Statistical Thermodynamic Properties of Hexafluoride Molecules

by

Douglas Jackson
In the interest of prompt distribution, this report was not edited by the Technical Information staff.
STATISTICAL THERMODYNAMIC PROPERTIES OF HEXAFLUORIDE MOLECULES

by

Douglas Jackson

ABSTRACT

Useful statistical thermodynamic properties of fifteen octahedral hexafluorides are presented in graphical form. These include: vibrational partition function; populations of lying vibrational states; densities of vibrational states; and cumulative vibrational population distributions. Values can be read directly from the graphs with an accuracy consistent with the accuracy of the experimental determinations of the vibrational fundamental frequencies, and the approximate validity of the harmonic oscillator approximation.

1. INTRODUCTION

The purpose of this report is to present in the form of curves, and certain analytic expressions, some statistical thermodynamic properties of 15 hexafluoride molecules. Some of this data has been independently generated and used previously, e.g., Ref. 1. We feel that this reasonably comprehensive set of data will be useful as a reference and may eliminate some duplication of effort.

All of these curves are computer-generated using only the 15 fundamental vibrational frequencies. The frequencies used were taken from Ref. 2 and are presented in Table 1 for each of the molecules considered.

For each set of curves the corresponding section of this report details the manner in which they were generated. In the last section a few words are said about accuracy.

II. POPULATION OF LOW ENERGY VIBRATIONAL STATES

Each of the hexafluorides has 15 fundamental modes of vibration. However, since they have a two-fold and four three-fold degeneracies, it is sufficient to consider the six distinct frequencies w_{1}, \ldots, w_{6}. Thus if $w_{1}^{1}, \ldots, w_{6}^{1}$ are the 15 fundamental frequencies we have

$$w_{i} = w_{i}^{1}$$

and

$$w_{i} = w_{i}^{1} = w_{i}^{2} = w_{i}^{3}$$

for $i = 5, 4, 5, 6$.

Likewise if $V_{1}^{1}, \ldots, V_{15}^{1}$ are the vibrational quanta in each of the 15 fundamental modes we use only the degenerate vibrational quanta $V_{1}^{1}, \ldots, V_{6}^{1}$, where

$$V_{1} = V_{1}^{1}$$

$$V_{2} = V_{2}^{1} + V_{2}^{2}$$

and

$$V_{i} = V_{i}^{1} + V_{i}^{2} + V_{i}^{3}$$

for $i = 5, 4, 5, 6$.

Hence, for each vibrational state $V_{1}^{1}, \ldots, V_{6}^{1}$, the degeneracy factor

$$D = (V_{2} + 1) \prod_{i=5}^{6} (V_{i} + 2)$$

yields the number of vibrational states which have the degenerate vibrational state $V_{1}^{1}, \ldots, V_{6}^{1}$.
vibrational state as the vibrational state or sometimes merely as the state of a molecule.

Now for a fixed vibrational state V_1, \ldots, V_6 let $F(T)$ be the fraction of molecules, at temperature T, which are in that state. Then $F(T)$ is given by

$$F(T) = \frac{\sum \omega_i V_i}{Z(T)},$$

where $Z(T)$ is the partition function, as defined in the next section, and k is the Boltzmann constant.

In Figs. 1 through 15 $F(T)$ is plotted for 10, 11, or 12 highly populated vibrational states for each of the hexafluorides considered.

Notice that the reduced vibrational states do not always represent the most populated states. For example, the state $[0,0,0,0,0,3]$ is never plotted but, for a few molecules, is more highly populated than the states which are plotted.

III. THE PARTITION FUNCTION, $Z(T)$

Let d_1, \ldots, d_6 be the degeneracy factors for the hexafluorides. Thus, we see from the previous section that

$$d_1 = 1$$

$$d_2 = 2$$

$$d_3 = 3$$

$$d_4 = 5$$

for $i = 3, 4, 5, 6$.

Now the definition of the partition function is given by

$$Z(T) = \sum \omega_i e^{-\frac{E}{kT}},$$

where the sum is taken over all vibrational states (V_1, \ldots, V_6) and for each state D is the degeneracy and E is the vibrational energy defined as

$$E = \sum_{i=1}^{6} \omega_i V_i.$$

The reader is referred to the previous section for the definition of D and "vibrational state."

Physically the function $Z(T)$ is proportional to the number of molecules per unit volume in a population of molecules having temperature T.

It is well known that the sum which defines $Z(T)$ can be carried out analytically to yield

$$Z(T) = \prod_{i=1}^{6} \left(1 - e^{-\frac{\omega_i V_i}{kT}} \right)^{-d_i}.$$

This expression was used to calculate $Z(T)$ and the resulting curves are presented in Figs. 16 through 19 for each of the 15 hexafluorides and for $0 \leq T \leq 350^\circ K$. For convenience $Z(T)$ is plotted for two temperature scales.

IV. DENSITY OF VIBRATIONAL STATES

A number of attempts have been made at finding simple approximations to the number of vibrational states with energy in a given energy range. The mathematical approach has been to try and find general formulas which depend only on the ω_i, e.g., Ref. 3. Physical scientists have tended to include in their approximations one or more parameters, besides the ω_i, which are determined by best fit to actual data for each molecule, e.g., Ref. 4.

The second approach requires more computation and yields better results, especially when the energy range of interest is limited. We have chosen the second approach but have used a different functional form than those appearing in the literature. A computer-generated count of the states was made and the fit is to this data for $0 \leq E \leq 5000 \text{ cm}^{-1}$ for each of the hexafluoride molecules in Table I. The functional form used is not asymptotically correct as E goes to infinite and hence should not be used for energies greater than 5000 wavenumbers (cm$^{-1}$). However, for these molecules and for temperatures of no more than 400 K only a small fraction of the population has energy greater than 5000 cm$^{-1}$.

Define $N(E)$ by

$$N(E) = \sum \omega_i V_i \omega_1 V_1 \ldots \omega_6 V_6 \leq E$$

where, as indicated, the sum is over all vibrational states of energy not greater than E, and D is the degeneracy of each state as defined in Section II. For $0 \leq E \leq 5000 \text{ cm}^{-1}$ we used a least-squares cubic fit to the curve in $N(E)$ vs. E. Thus we have

$$\ln N(E) = P_3(\ln E)$$
where

\[P_3(X) = b_1 X^3 + b_2 X^2 + b_3 X + b_4. \]

The coefficients of \(P_3 \), which were found for each molecule are presented in Table II.

Now the derivative of \(N(E) \) is, of course, either zero or undefined for each value of \(E \) because \(N(E) \) is a step function. However, we write \(N'(E) \) to mean the average number of states per \(\text{cm}^{-1} \) in a small interval (say 190 \(\text{cm}^{-1} \)) centered at \(E \). Hence, for the density of vibrational states \(g(E) = N'(E) \) we use

\[g(E) = \left(\frac{P'_3(\ln E)}{E} \right) \times P_3(\ln E) \]

where \(P'_3 \) is the derivative of the polynomial \(P_3 \).

We use this equation to compute \(g(E) \) and the results are presented in Figs. 20 through 75. For convenience \(g(E) \) is plotted for two energy scales.

V. CUMULATIVE POPULATION DISTRIBUTION

For a population of molecules at temperature \(T \) let \(G(E,T) \) be the fraction of the molecules which have energy less than or equal to \(E \). Then if \(g(E) \) is the density of states function we have

\[G(E,T) = \int_0^E g(y) \exp \left(-\frac{y}{RT} \right) \, dy. \]

\(G(E,T) \) was calculated using this equation where the function \(g \) is defined in terms of a cubic polynomial as discussed in the previous section.

For each of the hexafluorides we plot \(G(E,T) \) as a function of \(E \) for values of \(T \) from 200 K to 400 K in increments of 20 K. The results are presented in Figs. 26 through 33, where the top curve in each figure represents the distribution for \(T = 200 \text{ K} \) the next for \(T = 220 \text{ K} \) and the bottom for \(T = 400 \text{ K} \).

VI. ACCURACY

The main sources of inaccuracy in these curves are due to three factors. The first source of error is the value used for the fundamental frequencies. The second is the model, which considers only vibrational states. Also we use only first order terms in the vibrational quantum numbers to define energy. The third is the quality of the analytic fit to the vibrational states distribution in energy.

No systematic study of quality of the analytic fit was made. We merely chose a sample of data points and compared the plotted data to the data from actual counting of states.

The density of states curves for \(E \geq 1600 \text{ cm}^{-1} \) are rarely off by 5% or more. For \(\text{SF}_6 \) the fit is not this good unless we restrict to \(E \geq 2000 \text{ cm}^{-1} \) and for most less stiff molecules it is sufficient to require \(E \geq 1000 \text{ cm}^{-1} \). The fit is poor for \(E < 1000 \text{ cm}^{-1} \) in almost all cases.

For the cumulative population distribution curves errors of 5% or more are very rare while errors of 3% are common over the entire range plotted.

REFERENCES

1. Andrew V. Nowak and John L. Lyman, "The Temperature-Dependent Absorption Spectrum of the \(v_3 \) Band of \(\text{SF}_6 \) at 10.6 \(\mu\text{m} \)," J. Quant. Spectrosc. Radiat. Transfer, to be published.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>ν_1</th>
<th>ν_2</th>
<th>ν_3</th>
<th>ν_4</th>
<th>ν_5</th>
<th>ν_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF$_6$</td>
<td>773.5</td>
<td>641.7</td>
<td>959.0</td>
<td>614.0</td>
<td>525.0</td>
<td>317.0</td>
</tr>
<tr>
<td>SeF$_6$</td>
<td>706.9</td>
<td>658.7</td>
<td>780.0</td>
<td>437.0</td>
<td>405.0</td>
<td>261.0</td>
</tr>
<tr>
<td>TeF$_6$</td>
<td>697.1</td>
<td>670.3</td>
<td>752.0</td>
<td>325.0</td>
<td>314.0</td>
<td>197.0</td>
</tr>
<tr>
<td>MoF$_6$</td>
<td>741.5</td>
<td>651.0</td>
<td>741.1</td>
<td>264.0</td>
<td>318.0</td>
<td>110.0</td>
</tr>
<tr>
<td>TcF$_6$</td>
<td>712.9</td>
<td>639.0</td>
<td>748.0</td>
<td>265.0</td>
<td>297.0</td>
<td>145.0</td>
</tr>
<tr>
<td>RuF$_6$</td>
<td>675.0</td>
<td>624.0</td>
<td>755.0</td>
<td>255.0</td>
<td>283.0</td>
<td>186.0</td>
</tr>
<tr>
<td>RhF$_6$</td>
<td>634.0</td>
<td>595.0</td>
<td>724.0</td>
<td>285.0</td>
<td>269.0</td>
<td>192.0</td>
</tr>
<tr>
<td>WF$_6$</td>
<td>771.0</td>
<td>677.2</td>
<td>711.0</td>
<td>258.0</td>
<td>320.0</td>
<td>127.0</td>
</tr>
<tr>
<td>ReF$_6$</td>
<td>753.7</td>
<td>671.0</td>
<td>715.0</td>
<td>257.0</td>
<td>295.0</td>
<td>147.0</td>
</tr>
<tr>
<td>OsF$_6$</td>
<td>730.7</td>
<td>688.0</td>
<td>720.0</td>
<td>268.0</td>
<td>276.0</td>
<td>205.0</td>
</tr>
<tr>
<td>IrF$_6$</td>
<td>701.7</td>
<td>645.0</td>
<td>719.0</td>
<td>276.0</td>
<td>267.0</td>
<td>206.0</td>
</tr>
<tr>
<td>PtF$_6$</td>
<td>656.4</td>
<td>601.0</td>
<td>705.0</td>
<td>273.0</td>
<td>212.0</td>
<td>241.0</td>
</tr>
<tr>
<td>UF$_6$</td>
<td>667.1</td>
<td>552.5</td>
<td>624.0</td>
<td>186.2</td>
<td>202.0</td>
<td>142.0</td>
</tr>
<tr>
<td>PdF$_6$</td>
<td>654.0</td>
<td>555.0</td>
<td>624.0</td>
<td>198.6</td>
<td>208.0</td>
<td>164.0</td>
</tr>
<tr>
<td>PuF$_6$</td>
<td>625.0</td>
<td>525.0</td>
<td>616.0</td>
<td>206.0</td>
<td>211.0</td>
<td>173.0</td>
</tr>
</tbody>
</table>
TABLE II

COEFFICIENTS OF THE CMR POLYNOMIALS (P₃)

![Image](https://via.placeholder.com/150)

\[
P_3(\chi) = b_4 \chi^3 + b_2 \chi^2 + b_3 \chi + b_4
\]

\(\text{Ecm}^{-1} \)

<table>
<thead>
<tr>
<th>Molecule</th>
<th>(b_4)</th>
<th>(b_2)</th>
<th>(b_3)</th>
<th>(b_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si₂₆</td>
<td>0.12056</td>
<td>-1.9765</td>
<td>9.5355</td>
<td>-17.501</td>
</tr>
<tr>
<td>Se₂₆</td>
<td>0.11046</td>
<td>-1.0989</td>
<td>7.5091</td>
<td>15.493</td>
</tr>
<tr>
<td>Te₂₆</td>
<td>0.12623</td>
<td>-1.5408</td>
<td>5.0415</td>
<td>-9.5019</td>
</tr>
<tr>
<td>Mo₂₆</td>
<td>0.11239</td>
<td>-1.0925</td>
<td>4.1154</td>
<td>6.1666</td>
</tr>
<tr>
<td>Tc₂₆</td>
<td>0.12116</td>
<td>-1.3480</td>
<td>5.8897</td>
<td>-10.505</td>
</tr>
<tr>
<td>Ru₂₆</td>
<td>0.15328</td>
<td>-1.5489</td>
<td>6.8949</td>
<td>-12.71</td>
</tr>
<tr>
<td>Rh₂₆</td>
<td>0.12921</td>
<td>-1.4296</td>
<td>6.1515</td>
<td>-10.957</td>
</tr>
<tr>
<td>Ir₂₆</td>
<td>0.12911</td>
<td>-1.2587</td>
<td>5.2564</td>
<td>-8.9687</td>
</tr>
<tr>
<td>Re₂₆</td>
<td>0.12407</td>
<td>-1.3357</td>
<td>5.7291</td>
<td>-10.267</td>
</tr>
<tr>
<td>Os₂₆</td>
<td>0.13136</td>
<td>-1.5570</td>
<td>7.1392</td>
<td>-15.335</td>
</tr>
<tr>
<td>Pt₂₆</td>
<td>0.15522</td>
<td>-1.5607</td>
<td>7.1643</td>
<td>-15.350</td>
</tr>
<tr>
<td>Ir₂₆</td>
<td>0.12624</td>
<td>-1.3567</td>
<td>5.7594</td>
<td>-10.141</td>
</tr>
<tr>
<td>W₂₆</td>
<td>0.12589</td>
<td>-1.3170</td>
<td>6.2818</td>
<td>-12.554</td>
</tr>
<tr>
<td>XeF₆</td>
<td>0.11464</td>
<td>-1.0991</td>
<td>4.2446</td>
<td>-5.4126</td>
</tr>
<tr>
<td>Pal₂₆</td>
<td>0.11842</td>
<td>-1.1499</td>
<td>1.9121</td>
<td>-8.0859</td>
</tr>
</tbody>
</table>
Fig. 1 Population of low-energy vibrational states of SF₆.
Fig. 2 Population of low-energy vibrational states of SeF₆
Fig. 3 Population of low-energy vibrational states of TeF₆
Fig. 4 Population of low-energy vibrational states of MoF₆
Fig. 5 Population of low-energy vibrational states of TcF$_6$
Fig. 6 Population of low-energy vibrational states of RuF$_6$.
Fig. 7 Population of low-energy vibrational states of RhF$_6$
Fig. 8 Population of low-energy vibrational states of WF₆
Fig. 9 Population of low-energy vibrational states of ReF₆.
Fig. 10 Population of low-energy vibrational states of OsF$_6$
Fig. 11 Population of low-energy vibrational states of IrF$_6$
Fig. 12 Population of low-energy vibrational states of PtF$_6$
Fig. 13 Population of low-energy vibrational states of UF$_6$.
Fig. 14 Population of low-energy vibrational states of NpF₆
Fig. 15 Population of low-energy vibrational states of PuF$_6$
Fig. 16 Vibration partition function for UF₆, NpF₆, MoF₆, TcF₆, RhF₆, OsF₆, TeF₆, SF₆.
Fig. 17 Vibration partition function for PuF₆, WF₆, ReF₆, RuF₆, PtF₆, IrF₆, SeF₆.
Fig. 18 Vibration partition function for UF_6, NpF_6, MoF_6, TcF_6, RhF_6, OsF_6, TeF_6, SF_6.
Fig. 19 Vibration partition function for PuF_6, WF_6, ReF_6, PtF_6, RuF_6, IrF_6, SeF_6.

$Z(T)$ vs. Temperature (K)
Fig. 20 Density of vibrational states for WF₆, TcF₆, PtF₆, OsF₆, SeF₆
Fig. 21 Density of vibrational states for MoF$_6$, ReF$_6$, RhF$_6$, TeF$_6$, SF$_6$
Fig. 22 Density of vibrational states for UF₆, NpF₆, PuF₆, RuF₆, IrF₆.
Fig. 23 Density of vibrational states for WF₆, TeF₆, PtF₆, OsF₆, SeF₆
Fig. 24 Density of vibrational states for MoF$_6$, ReF$_6$, RhF$_6$, TeF$_6$, SF$_6$
Fig. 25 Density of vibrational states for UF$_6$, NpF$_6$, PuF$_6$, RuF$_6$, IrF$_6$
Fig. 26 Cumulative population distribution for SF₆ and SeF₆

T = 200 (20) 400 K
Fig. 27 Cumulative population distribution for TeF$_6$ and MoF$_6$

T = 200 (20) 400 K
Fig. 28 Cumulative population distribution for TcF₆ and RuF₆
T = 200 (20) 400 K
Fig. 29 Cumulative population distribution for RH$_6$ and WF$_6$

$T = 200 \ (20) \ 400$ K
Fig. 30 Cumulative population distribution for ReF$_6$ and OsF$_6$
T = 200 (20) 400 K
Fig. 31 Cumulative population distribution for IrF$_6$ and PtF$_6$
$T = 200 \text{ (20) } 400 \text{ K}$
Fig. 32 Cumulative population distribution for UF₆ and NpF₆

T = 200 (20) 400 K
Fig. 33 Cumulative population distribution for PuF₆,
T = 200 (20) 400 K