PLUTONIUM UTILIZATION PROGRAM
TECHNICAL ACTIVITIES QUARTERLY REPORT
DECEMBER 1969, JANUARY, FEBRUARY 1970

April 1970

AEC RESEARCH & DEVELOPMENT REPORT
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor, prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

PACIFIC NORTHWEST LABORATORY
RICHLAND, WASHINGTON
operated by
BATTÉLÉ MEMORIAL INSTITUTE
for the
UNITED STATES ATOMIC ENERGY COMMISSION UNDER CONTRACT AT(45-1)-1830
PLUTONIUM UTILIZATION PROGRAM
TECHNICAL ACTIVITIES QUARTERLY REPORT
DECEMBER 1969, JANUARY, FEBRUARY 1970

By

Staff of Battelle-Northwest
Program Leader: F. G. Dawson

April 1970

BATTELLE MEMORIAL INSTITUTE
PACIFIC NORTHWEST LABORATORIES
RICHLAND, WASHINGTON 99352
FOREWORD

The Plutonium Utilization Program is conducted by the Pacific Northwest Laboratory for the USAEC. The objective of the Technical Activities Quarterly Report is to inform the scientific community in a timely manner of the technical progress made on the program. The report contains brief technical discussions of accomplishments in all areas where significant progress has been made during the quarter. The results presented should be considered preliminary and do not constitute final publication of the work. A list of publications and papers is given in the report. Anyone wishing to obtain additional information on the work presented is encouraged to contact the author directly.
PREVIOUS REPORTS IN THIS SERIES

September, October, November 1967
BNWL-654

December 1967, January, February 1968
BNWL-739

March, April, May 1968
BNWL-828

June, July, August 1968
BNWL-907

September, October, November 1968
BNWL-963

December 1968, January, February 1969
BNWL-1039

March, April, May 1969
BNWL-1105

June, July, August 1969
BNWL-1224

September, October, November 1969
BNWL-1289
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>1.1</td>
</tr>
<tr>
<td>REACTOR NEUTRONICS</td>
<td>2.1</td>
</tr>
<tr>
<td>Critical Experiments in UO$_2$-2 wt% PuO$_2$ Fueled-H$_2$O Moderated Assemblies</td>
<td>2.1</td>
</tr>
<tr>
<td>Code Modifications</td>
<td>2.2</td>
</tr>
<tr>
<td>Calculation of 2-Table Sets of S_N Parameters in HRG</td>
<td>2.2</td>
</tr>
<tr>
<td>FUELS TECHNOLOGY</td>
<td>3.1</td>
</tr>
<tr>
<td>High Exposure Plutonium Studies</td>
<td>3.1</td>
</tr>
<tr>
<td>Plutonium Fuel Dissolution Studies</td>
<td>3.3</td>
</tr>
<tr>
<td>Instrumented Fuel Tests</td>
<td>3.4</td>
</tr>
<tr>
<td>Defect Testing</td>
<td>3.6</td>
</tr>
<tr>
<td>PRTR Fuel Evaluations</td>
<td>3.9</td>
</tr>
<tr>
<td>REACTOR SAFETY</td>
<td>4.1</td>
</tr>
<tr>
<td>Transient Testing</td>
<td>4.1</td>
</tr>
<tr>
<td>PRTR Zircaloy-2 Pressure Tubing</td>
<td>4.2</td>
</tr>
<tr>
<td>PLUTONIUM RECYCLE TEST REACTOR</td>
<td>5.1</td>
</tr>
<tr>
<td>PRTR Deactivation</td>
<td>5.1</td>
</tr>
<tr>
<td>PUBLICATIONS AND PRESENTATIONS</td>
<td>6.1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

3.1 Calculated Maximum Fuel Temperatures at the Planned Thermocouple Positions in the Different Fuel Types 3.6
3.2 Planned Disposition of the Three Replaceable Rods in the Test Assembly for the Defect Test Series 3.8
3.3 Preirradiation Diameter Profile Scan of Cold-Pressed-Sintered Pellet Fuel Rod A-103 3.13
3.4 Postirradiation Diameter Profile Scan of Cold-Pressed-Sintered Pellet Fuel Rod A-103 3.14
3.5 Postirradiation Diameter Profile Scan of Vibrationally Compacted Fuel Rod FS-07 3.15
3.6 Typical Postirradiation Diameter Profile Scan of Hot-Pressed Pellet Fuel Rod A-12 3.16
3.7 Summary of Preirradiation Diameter Profile Data for Cold-Pressed-Sintered Fuel Rod A-102 3.17
3.8 Summary of Postirradiation Diameter Profile Data for Cold-Pressed-Sintered Fuel Rod A-102 3.18
3.9 Summary of Preirradiation of Diameter Profile Data for Cold-Pressed-Sintered Pellet Fuel Rod A-103 3.19
3.10 Summary of Postirradiation Diameter Profile Data for Cold-Pressed-Sintered Fuel Rod A-103 3.20
3.11 Summary of Postirradiation Diameter Profile Data for Vibrationally Compacted Fuel Rod FR-78 3.21
3.12 Summary of Postirradiation Diameter Profile Data for Vibrationally Compacted Fuel Rod FS-07 3.22
3.13 Summary of Postirradiation Diameter Profile Data for Vibrationally Compacted Fuel Rod FR-72 3.23
3.14 Summary of Postirradiation Diameter Profile Data for Hot-Pressed Pellet Fuel Rod A-12 3.24
3.15 Summary of Postirradiation Diameter Profile Data for Hot-Pressed Pellet Fuel Rod A-23 3.25
3.16 Summary of Postirradiation Diameter Profile Data for Hot-Pressed Pellet Fuel Rod A-14 3.26
3.17 Severely Corroded and Hydrided Zircaloy Cladding in the Defected Region of a PRTR Rod (Z2-12) Which Contained Cold-Pressed-Sintered UO\textsubscript{2}-PuO\textsubscript{2} Pellet Fuel 3.31
3.18 Transverse Sections from the 8.0 kW/ft Positions in the Two Low Performance Instrumented Fuel Rods

3.19 Transverse Sections from the Peak Power (11.5 kW/ft) Positions in Two Low Performance Instrumented Fuel Rods

3.20 Transverse Sections from the 14.5 kW/ft Positions in Two High Performance Instrumented Fuel Rods

3.21 Transverse Sections from the Peak Power (20.6 kW/ft) Positions in the Two High Performance Instrumented Fuel Rods

3.22 Typical ZrO₂ Layer on the Inner Cladding Surface of Instrumented Vibrationally Compacted UO₂-PuO₂ Fuel Rods

3.23 Transverse Section from the Peak Power Position (7.3 kW/ft) in the Instrumented ThO₂-PuO₂ Fuel Rod (FR-6)

3.24 Transverse Composite Strips from Eight Vibrationally Compacted UO₂-2 wt% PuO₂ Fuel Rods with Identical Irradiation Histories

4.1 Zircaloy-Clad TREAT Pins with and Without the Hafnium Neutron Absorber Cups Placed on Each End
LIST OF TABLES

3.1 Measured Gamma Dose Rates from UNC Fuel 3.1
3.2 Gamma Dose Rates from Simulated BWR Fuel Arrays 3.3
3.3 Operating Conditions for the Defect Test Assembly in the ETR M-3 Loop 3.7
3.4 Summary of PRTR High Power Density Fuel Rod Postirradiation Examination Status 3.10
3.5 Profilometer Measurement Data on PRTR High Power Density Fuel Rods 3.12
3.6 PRTR High Power Density Fuel Rod Fission Gas Analysis 3.29
3.7 Summary of the Postirradiation Examination Status for Fuel Rods Irradiated to Extended Burnup in PRTR Fringe Positions 3.30
3.8 Extended Burnup Fuel Rod Fission Gas Analysis 3.32
3.9 Comparison of Irradiated Fuel Structural Features in the Instrumented Vibrationally Compacted UO₂·PuO₂ Fuel Rods 3.38
3.10 Summary of Distinguishing Structural Features Among Eight Vibrationally Compacted Rods Which Were Irradiated Under the Same Conditions 3.42
PLUTONIUM UTILIZATION PROGRAM
TECHNICAL ACTIVITIES QUARTERLY REPORT
DECEMBER 1969, JANUARY, FEBRUARY 1970

1.0 SUMMARY

REACTOR NEUTRONICS

Critical experiments were completed in the PRCF in a $\mathrm{H}_2\mathrm{O}$-moderated lattice (1.06 in. square pitch) of UO_2-2 wt% PuO_2 fuel rods.

A transverse buckling option and a "white" albedo boundary condition option have been added to the THERMOS/BATTELLE code. An error was corrected in the anisotropy correction option and the cell smear routine has been modified to make it more useful.

An option has been added to the slowing down spectrum code HRG to permit the calculation and punching of 2-table sets of S_N parameters based on an improved, "extended," transport approximation.

FUELS TECHNOLOGY

Dose rate measurements were made on BWR type fuel assemblies containing mixed-oxide rods at United Nuclear Corporation and General Electric Company. Although the dose rates were lower than expected, the data indicate that some shielding may be required in the final assembly stage. Measurements were also made at PNL on simulated arrays containing mixed-oxide fuel rods enriched with high exposure plutonium.

Dissolubility studies are being conducted on UO_2-PuO_2 fuel samples to investigate the effects of different fabrication parameters and plutonium compositions.

An instrumented experiment designed to monitor internal gas pressure during irradiation to peak burnups of 45,000 MWd/MTM
is being fabricated. Design of an experiment to measure centerline fuel temperatures in different mixed-oxide fuel rods during irradiation is being developed.

The defect test assembly containing 12 fueled Zircaloy-clad UO$_2$-PuO$_2$ rods is being irradiated in the ETR M-3 loop for the first planned cycle of irradiation without an intentionally defected rod.

Postirradiation measurements indicate that dimensional changes are more pronounced in cold-pressed-sintered rods than in rods containing hot-pressed pellet or vibrationally compacted fuel.

The defect in a cold-pressed-sintered UO$_2$-PuO$_2$ rod is characteristic of a Zircaloy cladding failure originating from within the rod caused by contaminates.

There is excellent consistency in the structural characteristics of fuel specimens extracted from the instrumented vibrationally compacted PRTR rods.

Comparison of fuel structures formed in vibrationally compacted rods irradiated under the same conditions to low burnup indicates that the extent of the equiaxed grain growth boundary is the most reliable indicator of fuel operating conditions.

REACTOR SAFETY

A joint PNL/GE/INC program was initiated in SPERT to investigate the possible effects on the transient behavior of adding PuO$_2$ enrichment to UO$_2$ fuels. Also, confirming experiments to compare the transient behavior of pelleted and packed particle fuels are being conducted in TREAT.

The draft copy of BNWL-SA-3143, Fracture Behavior of Flawed Zircaloy-2 Pressure Tubes, has been completed and submitted to NUCLEAR ENGINEERING AND DESIGN for publication.
This paper shows the fracture testing of Zircaloy-2 pressure tubes for simulating the effect of a sharp crack should involve the use of fatigue cracks rather than machined notches or slots, since the latter do not represent as severe a stress concentration as an actual crack. It has also been shown that an empirical failure criteria may be used to treat the failure of pressure tubes containing axial through-wall cracks.

PLUTONIUM RECYCLE TEST REACTOR

Surveillance activities have disclosed no problem areas during the first three months of deactivation. Fuels not being retained for possible future reactor operation and R&D are being shipped to ARCHO for processing.
2.0 REACTOR NEUTRONICS

CRITICAL EXPERIMENTS IN \(\text{UO}_2-2 \text{ wt\% PuO}_2 \)-FUELED-H\(_2\)O MODERATED ASSEMBLIES

W. P. Stinson

Critical experiments were conducted in the Plutonium Recycle Critical Facility (PRCF) to obtain data for verifying the accuracy of neutronic design methods. The fuel rods contained \(\text{UO}_2-2 \text{ wt\% PuO}_2 \) with 8\% \(^{240}\text{Pu} \) and the moderator was H\(_2\)O. The core consisted of the fuel (1/2 in. diameter rods) in a 1.06 in. square lattice pitch loaded to form a cylinder 36 in. in height and a radius equivalent to 150 fuel rods when critical. The measurements conducted on this core were:

- Critical size
- Kinetic parameters \((\beta/\lambda)\)
- Flux distributions
- Void coefficient
- Approach-to-critical.

Approach-to-critical data were taken as a check on the techniques used in similar type measurements made in the Critical Approach Facility (CAF). The critical loading inferred from the subcritical approach was 150.1 ± 0.03 rods which agrees well with the actual critical loading of 150.1 ± 0.05 rods.

The kinetics measurements were made by recording and analyzing the reactor noise. The preliminary value of \(\beta/\lambda \) obtained is 76 ± 3 sec\(^{-1}\). The flux distribution was measured by scanning the fuel rods for fission product decay gamma rays. Empty thin wall aluminum tubes were placed in interstitial positions in the central part of the core to obtain data from which the void coefficient can be determined. Analysis of the data is continuing to obtain final values.
Reference

CODE MODIFICATIONS

C. L. Bennett

The following modifications to THERMOS/BATTELLE have been completed.

1) A transverse buckling option of the simple DB2 form has been added. The radial, axial, or planer buckling is calculated from the input dimensions which may or may not include the extrapolation distances. The extrapolation distances would normally be calculated internally in this option.

2) A "white" albedo boundary condition option has been added to the cylindrical-geometry ray-tracing method. The boundary albedo can be specified for either the whole thermal range or each speed.

3) An error in the anisotropic scattering correction option (neglecting isotopes used in the cell not on the library) has been corrected.

4) The cell smear routine has been modified to correctly produce a complete spatially-collapsed-cell macroscopic-cross-section set which can be punched out on cards in a format compatible with its use in a succeeding THERMOS case as an added material used in the cell but not provided in the library.

CALCULATION OF 2-TABLE SETS OF SN PARAMETERS IN HRG

J. L. Carter

For some time, the epithermal spectrum code HRG has had available an option of punching a 2-table set of parameters
for use in S_N codes such as DTF-IV. In this option, the
entry for group g in the σ_g position of the first table is
$\sigma_{t,g}(0)$, the flux weighted total cross section. Bell et al.\(^{(1)}\)
show that generally it is better to use the extended transport approximation, which gives
\[
\sigma_g = \sigma_{t,g}(2) - \sigma_{2g}(2)
\]
for a 2-table set. Here the subscript 2 refers to the second Legendre moment of the scattering cross section in the laboratory system and the 2 in parentheses indicates the cross sections should be weighted over the energies of group g by the second Legendre moment of the angular flux. An option has now been added to HRG to permit punching 2-table sets of S_N parameters based on this extended transport approximation.

Because evaluation of Equation (1) requires knowledge of the second Legendre moments of both the angular flux and the scattering cross section (neither of which is directly available in HRG), some auxiliary calculations must be done. Bell et al.\(^{(1)}\) show that, for the unknown flux moment, an adequate approximation is
\[
\phi_2(E) \approx \phi_1(E)/\Sigma_{tr}(E)
\]
where $\phi_1(E)$ is the first Legendre moment of the flux, i.e., the current, and $\Sigma_{tr}(E)$ is the macroscopic transport cross section. These latter quantities are available in HRG for each fine group, so that the fine group analog of Equation (2) can readily be found.

Finding the second Legendre moment of the scattering cross section is more difficult, but sufficient information is available so that a reasonable approximation can be made if we can assume that the only anisotropy is that of elastic scattering and that this is linearly anisotropic in the center.
of mass system. In this case, the microscopic cross section in energy and solid angle for a particular isotope is, in usual notation,

\[\sigma_s(E, \mu_c) = \frac{\sigma_s(E)}{4\pi} \left[(1 + \omega_1^c(E) \mu_c)\right]. \]

(3)

In the laboratory system, the cross section for this isotope is

\[\sigma_s(E, \mu_L) = \frac{\sigma_s(E)}{4\pi} \sum_{\ell=0}^{\infty} \omega_L^\ell(E) P_\ell(\mu_L). \]

(4)

The transformation matrix relating these two sets of \(\omega \)'s is well-known;\(^2\) we only need values for \(\ell=0,1,2 \). For \(\gamma = 1/A << 1 \), these are

\[\omega^L_0(E) = 1 \]

(5a)

\[\omega^L_1(E) = 2\gamma + (1 - \frac{3}{5} \gamma^2) \omega^c_1(E) \]

(5b)

\[\omega^L_2(E) = \gamma^2 [1 + O(\gamma^2)] + 2\gamma[1 + O(\gamma^2)] \omega^c_1(E) \]

(5c)

where only terms to order \(\gamma^2 \) are given explicitly for \(\omega^L_2(E) \).

The angular moments we seek are not the \(\omega^L_\ell \) themselves, but instead the coefficients of the expansion

\[\sigma_s(E, \mu^L_2) = \sum_{\ell=0}^{\infty} \frac{2\ell + 1}{4\pi} \sigma_\ell(E) P_\ell(\mu^L_2). \]

(6)

From Equation (4) it follows that

\[\sigma_\ell(E) = \frac{\omega^L_\ell(E) \sigma_s(E)}{2\ell + 1}. \]

(7)

Now \(\omega^c_1(E) \) can be eliminated between Equations (5b) and (5c) and (7) can be used to express \(\sigma_2(E) \) in terms of \(\sigma_1(E) \) and \(\sigma_0(E) \).
In fine group form, the result can be written

\[
\sigma_{2,n} = \frac{6}{5} \frac{\gamma[1 + 0(\gamma^2)]}{1 - \frac{2}{3} \gamma^2} (\sigma_{1,n} - \frac{2}{3} \gamma \sigma_{0,n}) \\
+ \frac{1}{5} \gamma^2 [1 + 0(\gamma^2)] \sigma_{0,n} \quad \gamma \ll 1.
\]

(8)

For an individual isotope, Equation (8) gives the second Legendre moment we seek.

Many HRG nuclides are individual isotopes and \(\sigma_{0,n} \) and \(\sigma_{1,n} \) are available for them, so that \(\sigma_{2,n} \) can be found if \(\gamma \) is known. We can readily find \(\gamma \) from the knowledge that the scattering is isotropic in the center of mass system at sufficiently low energies. Thus, we can choose a low energy fine group \(m \) for which scattering is isotropic and find \(\gamma \) from

\[
\frac{\sigma_{1,m}}{\sigma_{0,m}} = \frac{2}{3} \gamma.
\]

(9)

For these nuclides, \(\sigma \) in Equation (1) can be found by averaging \(\sigma_{t,n} - \sigma_{2,n} \) over all fine groups \(n \) in \(g \), where \(\sigma_{2,n} \) is found from Equation (8) and (9), and where, from (2), the weighting function is \(J_n/\Sigma_{tr,n} \).

The option which has been added assumes that this same procedure can also be used for the remaining HRG nuclides and for the macroscopic cross section. This extension of the application of Equation (8) and (9) needs justification. What is obtained from (9) is an average value \(\bar{\gamma} \), where

\[
\bar{\gamma} = \frac{\sum_{i} \gamma_{i} N_{i} \sigma_{0,m}^{i}}{\sum_{i} N_{i} \sigma_{0,m}^{i}}
\]

(10)

and the index \(i \) refers to the component isotopes.
It is not immediately clear that $\bar{\gamma}$ is appropriate for use in Equation (8). For one thing, other averages such as γ^2 are needed in (8), and $\gamma^2 = \bar{\gamma}^2$ may be a poor approximation even for group m. In addition, if the ratios of the component σ_0's vary from group to group, $\bar{\gamma}_m = \bar{\gamma}_n$ may also be a poor approximation. If the γ_i are nearly equal, however, as in those HRG nuclides which represent elements, it is clear from Equation (10) and its analogs for higher powers of γ_i that $\bar{\gamma}^P \approx \bar{\gamma}^P$ and $\bar{\gamma}$ can be used in (8) with little error. Where the γ_i are widely different (as in the HRG use of H_2O and D_2O as nuclides and as is usually the case for the components of macroscopic cross sections for a cell), the accuracy of the approximation can best be determined by testing actual data. Because $\gamma = \bar{\gamma} \ll 1$ is not true for these cases, another problem arises in using (8), i.e., the leading terms in γ do not reduce to the correct limit as $\gamma \rightarrow 1$. This deficiency can be largely overcome by adding terms in γ^2 in (8), with adjustable coefficients chosen to give the correct values as $\gamma \rightarrow 1$. When this is done, (8) is replaced by

$$
\sigma_{2,n} = \frac{6}{5} \gamma \left(1 - \frac{3}{8} \gamma^2 \right) \left(\sigma_{1,n} - \frac{2}{3} \gamma \sigma_0,n \right) + \frac{1}{5} \gamma^2 \left(1 + \frac{1}{4} \gamma^2 \right) \sigma_0,n.
$$

(11)

A test case has been run to compare the macroscopic value, the σ_g of (1), with the sum of the microscopic values of the individual components. In the test case Equations (9) and (11) were used to find each fine group $\sigma_{2,n}$ and the weighting function of $J_n/E_{tr,n}$ was used in averaging over the fine groups in g. In addition, a 0.5 in. fuel rod containing a mixture of plutonium and uranium oxide clad with zirconium in a geometry with a fuel/water ratio of about 1 was assumed for
the calculation. Three broad groups were used, with lower energy limits of 1.17×10^4, 2.38, and 0.683 eV. The percent differences between the macroscopic and sum of microscopic values of Equation (1) were -1.8, 9.0, and 3.4 for the three groups. The H$_2$O was treated as a nuclide in this case. A separate estimate of the error in treating H$_2$O as a nuclide rather than as 2H + O is about 3% in the lower energy fine groups and 6% in the higher energy fine groups.

Although these results indicate that an uncertainty of the order of 10% is introduced by extending Equations (9) and (11) to macroscopic cross sections, the accuracy is usually better than that of the basic assumption of linearly anisotropic scattering of the center-of-mass system. Therefore a more elaborate treatment of the available data is not warranted at this time.

References

3.0 FUELS TECHNOLOGY

HIGH EXPOSURE PLUTONIUM STUDIES
R. C. Smith, L. G. Faust, and H. H. Van Tuyl

Dose rate measurements were made on several arrays of plutonium enriched fuel rods at United Nuclear Corporation, General Electric Company, and PNL. The measurements were made on fuel rod arrays similar to BWR assemblies.

At United Nuclear Corporation, dose rate measurements were made on arrays of the type which may be used as transitional fuel in a change from a UO_2 to a UO_2-PuO_2 loading for a Dresden type BWR. The fuel rods were 0.55 in. OD and 48 in. long with 0.035 in. thick Zircaloy-2 cladding. High exposure plutonium recovered from Dresden fuel containing about 18 wt% ^{240}Pu was used in these pins at an enriched level of 2.3 wt% PuO_2 in natural UO_2. Up to four, 36 pin arrays were measured at one time. The gamma dose rate data are summarized in Table 3.1.

<table>
<thead>
<tr>
<th>Array</th>
<th>Dose Rate, mrad/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3/4 in.</td>
</tr>
<tr>
<td>9/27</td>
<td>4.2</td>
</tr>
<tr>
<td>36/108</td>
<td>4.4</td>
</tr>
<tr>
<td>21/15</td>
<td>8.4</td>
</tr>
<tr>
<td>84/60</td>
<td>12.6</td>
</tr>
<tr>
<td>112/3+</td>
<td>16.6</td>
</tr>
</tbody>
</table>

In each case, except the last, the remaining pins required to complete each 36 pin assembly or sets of assemblies were enriched UO_2. In the last case listed, only available UO_2-PuO_2 pins were assembled.
Neutron yields were measured using a Long Counter on the same geometric arrays listed in Table 3.1. In no case was the neutron dose rate more than about 1 mrem/hr at any distance beyond 6 in. from the fuel surface. This neutron dose rate was considerably less than expected.

Gamma dose rates were measured at General Electric-Vallecitos on a BWR fuel assembly containing 9/16 in. diameter fuel pins in a 9 × 9 pin array. The mixed-oxide rods contained different PuO₂ enrichments. The measured gamma dose rate from the fuel assembly was 12 mrad/hr at 3/4 in., 3.2 mrad/hr at 6 in., and 1.9 mrad/hr at 24 in.

The maximum neutron dose rate from the GE fuel assembly was about 2.2 mrem/hr at 24 in. A "Snoopy" neutron dose rate measurement made with the instrument in contact with the fuel cladding (estimated dose at five inches) was 7 mrem/hr for the fuel assembly. Again, the measured neutron dose rates were encouragingly low.

Measurements were also made at PNL on 9/16 in. diameter fuel pins, 36 in. long with 0.030 in. thick Zircaloy-2 cladding. The isotopic composition of the plutonium used in the UO₂-4 wt% PuO₂ fuel was 0.265 wt% ²³⁸Pu, 75.2 wt% ²³⁹Pu, 18.2 wt% ²⁴⁰Pu, 5.15 wt% ²⁴¹Pu, and 1.2 wt% ²⁴²Pu. The plutonium was over two years old which resulted in an appreciable buildin of ²⁴¹Am. Measurements were made on 6 × 6, 7 × 7, and 9 × 15 arrays. Measurements were not made on a 15 × 15 array because of criticality restrictions. The results of the measurements are summarized in Table 3.2.

Neutron dose rates at a distance of one foot from the assemblies measured 3.5 mrem/hr for the 7 × 7 array and 11 mrem/hr for the 9 × 15 array. While these radiation levels are not considered to be high, anticipated increased neutron dose rates from full-length commercial fuels would require shielding for the adequate radiation protection of personnel.
TABLE 3.2. Gamma Dose Rates from Simulated BWR Fuel Arrays

<table>
<thead>
<tr>
<th>Array</th>
<th>Plutonium Weight, g</th>
<th>Distance, in.</th>
<th>TLD Dose Rate, mrad/hr</th>
<th>CP Dose Rate, mrad/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 x 6</td>
<td>1369</td>
<td>surface</td>
<td>24.5</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-1/2</td>
<td>11.6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>5.4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>7 x 7</td>
<td>1863</td>
<td>surface</td>
<td>25.4</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-1/2</td>
<td>13.9</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>5.3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>3.0</td>
<td>3</td>
</tr>
<tr>
<td>9 x 15</td>
<td>5132</td>
<td>surface</td>
<td>25.4</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-1/2</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>10.6</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>5.9</td>
<td>6</td>
</tr>
</tbody>
</table>

PLUTONIUM FUEL DISSOLUTION STUDIES
R. E. Lerch

The purpose of this activity is to study the dissolution behavior of mixed-oxide thermal reactor fuels. It is expected that processing of such fuels will be accomplished by the Purex process, an aqueous solvent extraction process. Successful application of this process requires a knowledge of the dissolubility and dissolution rate of thermal reactor mixed-oxide fuels as affected by fuel fabrication and irradiation history.

Dissolubility studies have commenced on unirradiated UO_2-PuO_2 fuel samples. The initial study is being performed on 0.5 in. OD dished and undished cold-pressed-sintered pellets. Fabrication parameters being evaluated in the initial study include four different pressing pressures, sintering time, and sintering temperature. All pellets were made
from the same sources of PuO$_2$ (oxalate process, calcined at 900 °C) and UO$_2$ (United Nuclear, ammonium diuranate process). The pellets contain 4 wt% PuO$_2$ and all were sintered in Ar-8% H$_2$. Theoretical densities range from 91.8 to 93.6% while oxygen-to-metal ratios are, in all cases, about 1.984. The effect of other fabrication parameters on dissolution properties of UO$_2$-PuO$_2$ fuels will be evaluated as samples become available.

A second study is being performed to evaluate the effect of PuO$_2$ content on dissolution properties. Cold-pressed-sintered pellets containing from 1 to 4 wt% PuO$_2$ have been obtained for the study.

Fuel samples from irradiated PRTR fuel rods will also be used for dissolution studies. Initial dissolution studies on the irradiated fuel will emphasize cold-pressed-sintered specimens with secondary emphasis on vibrationally compacted fuels. The effects of power generation and burnup on dissolution will be studied.

INSTRUMENTED FUEL TESTS

T. B. Burley and M. D. Freshley

Instrumented experiments to monitor internal gas pressure buildup and fuel temperatures in mixed-oxide fuel rods during irradiation will be conducted in the ATR Water Loop and ETR M-3 Loop, respectively.

Internal Pressure Monitoring Experiment

An experiment in which internal pressure will be monitored in mixed-oxide fuel rods during irradiation at typical PWR operating conditions to peak burnups of approximately 45,000 MWd/MTM is being fabricated. The instrumented assembly will consist of five rods, each of which will be instrumented with a null-balance pressure transducer. Different pellet fuel
designs are being utilized in four of the rods and packed-particle fuel will be tested in the fifth rod. A composite hafnium-stainless steel neutron absorber basket assembly will enshroud the five-rod element. The calculated power generation in the nominally U_2O_3-2 wt\% PuO_2 fuel rods is in the range of 15 to 18 kW/ft.

Fuel Temperature Monitoring Experiment

Design of an ETR experiment in which fuel centerline temperatures will be measured in rods containing different mixed-oxide fuel types and pellet designs is being developed. The experiment includes twelve fueled rods with six rods instrumented with thermocouples in the fuel. Because of the flux gradients in the M-3 Loop facility, the thermocouples will be positioned at different axial locations within the rods to permit a more direct comparison of maximum fuel temperatures at comparable power generations. The calculated maximum fuel temperatures at the planned thermocouple locations for the different fuel types as a function of fractional reactor power is shown in Figure 3.1. Fuel temperatures will be monitored during a programmed power increase, during subsequent steady-state operation, and during a programmed power decrease to study and compare the thermal behavior and in-reactor grain growth kinetics of the different fuels.
FRACTION OF TOTAL REACTOR POWER

\[a = \text{CORED PELLET ROD} \]
\[b, d = \text{SMALL GAP PELLET ROD} \]
\[c, e = \text{LARGE GAP PELLET ROD} \]
\[f = \text{VIPAC ROD} \]

COLUMNAR GRAIN GROWTH TEMP.

EQUIAXED GRAIN GROWTH TEMP.

FIGURE 3.1. Calculated Maximum Fuel Temperatures at the Planned Thermocouple Positions in the Different Fuel Types

DEFECT TESTING
M. D. Freshley and T. B. Burley

Irradiation tests of defected and nondefected mixed-oxide fuels will be performed under high performance conditions in the ETR M-3 Loop facility. The defect testing program includes
an investigation of three important parameters consisting of (1) fuel form (small and large gap solid pellet, dished pellet, and cored pellet), (2) power generation (18.5 to 23 kW/ft), and (3) burnup. In addition to evaluating fuel performance, comparative activity release data will be obtained for the different fuel designs while operating under different conditions.

The defect test assembly containing twelve fueled Zircaloy-clad UO$_2$-PuO$_2$ rods is being irradiated in the ETR M-3 Loop for the planned first cycle of irradiation without an intentionally defected rod. The element also contains six Zircaloy dummy rods which were subjected to different surface treatments to study the effect of these treatments on the in-reactor corrosion behavior of Zircaloy-2 in a coolant system contaminated with fissionable material. The actual measured power generation of the assembly is 390 kW versus a predicted power of 410 kW. A summary of the operating conditions for the tests is presented in Table 3.3.

TABLE 3.3. Operating Conditions for the Defect Test Assembly in the ETR M-3 Loop

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Linear Rod Power Generation</td>
<td>~23 kW/ft</td>
</tr>
<tr>
<td>Average Linear Rod Power Generation</td>
<td>~14 kW/ft</td>
</tr>
<tr>
<td>Peak Surface Heat Flux</td>
<td>546,000 Btu/hr-ft2</td>
</tr>
<tr>
<td>Average Surface Heat Flux</td>
<td>329,000 Btu/hr-ft2</td>
</tr>
<tr>
<td>Calculated Total Power Generation</td>
<td>410 kW</td>
</tr>
<tr>
<td>Heat Transfer Film Coefficient</td>
<td>5169 Btu/hr-ft2-°F</td>
</tr>
<tr>
<td>Maximum Cladding Surface Temperature</td>
<td>603 °F</td>
</tr>
<tr>
<td>Maximum Cladding Temperature</td>
<td>770 °F</td>
</tr>
<tr>
<td>Maximum Fuel Surface Temperature</td>
<td>1165 °F</td>
</tr>
<tr>
<td>Maximum Fuel Temperature</td>
<td>4700 °F</td>
</tr>
<tr>
<td>Loop Flow Rate</td>
<td>150 gal/min</td>
</tr>
<tr>
<td>Loop Pressure</td>
<td>2000 psi</td>
</tr>
<tr>
<td>Coolant pH</td>
<td>9.8 to 10.2</td>
</tr>
<tr>
<td>Coolant Oxygen Concentration</td>
<td><0.05 ppm</td>
</tr>
<tr>
<td>Saturation Temperature of Loop</td>
<td>635 °F</td>
</tr>
<tr>
<td>Coolant Velocity over the Fuel</td>
<td>11.85 ft/sec</td>
</tr>
<tr>
<td>Inlet Water Temperature</td>
<td>480 °F</td>
</tr>
<tr>
<td>Outlet Water Temperature</td>
<td>502 °F</td>
</tr>
</tbody>
</table>
After the first cycle of irradiation, one of the rods in the three replaceable rod positions will be defected with an 0.015 in. diameter hole. It is planned to operate the defected rod for one cycle at a peak rod power of 18.5 kW/ft and increase the power generation to 23 kW/ft near the end of the cycle. The planned disposition of the three replaceable rods within the defect test assembly for the complete defect test series is shown in Figure 3.2. Procedures and equipment necessary for defecting rods in the ETR basin are being developed.

* * *

FY -70
FY -71
FY -72

<table>
<thead>
<tr>
<th>TEST NUMBER AND DESIGNATION</th>
<th>1 **</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (DEFECTION)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-14</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>F-15</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>F-14</td>
<td></td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-12</td>
<td></td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>F-14</td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-11</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>F-15</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

FUEL TYPE

1. SOLID (0.006" DIAMETRAL GAP)
2. SOLID (0.010" DIAMETRAL GAP)
3. DIshed 3% VOID VOLUME (0.006" DIAMETRAL GAP)
4. DIshed 3% VOID VOLUME (0.010" DIAMETRAL GAP)
5. CORED 10% VOID VOLUME (0.006" DIAMETRAL GAP)

* * *

* CHANGE POWER AT MID-CYCLE OR BETWEEN CYCLES BY ROTATING ELEMENT 180°

* * * EACH TEST REPRESENTS APPROXIMATELY ONE ETR CYCLE. A DEFECTED ROD WILL NOT BE IRRADIATED DURING TEST NO. 1. A VERTICAL ARROW INDICATES REMOVAL OF THE ROD FROM THE TEST FOR POST-IRRADIATION EXAMINATION.

FIGURE 3.2. Planned Disposition of the Three Replaceable Rods in the Test Assembly for the Defect Test Series
With the shutdown of the PRTR, the irradiation performance of the selected rods irradiated in the reactor is being evaluated by means of destructive postirradiation examination. In order to report the postirradiation evaluation results more logically, the PRTR fuel evaluations are divided into four groups as follows:

- High Power Density Fuel Evaluation
- Extended Burnup Fuel Evaluation
- Internal Pressure Monitoring Experiment Evaluation
- FERTF Fuel Rod Evaluation.

The postirradiation examination status of each group is reported separately as follows:

High Power Density Fuel Evaluation

Postirradiation examination of selected PRTR High Power Density Fuel rods which were irradiated as part of the Batch Core Experiment (BCE) is continuing and the current status of the examination is summarized in Table 3.4. These rods were irradiated to peak burnups of approximately 11,000 MWD/MTM at power generations greater than those currently employed in commercial power reactors, i.e., actual peak linear power generations of 20 kW/ft with maximum fuel temperatures near melting. Although the majority of the 66 High Power Density 19-rod cluster fuel elements included in the BCE were vibrationally compacted powder fuel, pellet fuel fabricated by both the hot-pressed and the cold-pressed-sintered processes was included.
<table>
<thead>
<tr>
<th>Element Number</th>
<th>Rod No.</th>
<th>Fuel Type</th>
<th>Estimated Peak Burnup, MWd/MTM</th>
<th>Gamma Scan</th>
<th>Profilometer Scan</th>
<th>Fission Gas Analysis</th>
<th>Burnup Analysis</th>
<th>Ceramography</th>
</tr>
</thead>
<tbody>
<tr>
<td>6065</td>
<td>FE-74</td>
<td>UO$_2$-2 wt% PuO$_2$ (VP)</td>
<td>5,000</td>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FD-17</td>
<td></td>
<td>(VP)</td>
<td>6,500</td>
<td>X</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS-07</td>
<td></td>
<td>(VP)</td>
<td>10,000</td>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6519</td>
<td>FR-72</td>
<td>(VP)</td>
<td>5,700</td>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN-86</td>
<td></td>
<td>(VP)</td>
<td>3,700</td>
<td>X</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE-69</td>
<td></td>
<td>(VP)</td>
<td>2,800</td>
<td>X</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6520</td>
<td>FR-78</td>
<td>(VP)</td>
<td>11,000</td>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6700</td>
<td>A-14</td>
<td>(HP)</td>
<td>9,600</td>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-103</td>
<td></td>
<td>(CPS)</td>
<td>9,600</td>
<td>Z</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-102</td>
<td></td>
<td>(CPS)</td>
<td>9,600</td>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6701</td>
<td>A-23</td>
<td>(HP)</td>
<td>3,800</td>
<td>X</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-12</td>
<td></td>
<td>(HP)</td>
<td>3,800</td>
<td>Z</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(VP) = Vibrationally compacted, pneumatically impacted fuel rod.
(CPS) = Cold-pressed-sintered pellet fuel rod.
(HP) = Hot-pressed pellet fuel rod.
X = Examination completed.
Y = Examination in progress.
Z = Examination not scheduled.
Postirradiation length measurements and diameter profiles were obtained on three vibrationally compacted fuel rods, three rods containing hot-pressed pellet fuel, and two rods which contained cold-pressed-sintered pellet fuel. The Zircaloy cladding on all rods is nominally 0.565 in. OD with an 0.030 in. wall thickness. The packed-particle rods contained crushed, pneumatically impacted UO$_2$-PuO$_2$ fuel vibrationally compacted to a smear density of nominally 86% TD. The hot-pressed and the cold-pressed-sintered pellet density was approximately 93% TD and the rods were assembled with a nominal 0.012 in. diametral gap.

Results of the fuel rod length measurements are summarized in Table 3.5. The three vibrationally compacted fuel rods exhibited length changes ranging from less than +0.01% for the rod of lowest burnup to +0.05% for one of the rods of highest burnup. The three hot-pressed pellet fuel rods with peak burnups ranging from 3800 to 9600 MWd/MTM exhibited length changes of +0.04%, which is similar to the changes which occurred in the vibrationally compacted rods. The two cold-pressed-sintered pellet fuel rods, both of which had the same estimated peak burnup, exhibited length increase of 0.18 and 0.25%.

Figures 3.3 through 3.6 are typical examples of actual diameter profile scans obtained from the different fuel types examined. Two stationary axial scans 90° apart and a helical scan were made on each rod. Preirradiation diameter profile scans were obtained on only the two cold-pressed-sintered rods. The diameter profile scan data was averaged in a manner illustrated in Figures 3.7 through 3.16. A comparison of the 0° and 90° scans provides an indication of the degree of ovality for any given rod. This is most evident on rods A-102 and A-103. The dashed line (0°+90°/2) corresponds
TABLE 3.5. Profilometer Measurement Data on PRTR High Power Density Fuel Rods

<table>
<thead>
<tr>
<th>Rod No.</th>
<th>Fuel Type</th>
<th>Estimated Peak Burnup, MWh/MTH</th>
<th>Pre-OD, (a) in.</th>
<th>Post-OD, (a) in.</th>
<th>% Δ OD</th>
<th>Maximum Ovality, mils</th>
<th>Pre-L, (b) in.</th>
<th>Post-L, (b) in.</th>
<th>% ΔL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR-72</td>
<td>Vipac</td>
<td>5,700</td>
<td>No data</td>
<td>0.5611</td>
<td>-</td>
<td>1.0</td>
<td>67.531(C)</td>
<td>67.537</td>
<td><0.01</td>
</tr>
<tr>
<td>FR-78</td>
<td>Vipac</td>
<td>11,000</td>
<td>No data</td>
<td>0.5623</td>
<td>-</td>
<td>1.5</td>
<td>67.531(C)</td>
<td>67.550</td>
<td>+0.03</td>
</tr>
<tr>
<td>FS-07</td>
<td>Vipac</td>
<td>10,000</td>
<td>No data</td>
<td>0.5621</td>
<td>-</td>
<td>4.0</td>
<td>67.531(C)</td>
<td>67.568</td>
<td>+0.05</td>
</tr>
<tr>
<td>A-12</td>
<td>Hot-pressed</td>
<td>3,800</td>
<td>No data</td>
<td>0.5639</td>
<td>-</td>
<td>0.0</td>
<td>67.526(C)</td>
<td>67.534</td>
<td>+0.04</td>
</tr>
<tr>
<td>A-14</td>
<td>Hot-pressed</td>
<td>9,600</td>
<td>No data</td>
<td>0.5652</td>
<td>-</td>
<td>1.0</td>
<td>67.526(C)</td>
<td>67.554</td>
<td>+0.04</td>
</tr>
<tr>
<td>A-23</td>
<td>Hot-pressed</td>
<td>3,800</td>
<td>No data</td>
<td>0.5633</td>
<td>-</td>
<td>1.0</td>
<td>67.526(C)</td>
<td>67.585</td>
<td>+0.04</td>
</tr>
<tr>
<td>A-102</td>
<td>Cold-pressed-sintered</td>
<td>9,600</td>
<td>0.5632</td>
<td>0.5621</td>
<td>-0.20</td>
<td>5.0</td>
<td>67.470</td>
<td>67.590</td>
<td>+0.18</td>
</tr>
<tr>
<td>A-103</td>
<td>Cold-pressed-sintered</td>
<td>9,600</td>
<td>0.5641</td>
<td>0.5634</td>
<td>-0.12</td>
<td>3.0</td>
<td>67.467</td>
<td>67.636</td>
<td>+0.25</td>
</tr>
</tbody>
</table>

* a. Average diameter value of two scans along axial position \(\frac{0.0+0.0}{2}\).

* b. Rod length.

* c. The preirradiated mean length, which has a calculated standard deviation of +0.002 in., was determined from a group of similar rods.
FIGURE 3.3. Preirradiation Diameter Profile Scan of Cold-Pressed-Sintered Pellet Fuel Rod A-103
FIGURE 3.4. Postirradiation Diameter Profile Scan of Cold-Pressed-Sintered Pellet Fuel Rod A-103
FIGURE 3.5. Postirradiation Diameter Profile Scan of Vibrationally Compacted Fuel Rod FS-07
FIGURE 3.6. Typical Postirradiation Diameter Profile Scan of Hot-Pressed Pellet Fuel Rod A-12
FIGURE 3.7. Summary of Preirradiation Diameter Profile Data for Cold-Pressed-Sintered Fuel Rod A-102
FIGURE 3.8. Summary of Postirradiation Diameter Profile Data for Cold-Pressed-Sintered Fuel Rod A-102
FIGURE 3.9. Summary of Preirradiation of Diameter Profile Data for Cold-Pressed-Sintered Pellet Fuel Rod A-103
FIGURE 3.10. Summary of Postirradiation Diameter Profile Data for Cold-Pressed-Sintered Fuel Rod A-103
FIGURE 3.11. Summary of Postirradiation Diameter Profile Data for Vibrationally Compacted Fuel Rod FR-78
Figure 3.12. Summary of Postirradiation Diameter Profile Data for Vibrationally Compacted Fuel Rod FS-07

Note: The diagram shows the variation of rod diameter and ovality with distance from the bottom of the rod. The profiles are labeled with angles 0°, 90°, and 90° ± 0.5°, indicating the orientation of the rods at different points in the profile.
FIGURE 3.13. Summary of Postirradiation Diameter Profile Data for Vibrationally Compacted Fuel Rod FR-72
FIGURE 3.15. Summary of Postirradiation Diameter Profile Data for Hot-Pressed Pellet Fuel Rod A-23
FIGURE 3.16. Summary of Postirradiation Diameter Profile Data for Hot-Pressed Pellet Fuel Rod A-14
well with the average value of the helical scan. The width of the helical scan also represents the degree of ovality of the rod. Preliminary observations related to the rod dimensional data are summarized as follows:

- Cladding ovality and length changes, which seem to be related, were more pronounced in the cold-pressed-sintered pellet rods than in the hot-pressed pellet and vibrationally compacted rods. Although pre- and post-irradiation mean diameter data are available on only the cold-pressed-sintered pellet rods, it is suspected that the change in mean diameter is also related to the degree of ovality.

It is reasonable that the fuel in the vibrationally compacted rods provides support for the cladding and thereby reduces the amount of ovality. Considerably less ovality occurred in the hot-pressed pellet rods than in the rods which contained cold-pressed-sintered pellets although both were assembled with a nominal 0.012 in. diametral gap. It is suspected that the hot-pressed pellet fuel, because of its high stoichiometry (~2.15) and reduced thermal conductivity, operated at higher temperatures than the cold-pressed-sintered fuel which resulted in closure of the fuel-clad gap and prevention of cladding collapse and distortion. The hot-pressed pellet rod data indicate that the cladding support is provided early during the irradiation because the dimensional behavior of rods with estimated peak burnups of 3800 MWd/MTM and 9600 MWd/MTM is similar. The validity of the hypothesis will be evaluated further during the postirradiation evaluation.

- Although the Zircaloy cladding is calculated to be free-standing under PRTR operating conditions, ovality is the result of creep. The creep rate may be enhanced during neutron irradiation.
• There was no evidence of general or local clad swelling in any of the rods.
• There was no evidence of ridging at pellet interfaces in either the hot-pressed or cold-pressed-sintered pellet fuel rods.

Analyses of the gas collected from the high power density fuel rods are summarized in Table 3.6. The total amount of gas collected from the rods of any one fuel type is related to the operating conditions to which the rods were subjected. More gas was collected from the vibrationally compacted and hot-pressed pellet fuel rods than from the rods containing cold-pressed-sintered pellet fuel because of the higher fuel temperatures and gas contents associated with these fuel types. Also, the hot-pressed pellet fuel rods released more gas than the vibrationally compacted rods, and the gas contained considerable amounts of CO₂ and CO which probably originated with the fabrication process. The gas release fractions for these rods have not been calculated.

Extended Burnup Fuel Evaluation

Postirradiation evaluation of selected fuel rods irradiated to extended burnups in PRTR fringe positions continued. The status of the examination of these rods is summarized in Table 3.7.

Fuel rod ZZ-12 from FE-5186, which contained cold-pressed-sintered UO₂-PuO₂ pellet fuel, developed a defect in the cladding while the rod was being removed from the element in the PRTR basin. The defect in the Zircaloy cladding appeared to be a small crack located about 2 in. down from the top end plug. Metallographic examination of the defect area reveals a localized massively hydried region with severe corrosive attack on the inner surface which is penetrated by a small crack through the cladding (Figure 3.17). This type of attack and the shape
Table 3.6: PRTR High Power Density Fuel Rod Fission Gas Analysis

<table>
<thead>
<tr>
<th>Rod No.</th>
<th>Gas Volume, cm3(STP)</th>
<th>Xe</th>
<th>Kr</th>
<th>CO$_2$</th>
<th>Ar</th>
<th>Molar Percent</th>
<th>He</th>
<th>H$_2$</th>
<th>CH$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-74</td>
<td>43.3</td>
<td>29.55</td>
<td>1.85</td>
<td>0.02</td>
<td>0.03</td>
<td>0.10</td>
<td>3.46</td>
<td><0.10</td>
<td><0.01</td>
</tr>
<tr>
<td>FO-17</td>
<td>53.5</td>
<td>30.55</td>
<td>2.01</td>
<td>0.05</td>
<td>0.01</td>
<td>0.08</td>
<td>20.8</td>
<td><0.10</td>
<td><0.01</td>
</tr>
<tr>
<td>FS-07</td>
<td>190.0</td>
<td>76.44</td>
<td>5.27</td>
<td>0.03</td>
<td><0.01</td>
<td><0.01</td>
<td>2.34</td>
<td><0.10</td>
<td><0.01</td>
</tr>
<tr>
<td>FR-72</td>
<td>52.7</td>
<td>43.32</td>
<td>2.66</td>
<td>0.06</td>
<td>0.02</td>
<td>0.05</td>
<td>0.28</td>
<td><0.10</td>
<td><0.01</td>
</tr>
<tr>
<td>FN-86</td>
<td>35.6</td>
<td>12.12</td>
<td>0.78</td>
<td>0.04</td>
<td>0.03</td>
<td>0.28</td>
<td>1.13</td>
<td><0.10</td>
<td><0.01</td>
</tr>
<tr>
<td>FE-69</td>
<td>44.6</td>
<td>4.32</td>
<td>0.30</td>
<td>12.7</td>
<td>0.07</td>
<td>0.14</td>
<td>1.63</td>
<td>18.1</td>
<td>62.8</td>
</tr>
<tr>
<td>FR-78</td>
<td>148.0</td>
<td>75.15</td>
<td>5.16</td>
<td>0.03</td>
<td><0.01</td>
<td><0.01</td>
<td>0.14</td>
<td><0.10</td>
<td><0.01</td>
</tr>
<tr>
<td>A-103</td>
<td>35.9</td>
<td>19.75</td>
<td>1.40</td>
<td>0.02</td>
<td><0.01</td>
<td><0.01</td>
<td>0.11</td>
<td><0.10</td>
<td><0.01</td>
</tr>
<tr>
<td>A-102</td>
<td>35.9</td>
<td>20.78</td>
<td>1.48</td>
<td>0.02</td>
<td>0.01</td>
<td><0.01</td>
<td>0.11</td>
<td><0.10</td>
<td><0.01</td>
</tr>
<tr>
<td>A-23</td>
<td>191.0</td>
<td>22.68</td>
<td>1.65</td>
<td>57.8</td>
<td><0.01</td>
<td><0.01</td>
<td>3.08</td>
<td><0.10</td>
<td>14.8</td>
</tr>
<tr>
<td>A-12</td>
<td>225.0</td>
<td>20.62</td>
<td>1.54</td>
<td>57.3</td>
<td>0.01</td>
<td>0.06</td>
<td>7.37</td>
<td><0.10</td>
<td>13.0</td>
</tr>
<tr>
<td>A-14</td>
<td>249.0</td>
<td>66.51</td>
<td>4.81</td>
<td>5.17</td>
<td><0.01</td>
<td><0.01</td>
<td>7.26</td>
<td>3.82</td>
<td>12.4</td>
</tr>
</tbody>
</table>
TABLE 3.7. Summary of the Postirradiation Examination Status for Fuel Rods Irradiated to Extended Burnup in PRTR Fringe Positions

<table>
<thead>
<tr>
<th>Element Number</th>
<th>Rod No.</th>
<th>Fuel Type</th>
<th>Estimated Peak Burnup, MWD/MTM</th>
<th>Gamma Scan</th>
<th>Profile Scan</th>
<th>Fission Gas Analysis</th>
<th>Burnup Analysis</th>
<th>Ceramography</th>
</tr>
</thead>
<tbody>
<tr>
<td>1037</td>
<td>A-1330</td>
<td>UO₂</td>
<td>(SW)</td>
<td>14,500</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>A-1377</td>
<td>--</td>
<td></td>
<td>---</td>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>A-1398</td>
<td>--</td>
<td></td>
<td>---</td>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td>A-1325</td>
<td>--</td>
<td></td>
<td>---</td>
<td>Z</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>5118</td>
<td>DB-63</td>
<td>UO₂-0.5 wt% PuO₂</td>
<td>(VP)(MM)</td>
<td>18,500</td>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>DA-48</td>
<td>(VP)(MM)</td>
<td></td>
<td>18,500</td>
<td>Z</td>
<td>X</td>
<td>Z</td>
<td>Y</td>
</tr>
<tr>
<td>5186</td>
<td>ZZ-17</td>
<td>(CPS)</td>
<td></td>
<td>---</td>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>ZZ-7</td>
<td>(CPS)</td>
<td></td>
<td>---</td>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>ZZ-12</td>
<td>(CPS)</td>
<td></td>
<td>12,500</td>
<td>X</td>
<td>Z</td>
<td>Z</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>CN-5</td>
<td>(SW)(MM)</td>
<td></td>
<td>12,500</td>
<td>Z</td>
<td>Lost</td>
<td>Z</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>CN-7</td>
<td>(VP)(MM)</td>
<td></td>
<td>12,500</td>
<td>Z</td>
<td>X</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>CM-85</td>
<td>(VP)(MM)</td>
<td></td>
<td>12,500</td>
<td>Z</td>
<td>X</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>5224</td>
<td>CS-27</td>
<td>UO₂-1 wt% PuO₂</td>
<td>(SW)(PI)</td>
<td>15,500</td>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>5226</td>
<td>DF-80</td>
<td>(VP)(PI)</td>
<td></td>
<td>11,500</td>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>6003</td>
<td>SC-27</td>
<td>UO₂-2 wt% PuO₂</td>
<td>(VP)(PI)</td>
<td>13,000</td>
<td>X</td>
<td>Z</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>6005</td>
<td>SF-36</td>
<td>(SW)(PI)</td>
<td></td>
<td>8,000</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>6521</td>
<td>No. 6</td>
<td>ThO₂-5 wt% PuO₂</td>
<td>(VP)(PI)</td>
<td>Low</td>
<td>X</td>
<td>-</td>
<td>Lost</td>
<td>Z</td>
</tr>
</tbody>
</table>

(VP) = Vibratorially compacted fuel rod
(SW) = Swage compacted fuel rod
(CPS) = Cold-pressed-sintered pellet fuel rod
(MM) = Heterogeneously enriched or incrementally loaded fuel material
(PI) = High-energy-rate pneumatically impacted fuel
X = Examination completed
Y = Examination in progress
Z = Examination not scheduled
O = Examination not started
FIGURE 3.17. Severely Corroded and Hydrided Zircaloy Cladding in the Defected Region of a PRTR Rod (ZZ-12) Which Contained Cold-Pressed-Sintered \textit{UO}_2-\textit{PuO}_2\text{ Pellet Fuel} \quad (\times 65X)$
of the hydrided region suggest Zircaloy cladding failure originating from within the rod which was possibly caused by contaminants in the fuel—such as moisture. There was no evidence of localized hydriding in the top end plug crevice region which has been shown to be particularly sensitive to this type of attack. Since the rod withstood irradiation to an estimated peak burnup of 12,500 MWd/MTM without an apparent defect, the level of internal contamination must have been low.

Analyses of the gas collected from the remaining four rods from this group are summarized in Table 3.8. The analyses are typical of the gas collected from packed particle UO₂-PuO₂ fuels.

TABLE 3.8. Extended Burnup Fuel Rod Fission Gas Analysis

<table>
<thead>
<tr>
<th>Rod No.</th>
<th>Gas Volume, cm³(STP)</th>
<th>Xe</th>
<th>Kr</th>
<th>CO₂</th>
<th>Ar</th>
<th>O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>5F-36</td>
<td>211.0</td>
<td>27.06</td>
<td>2.12</td>
<td>0.02</td>
<td>0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>5C-27</td>
<td>142.0</td>
<td>74.23</td>
<td>5.00</td>
<td>0.05</td>
<td><0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>CN-7</td>
<td>144.0</td>
<td>31.55</td>
<td>2.20</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>CM-85</td>
<td>133.0</td>
<td>26.06</td>
<td>2.01</td>
<td>0.03</td>
<td><0.01</td>
<td>0.03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rod No.</th>
<th>N₂</th>
<th>CO</th>
<th>He</th>
<th>H₂</th>
<th>CH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>5F-36</td>
<td>4.28</td>
<td><0.10</td>
<td>66.5</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>5C-27</td>
<td>6.27</td>
<td><0.10</td>
<td>14.3</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>CN-7</td>
<td>0.04</td>
<td><0.10</td>
<td>66.2</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>CM-85</td>
<td>0.10</td>
<td><0.10</td>
<td>72.8</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Internal Pressure Monitoring Experiment Evaluation

Vibrationally compacted UO₂-PuO₂ fuel rods instrumented to monitor internal gas pressure during irradiation were successfully irradiated in PRTR to determine the effects of fuel temperature and burnup on both sorbed and fission gas release. Peak rod power generations of approximately 20 kW/ft and estimated peak burnups of 11,000 MWD/MTM were achieved. The detailed postirradiation examination of the instrumented rods is nearly complete.

Fuel structures, β-γ autoradiographs, and α autoradiographs taken at axial positions among the four UO₂-PuO₂ fuel rods which operated at comparable power generations were compared (Figures 3.18 through 3.21). There is excellent structural consistency among sections that operated at comparable conditions to these significant burnups (Table 3.9). The structures formed in vibrationally compacted rods irradiated under the same conditions to low burnups are less consistent. These data also show that the extent of the sintering boundary is a more reliable structural indicator of operating conditions than the columnar grain growth boundary.

There was no evidence of sintering or homogenization of the UO₂-PuO₂ fuel material at rod power generations of 8 kW/ft with estimated maximum fuel temperatures of 1150 °C (Figure 3.18). However, sintering and homogenization occurred at power generations above 11.5 kW/ft. The extent of in-reactor restructuring and fission product migration which occurred at the peak power of 20 kW/ft (Figure 3.21) are representative of an operating history during which the peak power occurred for a short period of time early in the irradiation followed by extended operation at a lower power, which was the case with these rods.
FIGURE 3.18. Transverse Sections from the 8.0 kW/ft Positions in the Two Low Performance Instrumented Fuel Rods
FIGURE 3.19. Transverse Sections from the Peak Power (11.5 kW/ft) Positions in Two Low Performance Instrumented Fuel Rods

3.35
FIGURE 3.20. Transverse Sections from the 14.5 kW/ft Positions in Two High Performance Instrumented Fuel Rods
FIGURE 3.21. Transverse Sections from the Peak Power (20.6 kW/ft) Positions in the Two High Performance Instrumented Fuel Rods
TABLE 3.9. Comparison of Irradiated Fuel Structural Features in the Instrumented Vibrationally Compacted UO$_2$-PuO$_2$ Fuel Rods

<table>
<thead>
<tr>
<th>Fuel Rod Number</th>
<th>Specimen Number</th>
<th>Max. Rod Power Generation, kW/ft</th>
<th>Sintering Boundary, % r</th>
<th>Column Grain Boundary, % r</th>
<th>Central Void, % r</th>
<th>Estimated Max. Fuel Temp., °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>8.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1150</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>8.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1150</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11.5</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>1900</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>11.5</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>1900</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>14.5</td>
<td>61</td>
<td>52</td>
<td>6</td>
<td>2250</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>14.5</td>
<td>55</td>
<td>39</td>
<td>3</td>
<td>2250</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>20.6</td>
<td>75</td>
<td>65</td>
<td>12</td>
<td><2800</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>20.6</td>
<td>78</td>
<td>69</td>
<td>15</td>
<td><2800</td>
</tr>
</tbody>
</table>

The inner surface of the Zircaloy cladding was examined to determine the thickness of the ZrO$_2$ layer which formed during irradiation (Figure 3.22). These instrumented rods were not autoclaved prior to irradiation so consequently, the oxide layer formed during irradiation with trapped gases and moisture providing the limited source of oxygen. The maximum ZrO$_2$ layer thickness of about 0.0002 in. occurred at the peak power position. A maximum thickness at this location can be attributed to higher cladding temperatures and/or neutron flux enhanced corrosion rates. It is also possible and perhaps more likely that the ZrO$_2$ thickness variation is related to the average fuel temperature in the immediate proximity because the pressure monitoring data indicated that the released gases reacted rapidly with the cladding. The thicker ZrO$_2$ layers were more uniform with the most nonuniform layer occurring in the plenum region where there was no fuel present. Intermittent reaction between the UO$_2$-PuO$_2$ fuel and the ZrO$_2$ layer was also observed (Figures 3.22c and 3.22d).
FIGURE 3.22. Typical ZrO₂ Layer on the Inner Cladding Surface of Instrumented Vibrationally Compacted UO₂-PuO₂ Fuel Rods

565X
Two rods in a vibrationally compacted element containing ThO$_2$-5 wt% PuO$_2$ fuel were also instrumented to monitor internal gas pressure during irradiation. This element was irradiated in PRTR at a peak rod power generation of 7.5 kW/ft with maximum fuel temperatures of approximately 1200 °C. As expected, no structural changes occurred in the fuel under these operating conditions (Figure 3.23).

FERTF Fuel Rod Evaluation

Examination of eight vibrationally compacted UO$_2$-2 wt% PuO$_2$ fuel rods irradiated together in the Fuel Element Rupture Test Facility (FERTF) in PRTR permits an evaluation of fuel structural differences formed among rods irradiated under the same conditions. The eight rods studied were irradiated in the FERTF at a peak rod power generation of 16.4 kW/ft to a peak burnup of 380 MWd/MTM at a calculated maximum fuel temperature of 2550 °C. The rod-to-rod peak power variation was determined to be within ±1%.

Examination of the fuel cross sections delineates the extent of variation in the distinguishing structural features, i.e., the equiaxed grain growth, columnar grain growth, and central void boundaries, among the eight rods (Table 3.10). Measurements indicate that the variation in the equiaxed grain growth boundaries is approximately 9% with variation of 22 and 8% in the columnar grain growth and central void boundaries, respectively. The size of the central void is related to the extent of the columnar grain growth boundary. In some rods, however, the formation of elongated columnar grains was difficult to distinguish (Figure 3.24).
FIGURE 3.23. Transverse Section from the Peak Power Position (7.3 kW/ft) in the Instrumented ThO$_2$-PuO$_2$ Fuel Rod (FR-6)
The results provide further substantiation of the observation that the extent of the equiaxed grain growth boundary is the most reliable indicator of fuel operating conditions. Structural variations such as those observed among these rods tend to disappear at higher burnups.

TABLE 3.10. Summary of Distinguishing Structural Features Among Eight Vibrationally Compacted Rods Which Were Irradiated Under the Same Conditions

<table>
<thead>
<tr>
<th>Number</th>
<th>Equiaxed Grain Growth Boundary, % r</th>
<th>Columnar Grain Growth Boundary, % r</th>
<th>Central Void Boundary, % r</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-41</td>
<td>70</td>
<td>48</td>
<td>3</td>
</tr>
<tr>
<td>FS-42</td>
<td>66</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>FS-43</td>
<td>70</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>FS-44</td>
<td>74</td>
<td>53</td>
<td>6</td>
</tr>
<tr>
<td>FS-45</td>
<td>73</td>
<td>57</td>
<td>9</td>
</tr>
<tr>
<td>FS-46</td>
<td>78</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>FS-47</td>
<td>70</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>FS-48</td>
<td>74</td>
<td>50</td>
<td>3</td>
</tr>
</tbody>
</table>
FIGURE 3.24. Transverse Composite Strips from Eight Vibrationally Compacted UO$_2$–2 wt% PuO$_2$ Fuel Rods with Identical Irradiation Histories. The fuel structures represent a linear rod power generation of 16.4 ± 0.2 kW/ft and a burnup of 380 MWD/MTM
4.0 REACTOR SAFETY

TRANSIENT TESTING

M. D. Freshley and T. B. Burley

A knowledge of the behavior of reactor fuels subjected to high energy short duration power excursions is essential to permit a complete appraisal of fuel performance and reactor safety. The transient behavior of oxide fuels is being investigated by irradiations in SPERT and TREAT to determine whether special considerations associated with adding PuO$_2$ enrichment to different types of UO$_2$ fuels would influence reactor operation.

A joint program involving Pacific Northwest Laboratory, General Electric Company, and Idaho Nuclear Corporation was initiated to investigate the possible effects on the transient behavior of adding PuO$_2$ enrichment to UO$_2$ fuels in different ways.

The first test series involves four Zircaloy-clad fuel pins containing cold-pressed-sintered enriched UO$_2$ pellets. Single 500 µm diameter PuO$_2$ spherical particles are strategically positioned within alternate pellets in the 5 in. long fuel column. The pins will be tested at three different energy levels in SPERT to evaluate the possible effects of adding the large PuO$_2$ particles, which is considered to represent a worst case situation. The irradiations are being preceded by thorough characterization of the pins and they will be followed by a complete evaluation of the irradiation effects. If no significant effects are detected with the initial series of single particle experiments, a series of tests with multi-particle and pre-irradiated UO$_2$-PuO$_2$ pins may be considered.

Confirming experiments to compare the transient behavior of pelleted and vibrationally compacted fuels are being conducted in the transparent vessel in TREAT. Detailed evaluation
of high speed motion pictures taken of the rods while undergoing transient irradiation permit studies of the failure thresholds and failure modes for the different fuel types.

Six pins (four cold-pressed-sintered pellet and two vibrationally compacted) containing enriched UO$_2$ fuel were fabricated for irradiation in TREAT. The pins, which were fabricated by prototypic processes, are nominally 9/16 in. OD with 0.030 in. thick Zircaloy cladding. They are designed with an active fuel length of 5.5 inches and a scaled-down fission gas plenum. Hafnium neutron absorber cups will be placed over each end of the pins to eliminate power peaking at the ends of the fuel columns (Figure 4.1).

The pins will be irradiated at what is expected to be the failure threshold energy for each type of fuel and slightly above.

PRTR ZIRCALOY-2 PRESSURE TUBING

The draft copy of BNWL-SA-3143, "Fracture Behavior of Flawed Zircaloy-2 Pressure Tubes," has been completed and submitted to NUCLEAR ENGINEERING AND DESIGN for publication. This paper deals with differences observed in testing tubes with similar flaw sizes produced by both fatigue crack generation and machining. The paper also applies an empirical failure criterion to the fatigue test results to determine their relationship to published values of fracture toughness.

This paper shows that fracture testing of Zircaloy-2 pressure tubes for simulating the effect of a sharp crack should involve the use of fatigue cracks rather than machined notches or slots, since the latter do not represent as severe a stress concentration as an actual crack. It has also been shown that an empirical failure criteria may be used to treat the failure of pressure tubes containing axial through-wall cracks. The criterion may be used in conjunction with published values of
FIGURE 4.1. Zircaloy-Clad TREAT Pins with and Without the Hafnium Neutron Absorber Cups Placed on Each End
4.0 REACTOR SAFETY

TRANSIENT TESTING

M. D. Freshley and T. B. Burley

A knowledge of the behavior of reactor fuels subjected to high energy short duration power excursions is essential to permit a complete appraisal of fuel performance and reactor safety. The transient behavior of oxide fuels is being investigated by irradiations in SPERT and TREAT to determine whether special considerations associated with adding PuO$_2$ enrichment to different types of UO$_2$ fuels would influence reactor operation.

A joint program involving Pacific Northwest Laboratory, General Electric Company, and Idaho Nuclear Corporation was initiated to investigate the possible effects on the transient behavior of adding PuO$_2$ enrichment to UO$_2$ fuels in different ways.

The first test series involves four Zircaloy-clad fuel pins containing cold-pressed-sintered enriched UO$_2$ pellets. Single 500 µm diameter PuO$_2$ spherical particles are strategically positioned within alternate pellets in the 5 in. long fuel column. The pins will be tested at three different energy levels in SPERT to evaluate the possible effects of adding the large PuO$_2$ particles, which is considered to represent a worst case situation. The irradiations are being preceded by thorough characterization of the pins and they will be followed by a complete evaluation of the irradiation effects. If no significant effects are detected with the initial series of single particle experiments, a series of tests with multi-particle and pre-irradiated UO$_2$-PuO$_2$ pins may be considered.

Confirming experiments to compare the transient behavior of pelleted and vibrationally compacted fuels are being conducted in the transparent vessel in TREAT. Detailed evaluation
fracture toughness for various degrees of cold-work, hydride concentration, irradiation levels, and temperatures, thus avoiding expensive component tests for each separate condition. However, conducting an occasional component test to verify the validity of the criterion would be advisable.

Also, a report reviewing all the pressure tube surveillance work done in support of PRTR is being prepared. Unflawed strength, flawed strength (both fatigue and machined cracks), and stress rupture data for the tubes in the as-received, hydrided and irradiated conditions will be presented along with other property data.
5.0 PLUTONIUM RECYCLE TEST REACTOR

PRTR DEACTIVATION
K. L. Young

The activity at PRTR during the past quarter has been surveillance of the plant and shipment of PRTR fuel to chemical separations facilities. The surveillance activities have disclosed no problem areas during the first three months of deactivation.

The deactivation of PRTR required that a basic core loading of 70 fuel assemblies be retained for possible future operation of the reactor. All fuel material in excess of these 70 assemblies were to be disposed of through chemical separations facilities. This excess fuel material is being moved to facilities operated by Atlantic-Richfield Hanford Company (ARHCO) in 25 shipments. Eighteen of the fuel shipments were completed during January and February.
6.0 PUBLICATIONS AND PRESENTATIONS

PUBLICATIONS

PRESENTATIONS

DISTRIBUTION

No. of Copies

OFFSITE

1 AEC Chicago Patent Group
 G. H. Lee

8 AEC Division of Reactor Development and Technology
 Director, RDT
 Asst Dir., Project Management
 Chief, Water Projects Branch (2)
 Asst. Dir., Reactor Technology
 Chief, Fuels and Materials Branch
 Chief, Reactor Physics Branch
 Asst. Dir., Program Analysis

215 AEC Division of Technical Information Extension

3 Argonne National Laboratory
 R. Avery
 C. H. Bean
 R. E. Machery

1 Babcock and Wilcox
 H. M. Jones

1 Bhabha Atomic Research Centre
 Theoretical Physics Section/RED
 Central Complex Bldg.
 Trombay, Bombay-85, India
 S. R. Dwivedi

1 Brookhaven National Laboratory
 J. Chernick

1 Mr. H. B. Brooks
 310 Power Bldg.
 Chattanooga, Tennessee 37401

3 Combustion Engineering
 W. P. Chernock
 R. Harding
 S. Visner

1 CNEN - Centro Studi-Nucleaire
 Casaccia, Rome, Italy
 Ugo Farinelli

Distr-1
No. of
Copies

3

Edison Electric Institute
750 Third Avenue
New York, N. Y. 10017

John J. Kearney
Harvey Wagner
George Watkins

2

E. I. du Pont deNemours & Co., Inc., SRL

G. Dessauer
H. Honeck

1

ENEL
Via G. B. Martini
(Pizaaz Verdi)
Rome, Italy

Mr. Paoletti Gualandi

3

General Electric Co., San Jose

D. L. Fischer
S. Levy
R. B. Richards

2

General Electric Co., Vallecitos Atomic Lab.

B. F. Judson
T. M. Snyder

1

Idaho Nuclear Corporation

D. deBoisblanc

1

Japan Atomic Energy Institute
Tokaimura, Ibarakiken, Japan

Shojiro Matsuura, JPDR-TCA

1

Jersey Nuclear Enterprises
Seattle, Washington

R. L. Dickeman

1

Kerr-McGee
Oklahoma City, Oklahoma

Dr. Frank Pittman

2

Nuclear Materials and Equipment Corp.

C. S. Caldwell
K. Puechl
No. of Copies

1
NUKEM
D-645, HANAU
POSTFACH 869
Germany
Mr. Wolfgang K. L. Jager

1
Pakistan Institute of Nuclear Sci. & Tech.
P. O. Nilore
Rawalpindi, Pakistan
M. A. Mannan

1
Philadelphia Electric Company
1000 Chestnut Street
Philadelphia 5, Pa.
Mr. Wayne C. Astley

1
Power Reactor & Nuclear Fuel Development Corp.
9-13, 1- chome, Akasaka,
Minato-ku, Tokyo, Japan
Setsuo Kobayashi

1
S. C. K. - C. E. N.
MOL-DONK
Belgium
Dr. H. Vanden Broeck
BRL.

2
United Nuclear Corporation
T. B. Holden
G. Sofer

6
Westinghouse Electric Corporation
R. J. French
R. S. Miller
P. M. Murray
R. E. Olsen
J. B. Roll
J. H. Wright

Distr-3
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>Representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AEC Chicago Patent Group</td>
<td>R. K. Sharp (Richland)</td>
</tr>
<tr>
<td>4</td>
<td>AEC RDT Site Representative</td>
<td>W. E. Fry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. G. Holsted (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. B. Kitchen</td>
</tr>
<tr>
<td>2</td>
<td>AEC Richland Operations Office</td>
<td>H. A. House</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. L. Robinson</td>
</tr>
<tr>
<td>3</td>
<td>Battelle Memorial Institute</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Douglas United Nuclear</td>
<td>T. W. Ambrose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. D. Harrington</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. W. Kuhlman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W. S. Nechodom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. F. Owlsley</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DUN Files (3)</td>
</tr>
<tr>
<td>85</td>
<td>Battelle-Northwest</td>
<td>F. W. Albaugh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. L. Bement, Jr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. A. Bennett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. L. Bennett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. H. Bush</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G. J. Busselman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. J. Cadwell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. G. Carter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N. E. Carter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. E. Christensen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. A. Christensen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F. G. Dawson (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. R. de Halas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. E. Deonigi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. R. Devine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. L. Dillon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. A. Eschbach</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. A. Evans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L. J. Federico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J. R. Fishbaugher</td>
</tr>
</tbody>
</table>
No. of Copies

Battelle-Northwest (Contd)

J. C. Fox M. G. Zimmerman
M. D. Freshley BNW Legal (2)
G. L. Gelhaus Technical Information (5)
S. Goldsmith Technical Publications (2)
E. M. Heck
R. E. Heineman
H. L. Henry
P. L. Hofmann
R. H. Holeman
R. S. Hope (BNW, Idaho Falls)
U. P. Jenquin
B. M. Johnson
R. A. Kennedy
J. A. Kottwitz
J. W. Kutcher
J. H. Lauby
B. R. Leonard
R. E. Lerch
R. C. Liikala
C. W. Lindenmeier
R. P. Matsen
D. F. Newman
D. R. Oden
F. E. Paniski
H. M. Parker
L. T. Pedersen
R. H. Purcell
W. L. Purcell
W. D. Richmond
G. D. Seybold
L. C. Schmid
W. F. Sheeley
R. C. Smith
R. I. Smith
W. P. Stinson
D. H. Thomsen
L. W. Turner
V. O. Uotinen
A. D. Vaughn
R. G. Wheeler
L. D. Williams
N. G. Wittenbrock
W. C. Wolkenhauer
D. C. Worlton
K. L. Young
F. R. Zaloudek