data from off-board sensors.

a. Cannot intercept ICBMs, but the system has a long-range search and track (LRS&T) capability—an ability to detect and track ballistic missiles at long ranges.
European Phased Adaptive Approach (EPAA) for European BMD

On September 17, 2009, the Obama Administration announced a new approach for regional BMD operations called the Phased Adaptive Approach (PAA). The first application of the approach is in Europe, and is called the European PAA (EPAA). EPAA calls for using BMD-capable Aegis ships, a land-based radar in Europe, and eventually two Aegis Ashore sites in Romania and Poland to defend Europe against ballistic missile threats from countries such as Iran. MDA states that:

The Department [of Defense] met its commitment for EPAA Phase 1 by deploying Aegis BMD ships and a land-based radar in Europe by the end of 2011. Deliveries in the next three EPAA phases include:

- Aegis Ashore in Romania with SM-3 IB interceptors in the 2015 timeframe (Phase 2),
- Aegis Ashore in Poland with SM-3 IIA interceptors in the 2018 timeframe (Phase 3), and
- SM-3 IIB interceptors and early intercept capability in the 2020 timeframe (Phase 4)

The United States will also pursue phased adaptive approaches in the Asia Pacific and the Middle East by building on current efforts.10

Each Aegis Ashore site in the EPAA is to include a structure housing an Aegis system similar to the deckhouse on an Aegis ship and 24 SM-3 missiles launched from a re-locatable Vertical Launch System (VLS) based on the VLS that is installed in Navy Aegis ships.

Although BMD-capable Aegis ships have deployed to European waters in the past, the first BMD-capable Aegis ship officially deployed to European waters as part of the EPAA departed its home port of Norfolk, VA, on March 7, 2011, for a deployment to the Mediterranean that lasted several months.11

Planned Numbers of BMD-Capable Aegis Ships and SM-3 Interceptors

As shown in Table 2, under the proposed FY2013 budget, the number of BMD-capable Navy Aegis ships is scheduled to grow from 24 at the end of FY2011 to 36 at the end of FY2018.

Table 2. Numbers of BMD-Capable Aegis Ships and SM-3 Missiles

<table>
<thead>
<tr>
<th></th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMD-capable Aegis ships</td>
<td></td>
</tr>
<tr>
<td>BMD conversions of existing Aegis cruisers and destroyers (cumulative totals)</td>
<td></td>
</tr>
<tr>
<td>3.6.1 version<sup>a</sup></td>
<td>22</td>
<td>24</td>
<td>23</td>
<td>19</td>
<td>17</td>
<td>16</td>
<td>13</td>
<td>11</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>4.0.1 version</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>5.0 version</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>5.1 version</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Subtotal</td>
<td>24</td>
<td>29</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>New Aegis destroyers procured in FY2010 and beyond, with BMD installed during ship’s construction (cumulative totals)</td>
<td></td>
</tr>
<tr>
<td>5.0 version</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1<sup>b</sup></td>
<td>3<sup>b</sup></td>
<td>4<sup>b</sup></td>
<td>6<sup>b</sup></td>
<td>7<sup>b</sup></td>
</tr>
<tr>
<td>TOTAL</td>
<td>24</td>
<td>29</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>35</td>
<td>36</td>
<td>TBD<sup>+</sup></td>
<td>TBD<sup>+</sup></td>
</tr>
<tr>
<td>SM-3 missile procurement (annual quantities)</td>
<td></td>
</tr>
<tr>
<td>Block IA</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Block IB</td>
<td>0<sup>c</sup></td>
<td>46</td>
<td>29</td>
<td>69</td>
<td>82</td>
<td>77</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Block IIA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22<sup>d</sup></td>
<td>0</td>
<td>12</td>
<td>36</td>
<td>48</td>
<td>TBD</td>
</tr>
<tr>
<td>Block IIIB</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>46</td>
<td>29</td>
<td>69</td>
<td>104</td>
<td>77</td>
<td>84</td>
<td>108</td>
<td>120<sup>+</sup></td>
<td>72<sup>+</sup></td>
</tr>
</tbody>
</table>

SM-3 missile deliveries/inventory^e										
Block IIA	107/87	113/92	113/91	136/114	136/105	136/88	136/70	136/45	136/27	136/16
Block IB	1/0	16/12	25/18	61/49	100/83	169/152	251/234	328/311	400/381	472/453
Block IIA	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Block IIIB	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Total	108/87	129/104	138/109	197/163	236/188	305/240	394/311	483/369	567/429	678/529

Source: DOD budget submissions for FY2013 and prior years, and (for certain SM-3 annual procurement quantities) telephone consultation with MDA, March 19, 2012.

Notes: TBD is to be determined.

- Declining totals for 3.6.1 ships after FY2012 reflect the upgrading of some of these ships to more advanced versions of the Aegis BMD system.
- Figures taken from the Navy’s FY2013 budget submission. MDA shows two ships as being in service by FY2016 (as opposed to the one ship shown in the Navy’s budget submission as being in service by then).
- 25 Block IB missiles (including 1 Pathfinder missile) funded prior to the 46 shown for FY2012.
- 22 Block IIA missiles to be funded with research and development in FY2015.
- Deliveries figures are cumulative and include missiles procured prior to FY2011 through both RDT&E and procurement funds. Inventory figures reflect missiles used or projected to be used in Aegis BMD flight tests.
Home Ports of BMD-Capable Aegis Ships

Pacific vs. Atlantic Fleet Homeporting

As of February 2012, 16 of the Navy’s 24 BMD-capable Aegis ships were homeported in the Pacific, including 5 at Yokosuka, Japan, 6 at Pearl Harbor, HI, and 5 at San Diego, CA. The other eight BMD-capable Aegis ships were homeported in the Atlantic, with seven at Norfolk, VA, and one at Mayport, FL.

Reflecting the implementation of the EPAA, the number of BMD-capable Aegis ships homeported in the Atlantic is scheduled to grow over time. By the end of FY2012, the Navy is to still have 16 BMD-capable Aegis ships homeported in the Pacific, but the number of Aegis-BMD ships homeported in the Atlantic is to grow to 13, including 11 at Norfolk and 2 at Mayport.

October 5, 2011, Announcement of Homeporting in Spain

On October 5, 2011, the United States, Spain, and NATO jointly announced that, as part of the EPAA, four BMD-capable Aegis ships are to be forward-homeported (i.e., based) at the naval base at Rota, Spain.12 The four ships are the destroyers Ross (DDG-71) and Donald Cook (DDG-75), which are to move to Rota in FY2014, and the destroyers Carney (DDG-64) and Porter (DDG-78), which are to move to Rota in FY2015. As of early 2012, Carney was homeported at Mayport, FL, and the other three ships were homeported at Norfolk.13 The move is to involve an estimated 1,239 military billets (including 1,204 crew members for the four ships and 35 shore-based support personnel),14 and about 2,100 family members.15

The Navy estimates the up-front costs of transferring the four ships at $92 million in FY2013, and the recurring costs of basing the four ships in Spain rather than in the United States at roughly $100 million per year.16

14 Source: Navy information paper dated March 8, 2012, provided by Navy Office of Legislative Affairs to CRS on March 9, 2012.

15 Source: Navy briefing slides dated February 27, 2012, provided by the Navy to CRS on March 9, 2012.

16 Source: Navy briefing slides dated February 27, 2012, provided by the Navy to CRS on March 9, 2012. The briefing slides state that the estimated up-front cost of $92 million includes $13.5 million for constructing a new weapon magazine, $0.8 million for constructing a pier laydown area, $3.4 million for constructing a warehouse, $5.0 million for repairing an existing facility that is to be used as an administrative/operations space, and $69.3 million for conducting maintenance work on the four ships in the United States prior to moving them to Rota. The briefing states that the estimated recurring cost of $100 million per year includes costs for base operating support, annual PCS (personnel change of station) costs, a pay and allowances delta, annual mobile training team costs, ship maintenance work, the operation of a Ship Support Activity, and higher fuel costs associated with a higher operating tempo that is maintained by ships that are homeported in foreign countries.
Rota is on the southwestern Atlantic coast of Spain, a few miles northwest of Cadiz, and about 65 miles northwest of the Strait of Gibraltar leading into the Mediterranean. U.S. Navy ships have been homeported at Rota at various points in the past, most recently in 1979.17

As part of the October 5, 2011, joint announcement, the Prime Minister of Spain, Jose Luis Rodriguez Zapatero, stated in part:

This meeting marks a step forward on the path that we set for ourselves less than a year ago at the Lisbon Summit, aiming to make NATO an Alliance that is “more effective, engaged and efficient than ever before”, in the words of [NATO] Secretary-General Rasmussen.

At that historic Summit, decisions of enormous importance for the future of the Alliance were taken, such as the New Strategic Concept to face the new challenges of the 21st century, and the establishment of a new command structure that is leaner and more flexible, and improved.

Besides these two important innovations, and as a consequence of them, the allies decided to develop an Anti-Missile Defence System….

As you will recall, as a consequence of this new structure launched in Lisbon, Spain obtained an installation of great importance within NATO’s Command and Control Structure: the Combined Air Operations Centre (CAOC) in Torrejón de Ardoz, Spain.

This Centre, together with the Centre in Uedem, Germany, will form part of the air command and control system which is to include the anti-missile defence that the Alliance is going to implement.

Together with this land-based component of the new air defence system, I can inform you that Spain is also going to support, starting in 2013, an important part of the system’s naval element.

In recent months, the different options have been studied, and finally, it was decided that Spain should be the site for this component of the system, due to its geostrategic location and its position as gateway to the Mediterranean.

Specifically, the United States is going to deploy, as its contribution to NATO’s Anti-Missile Defence System, a total of four vessels equipped with the AEGIS system, to be based in Rota.

This means that Rota is going to become a support centre for vessel deployment, enabling them to join multinational forces or carry out NATO missions in international waters, particularly in the Mediterranean….

Moreover, this initiative will have a positive impact, in socio-economic terms, on our country, and most especially on the Bay of Cadiz.

Permanently basing four vessels in Rota will require investing in the Base’s infrastructure, and contracts with service providers, thus generating approximately a thousand new jobs, both directly and indirectly.

For the shipyards, and for Spain’s defence industry, the foreseeable impact will also be highly positive, as the USA is considering conducting the vessels’ maintenance and upkeep at the nearby San Fernando shipyards, in the province of Cadiz. In addition, there will be significant transfer of state-of-the-art technology, from which Spain can benefit.18

As part of the same joint announcement, Secretary of Defense Leon Panetta stated in part:

With four Aegis ships at Rota, the alliance is significantly boosting combined naval capabilities in the Mediterranean, and enhancing our ability to ensure the security of this vital region. This relocation of assets takes place as part of the United States’ ongoing effort to better position forces and defensive capabilities in coordination with our European allies and partners.

This announcement should send a very strong signal that the United States is continuing to invest in this alliance, and that we are committed to our defense relationship with Europe even as we face growing budget constraints at home….

Alongside important agreements that were recently concluded with Romania, Poland, and Turkey, Spain’s decision represents a critical step in implementing the European Phased Adaptive Approach, as our leaders agreed to in Lisbon….

Beyond missile defense, the Aegis destroyers will perform a variety of other important missions, including participating in the Standing NATO Maritime Groups, as well as joining in naval exercises, port visits, and maritime security cooperation activities….

The agreement also enables the United States to provide rapid and responsive support to the U.S. Africa and U.S. Central Commands, as needed.19

An October 5, 2011, press report stated:

A senior U.S. defense official said making the [ships’] base at Rota, on Spain’s southwestern Atlantic coast near Cadiz, would reduce the numbers of [BMD-capable Aegis] ships needed for the [EPAA] system.

“You [would] probably need 10 of these ships if they were based in the eastern U.S. to be able to … transit across the ocean back and forth to [keep the same number on] patrol in the Med,” he said.

The U.S. official said the United States was committed to having at least one ship on station at all times in the eastern Mediterranean, where their anti-missile missiles would be most effective. Having them based in Rota would enable more than one to be in the eastern Mediterranean as needed.

The ships also would be part of the pool of vessels available to participate in standing NATO maritime groups, which are used to counter piracy and for other missions, he said.20

An October 10, 2011, press report stated:

“Our plan is to have the first couple [of ships] there in 2014 and the next two in about 2015,” said Cmdr. Marc Boyd, spokesman for [U.S. Navy] 6th Fleet. Boyd added: “It’s really early in the process and we haven’t selected any of the ships yet.” Boyd said the shift will bring an estimated 1,300 sailors and Navy civilians and 2,100 dependents to Naval Station Rota, which would double the base’s ranks. Naval Station Rota spokesman Lt. j.g. Jason Fischer said the base now has 1,067 sailors.…

The three piers at the base primarily support Navy ships passing through on port calls.

Boyd said 6th Fleet is considering plans to add base infrastructure and maintenance facilities to support the ships, as well as additional housing for crews, “but the base is pretty suited as it is now.”

Aegis BMD Flight Tests

DOD states that since January 2002, the Aegis BMD system has achieved 18 successful exo-atmospheric intercepts in 23 attempts using the SM-3 missile (including three successful intercepts in four attempts by Japanese Aegis ships), and 3 successful endo-atmospheric intercepts in 3 attempts using the SM-2 Block IV missile, making for a combined total of 21 successful intercepts in 26 attempts. In addition, on February 20, 2008, a BMD-capable Aegis cruiser operating northwest of Hawaii used a modified version of the Aegis BMD system to shoot down an inoperable U.S. surveillance satellite that was in a deteriorating orbit.22 Including this intercept in the count increases the totals to 19 successful exo-atmospheric intercepts in 24

22 The modifications to the ship’s Aegis BMD midcourse system reportedly involved primarily making changes to software. DOD stated that the modifications were of a temporary, one-time nature. Three SM-3 missiles reportedly were modified for the operation. The first modified SM-3 fired by the cruiser successfully intercepted the satellite at an altitude of about 133 nautical miles (some sources provide differing altitudes). The other two modified SM-3s (one carried by the cruiser, another carried by an engage-capable Aegis destroyer) were not fired, and the Navy stated it would reverse the modifications to these two missiles. (For additional information, see the MDA discussion available online at http://www.mda.mil/system/aegis_one_time_mission.html, and also Peter Spiegel, “Navy Missile Hits Falling Spy Satellite,” Los Angeles Times, February 21, 2008; Marc Kaufman and Josh White, “Navy Missile Hits Satellite, Pentagon Says,” Washington Post, February 21, 2008; Thom Shanker, “Missile Strikes A Spy Satellite Falling From Its Orbit,” New York Times, February 21, 2008; Bryan Bender, “US Missile Hits Crippled Satellite,” Boston Globe, February 21, 2008; Zachary M. Peterson, “Navy Hits Wayward Satellite On First Attempt,” NavyTimes.com, February 21, 2008; Dan Nakaso, “Satellite Smasher Back At Pearl,” Honolulu Advertiser, February 23, 2008; Zachary M. Peterson, “Lake Erie CO Describes Anti-Satellite Shot,” NavyTimes.com, February 25, 2008; Anne Mulrine, “The Satellite Shootdown: Behind the Scenes,” U.S. News & World Report, February 25, 2008; Nick Brown, “US Modified Aegis and SM-3 to Carry Out Satellite Interception Shot,” Jane’s International Defence Review, April 2008: 35.)

MDA states that the incremental cost of the shoot-down operation was $112.4 million when all costs are included. MDA states that this cost is to be paid by MDA and the Pacific Command (PACOM), and that if MDA is directed to absorb the entire cost, “some realignment or reprogramming from other MDA [program] Elements may be necessary to lessen significant adverse impact on [the] AEGIS [BMD program’s] cost and schedule.” (MDA information paper dated March 7, 2008, provided to CRS on June 6, 2008. See also Jason Sherman, “Total Cost for Shoot-Down of Failed NRO Satellite Climbs Higher,” InsideDefense.com, May 12, 2008.)
Navy Aegis Ballistic Missile Defense (BMD) Program

attempts using the SM-3 missile, and 22 successful exo- and endo-atmospheric intercepts in 27 attempts using both SM-3 and SM-2 Block IV missiles.

A December 2011 report on various DOD acquisition programs from DOD’s Director, Operational Test and Evaluation (DOT&E)—DOT&E’s annual report for FY2011—stated, in the section on the Aegis BMD program, that

In FY[20]11, Aegis BMD demonstrated, for the first time, the capability to engage an intermediate-range separating ballistic missile in the midcourse phase with an SM-3 Block IA interceptor. In that engagement, the firing ship used track data forwarded by C2BMC from an AN/TPY-2 (FBM) radar to develop a firing solution. The engagement, which exercised Aegis BMD 3.6.1 launch-on-remote functionality, demonstrated an important type of engagement capability needed to support Phase 1 of the PAA for defense of Europe. Cued engagements against longer-range targets would be expected in the European theater.

Anomalous behavior was observed during the flyout of the SM-3 Block IA interceptor in FTM-15, but the anomaly did not preclude an intercept. If the anomaly occurred under different engagement conditions, it could have had an impact on the success of the engagement. However, it should be noted that the anomaly was not observed in any of the 21 previous SM-3 flyouts. The cause of the anomaly is under investigation by the program.

Aegis BMD continues to improve its interoperability with other BMDS elements and sensors, as demonstrated in recent ground testing. Improvements in interoperability are still needed, however, to ensure that Aegis BMD can send and receive cues and track data of sufficient quality to support PAA Phase 1, which will be deployed at the end of CY11.

FTM-16 Event 2 failed to demonstrate the capability to intercept a ballistic missile with the new SM-3 Block IB interceptor fired from an Aegis BMD 4.0.1 ship. Although the interceptor failed to intercept the target, many of the new capabilities of the Aegis BMD 4.0.1 system were exercised during the mission, and functioned as designed. FTM-16 Event 2 was the first developmental firing mission with the Aegis BMD 4.0.1 system. A Failure Review Board is determining the root cause.23

For further discussion of Aegis BMD flight tests—including a May 2010 magazine article and supplementary white paper in which two professors with scientific backgrounds criticize DOD claims of successes in Aegis (and other DOD) BMD flight tests—see the Appendix.

Allied Participation and Interest in Aegis BMD Program

Japan

Japan’s interest in BMD, and in cooperating with the United States on the issue, was heightened in August 1998 when North Korea test-fired a Taepo Dong-1 ballistic missile that flew over Japan before falling into the Pacific.24 In addition to cooperating with the United States on development of technologies for the SM-3 Block IIA missile, Japan is modifying all six of its Aegis destroyers

24 For a discussion, see CRS Report RL31337, Japan-U.S. Cooperation on Ballistic Missile Defense: Issues and Prospects, by Richard P. Cronin. This archived report was last updated on March 19, 2002. See also CRS Report RL33436, Japan-U.S. Relations: Issues for Congress, coordinated by Emma Chanlett-Avery.
with an approximate equivalent of the 3.6.1 version Aegis BMD system. (Japan’s previous plans called for modifying four of the six ships.) As of December 2010, four of Japan’s Aegis ships had received the modification. \(^{25}\) Japanese BMD-capable Aegis ships have conducted four flight tests of the Aegis BMD system using the SM-3 interceptor, achieving three successful exo-atmospheric intercepts.

Other Countries

Other countries that MDA views as potential naval BMD operators (using either the Aegis BMD system or some other system of their own design) include the United Kingdom, the Netherlands, Spain, Germany, Denmark, South Korea, and Australia. As mentioned earlier, Spain, South Korea, and Australia either operate, are building, or are planning to build Aegis ships. The other countries operate destroyers and frigates with different combat systems that may have potential for contributing to BMD operations.

An October 3, 2011, press report stated that

The Netherlands, which has had a longtime interest in a missile shield, is pressing ahead to build up its own capabilities. The Dutch defense ministry plans to expand the capabilities of the Thales Smart-L radar on Dutch frigates to take on BMD roles. The program’s value is estimated at €100-250 million, including logistics support and spares.

Other European navies using the sensor may follow the Dutch lead.

Dutch Defense Minister Hans Hillen notes that the Smart-L effort would help address the BMD sensor shortage within the NATO alliance. Citing NATO’s decision last year to take a more expansive approach to BMD, Hillen says Smart-L could give the ALTBMD [Active Layered Theater BMD] command-and-control backbone the required long-range target-detection analysis to help identify where a threat originates.

The Netherlands has already carried out a sensor trial for the expanded role in cooperation with the U.S. Navy. The move does not include the purchase of Raytheon Standard Missile SM-3 interceptors.

Both hardware and software modifications to the combat management system are needed. All four [of the Dutch navy’s] De Zeven Provincien-class frigates would be modified to ensure that two can be deployed, even as one is in maintenance and the fourth is being readied for operations.

Thales is due to complete a series of studies to prepare for the acquisition of the upgrade in the third quarter of 2012. The goal is to have the first frigates ready for operations by 2017. All four should be upgraded by the end of that year.

Although the Netherlands is leading the program, other Smart-L users, including the German navy and Denmark, have been monitoring the effort. France also has shown interest in the system, Hillen said in a letter to legislators.

France also wants to upgrade its Aster 30 interceptor to give it a basic BMD capability, although a formal contract has not been awarded….

Raytheon, meanwhile, is still fighting to win a foothold for its Standard Missile 3 (SM-3) in Europe. The company continues its push to persuade continental navies to embrace the SM-3 Block 1B for missile defense roles, and says it has largely validated the dual-mode data link that would be key to the concept.

The data link would feature both S- and X-band capability—the former to support the Aegis radar system used by the U.S. and others, and the latter for the Smart-L/APAR (active phased array radar) combination used, for instance, by the Dutch navy.\(^{26}\)

FY2013 Funding Request

The Aegis BMD program is funded mostly through MDA’s budget. The Navy’s budget provides additional funding for BMD-related efforts. As shown in Table 3, MDA’s proposed FY2013 budget requests a total of $2,303.0 million in procurement and research and development funding for Aegis BMD efforts, including funding for Aegis Ashore sites that are to be part of the EPAA, which is referred to in the table as funding for the land-based SM-3.

<table>
<thead>
<tr>
<th>Table 3. MDA Funding for Aegis BMD Efforts, FY2012-FY2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>(In millions of dollars, rounded to nearest tenth; totals may not add due to rounding; FY2012 is actual; FY2013 is requested; FY2014-FY2017 are programmed)</td>
</tr>
<tr>
<td>Procurement</td>
</tr>
<tr>
<td>Aegis BMD (Line 31)</td>
</tr>
<tr>
<td>Research, development, test & evaluation (RDT&E)</td>
</tr>
<tr>
<td>Next-generation Aegis missile (SM-3 IIB) (PE 0603902C, line 65)</td>
</tr>
<tr>
<td>Aegis BMD (PE 06039892C, line 86)</td>
</tr>
<tr>
<td>Land-based SM-3 (LBSM3) (PE0604881C, line 107)</td>
</tr>
<tr>
<td>Aegis SM-3 IIA Co-development (PE0604881C, line 108)</td>
</tr>
<tr>
<td>SUBTOTAL RDT&E</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Source: FY2013 budget-justification books for MDA for Research, Development, Test & Evaluation, Defense-Wide (Volume 2a) and for Procurement, Defense-Wide (Volume 2b).

Issues for Congress

Reduction in Ramp-Up Rate for BMD-Capable Aegis Ships

One potential oversight issue for Congress concerns a reduction under the proposed FY2013 budget in the ramp-up rate for numbers of BMD-capable Aegis ships over the next few years. Table 4 shows projected numbers of BMD-capable Aegis ships under the FY2013 compared to projected numbers under the FY2012 budget.

Table 4. Numbers of BMD-Capable Aegis Ships Under FY2012 and FY2013 Budgets

<table>
<thead>
<tr>
<th></th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY2012 budget</td>
<td></td>
</tr>
<tr>
<td>Conversions</td>
<td>23</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>38</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>New-built DDG-51s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1(^a)</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>38</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>FY2013 budget</td>
<td></td>
</tr>
<tr>
<td>Conversions</td>
<td>24</td>
<td>29</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>New-built DDG-51s</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1(^b)</td>
<td>3(^b)</td>
<td>4(^b)</td>
<td>6(^b)</td>
<td>7(^b)</td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>29</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>35</td>
<td>36</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>FY2013 plan compared to FY2012 plan</td>
<td></td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>NC</td>
<td>-4</td>
<td>-6</td>
<td>-8</td>
<td>-7</td>
<td>-7</td>
<td>not clear</td>
<td>not clear</td>
<td></td>
</tr>
<tr>
<td>Source: FY2012 and FY2013 budget submissions.</td>
<td></td>
</tr>
<tr>
<td>Notes: TBD is to be determined; NC is no change.</td>
<td></td>
</tr>
<tr>
<td>a. Navy budget-justification documents for FY2012 showed the DDG-51 procured in FY2010 entering service in FY2016, not FY2015 as shown in this table.</td>
<td></td>
</tr>
<tr>
<td>b. Figures taken from Navy’s FY2013 budget submission. MDA shows two ships as being in service by FY2016 (as opposed to the one ship shown in the Navy’s budget submission as being in service by then).</td>
<td></td>
</tr>
</tbody>
</table>

As can be seen Table 4, under the FY2013 budget, there are to be 36 BMD-capable Aegis ships by FY2018, or 7 less than projected under the FY2012 budget for FY2018.

The proposal under the FY2013 budget to retire seven Aegis cruisers early, in FY2013 and FY2014 (see “Ticonderoga (CG-47) Class Aegis Cruisers” in “Background”), may explain part of the difference between the ramp-up rates under the two budget plans: as mentioned earlier, one of these seven ships has been given a capability for BMD operations, and some or all of the other six were scheduled to be modified for BMD operations at some point.

Some observers have been concerned that demands for BMD-capable Aegis ships are growing faster than the number of BMD-capable Aegis ships. The reduction in the ramp-up rate for
numbers of BMD-capable Aegis ships under the proposed FY2013 budget compared to the FY2012 budget might, other things held equal, reinforce such concerns. On the other hand, as mentioned earlier (see “October 5, 2011, Announcement of Homeporting in Spain” in “Background”), a DOD official has been quoted in the press as saying that the EPAA mission to be performed by the four BMD-capable Aegis ships to be homeported at Rota, Spain, would instead require 10 U.S.-homeported BMD-capable Aegis ships to perform. On that basis, it would appear that homeporting four BMD-capable Aegis ships at Rota, Spain, would, other things held equal, reduce demands for BMD-capable Aegis ships by a net six ships. On that basis, in terms of the balance between demands for BMD-capable Aegis ships and available numbers of BMD-capable Aegis ships, the decline in the ramp-up rate in the number of BMD-capable Aegis ships under the proposed FY2013 budget compared to the FY2012 budget might be viewed as offset to a substantial degree, at least in certain years, by the plan to forward-homeport four BMD-capable Aegis ships at Rota.

Concerning demands for BMD-capable Aegis ships in general, a September 16, 2011, press report stated:

“The BMD ships between now and 2017 are basically deployed for seven months, home for seven months, deployed for seven months, home for seven months for the next six years,” [Chief of Naval Operations Admiral Gary Roughead] said. “[W]ith the retention environment we’re in now, we’re not seeing the effects of that on our people yet, but when the economy turns, that’s a pretty brutal pace.”

An April 2011 Navy report to Congress on naval force structure and BMD stated the following:

The Navy currently has sufficient capacity to meet the most critical demands for multi-mission surface combatants. However, the Navy does not have the capacity to meet all GCC [Global Combatant Commander] demands for BMD-capable surface combatants without breaking currently established Chief of Naval Operations Personnel Tempo program limits for deployment lengths, dwell and homeport tempo. Navy’s funded BMD upgrade plan is structured to balance the need to meet current multi-mission and Aegis BMD operational requirements against the need to increase Aegis BMD capacity and upgrade existing BMD-capable Aegis ships to pace the future threat.

The Navy, in conjunction with the Missile Defense Agency (MDA), has established a plan to increase the number of BMD-capable Aegis ships from 23 in FY2011 to 41 in FY2016 to begin to address this shortfall. This plan increases capacity through a combination of installing Aegis BMD 3.6.1 / 4.0.1 / 5.0 suites in existing Aegis ships (Aegis Modernization Program) and new construction commencing with DDG-113. This combined upgrade/new construction approach is designed to mitigate both the near term operational demand for multi-mission (including BMD) large surface combatants and the increasing Aegis BMD capability and capacity demand in the future.

The analytical work associated with the Navy’s ongoing Force Structure Analysis has progressed to the point that a FY2024 requirement for 94 multi-mission large surface combatants has been established. The global proliferation of land-attack ballistic missiles and the anticipated proliferation of anti-ship ballistic missiles underpins a related requirement for all multi-mission large surface combatants with Aegis weapon systems to be BMD-capable beyond ~2025....

The Navy and Missile Defense Agency (MDA) have concluded that the Geographic Combatant Commanders’ (GCCs) demand for surface combatants with Aegis BMD capability will outpace capacity through approximately 2018. This conclusion was reached based on an assessment that considered the current and projected ballistic missile threat; current and projected requests from the GCCs including the Phased Adaptive Approach (PAA) for defense of Europe directed by the President; other force generation factors such as maintenance availabilities necessary to ensure the ships reach their expected service lives, training requirements and deployment lengths; and the deployment of Aegis Ashore to offset some of the growing demand for BMD capability.…

BMD-capable large surface combatant requirements are independently determined by each GCC based on theater operational planning and mission analyses that consider unique regional factors such as the ballistic missile threat, threat dispersal, geography, size of the defended area, and the specific number and disposition of defended assets. Each GCC submits their fiscal year Aegis BMD requirement to the Joint Staff for validation. Once validated, U.S. Fleet Forces Command provides a consolidated sourcing solution for large surface combatants, to include those that are BMD-capable. The annual requirements and sourcing solutions are reviewed by a Global Force Management Board which ensures competing GCC requirements are properly prioritized based on overarching global defense priorities and that the Navy’s limited BMD capacity is applied to the most critical needs.

The Global Force Management Board submits its requirements/sourcing recommendation to SECDEF for approval, in the form of a Global Force Management Allocation Plan which allocates Aegis BMD surface combatants to the GCC’s for specified timeframes. Emergent GCC requirements for Aegis BMD combatants in response to unforeseen crises are subject to a similar approval process, without the Global Force Management Board review. In this case, SECDEF decisions represent adjustments to the annual Global Force Management Allocation Plan.

The total number of ships required to support the Phased Adaptive Approach to ballistic missile defense of Europe will be based on the operational planning and mission analysis factors noted above, combined with force generation factors such as maintenance, training and forward stationing or rotational model considerations. US European Command’s operational plan for the ballistic missile defense of Europe has not been approved as of the date of this report.…

US European Command’s operational plan for the ballistic missile defense of Europe has not yet been approved, but could incorporate up to two Aegis Ashore batteries. Using a standard rotational BMD force structure model of five ships to sustain 1.0 presence, each Aegis Ashore battery could make up to five ships available to service Aegis BMD combatant requirements that would otherwise go unresourced.…

All Aegis BMD surface combatants undergo the training, deployment and maintenance phases that comprise the Fleet Response Plan. These phases are balanced to ensure each crew is proficient across the full spectrum of missions the ship is capable of performing; to meet the operational requirements of the GCCs; and to ensure these capital assets reach their expected service life. In the near term, this balance will entail deployments for BMD-capable surface combatants of about seven months.28

Demands for Aegis Ships in General

Another potential oversight issue for Congress concerns demands from U.S. regional military commanders for Aegis ships in general. Some observers are concerned that demands for Aegis ships for conducting BMD operations could strain the Navy’s ability to provide regional military commanders with Aegis ships for performing non-BMD missions in various locations around the world.

The Navy’s Aegis ships are multi-mission platforms that are used for performing a range of non-BMD missions, including forward-deployed presence for regional deterrence, reassurance, and stabilization; partnership-building activities; humanitarian assistance and disaster response (HADR) operations; maritime security operations (including anti-piracy operations in the Gulf of Aden); intelligence, surveillance, and reconnaissance (ISR) operations; counter-terrorism operations; and (if need be) conventional warfighting operations. In conventional warfighting operations, Aegis ships could be called upon to perform a variety of non-BMD functions, including anti-air warfare, anti-surface warfare, strike warfare and naval surface fire support, and antisubmarine warfare. Locations that are good for performing BMD operations might not be good for performing non-BMD operations, and vice versa.

The Navy’s force-level goal for cruisers and destroyers is to achieve and maintain a force of 94 ships. The Navy’s FY2012 30-year (FY2012-FY2041) shipbuilding plan does not contain enough destroyers to maintain a force of 94 cruisers and destroyers consistently over the long run. The Navy projects that implementing the 30-year plan would result in a cruiser-destroyer force that drops below 94 ships in FY2025, reaches a minimum of 68 ships (i.e., 26 ships, or about 28%, below the required figure of 94 ships) in FY2034, and remains 16 or more ships below the 94-ship figure through the end of the 30-year period. The projected cruiser-destroyer shortfall is the largest projected shortfall of any ship category in the Navy’s 30-year shipbuilding plan. Another CRS report discusses the projected cruiser-destroyer shortfall in greater detail.29

Rear Admiral Archer Macy, the director of the Joint Integrated Air and Missile Defense Organization, testified to the Senate Armed Services Committee on April 20, 2010, that DOD does not plan to give BMD-capable Aegis ships a strict role of performing BMD operations only. He also stated, however, that it was possible, depending on ballistic missile threats, that BMD-capable Aegis ships might sometimes be constrained to certain operating areas.30

As mentioned earlier (see “October 5, 2011, Announcement of Homeporting in Spain” in “Background”), Secretary of Defense Leon Panetta stated the following as part of the October 5, 2011, joint announcement about homeporting four BMD-capable Aegis ships at Rota, Spain, as part of the EPAA:

> Beyond missile defense, the Aegis destroyers will perform a variety of other important missions, including participating in the Standing NATO Maritime Groups, as well as joining in naval exercises, port visits, and maritime security cooperation activities….

29 CRS Report RL32109, Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress, by Ronald O'Rourke.
The agreement also enables the United States to provide rapid and responsive support to the U.S. Africa and U.S. Central Commands, as needed.31

An April 2011 Navy report to Congress on naval force structure and BMD stated the following:

The Navy’s operating concept for maritime BMD features a graduated readiness posture that allows BMD-capable Aegis ships to be on a BMD mission tether and employed concurrently in other missions such as strike warfare, air defense, anti-submarine warfare, surface warfare, information warfare, high value asset protection, or maritime interdiction to contribute to overall GCC [Global Combatant Commander] naval requirements. While Aegis ships performing a BMD mission do not lose the capability to conduct these other missions, specific mission effectiveness may be affected by optimizing the ships’ position for BMD and/or application of the ship’s radar resources to the BMD mission.

The Navy currently has sufficient capacity to meet the most critical demands for multi-mission surface combatants….

The analytical work associated with the Navy’s ongoing Force Structure Analysis has progressed to the point that a FY2024 requirement for 94 multi-mission large surface combatants has been established. This requirement assumed that the Phased Adaptive Approach for the ballistic missile defense of Europe would incorporate two Aegis Ashore batteries….

Each GCC’s multi-mission surface combatant requirement, including the BMD mission, is constantly evolving to reflect changes in the global security environment, our National Military Strategy, and other Department of Defense guidance related to operations and contingency plans. Within this context, BMD-capable surface combatant requirements are independently determined by each GCC based on mission analyses that consider unique regional factors such as the ballistic missile threat, threat dispersal, geography, size of the defended area, and the specific number and disposition of defended assets. Other mission requirements are similarly derived and the GCC’s total surface combatant requirement is ultimately determined considering specific operational objectives and the extent to which supporting schemes of maneuver accommodate multi-mission employment of Aegis BMD surface combatants.32

A January 4, 2010, news report stated:

No sooner did the Aegis ballistic missile defense (BMD) system become operational in 2008 than U.S. combatant commanders started asking for BMD-equipped ships to begin patrolling their areas.

Central Command needed a “shooter” in the northern Arabian Gulf. European Command wanted one in the eastern Mediterranean. Pacific Command already had Aegis ships with limited BMD capabilities on guard around Japan for a potential launch from North Korea.

The demand for BMD ships is only expected to increase, driven in part by rising concerns about Iran’s intentions and the U.S. decision in September to cancel an anti-missile system in Poland and the Czech Republic and rely instead on Aegis.

But the Navy has a relatively small number of such ships, and those destroyers and cruisers are designed to carry out a wide range of war-fighting tasks.

As a result, while Navy commanders are pleased with the expanding capabilities of their Aegis ships, they’re also somewhat guarded about trumpeting the advances.

“We can’t constrain assets to one mission,” a senior officer said last month. “They need to do a variety of other missions.” Worries that valuable Aegis ships might be locked into the BMD mission were discussed in December at a two-day seminar at the National Defense University (NDU) in Washington. Reporters were allowed to quote comments made at the seminar under the condition that no speaker be identified.

“We can’t constrain assets to one mission,” a senior officer said last month. “They need to do a variety of other missions.” Worries that valuable Aegis ships might be locked into the BMD mission were discussed in December at a two-day seminar at the National Defense University (NDU) in Washington. Reporters were allowed to quote comments made at the seminar under the condition that no speaker be identified.

“Sea-based ballistic missile defense is a necessary component of any theater defense,” said the senior officer. “We need to find ways to get folks to use the ships in ways consistent with their being a ship—to realize they are not a point-defense asset.” One analyst added, “The demand signal is ahead of the pot of ships.” U.S. Navy spokesman Lt. Tommy Buck said the service is working to manage the demand.

“Combatant commanders need to understand BMD-capable ships are multimission-capable. BMD is one available asset,” Buck said Dec. 18.

The Navy is also working on how to respond, said Vice Adm. Samuel Locklear, director of the Navy Staff.

“We have a small Navy today—the smallest since 1916—yet we have a growing global demand for maritime forces, maritime security operations. And now we have a growing demand for maritime ballistic missile defense. Our ships and our crews and our systems are up to the challenge, but it’s a capacity issue for us,” Locklear said to a reporter during the NDU seminar.

“As the capacity grows faster than we can grow the number of ships we have—which is always difficult, particularly in the demanding fiscal environment we’re in—we have to look at ways to deploy these ships so that we can get the job done and still have a reasonable expectation that we can take care of the ship and the crew,” Locklear said. “So we’re looking at a lot of different options as to how we’ll do that as this demand grows. But we are limited in capacity.” Locklear said that despite meeting demands from joint commanders, the Navy has “to some degree preserved the command and control. Navy component commanders still command and control these ships.” But, he added, “What we’ve had to do is to spread these multimission platforms more thinly across a growing number of demands globally.”

27 BMD Ships By 2013

Twenty-one cruisers and destroyers will have been upgraded with the Aegis BMD capability by early 2010, and six more destroyers are to receive the upgrade in 2012 and 2013. But at least one senior officer at the seminar noted “there will be no more new ships for missile defense.” The demand has already affected deployments. Early in 2009, for example, The Sullivans, a Florida-based destroyer on deployment with a carrier group, moved to Japan for a few weeks to pick up the exercise schedule of a Japan-based BMD destroyer that was called on by Central Command to guard the northern Arabian Gulf.
This fall, a San Diego-based ship, the destroyer Higgins, deployed to the eastern Mediterranean to provide BMD defense for European Command and take part in exercises.

Both moves are unusual, as it’s rare for an Atlantic Fleet ship to visit Japan or for a Pacific ship to patrol the Mediterranean. Such cross-deployments require more coordination by fleet planners.

“The effective global force management requires global visibility on requirements,” Buck said. “U.S. Fleet Forces Command [headquartered in Norfolk, Va.] and Pacific Fleet [headquartered in Pearl Harbor, Hawaii] collaborate, coordinate and communicate to have more complete knowledge of location and status of fleet capabilities and work to best employ those capabilities to meet global combatant commander requirements to include BMD.” The senior officer said one way to manage demand is to encourage combatant commanders to give “sufficient warning to have ships on station. We need to remind [combatant commanders] that these are multimission ships.” The BMD cruisers and destroyers are also equipped to handle anti-submarine, land-attack, air-defense and other tasks.

U.S. Economic Impact of Shifting Four Aegis Ships to Rota, Spain

Another potential oversight issue for Congress concerns the U.S. economic impact of the plan to shift the homeport of four BMD-capable Aegis ships to Rota, Spain (see “October 5, 2011, Announcement of Homeporting in Spain” in “Background”). As mentioned earlier, the Prime Minister of Spain, as part of the October 5, 2011, joint announcement of this plan, stated that this initiative will have a positive impact, in socio-economic terms, on our country, and most especially on the Bay of Cadiz [area near Rota].

Permanently basing four vessels in Rota will require investing in the Base’s infrastructure, and contracts with service providers, thus generating approximately a thousand new jobs, both directly and indirectly.

For the shipyards, and for Spain’s defence industry, the foreseeable impact will also be highly positive, as the USA is considering conducting the vessels’ maintenance and upkeep at the nearby San Fernando shipyards, in the province of Cadiz. In addition, there will be significant transfer of state-of-the-art technology, from which Spain can benefit.

Assessing the U.S. economic impact of the plan to shift the homeport of four BMD-capable Aegis ships to Rota, Spain, could include accounting for, among other things, the economic impact of

- U.S. personnel and their families spending their paychecks in Spain rather than in the current home port areas;
- the Navy performing overhaul, maintenance, and repair work on the ships in Spain rather than in the United States; and

• the Navy purchasing supplies for these ships in Spain rather than from sources in the current home port areas.

Regarding the first item above, CRS asked the Navy for the total dollar value of personnel pay and allowances per year associated with the four destroyers designated to be homeported at Rota. The Navy replied that:

The annual military personnel cost for the four DDGs designated to deploy as Forward Deployed Naval Forces (FDNF) in Rota is provided below. All personnel are ships force [i.e., ship crew members].

<table>
<thead>
<tr>
<th>$ millions</th>
<th>FY 2013</th>
<th>FY 2014</th>
<th>FY 2015</th>
<th>FY 2016</th>
<th>FY 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPN/RPN</td>
<td>$0</td>
<td>$67.1</td>
<td>$131.6</td>
<td>$134.0</td>
<td>$137.735</td>
</tr>
</tbody>
</table>

Regarding second item above, the Navy states that

The annual ship maintenance cost [in millions] for the four DDGs designated to deploy as Forward Deployed Naval Forces (FDNF) in Rota is provided in Table 1.

<table>
<thead>
<tr>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDNF-based¹,²</td>
<td>$40.79</td>
<td>$44.99</td>
<td>$47.50</td>
</tr>
<tr>
<td>CONUS-based</td>
<td>$49.04</td>
<td>$51.10</td>
<td>$40.85</td>
</tr>
</tbody>
</table>

Cost Differential -$8.25 -$6.11 $6.65 $4.29

Table 1. Total Annual Maintenance Cost for Four DDGs Deploying as FDNF-based Forces vs. their Total Annual Maintenance Cost as CONUS-based Forces.

Notes:

1. Prior to FDNF deployment, all vessels receive a large maintenance availability to correct known deficiencies and groom Ballistic Missile Defense systems. Consequently, some of the depot maintenance work originally scheduled for accomplishment in FY14 and FY15 has been moved to FY12 and/or FY13, and the cost differential is lower than normal. Cost differentials in FY16 and FY17 are more representative of expected future year differential maintenance costs.

2. Incremental maintenance costs are based on two ships deploying in FY14, followed by two additional ships in FY15, and account for a change in maintenance availability periodicity from 32 months CONUS-based to 17 months FDNF-based. Costs include continuous maintenance, emergent and other restricted technical availabilities, voyage repairs, fly-away teams and regional maintenance center support.³⁶

³⁵ Source: Navy information paper dated February 29, 2012, provided by Navy Office of Legislative Affairs to CRS on March 19, 2012. MPN and RPN are the Military Personnel, Navy, and Reserve Personnel, Navy, appropriations accounts.

³⁶ Source: Navy information paper dated March 19, 2012, provided by Navy Office of Legislative Affairs to CRS on March 19, 2012. The information paper expressed the cost figures in thousands (e.g., $40,790 for FDNF-based in FY2014); they are converted here into millions (e.g., $40.79 million). CONUS is continental United States.
Regarding the third item above, the Navy states that:

A Forward Deployed Naval Force of four DDGs is expected to spend a total of approximately $7.2M per year on direct Navy purchases in Rota, Spain, that otherwise would have been spent in CONUS. These purchases consist of:

- Utilities $6M per year
- Consumables $1.2M per year (only open purchases made by ships’ company)\(^{37}\)

U.S. vs. European Naval Contributions to European BMD

Another potential oversight issue for Congress concerns European naval contributions to European BMD capabilities and operations compared to U.S. naval contributions to European BMD capabilities and operations. Potential oversight issues for Congress include the following:

- How does the total value of European naval contributions to European BMD capabilities and operations compare to the total value of the U.S. contributions to European BMD capabilities and operations?

- Given anticipated reductions in planned levels of U.S. defense spending resulting from the Budget Control Act of 2011 (S. 365/P.L. 112-25 of August 2, 2011), as well as the potential for giving BMD capabilities to European navy ships (see “Allied Participation and Interest in Aegis BMD Program” in “Background”), should the United States seek increased investment by European countries in their naval BMD capabilities so as to reduce the need for assigning BMD-capable U.S. Navy Aegis ships to the EPAA?

Target for Simulating Endo-Atmospheric Flight of DF-21 ASBM

Another potential oversight issue for Congress concerns the lack of a target for simulating the endo-atmospheric (i.e., final) phase of flight of China’s DF-21 anti-ship ballistic missile. DOD’s Director, Operational Test and Evaluation (DOT&E), in a December 2001 report (DOT&E’s annual report for FY2011), stated:

Anti-Ship Ballistic Missile Target

A threat representative Anti-Ship Ballistic Missile (ASBM) target for operational open-air testing has become an immediate test resource need. China is fielding the DF-21D ASBM, which threatens U.S. and allied surface warships in the Western Pacific. While the Missile Defense Agency has exo-atmospheric targets in development, no program currently exists for an endo-atmospheric target. The endo-atmospheric ASBM target is the Navy’s responsibility, but it is not currently budgeted. The Missile Defense Agency estimates the non-recurring expense to develop the exo-atmospheric target was $30 million with each target costing an additional $30 million; the endo-atmospheric target will be more expensive to produce according to missile defense analysts. Numerous Navy acquisition programs will

\(^{37}\) Source: Navy information paper dated March 8, 2012, provided by Navy Office of Legislative Affairs to CRS on March 9, 2012.
require an ASBM surrogate in the coming years, although a limited number of targets (3-5) may be sufficient to validate analytical models.38

A February 28, 2012, press report stated:

“Numerous programs will require” a test missile to stand in for the Chinese DF-21D, including self-defense systems used on our carriers and larger amphibious ships to counter anti-ship ballistic missiles,” [Michael Gilmore, the Pentagon’s director of operational test and evaluation] said in an e-mailed statement....

“No Navy target program exists that adequately represents an anti-ship ballistic missile’s trajectory,” Gilmore said in the e-mail. The Navy “has not budgeted for any study, development, acquisition or production” of a DF-21D target, he said.

Lieutenant Alana Garas, a Navy spokeswoman, said in an e-mail that the service “acknowledges this is a valid concern and is assessing options to address it. We are unable to provide additional details.”...

Gilmore, the testing chief, said his office first warned the Navy and Pentagon officials in 2008 about the lack of an adequate target. The warnings continued through this year, when the testing office for the first time singled out the DF-21D in its annual public report....

The Navy “can test some, but not necessarily all, potential means of negating anti-ship ballistic missiles,” without a test target, Gilmore said.39

Capability of SM-3 Block IIB Interceptor

Another potential oversight issue for Congress concerns the prospective capability of the SM-3 Block IIB interceptor for conducting certain kinds of intercepts called “early intercepts” as part of the EPAA. A June 13, 2011, press report stated:

When asked what the Pentagon’s plan is for countermeasures if early intercept does not materialize with the [SM-3 Block] IIB in 2020, Missile Defense Agency (MDA) officials simply state: “We fully expect to have a viable early-intercept capability with the SM-3 Block IIB in the 2020 time period.”...

At issue today is whether the architecture as envisioned is achievable; and the piece most critics question is the plan to achieve early intercept and protect the Eastern U.S. from an Iranian ICBM attack.

USAF Gen. (ret.) Lester Lyles, who led the MDA when it was called the Ballistic Missile Defense Organization, is co-chairing a Defense Science Board task force review of the early-intercept strategy with Adm. (ret.) William Fallon, who headed U.S. Pacific Command. The report is being written and will likely be briefed to Pentagon leaders in the fall.

Lyles declines to discuss his findings until they are briefed to the Pentagon. Industry and
government sources familiar with the study have different views on what the findings will
be. Some say the task force questions the ability to achieve early intercept with the time and
money available. Others say the report will outline what can be achieved with the current
strategy.

Whatever the outcome, the results are likely to influence the SM-3 IIB program, whether it
moves forward and, if it does, what the missile will look like. The IIB is the notional long-
range missile killer that will be fielded in Phase IV by 2020 for early intercept to fulfill the
promise of protecting the Eastern U.S. and most of Europe from an Iranian ICBM attack....

GMD advocates point to the option of placing interceptors at Fort Drum, N.Y., to provide a
deeper magazine and coverage for the Eastern U.S.....

The question of whether a IIB missile can achieve early intercept, and how to do it, is likely
be to sorted out this summer. The Defense Science Board will report its findings, and the
MDA is likely to request funding for the IIB strategy in the fiscal 2013 budget proposal that
is due to Congress next February.40

A June 17, 2011, press report states:

A Defense Science Board (DSB) report on early missile intercept is already prompting
discussion on Capitol Hill over how U.S. strategic forces are funded.

The Obama administration is pursuing the European Phased Adaptive Approach to missile
defense, which by 2020 would develop the SM-3 Block IIB interceptor to protect the U.S.
and Europe against long-range missiles from North Korea and Iran. In April, Boeing,
Lockheed Martin and Raytheon each won concept definition and program planning awards
worth at least $41 million.

But the DSB study, led by retired Air Force Gen. Lester Lyles and retired Navy Adm.
William Fallon, casts doubt on a central capability of that interceptor—primarily the ability
to hit an incoming missile before it deploys countermeasures, according to Senate
Republican aides. The study's unclassified version also finds that the goal of early
interception may lead to a less-capable system overall and rather than investing in the
interceptor, improvements to radars, satellites and communications are also important, an
aide says.

With that information, already a critical question is emerging on Capitol Hill: During a
deficit crisis, should the government be spending $1.7 billion over the next five years to
develop the SM-3 Block IIB if its ultimate goal is in doubt?

At least the rationale for pursuing the interceptor—replacing a missile defense site based in
Poland and the Czech Republic—is in line for scrutiny.

“If the administration continues to sell early interceptors as a way of going after
countermeasures, that’s not going to work,” one aide says.

So in that case, does it make sense to continue working on the IIB missile for other reasons?
And if not, what are the alternatives?

One camp could emerge in support of upgrades to the current Ground-based Midcourse Defense system or the creation of a site in the eastern United States. Another group may want to improve on the capabilities of the Raytheon-led SM-3 Block IIA.41

A July 6, 2011, letter to the editor from the two co-chairmen of the DSB task force in question and the chairman of the full DSB stated:

The Defense Science Board (DSB) is now completing a review on Science and Technology Issues of Early Intercept (EI) Ballistic Missile Defense Feasibility as a concept to enhance missile defense.

In previous work, the DSB found the EI concept helpful in national missile defense against long-range ballistic missiles. In the current review, EI, as defined by the study’s terms of reference, was judged less helpful in regional missile defense against shorter range regional ballistic missiles.

The DSB concluded that the Missile Defense Agency is on the right track in developing European Phased Adapted Approach (EPAA) options, including continued evolution of the SM-3 family of missiles, which will expand the battle space and provide more engagement opportunities in the regional defense provided by the EPAA. The DSB also examined the potential in the EPAA context for EI in regional defense against short-range missiles before threat payloads could be deployed, and concluded that this was not a viable option because of technical constraints - primarily related to the very short payload deployment times and the present absence of adequate sensors/Ballistic Missile C3 to overcome this.

The fact that this form of EI is not viable in shorter-range regional applications does not imply that either SM-3 family interceptors or the EPAA concept are flawed. In general, EI, including intercepts of longer-range missiles before the threat missile reaches apogee, can provide for multiple engagement opportunities and more effective defenses.

MDA is on the right track in pursuing this capability for national missile defense, and examining the potential application in regional defense as a function of the range of threat missiles.

The DSB did not conclude that EI is flawed. Nor did they conclude that the EPAA approach or the SM-3 family were flawed. The DSB did conclude that EI would have a very limited role in regional defense against shorter range missile threats.42

Technical Risk in Aegis BMD Program

Another potential oversight issue for Congress is how much technical risk there is in the Aegis BMD program.

March 2011 GAO Report

A March 2011 Government Accountability Office (GAO) report on DOD BMD programs stated the following regarding the Aegis BMD program:

Aegis BMD did not conduct any developmental intercept flight tests in fiscal year 2010, although it did participate in several other BMDS flight and ground tests to assess BMD functionality and interoperability with the BMDS. During fiscal year 2010, MDA expected to conduct FTM-15 to demonstrate Aegis 3.6’s ability to launch the SM-3 IA interceptor using data from a remote sensor against an intermediate-range ballistic missile target. However, the flight test has been delayed due to target availability. This had a ripple effect on other scheduled events, resulting in a delay in demonstrating key capabilities of Aegis 3.6.1 with SM-3 IA and Aegis 4.0.1 with SM-3 IB. The FTM-15 is key to demonstrating capability of the IA interceptor to engage threat missiles in the range expected for European PAA Phase I, planned for deployment by December 2011. In other testing, a Japanese Aegis BMD destroyer conducted a successful intercept of a separating target using an SM-3 IA interceptor.

Aegis 4.0.1 with SM-3 IB has executed more slowly than expected in fiscal year 2010. At the last execution review of the fiscal year, progress toward verifying the SM-3 IB engagement capability required action, and 6 of the 14 development phase exit criteria tracking program execution were assessed as not on track, including those related to requirements, affordability, design, manufacturing, and weapon system safety. The slower pace primarily reflects delays in SM-3 IB interceptor development.

Aegis 4.0.1, with the SM-3 IB interceptor, is expected to have increased discrimination, engagement coordination, threat missile range capability and raid capacity. Technology development of the interceptor’s Throttleable Divert Attitude Control System (TDACS) is following a high-risk path due to continuing resolution of issues discovered during sub-assembly hazard testing. The TDACS issues relate to the operational suitability and expected lifetime of the interceptor. The first intercept flight test, FTM-16, was moved into the third quarter fiscal year 2011 to allow time to investigate and resolve the issues. FTM-16 is critical to demonstrating the interceptor performance, as well as being required to certify the Aegis combat system. According to the Director, MDA, the flight test was rescheduled to allow time to complete qualification tests. Design verification and qualification tests validate component performance, reliability and producibility. MDA has since determined the root cause of the TDACS problem and identified two design improvements. However, due to continuing delays redesigned TDACS components will not be included in the interceptor manufactured for FTM-16; instead, it will be manufactured using a new process control to partially mitigate the issue. Further, MDA has since decided to conduct the flight test in the fourth quarter of fiscal year 2011 without completing the qualification tests as originally planned. The TDACS qualifications and verifications leading up to the FTM-16 intercept test will be limited to the environmental conditions expected during the FTM-16 event. Following FTM-16, the design changes to the TDACS will require the full set of design and qualification testing.

We reported in February 2010 that planned interceptor production would precede knowledge of interceptor performance, and recommended that MDA delay a decision to produce interceptors to follow successful completion of developmental testing, a flight test, and manufacturing readiness review. We reported again in December that the SM-3 IB test schedule was not synchronized with planned production and financial commitments. This schedule had become even more compressed as a result of TDACS redesign, and planned requalification. As a result, MDA recently deferred planned interceptor production decisions to follow redesign efforts, the manufacturing readiness review, and an additional flight test; steps that could better inform those production decisions.
While MDA characterized the first 30 interceptors as being test rounds, half remain unassigned to a specific test. Furthermore, of those interceptors assigned to a test, some may be produced earlier than necessary since they deliver 1 to 2 years prior to the scheduled test. Program officials note the unassigned “test” rounds will provide information on reliability, maintainability, and supportability, and verify cost estimates and production processes.

Aegis BMD 5.0 will not provide new mission capability; instead it will leverage the Navy’s Aegis modernization effort, which transitions the cruisers’ and destroyers’ computers and displays from military standard to commercial-off-the-shelf components. The modernization effort will increase the number of cruisers and destroyers that have the potential to be BMD capable from 27 to 84, and the installation of Aegis 5.0 in conjunction with the modernization will add the BMD capability. Once Aegis 5.0 is available, Aegis ships with version 3.6.1 may be upgraded directly to 5.0, instead of undergoing an interim installation of 4.0.1 (estimated at $52 million per ship). Although it does not add new mission capability, the migration into an open architecture environment requires significant modification and testing of 8 of 10 major components of the Aegis weapons system. Execution reviews already show signs of schedule compression and interdependencies of multiple efforts increase schedule risk. As the European PAA’s new Aegis Ashore program is highly dependent on the scheduled delivery of Aegis 5.0, delays could have significant consequences for providing European BMD capability as planned.

Regarding the Aegis Ashore program, the GAO report stated:

According to the Director of MDA, the idea of Aegis Ashore preceded the new European PAA policy. Earlier in 2008 and 2009 MDA had been studying alternatives to the Arrow 3 program—a joint US-Israeli program designed for Israeli self-defense against short-range ballistic missiles. MDA’s analysis had considered several land-based SM-3 options, and had concluded that an Aegis with SM-3 was the preferred option. It is unclear how assumptions and analysis related to Arrow-3 supported—and what if any additional technical analysis was conducted to support—the selection of Aegis Ashore for the European PAA.

While MDA does not yet follow DOD’s standard acquisition processes, a robust consideration of alternatives is a key first step in that process and is intended to assess the operational effectiveness, costs, and risks of alternative weapon system solutions for addressing a validated warfighting need. We reported in September 2009 that DOD often did not effectively consider a broad range of alternatives for addressing a warfighting need or assess technical and other risks associated with each alternative. Without a sufficient comparison of alternatives and focus on technical and other risks, reviews of alternatives may identify solutions that are not feasible and decision makers may approve programs based on limited knowledge. While many factors can affect cost and schedule outcomes, we found that programs that had a limited assessment of alternatives tended to have poorer outcomes than those that had more robust assessments. The Office of Cost Assessment and Program Evaluation is studying alternatives to Aegis Ashore.

A knowledge-based acquisition approach is a cumulative process in which certain knowledge is acquired by key decision points before proceeding. In other words, demonstrating technology maturity is a prerequisite for moving forward into system development, during which the focus should be on design and integration. The President’s announcement of the European PAA on September 17, 2009 officially began Aegis Ashore, and MDA placed Aegis Ashore directly into the third acquisition development phase—product development.

MDA officials note that this decision was due to the understanding that Aegis Ashore would be a modification of proven Aegis BMD capabilities. Yet Aegis Ashore has not yet completed some of the activities MDA outlines for its first two development phases (material solutions analysis and technology development), and is executing others concurrently with activities in the third development phase (product development). For example, although MDA’s acquisition oversight process identifies the following top-level tenets for phase review entry/entrance criteria prior to entering the Product Development phase, Aegis Ashore had not: obtained an independent cost estimate, prepared a life cycle cost estimate, demonstrated critical technologies in the operational environment (land), or ensured interoperability and integration with the larger BMDS. MDA’s knowledge points—typically identified during the first MDA acquisition phase—identify information required to make key decisions (e.g. program funding decisions, technology selections, capability declarations, program continuation, or the selection of an alternative course of action) and manage program risk. MDA’s knowledge points for Aegis Ashore were completely redefined less than 3 months after being established.

DOD’s commitment to field Aegis Ashore by 2015 has resulted in significant schedule compression for the program, even as MDA discovered issues that broadened the scope of development and design, placing the program at increased risk of cost growth and schedule delay. According to the Director, MDA, Aegis Ashore development is not a high risk because it is based on the existing Aegis BMD system. However, while Aegis BMD has demonstrated performance at sea, these demonstrations used the currently fielded 3.6.1 version of Aegis BMD with the SM-3 IA interceptor, not the newer variant of the Aegis operating system and new interceptor that Aegis Ashore will use. Aegis Ashore is dependent on next-generation versions of Aegis systems—Aegis 4.0.1 and Aegis 5.0—as well as the new SM-3 IB interceptor, all of which are currently under development (see appendix III). Moreover, a series of changes are required to further modify these new variants of Aegis BMD for use on land with Aegis Ashore. These modifications include changes to the VLS; suppression or disabling of certain features used at sea; design, integration, and fabrication of a new deckhouse enclosure for the radar, and potential changes to the SM-3 IB interceptor. Changes to those existing Aegis BMD components that will be reused for Aegis Ashore may reduce their maturity in the context of the new Aegis Ashore program, and new features will require testing and assessment to demonstrate their performance. MDA plans to conduct both ground and flight tests prior to deployment, however these tests will not occur prior to making production decisions.

Aegis Ashore expects to leverage the existing shipboard Aegis Combat System—comprised of 32 sensors, communications, weapons, and countermeasures. However only 11 of these will be reused for Aegis Ashore; the remaining 21 will need to be suppressed or otherwise disabled, including the software that accounts for a ship’s pitch and yaw. While officials note that current land-based testing processes for portions of the Aegis Combat System involve similar suppression, the Aegis Ashore land-based configuration is unique and must still be demonstrated through operational testing.

The program office assessed both the SPY-1 radar and the VLS as flight proven through successful mission conditions, reflecting the assessment of the radar and VLS currently at sea. However, these systems will operate on land, and it is unclear whether the radar’s spectrum supportability is fully understood or accounted for. Also, the VLS will be modified to address the differing protection, safety, and environmental requirements of its new land-based environment. Finally, MDA may modify the SM-3 Block IB for Aegis Ashore; the extent of these changes remains unknown.

Both the radar and the VLS will be configured in removable enclosures that have not yet been designed or tested. Also, Aegis Ashore’s new deckhouse—instead of being integrated on a ship deck with the VLS and the ship’s hull, mechanical, and electrical systems—will be
configured apart from the VLS and these will require standalone power generation. The deckhouse design also requires that it be removable in order to facilitate shipment. However not all requirements are fully known, and although neither the deckhouse requirements or design are stable, the contract for Aegis Ashore deckhouse fabrication and integration was awarded prior to preliminary or critical design reviews for the overall Aegis Ashore system. The potential for rework because design starts before requirements are complete was noted as a continuing risk in the last program review of the fiscal year, and we have previously reported that starting fabrication prior to achieving design stability can lead to costly modifications later in the process due to rework.

The number of planned developmental flight test events has been reduced since the Aegis Ashore program began and they are not timed to inform production decisions. In MDA’s February 2010 test plan Aegis Ashore was scheduled to participate in 7 developmental flight test events, 5 of which were intercept events. The current plan is for 4 test events, 2 of which are intercepts. The first intercept is now scheduled more than a year later than previously planned….

MDA officials indicate that the current plan is sufficient to collect data on critical variables and to evaluate weapon system performance in the Aegis Ashore configuration. We have previously reported that repetition of intercept-related objectives is important to build confidence in intercept capability. MDA plans to make production commitments for the first operational Aegis Ashore and its interceptors by early fiscal year 2012. The first intercept flight test with a target is planned for the second half of fiscal year 2014, at which point the design will have been finalized, the Aegis Ashore deckhouse and components built, and Aegis Ashore construction and interceptor production will be well under way.44

April 2011 Press Report

An April 6, 2011, press report stated:

The Navy’s overreliance on the Raytheon [RTN]-built SM-3 system as the backbone for its ballistic missile defense strategy in Europe could delay White House plans to have a viable BMD presence in the region by 2015, a former high-ranking military official said yesterday.

Technical difficulties found in elements of the Block IA version of the SM-3 would likely find their way into the new Block IB variant of the weapon, former Missile Defense Agency (MDA) director Lt. Gen. Trey Obering said in an Aerospace Industry Association-sponsored event on Capitol Hill yesterday. Obering, currently an executive with Booz Allen Hamilton [BAH], served as director of MDA from 2004-2009.

Raytheon’s block development approach on the SM-3, he added, would also make it likely that such problems would “tend to cycle through” all current and future variants of the weapon, he said….

Navy and industry program officials completed the system requirements review for Aegis Ashore late last year, with system design review for the program slated for February. Program officials plan to conduct the critical design review for the weapons system in the

following fiscal quarter, Lisa Callahan, vice president of maritime BMD programs for Lockheed Martin [LMT], said in a Jan. 5 teleconference.

“All of that will culminate in a test system for Aegis Ashore that will be in Hawaii in 2013 and the first Aegis Ashore capability in Romania in 2015,” according to Callahan….

But those deployment plans could be thrown off course, should the new SM-3 variants be plagued with the same problems experienced on the Block IA weapon, Obering warned, noting that initial flight tests for the Block IB system were originally slated to begin in 2009. Those tests are now set for summer of this year.

The former Air Force three-star general went even further, saying technical delays “are likely” on the Block IB and the next-generation Block IIA and IIB, which could push any SM-3 deployments supporting BMD operations in Eastern Europe to the right.

“I expect we are going to see delays in there,” he said, adding the Navy and the Pentagon would be well served “to have alternative options” to the SM-3 system. The former MDA chief did not go into specifics on what alternatives could be explored.

However, Raytheon has undergone an “unmatched test process” on the Block IA system and has worked through the development issues and delivered the system to the Navy on time, in support of the first phase of the EPAA strategy Frank Wyatt, vice president of Raytheon Air and Missile Defense Systems, said in an interview with Defense Daily that same day.

On the postponement of Block IB flight testing, the delay was prompted mainly by development challenges with the integration of a new warhead propulsion and maneuvering system—known as the Throttling Divert and Attitude Control System (TDACS)—which allows the weapon to engage “more complex threats,” Wyatt said.

Along with the TDACS, the major changes between Block IA and IB were focused on improvements to the sensor and processing capabilities on the missile, the Raytheon executive added.

However, after a recent successful system integration test of the Block IB version of the SM-3, Wyatt was confident any TDACS problems have been corrected and the company will meet the 2015 deployment timeline for the IB missile, as outlined by the EPAA.

Aside from concerns over the SM-3’s viability, Obering also said he was “disturbed” over the manner in which Raytheon downplayed the potential development difficulties for the Block IB version, noting the program possessed “a higher technical risk than it was painted out to be.”

While acknowledging that he did not see any “fatal” problems with the Block IA or IB, and that any technical risk in the weapon’s development would be no different than those experienced on other new start programs. However, Raytheon’s decision to pitch the Block IB system as mere follow-on to the IA missile implied that the Block IB’s development would not suffer many of those new start challenges seen on other programs.

In response, Wyatt said the company was not dismissing any potential challenges that could arise with the SM-3 Block IB development, but added that using a follow-on, spiral strategy was the lowest risk approach to the weapon’s development while meeting the Pentagon’s time lines.
‘We would not be meeting the [EPAA] timelines with an approach that begins with a brand-
new interceptor,’” he said. “Clearly, if you can spiral develop from an existing program that is
clearly a lower-risk position.” 45

Legislative Activity for FY2013

Summary of Action on FY2013 MDA Funding Request

Table 5 summarizes congressional action on the FY2013 request for MDA procurement and
research and development funding for the Aegis BMD program.

Table 5. Summary of Congressional Action on FY2013 Request for MDA
Procurement and RDT&E Funding for Aegis BMD Program
(In millions of dollars, rounded to nearest tenth; totals may not add due to rounding)

<table>
<thead>
<tr>
<th>Authorization and Appropriation</th>
<th>Authorization</th>
<th>Appropriation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procurement</td>
<td>Request</td>
<td>HASC</td>
</tr>
<tr>
<td></td>
<td>Aegis BMD (Line 31)</td>
<td>389.6</td>
</tr>
<tr>
<td>Research, development, test and evaluation (RDT&E)</td>
<td>224.1</td>
<td></td>
</tr>
<tr>
<td>Next-generation Aegis missile (SM-3 IIB) (PE 0603902C, line 65)</td>
<td>992.4</td>
<td></td>
</tr>
<tr>
<td>Aegis BMD (PE 0603892C, line 86)</td>
<td>276.3</td>
<td></td>
</tr>
<tr>
<td>Land-based SM-3 (LBSM3) (PE0604881C, line 107)</td>
<td>420.6</td>
<td></td>
</tr>
<tr>
<td>Aegis SM-3 IIA Co-development (PE0604881C, line 108)</td>
<td>1,913.4</td>
<td></td>
</tr>
<tr>
<td>Subtotal RDT&E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,303.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes: HASC is House Armed Services Committee; SASC is Senate Armed Services Committee; HAC is House Appropriations Committee; SAC is Senate Appropriations Committee; Conf. is conference.

Appendix. Aegis BMD Flight Tests

Summary of Test Flights

Table A-1 presents a DOD summary of Aegis BMD flight tests since January 2002. As shown in the table, DOD states that since January 2002, the Aegis BMD system has achieved 18 successful exo-atmospheric intercepts in 23 attempts using the SM-3 missile (including 3 successful intercepts in 4 attempts by Japanese Aegis ships), and 3 successful endo-atmospheric intercepts in 3 attempts using the SM-2 Block IV missile, making for a combined total of 21 successful intercepts in 26 attempts.

In addition, on February 20, 2008, a BMD-capable Aegis cruiser operating northwest of Hawaii used a modified version of the Aegis BMD system to shoot down an inoperable U.S. surveillance satellite that was in a deteriorating orbit—an operation called Burnt Frost. Including this intercept in the count increases the totals to 19 successful exo-atmospheric intercepts in 24 attempts using the SM-3 missile, and 22 successful exo- and endo-atmospheric intercepts in 27 attempts using both SM-3 and SM-2 Block IV missiles.
Table A-1. Aegis BMD Flight Tests Since January 2002

<table>
<thead>
<tr>
<th>Date</th>
<th>Country</th>
<th>Name of flight test</th>
<th>Target</th>
<th>Successful</th>
<th>Cumulative successes</th>
<th>Cumulative attempts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exo-atmospheric (using SM-3 missile)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/25/02</td>
<td>US</td>
<td>FM-2</td>
<td>Unitary TTV short-range target</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6/13/02</td>
<td>US</td>
<td>FM-3</td>
<td>Unitary TTV short-range target</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>11/21/02</td>
<td>US</td>
<td>FM-4</td>
<td>Unitary TTV short-range target</td>
<td>Yes</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6/18/03</td>
<td>US</td>
<td>FM-5</td>
<td>Unitary TTV short-range target</td>
<td>No</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>12/11/03</td>
<td>US</td>
<td>FM-6</td>
<td>Unitary TTV short-range target</td>
<td>Yes</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2/24/05</td>
<td>US</td>
<td>FTM 04-1 (FM-7)</td>
<td>Unitary TTV short-range target</td>
<td>Yes</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>11/17/05</td>
<td>US</td>
<td>FTM 04-2 (FM-8)</td>
<td>Separating medium-range target</td>
<td>Yes</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>6/22/06</td>
<td>US</td>
<td>FTM 10</td>
<td>Separating medium-range target</td>
<td>Yes</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>12/7/06</td>
<td>US</td>
<td>FTM 11</td>
<td>Unitary TTV short-range target</td>
<td>No</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>4/26/07</td>
<td>US</td>
<td>FTM 11 Event 4</td>
<td>Unitary ARAV-A short-range target</td>
<td>Yes</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>6/22/07</td>
<td>US</td>
<td>FTM 12</td>
<td>Separating medium-range target</td>
<td>Yes</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>8/31/07</td>
<td>US</td>
<td>FTM-11a</td>
<td>Classified</td>
<td>Yes</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>11/6/07</td>
<td>US</td>
<td>FTM 13</td>
<td>Unitary ARAV-A short-range target</td>
<td>Yes</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>11/11/08</td>
<td>Japan</td>
<td>JFTM-1</td>
<td>Separating medium-range target</td>
<td>Yes</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>11/19/08</td>
<td>Japan</td>
<td>JFTM-2</td>
<td>Short-range missile target</td>
<td>Yes</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>7/30/09</td>
<td>US</td>
<td>FTM-17</td>
<td>Short-range missile target</td>
<td>No</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>10/27/09</td>
<td>Japan</td>
<td>JFTM-3</td>
<td>Separating medium-range target</td>
<td>No</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>10/28/10</td>
<td>Japan</td>
<td>JFTM-4</td>
<td>Separating medium-range target</td>
<td>Yes</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>4/14/11</td>
<td>US</td>
<td>FTM-15</td>
<td>LV-2 intermediate range target</td>
<td>Yes</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>9/11/11</td>
<td>US</td>
<td>FTM-16</td>
<td>Short-range missile target</td>
<td>No</td>
<td>17</td>
<td>21</td>
</tr>
</tbody>
</table>

Endo-atmospheric (using SM-2 missile)						
5/24/06	US	Pacific Phoenix	Unitary short-range target	Yes	1	1
6/5/08	US	FTM-14	Unitary short-range target	Yes	2	2
3/26/09	US	Stellar Daggers	Short-range ballistic missile target	Yes	3	3

| **Combined total for exo- and endo-atmospheric above tests** | 21 | 26 |

Notes: TTV is target test vehicle; ARAV is Aegis Readiness Assessment Vehicle. In addition to the flight tests shown above, there was a successful use of an SM-3 on February 20, 2008, to intercept an inoperative U.S. satellite—an operation called Burnt Frost. Including this intercept in the count increases the totals to 19 successful exo-atmospheric intercepts in 24 attempts using the SM-3 missile, and 22 successful exo- and endo-atmospheric intercepts in 27 attempts using both SM-3 and SM-2 Block IV missiles.

May 2010 Criticism of Claimed Successes in Flight Tests

In a May 2010 magazine article and supplementary white paper, two professors with scientific backgrounds—George Lewis and Theodore Postol—criticized DOD claims of successes in Aegis (and other DOD) BMD flight tests, arguing that

> the Defense Department’s own test data show that, in combat, the vast majority of “successful” SM-3 experiments would have failed to destroy attacking warheads. The data also show potential adversaries how to defeat both the SM-3 and the GMD [ground-based...
missile defense] systems, which share the same serious flaws that can be readily exploited by adversaries.46

The criticisms made by Lewis and Postol were reported in a May 18, 2010, New York Times article.47 In response to the criticisms and the New York Times article, MDA issued a press release and other information defending the flight tests and arguing that the criticisms are based on inaccurate or incomplete information.48

Details on Selected Exo-Atmospheric (SM-3) Flight Tests

June 22, 2006, Test. This was the first test to use the 3.6 version of the Aegis BMD system.49

December 7, 2006, Test. This was the first unsuccessful flight test since June 2003. MDA stated that the ninth test

was not completed due to an incorrect system setting aboard the Aegis-class cruiser USS Lake Erie prior to the launch of two interceptor missiles from the ship. The incorrect configuration prevented the fire control system aboard the ship from launching the first of the two interceptor missiles. Since a primary test objective was a near-simultaneous launch of two missiles against two different targets, the second interceptor missile was intentionally not launched.

The planned test was to involve the launch of a Standard Missile 3 against a ballistic missile target and a Standard Missile 2 against a surrogate aircraft target. The ballistic missile target was launched from the Pacific Missile Range Facility, Kauai, Hawaii and the aircraft target was launched from a Navy aircraft. The USS Lake Erie (CG 70), USS Hopper (DDG 70) and the Royal Netherlands Navy frigate TROMP were all successful in detecting and tracking their respective targets. Both targets fell into the ocean as planned.

After a thorough review, the Missile Defense Agency and the U.S. Navy will determine a new test date.50

A news article about the ninth test stated:

“You can say it’s seven of nine, rather than eight of nine,” Missile Defense Agency spokesman Chris Taylor said of the second failure in tests of the system by the agency and the Navy....

The drill was planned to demonstrate the Navy’s ability to knock down two incoming missiles at once from the same ship.

“In a real world situation it is possible, maybe even probable, that in addition to engaging a ballistic missile threat that was launched, you may be engaging a surface action,” said Joe Rappisi before the test. He is director for the Aegis Ballistic Missile Defense system at Lockheed Martin, the primary contractor for the program.

The test would have marked the first time a ship has shot down one target in space and another target in the air at the same time.

The test presented a greater challenge to the ship’s crew and the ballistic missile defense system than previous tests, Rappisi said. The multiple target scenario is also closer to what sailors might actually face in battle.

The U.S. Pacific Fleet has been gradually installing missile surveillance and tracking technology on many of its destroyers and cruisers amid concerns about North Korea’s long-range missile program.

It is also installing interceptor missiles on many of its ships, even as the technology to track and shoot down incoming missiles is being developed and perfected.

The Royal Netherlands Navy joined the tracking and monitoring off Kauai to see how its equipment works. The Dutch presence marked the first time a European ally has sent one of its vessels to participate in a U.S. ballistic missile defense test.51

A subsequent news article stated:

the test abort of the Aegis Ballistic Missile Defense system Dec. 7 resulted from human error, [MDA Director USAF Lt. Gen. Henry] Obering says... Both the ballistic missile and aircraft targets launched as planned, but the first interceptor failed to fire because an operator had selected an incorrect setting for the test. Officials then aborted before the second could boost.

Aegis missile defense system tests are at a standstill until officials are able to identify an appropriate ballistic missile target. The one used Dec. 7 was the last of its kind, Obering says, leaving them empty handed in the near future.52

Another article stated:

Philip Coyle, a former head of the Pentagon’s testing directorate, gives the Navy credit for “discipline and successes so far” in its sea-based ballistic missile defense testing program. Coyle is now a senior adviser at the Center for Defense Information.

“The U.S. Navy has an enviable track record of successful flight intercept tests, and is making the most of its current, limited Aegis missile defense capabilities in these tests,” Coyle told [Inside the Navy] Dec. 7.

“Difficulties such as those that delayed the latest flight intercept attempt illustrate the complexity of the system, and how everything must be carefully orchestrated to achieve success,” Coyle added. “Nevertheless, this particular setback won’t take the Navy long to correct.”

April 26, 2007, Test. MDA states that this test:

involved the simultaneous engagements of a ballistic missile “unitary” target (meaning that the target warhead and booster remain attached) and a surrogate hostile air target....

The test demonstrated the [Aegis ship’s] ability to engage a ballistic missile threat and defend itself from attack at the same time. The test also demonstrated the effectiveness of engineering, manufacturing, and mission assurance changes in the solid divert and attitude control system (SDACS) in the kinetic kill weapon. This was the first flight test of all the SM-3 Block IA’s upgrades, previously demonstrated in ground tests.

A press report on the test stated that the hostile air target was an anti-ship cruise missile. The article stated that the scenario for the test called for the [Aegis ship] to come under attack from a cruise missile fired by an enemy plane.... A Navy plane fired the cruise missile target used in the test.

June 22, 2007, Test. MDA states that this test

was the third intercept involving a separating target and the first time an Aegis BMD-equipped destroyer was used to launch the interceptor missile. The USS Decatur (DDG 73), using the operationally-certified Aegis Ballistic Missile Defense Weapon System (BMD 3.6) and the Standard Missile-3 (SM-3) Block IA missile successfully intercepted the target during its midcourse phase of flight....

An Aegis cruiser, USS Port Royal (CG 73), a Spanish frigate, MÉNDEZ NÚÑEZ (F-104), and MDA’s Terminal High Altitude Area Defense (THAAD) mobile ground-based radar also participated in the flight test. USS Port Royal used the flight test to support development of the new Aegis BMD SPY-1B radar signal processor, collecting performance data on its increased target detection and discrimination capabilities. MÉNDEZ NÚÑEZ, stationed off Kauai, performed long-range surveillance and track operations as a training event to assess the future capabilities of the F-100 Class. The THAAD radar tracked the target and exchanged tracking data with the Aegis BMD cruiser.

This event marked the third time that an allied military unit participated in a U.S. Aegis BMD test, with warships from Japan and the Netherlands participating in earlier tests.

August 31, 2007, Test. MDA has publicly noted the occurrence of this test and the fact that it resulted in a successful intercept, but states that the details about the test are classified. MDA does not appear to have issued a news release about this flight test following the completion of the test, as it has for other Aegis BMD flight tests.

November 6, 2007, Test. MDA states that this test involved:

- a multiple simultaneous engagement involving two ballistic missile targets. For the first time, the operationally realistic test involved two unitary “non-separating” targets, meaning that the target’s warheads did not separate from their booster rockets.

At approximately 6:12 p.m. Hawaii Standard Time (11:12 p.m. EST), a target was launched from the Pacific Missile Range Facility (PMRF), Barking Sands, Kauai, Hawaii. Moments later, a second, identical target was launched from the PMRF. The USS Lake Erie’s Aegis BMD Weapon System detected and tracked the targets and developed fire control solutions.

Approximately two minutes later, the USS Lake Erie’s crew fired two SM-3 missiles, and two minutes later they successfully intercepted the targets outside the earth’s atmosphere more than 100 miles above the Pacific Ocean and 250 miles northwest of Kauai.

A Japanese destroyer also participated in the flight test. Stationed off Kauai and equipped with the certified 3.6 Aegis BMD weapon system, the guided missile destroyer JS Kongo performed long-range surveillance and tracking exercises. The Kongo used the test as a training exercise in preparation for the first ballistic missile intercept test by a Japanese ship planned for later this year. This event marked the fourth time an allied military unit participated in a U.S. Aegis BMDS test.

December 17, 2007, Test. In this flight test, a BMD-capable Japanese Aegis destroyer used an SM-3 Block IA missile to successfully intercept a ballistic missile target in a flight test off the coast of Hawaii. It was the first time that a non-U.S. ship had intercepted a ballistic missile using the Aegis BMD system.

(...continued)

© 2007, Congressional Research Service

57 See for example, slide 8 in the 20-slide briefing entitled “Ballistic Missile Defense Program Overview For The Congressional Breakfast Seminar Series,” dated June 20, 2008, presented by Lieutenant General Trey Obering, USAF, Director, Missile Defense Agency. Source for briefing: InsideDefense.com (subscription required). Each slide in the briefing includes a note indicating that it was approved by MDA for public release on June 13, 2008. Slide 8 lists Aegis BMD midcourse flight tests conducted since September 2005, including a test on August 31, 2007. The slide indicates with a check mark that the flight test was successful. A success in this test is also needed to for the total number of successful intercepts to match the reported figure.

58 An e-mail from MDA to CRS dated June 30, 2008, states that the flight test “was a hit to kill intercept test but details about the test are classified.”

59 MDA’s website, when accessed on June 30, 2008, did not show a news release issued on or soon after August 31, 2007, that discusses this test.

November 1, 2008, Test. This flight test was reportedly the first U.S. Navy Aegis BMD flight test conducted by the Navy, without oversight by MDA. The test involved two Aegis ships, each attempting to intercept a ballistic missile. The SM-3 fired by the first Aegis ship successfully intercepted its target, but the SM-3 fired by the second Aegis ship did not intercept its target. A press release from the U.S. Third Fleet (the Navy’s fleet for the Eastern Pacific) states that:

Vice Adm. Samuel J. Locklear, Commander, U.S. Third Fleet announced today the successful Navy intercept of a ballistic missile target over the Pacific Ocean during Fleet Exercise Pacific Blitz. This was the first Fleet operational firing to employ the Standard Missile-3 (SM-3) against a ballistic missile target. Command and control of this mission resided with Commander, U.S. Third Fleet, based in San Diego, Calif.

Pearl Harbor-based Aegis destroyers, USS Paul Hamilton (DDG 60) and USS Hopper (DDG 70), which have been upgraded to engage ballistic missiles, fired SM-3 missiles at separate targets. During this event, a short-range ballistic missile target was launched from the Pacific Missile Range Facility (PMRF), Barking Sands, Kauai, Hawaii. Upon detecting and tracking the target, USS Paul Hamilton, launched a SM-3 missile, resulting in a direct-hit intercept. Following USS Paul Hamilton’s engagement, PMRF launched another target. USS Hopper successfully detected, tracked and engaged the target. The SM-3 followed a nominal trajectory, however intercept was not achieved. Extensive analysis of the flight mission will be used to improve the deployed Aegis BMD system.62

November 19, 2008, Test. This was the second Japanese flight test, and involved a single ballistic missile target. The test did not result in a successful intercept. MDA states that:

Rear Admiral Tomohisa Takei, Director General of Operations and Plans, for the Japanese Maritime Staff Office (MSO), Japan Maritime Self Defense Force (JMSDF), and Lt. General Henry “Trey” Obering, United States Missile Defense Agency director, announced the completion today of a cooperative sea-based Aegis Ballistic Missile Defense intercept flight test off the coast of Kauai in Hawaii. The event, designated Japan Flight Test Mission 2 (JFTM-2), marked the second attempt by an Allied naval ship to intercept a ballistic missile target with the sea-based midcourse engagement capability provided by Aegis Ballistic Missile Defense. Target performance, interceptor missile launch and flyout, and operation of the Aegis Weapon System by the crew were successful, but an intercept was not achieved.

The JFTM-2 was a test of the newest engagement capability of the Aegis Ballistic Missile Defense configuration of the recently upgraded Japanese destroyer, JS CHOKAI (DDG-176). At approximately 4:21 pm (HST), 11:21 am (Tokyo time) a ballistic missile target was launched from the Pacific Missile Range Facility, Barking Sands, Kauai, Hawaii. JS CHOKAI crew members detected and tracked the target using an advanced on-board radar. The Aegis Weapon System then developed a fire control solution, and at approximately 4:24 pm (HST), 11:24 am (Tokyo time) on Nov 20, a single Standard Missile -3 (SM-3) Block IA was launched. Approximately two minutes later, the SM-3 failed to intercept the target. There is no immediate explanation for the failed intercept attempt. More information will be available after a thorough investigation. The JS CHOKAI crew performance was excellent in executing the mission. JFTM-2 was the second time that a Japanese ship was designated to

launch the interceptor missile, a major milestone in the growing cooperation between Japan and the U.S.\(^{63}\)

A November 21, 2008, press report states that:

An Aegis ballistic missile defense (BMD) test by the Japanese destroyer Chokai (DDG-176) ended in failure when the Standard Missile-3 Block 1A interceptor lost track of the target missile in the final seconds before a planned hit-to-kill.

The Chokai and its crew performed well throughout the test, and the SM-3 also performed flawlessly through its first three stages, according to Rear Adm. Brad Hicks, the U.S. Navy Aegis ballistic missile defense program director. He spoke with several reporters in a teleconference around midnight ET Wednesday-Thursday, after the test in the area of the Pacific Missile Range Facility, Barking Sands, Kauai, Hawaii.

This was the second Aegis BMD test failure in less than a month.

These latest two failures come as some Democrats in Congress are poised to cut spending on missile defense programs when they convene next year to consider the Missile Defense Agency budget for the fiscal year ending Sept. 30, 2010....

Still, in the coming money debates next year, missile defense advocates will be able to point out that even including the Hopper and Chokai failures, the record for the Aegis tests is an overwhelming 16 successful hits demolishing target missiles out of 20 attempts.

Those successes included the first Japanese attempt. The Japanese destroyer Kongo (DDG-173) successfully used its SM-3 interceptor to kill a target missile. The difference in tests is that the Kongo crew was advised beforehand when the target missile would be launched, while the Chokai crew wasn’t....

[Hicks] said a board will be convened to examine why the latest test failed. Hicks declined to speculate on why the SM-3 interceptor missed the target. “I’m confident we’ll find out the root cause” of the Chokai interceptor failure to score a hit, he said.

However, he was asked by Space & Missile Defense Report whether the prior SM-3 successes make it unlikely the Chokai failure stems from some basic design flaw in all SM-3s, and whether it is more likely that the Chokai SM-3 failed because of some flaw or glitch in just that one interceptor.

Hicks said that is likely.

“Obviously, we believe this is hopefully related to this one interceptor,” and doesn’t reflect any basic design flaw in the SM-3 interceptors, he said.

The Chokai test failure cost Japan a $55 million loss, he said, adding, “It wasn’t cheap.”...

In the Chokai test, the target missile was launched from Barking Sands, and about three minutes later the Chokai crew had spotted the target, the Aegis system had developed a tracking and hit solution, and the SM-3 interceptor was launched.

The first, second and third stages of the interceptor performed nominally, without problems, but then came the fourth stage. The nosecone components opened to expose the kill vehicle area, and somehow the program to track the target missile failed.

“It lost track,” Hicks said, only seconds before the hit would have been achieved.

If the kill had occurred, it would have been about 100 nautical miles (roughly 115 statute miles) above Earth, and some 250 miles away from Barking Sands, Hicks said.

It took the interceptor about two minutes flight time to reach the near miss with the target missile.

Meanwhile, the Hamilton was nearby watching the test. The Hamilton Aegis system successfully spotted and tracked the target, and developed a simulated solution and simulated interceptor launch that, if it had been real, would have resulted in a successful hit on the target, Hicks said. The Hamilton didn’t cue the Chokai, however. “It was strictly Chokai’s engagement,” Hicks said.64

July 30, 2009, Test. MDA states that:

In conjunction with the Missile Defense Agency (MDA), U.S. Pacific Fleet ships and crews successfully conducted the latest Aegis Ballistic Missile Defense (BMD) at-sea firing event on July 30. During this event, entitled Stellar Avenger, the Aegis BMD-equipped ship, USS Hopper (DDG 70), detected, tracked, fired and guided a Standard Missile -3 (SM-3) Block (Blk) IA to intercept a sub-scale short range ballistic missile. The target was launched from the Kauai Test Facility, co-located on the Pacific Missile Range Facility (PMRF), Barking Sands, Kauai. It was the 19th successful intercept in 23 at-sea firings, for the Aegis BMD Program, including the February 2008 destruction of the malfunctioning satellite above the earth’s atmosphere. Stellar Avenger was part of the continual evaluation of the certified and fielded Aegis BMD system at-sea today.

At approximately 5:40 pm (HST), 11:40 pm (EDT), a target was launched from PMRF. Three U.S. Navy Aegis BMD-equipped ships, the cruiser, USS Lake Erie (CG 70) and destroyers USS Hopper (DDG 70) and USS O’Kane (DDG 77) detected and tracked the target with their SPY radars. Each developed fire control solutions. At 5:42 pm (HST), 11:42 pm (EDT) the crew of USS Hopper fired one SM-3 Blk IA missile. The USS Hopper’s Aegis BMD Weapon System successfully guided the SM-3 to a direct body to body hit, approximately two minutes after leaving the ship. The intercept occurred about 100 miles above the Pacific Ocean. USS O’Kane conducted a simulated engagement of the target. USS Lake Erie, with its recently installed upgraded Aegis BMD 4.0.1 Weapons System, detected and tracked the same target.65

A July 31, 2009, press report states:

The test was the first Aegis BMD exercise to feature two versions of the software in a single event, according to Lisa Callahan, Lockheed’s vice president for ballistic missile defense programs.

A goal of the exercises was to test the Aegis system’s ability to discern all the different parts and pieces of a ballistic missile, Nick Bucci, Lockheed’s director for Aegis BMD development programs, told reporters July 29 during a pre-exercise conference call.

Three more flight tests this fall will further test the system’s discrimination capabilities, Bucci added, with each test becoming more complex. The last test will “be against a pretty darn complex target,” he said.

The July 30 tests also validated fixes put in place after a BMD test last November involving a missile launched from the Aegis BMD Japanese destroyer Chokai failed to intercept its target, according to MDA spokesman Chris Taylor. The improvements—which were successful in the most recent test—included fixes to the Solid Divert Attitude Control System.

The Chokai is the second of four Japanese Aegis ships being upgraded with BMD capability. A third ship, the Myoko, is scheduled to carry out a BMD test this fall.

An August 3, 2009, press report states:

This test was added to the schedule to evaluate changes made after last year’s failed attempt to intercept a target with an SM-3 Block IA launched by a Japanese Aegis-equipped ship After the Nov. 19 test, MDA officials said, “Target performance, interceptor missile launch and flyout, and operation of the Aegis Weapon System by the crew were successful, but an intercept was not achieved.”

A root cause has not been identified, and an MDA spokesman did not say whether fixes have been made to hardware or operational procedures resulting from the failure review. It is also unclear why a subscale target was used in the July 30 trial.

An August 4, 2009, press report states:

[Rear Admiral Alan “Brad” Hicks, Aegis/SM-3 program manager for MDA], said that a November [2008] failure of an SM-3 Block IA... during a flight-test was attributable to poor adherence to processes on Raytheon’s assembly line in Tucson, Ariz.

This was isolated to that missile, and it was the result of perturbations to the build process encountered when shifting from development to production operations.

During the November test, a Japanese Aegis-equipped ship fired the interceptor and it flew “perfectly,” Hicks said. In the endgame, a failure of the divert and attitude control system on the unitary kill vehicle led to a miss.

The July 30 demonstration using a U.S. ship “restored confidence” for the Japanese that the miss last fall was an isolated incident, he says.

October 27, 2009, Test. This was the third Japanese flight test, and it involved a single ballistic missile target. MDA states that:

The Japan Maritime Self-Defense Force (JMSDF) and the United States Missile Defense Agency (MDA) announced the successful completion of an Aegis Ballistic Missile Defense (BMD) intercept flight test, in cooperation with the U.S. Navy, off the coast of Kauai in Hawaii. The event, designated Japan Flight Test Mission 3 (JFTM-3), marked the third time that a JMSDF ship has successfully engaged a ballistic missile target, including two successful intercepts, with the sea-based midcourse engagement capability provided by Aegis BMD.

The JFTM-3 test event verified the newest engagement capability of the Japan Aegis BMD configuration of the recently upgraded Japanese destroyer, JS MYOKO (DDG-175). At approximately 6:00pm (HST), 1:00 pm Tokyo time on Oct 28, a separating, medium-range ballistic missile target was launched from the Pacific Missile Range Facility, Barking Sands, Kauai, Hawaii. JS MYOKO crew members detected and tracked the target. The Aegis Weapon System then developed a fire control solution and, at approximately 6:04pm (HST), 1:04 pm Tokyo time a Standard Missile-3 (SM-3) Block IA interceptor missile was launched. Approximately 3 minutes later, the SM-3 successfully intercepted the target approximately 100 miles above the Pacific Ocean. JFTM-3 is a significant milestone in the growing cooperation between Japan and the U.S. in the area of missile defense.

Also participating in the test, were the Pearl Harbor-based USS Lake Erie (CG 70) and USS Paul Hamilton (DDG 60) which detected and tracked the target and conducted a simulated engagement.69

October 28, 2010, Test. This was the fourth Japanese flight test, and it involved a single ballistic missile target. MDA states that:

The Japan Maritime Self-Defense Force (JMSDF) and the United States Missile Defense Agency (MDA) announced the successful completion of an Aegis Ballistic Missile Defense (BMD) intercept flight test, in cooperation with the U.S. Navy, off the coast of Kauai in Hawaii.

The event marked the fourth time that a JMSDF ship has engaged a ballistic missile target, including three successful intercepts, with the sea-based midcourse engagement capability provided by Aegis BMD.

The JFTM-4 test event verified the newest engagement capability of the Japan Aegis BMD configuration of the recently upgraded Japanese destroyer, JS KIRISHIMA. At approximately 5:06 p.m. (HST), 12:06 p.m. Tokyo time on Oct. 29, 2010, a separating 1,000 km class ballistic missile target was launched from the Pacific Missile Range Facility at Barking Sands, Kauai, Hawaii.

JS KIRISHIMA crew members detected and tracked the target. The Aegis Weapon System then developed a fire control solution and launched a Standard Missile -3 (SM-3) Block IA missile. Approximately three minutes later, the SM-3 successfully intercepted the target approximately 100 miles above the Pacific Ocean. JFTM-4 is a significant milestone in the growing cooperation between Japan and the U.S. in the area of missile defense.

Also participating in the test was USS LAKE ERIE and USS RUSSELL, Aegis ships which cooperated to detect, track and conduct a simulated intercept engagement against the same target.70

April 15, 2011, Test. MDA states that this flight test “was the most challenging test to date, as it was the first Aegis BMD version 3.6.1 intercept against an intermediate-range target (range 1,864 to 3,418 [statute] miles) and the first Aegis BMD 3.6.1 engagement relying on remote tracking data.” MDA states that:

The Missile Defense Agency (MDA), U.S. Navy sailors aboard the Aegis destroyer USS O’KANE (DDG 77), and Soldiers from the 94th Army Air and Missile Defense Command operating from the 613th Air and Space Operations Center at Hickam Air Force Base, Hawaii, successfully conducted a flight test of the Aegis Ballistic Missile Defense (BMD) element of the nation’s Ballistic Missile Defense System, resulting in the intercept of a separating ballistic missile target over the Pacific Ocean. This successful test demonstrated the capability of the first phase of the European Phased Adaptive Approach (EPAA) announced by the President in September, 2009.

At 2:52 a.m. EDT (6:52 p.m. April 15 Marshall Island Time), an intermediate-range ballistic missile target was launched from the Reagan Test Site, located on Kwajalein Atoll in the Republic of the Marshall Islands, approximately 2,300 miles southwest of Hawaii. The target flew in a northeasterly direction towards a broad ocean area in the Pacific Ocean. Following target launch, a forward-based AN/TPY-2 X-band transportable radar, located on Wake Island, detected and tracked the threat missile. The radar sent trajectory information to the Command, Control, Battle Management, and Communications (C2BMC) system, which processed and transmitted remote target data to the USS O’KANE. The destroyer, located to the west of Hawaii, used the data to develop a fire control solution and launch the SM-3 Block IA missile approximately 11 minutes after the target was launched.

As the IRBM target continued along its trajectory, the firing ship’s AN/SPY-1 radar detected and acquired the ballistic missile target. The firing ship’s Aegis BMD weapon system uplinked target track information to the SM-3 Block IA missile. The SM-3 maneuvered to a point in space as designated by the fire control solution and released its kinetic warhead. The kinetic warhead acquired the target, diverted into its path, and, using only force of a direct impact, destroyed the threat in a “hit-to-kill” intercept.

During the test the C2BMC system, operated by Soldiers from the 94th Army Air and Missile Defense Command, received data from all assets and provided situational awareness of the engagement to U.S. Pacific Command, U.S. Northern Command and U.S. Strategic Command.

The two demonstration Space Tracking and Surveillance Satellites (STSS), launched by MDA in 2009, successfully acquired the target missile, providing stereo “birth to death” tracking of the target.

Today’s event, designated Flight Test Standard Missile-15 (FTM-15), was the most challenging test to date, as it was the first Aegis BMD version 3.6.1 intercept against an intermediate-range target (range 1,864 to 3,418 [statute] miles) and the first Aegis BMD 3.6.1 engagement relying on remote tracking data. The ability to use remote radar data to

engage a threat ballistic missile greatly increases the battle space and defended area of the SM-3 missile.

Initial indications are that all components performed as designed. Program officials will spend the next several months conducting an extensive assessment and evaluation of system performance based upon telemetry and other data obtained during the test.71

September 1, 2011, Test. This flight test, which did not result in an intercept, was the first flight test of the SM-3 Block IB interceptor. MDA states that it was unable to achieve the planned intercept of a ballistic missile target during a test over the Pacific Ocean exercising the sea-based element of the Ballistic Missile Defense System (BMDS).

At approximately 3:53 a.m. Hawaii Standard Time (9:53 a.m. EDT) a short-range ballistic missile target was launched from the U.S. Navy’s Pacific Missile Range Facility on Kauai, Hawaii. Approximately 90 seconds later, a Standard Missile 3 (SM-3) Block 1B interceptor missile was launched from the cruiser USS LAKE ERIE (CG-70) but an intercept of the target was not achieved.

This was the first flight test of the advanced SM-3 Block 1B interceptor missile. Program officials will conduct an extensive investigation to determine the cause of the failure to intercept.72

Endo-Atmospheric (SM-2 Block IV) Flight Tests

The Aegis BMD system using the SM-2 Block IV interceptor has achieved three successful endo-atmospheric intercepts in three at-sea attempts, the first occurring on May 24, 2006,73 the second on June 5, 2008,74 and the third between March 24 and March 26, 2009.75

Author Contact Information

Ronald O'Rourke
Specialist in Naval Affairs
rorourke@crs.loc.gov, 7-7610