DWE $1 E 7$ $10-6$

THE MORSE CODE - A MILITIGROUP
FNEUTRON GND GAMMA-RAY
MONTE CARLO TRANSPORI CODE
E. A. Straker
P. N. Stevens
D. C. İving
Y. R. Cain

OAK RIDGE NATBONAL LABO\&AEORY
sperated むy
UNION CAREIDE CORPORATION
for the
U.S. ATCMAC ETEPS: COMMISSION

Primted in the United Smates of Aeperica. Available ficin Cinaringhouse for Federol
 U.S. Jepertment sf Eemmeres, Springfieid, Virginio 22151

Price: Primed Copy $\$ 3.00$; Microfiche $\$ 0.65$

LESAL MJTHCE

Thie copart wes ereppered 53 an accoun of Goverramem spoysmed weft Nieither the United Stotes, mer the Cominiszion, mor Ejy perzon octing on bithelf of th. Coamixsiony

 polviaty owaed sidhes on
 ory infurmotion, opperatus, mathod, or process diselicued in tisis roport.
 :

 si Whompleyment with mech corirectce.

gampa-ray monte cario transport code

E. A. Straker, P. R. Stevens,**

I. C. Irving, ${ }^{\dagger}$ anc V. R. Cain

```
*
    *University of Tennessee, Knoxville, Tennessee.
    #}\mathrm{ Fresent address: Savannah River Laboretory, Aiken, South Carolina 29802
```

HORE:
This Work Partially Funded by DEFENSE ATOMIC SUPPORT AGENCY Under Subtask PE08001

SEPTEMBER 1970

OAK RIDGE HATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNTON CARBIDE CORPORATIOK
for the
ن. S. ATCWIC ENERGY COMMSSION

TABLE OF CONTENTS

PAGE

I. INTRODUCTION 1
TI. RANDOM WALK MODULE 6
Main Frogram 18
Subroutine MXPSE 20
Subroutine DAFIE. 26
Subroutine EUCLID 29
Subroutine FBARK 32
Random Number Pcckage 34
Subrcutine FPR\%B 36
Subroutine FEGIR 38
Subroutine GEIETA. 40
Subroutine GETHI 44
Subrcutine GqusT 47
Subroutine GPR/B 49
Subroutine GST\%RE. 51
Subroutine IRPUT 53
Purction IWEEK 64
Subroutine MSgIJR 66
Subroutine NYICXL 69
Subroutine GUIPI 72
Subroutine \quad UUPPT2 74
Subrcutine G ϕ RIN 75
Subroutine TESTW 80
Subroutine TIMER 82III. MUTHIGROUP CROSS-SEPAGE
III. MLTIGROUP CROSS-SECTION MODULE. 85
Subrcutine ALBDD 93
Subroutine ANGLES. 94
Subroutine BADDM. 99
Subroutine CøLISN 103
Subroutine Finid. 107
Subroutine FISGER 111
Subrcutine GAMAEN 112
Subroutine CETMUS. 114
Subroutine GIIdUT. 118
Subroutine JMPUT 120
Subroutine LEGEND. 129
Subroutine MAMETRT. 132
Subroutine RSIGTA. 135
Subroutine PTHETA. 136
Function Q 139
Suoroutine READSG. 141
Subrcutine SICRE 145
Subroutine XSEC 147
IV. DIACIOSTIC MODULE. 151
Subroutine BMrHLP. 152
Subroutine iELIP. 155
Subroutine HELPER. 159
Subroutin= SUBRT 161
Subrcutine XSCRLP 162
V. AT:ALYSIS INTERFACE AND SAAPLE USER ROUTINES. 165
Sample User Routines 168
Subroutine BANKR 170
Subroutine BDRYX 173
Function DIREC 176
Subroutine GTMED 179
Subroutine NBATCH. 181
Subroutine NRUN 183
Subroutine SCॠRIN 186
Subroutine SDATA 189
Subroutine SøURCE 192
Subrcutine STBTCH 195
Subroutine STRUN 198
Subroutine Vainl 2011
Sample Problem 204
VI. GEOMETRY MODULE 220
Subroutine JquIN 220
Subroutine LdGKZ 220
Subroutine GEDM. 220
Spherical GEd :22
Slab GE\$ 223
Cylindrical GEあM 224
General GE\& 225
Changes to Geometry Packages 227
Additional Parameters in Labelled Common 227
Subroutine GdMFLP 229
Subroutine NØPML 230
APPENDIX A. THE ZANY INTEGRAL FORMS OF THE BOLTZMANN TRANSPORT EQUATION AND ITS ADJOINT A-1
The Boltzmann Iransport Equation A-1
Integral Flux Density Equation A-4
Integral Event Density Equation. A-7
Integral Emergent Particle Density Equation A-8
Operator Notation and Summary of the Forward Equations A-10
Random Walk Procedure A-12
Derivation of the Adjoint Integro-Differential Boltzmann
Transport Equation A-13
Integral Foint-Value Equation. A-18
Integral Event-Yalue Equation. A-23
Integral Energent Adjuncton Density Equation A-24
Multiplying Systens A-29
APPEIDIX B. GEIERALIZED GAUSSIAN QUADRATURE B-1
General Statement of the Problem and Its Solution. B-1
Equivalence of Moments and Legendre Coefficients B-2
Generation of Polynomials Orthogor: 1 with Respect
to $w(x)$ B-4
Properties of the Roots of the Orthogonal Polynomials B-8
The Meaning of the Two Restrictions Which Replace the
Non-Negativity Requirement, $\omega(x) \geq 0$ B-9
Generation of the Seneralized Gaussian Quadrature. B-10
Limits of μ_{i} and σ_{i}^{2} B-14
APPENDIX C. MめRSE INPUT INSTRUCTIONS C-1
Geometry Input Data C-5
XSEC Input Data C-5
Analysis Input Data c-6
APPENDIX D. GEGMETRY INPUI INSTRUCTIONS D-I
Spherical GEØM D-1
Slab GEめM D-2
Cylindrical GEØM. D-3
General GEDM. D-4
APPENDIX E. LIBRARY SUBROUTINES AND FUNCTIONS. E-1

Abstract

ABSTRictT

The MORSE code is a multipurpose neutron and gama-ray iransport Monte Carlo code. Through the use of multigroup cross sections, the solutiun of neutron, gamma-ray, or coupled neutron-gamma-ray problems mey he obtained in either the forward or adjoint mode. Time dependence for both shielding end criticality problems is \bar{s} © ovided. General three-dimensional geometry, as well as specialized one-dimensional geometry descriptions, may be used with an albedo option available at any material surface.

Standard multigroup cross sections such es those used in discrete ordinates codes may be used as input; either ANISN or DIF-IV cross-section formats are acceptable. Anisotropic scattering is treated for ench grupp-to-group transfer by utilizing a generalized Gaussian quadrature technique. The modular form of the code with built-in analysis capability for all types of estimators makes it possible to solve a complete neutron-gammaray problem as one job and without the use of tapes.

A detailed discussion of the relationship between forward and adioint flux and collision densities, as well as a detailed description of the treatment of the angle of scattering, is given in the appendices. Logical flow charts for each subroutine add to the understanding of the code.

LIST OF TABLES

table
page
I. DEFINITION OF VARIABIES IN COMMON APøLL $\dot{6}$. 8
III. DEFINITTON OF VARIABLES IN RUTRXN COMMON 12
III. DEFINITIONS OF VARIABLES IN BLANK COMMON 14
IV. LOCATICN OF BLAANK COMAON ARRAYS. 16
V. DEFINITIONS OF VARIADLESS IN COMMON LøCSIG. 88

VT. LOCATION Or PERMANENT CROSS SECTIONS IN BLANK COMMON 91
VII. BANKR ARGUMENTS. i66
VIII. DEFINITIUN OF VARIABLES IN COMQON USER i67
IX. DEFINITION OF VARIABLEE. IN COMMON DET. 169
X. FISSION SPECTRUM IN 1ti-GROUP $\operatorname{LIRULTURE~.~.~.~.~.~.~.~.~.~.~.~} 205$
XI. DEFINITIONS OF VARIABLES IN COMMON GEDMC AS FGUND IN SUBROLTINE GEØM. 221

C-I. VARIABLES THAT MAY BE WRITTHEN ON TAPE. C-7
C-II. SAMPLE GROUP INPUT NUMBERS FOR SOME REPRESENTATIVE
PRGBLEMS
C-8

I. Introduction

The Multigroup Oak Ridge Stochastic Experiment code (MpRSE) is a multipurpose neut.ron and gansma-ray transport Monte Carlo code. Some of its features include the ability to treat the transport of either neutrons or ganma rays or a coupled neutron and secondary gama-ray probiem, tine incorporation of multigroup cross sections, an option of solving either the forward or adjoint problem, modular input-output, eross section, analysis and geometry modules, debugging routines, time dependence for both shielding and criticality problems, albedo option at any material boundary, one-, two-, and three-dimersional geometry packages, and several types of optional importance sampling.
fraditionally, Monte Cario codes for solving neutron and gama-ray transport problems have been separate codes. This has been due to the physics of the interaction processes and the corresponding cross-section information required. However, when multigroup cross sections are employed, the energy group to energy group transfers contain the cross sections for all processes. Also, for anisotropic scaitering each group-to-group transfer has an associated angular distribution which is a weighted average over the various cross sections involved in the energy transfer process. Thus, these multigroup cross sections have the same format for both neutrons and gamma rays. In addition, the generation of secondary gama rays may be considered as just another group-to-group transfer. Therefore using multigroup cross sections, the logic of the random walk process (the process of being transported from one collision $\because \%$ another) is identical for both neutrons and gamma rays.

The use of multigroup cross sections in a Monte Carlo code means that the effort required to produce cross-section libraries is reduced. (A set of mul̇igroup neutron cross sections - 99 group, P_{8} - based on ENDF/B is available from the Radiation Shielding Information Center; ${ }^{2}$ likewise, some coupled neutron gamma-ray sets are also available from RSIC.)

Cross sections may be read in cither the DTF-IV ${ }^{3}$ format ur ANISN ${ }^{4}$ and DOT ${ }^{5}$ format. The auxiliary information giving the number of groups, elements

[^0]
BLANK PAGE

coefficients, etc., is used to produce the necessary probability tatles needed by the randcm valk module. The possible transport cases that can be treated are neutron only, gsial ray only, coupled neutron-gana ray, gama ray froa a coupled set, and fission, with all of the above options for either a forward or adjoint case and for isotropic or anisotropic scattering up to a P_{16} expansion of the angular distribution. The option of storing the Legendre coefficients for use in a nextevent extimator is also provided.

The sclution of the forward or nornal transport equation by Monte Carlo generally involves a solution for $X^{(P)}$, the density of particles with phase space crordinates \underline{P} leaving collisions. Quantities of interest are then obtained by suming the contributions over all collisions, and frequentily over most of phase space. The equations solved are derived in Appendix A and are written as Equations (40) and (95).

In some cases, it is of interest to solve the adjoint problerf. This requires solving a transport problem with the detector response as a source. The various relationships between the adjoint and forward quantities are derived in Appendix A. The adjoint equations solved by MORSE are Equations (93) and (99). In utilizing these adjoint equations, the logic of the random walk is the same as the forward mode.

Input to $M \not / \mathrm{FSE}$ is read in five separate modules: (1) walk; (2) cross section: (3) user; (4) source; and (5) geometry. The walk input is read in subroutine IIPUT and includes all variables needed for the walk process. The crosssection input is read in cross-section module subroutines XSEC, JNPUT, and READSG. The parameters needed to set aside storage are read in XSEC, the mixing parameters are read in JNPUT, and the actual cross sections are read by READSG. Input information required for analysis of the kistories must be read by a user-written subroutine SCøRIN which is called from BANKR. Since the source varies from problem to problem, input may also be read in a user-written subroutine S \varnothing RIN for the definition of the sou:ce. The geometry input is read by subroutine JøMIN.

In general, output of input parameters occurs in the same routine in which the input was read. in addition, there are two routines (фUIPT and gUTPT2) for the output of rez:slts of the random walk process. Output of analysis results is generally performed in the user-written rcutine NRUN.

Figure 1 stows the kierarchy of subroutines for Mof FSE . From this diagram, it is possible to see the functions of the modules. The input section takes sare of setting up all variables needed in the transport process. Note that initial calculations by the cross-section module stem from XSEC. The analysis portion of the code is interfaced with MøRSE through B^{\prime} JKR with several uses made of cross-section routines in making estimates of the quantity of interest. With the exception of output from the walk process, the rest of the code consists of subroutine calls by $M \not M R E$. The geometry module is interfaced through GgwsT and the source is interfaced through MSqUR. The diagnostic module is independent and any cart of it r.4y be executed from any routine.

The diagnostic module provides an easy means of printing out, in useful form, the information in the various labelled commons and any part of blank common. A special roatine is provided for printing out the particle bank. By loading parts of core vith a junk word, the diagnostic package can determine which variables tave been used. A "repeating line" feature is also included.

The georetry module consists of any of the geometry packages written for $\emptyset S R, 6,7$ including the general three-dimensional geometry. Slight modifications have been made to incluade variable input-output units and to include the logic for albedo scattering.

An albedo scattering may be forced to occur at every entry into a specified medium. A sample subroutine is provided for specular reflection and a subroutine call is provided (ALBIN, called from XSEC) for reading and storing albedo data of any degree of complexity. Thus transport of particies may be carried out in parts of the problem and an albedo scattering treated for other parts of the problem.

Time dependence is included by keeping track of the chronological age of the particle. For neutrons the age is incremented by the time needed

Fig. 1. Hierarchy of Subroutines in the MøRGE Code.
to travel the distarce between collisions if it traveled at 3 velocity corresponding to the average energy of the group. Provision is mude for inputting a thernal group velocity separately. Honrelativistic mechanics are assumed. The age of secondary gama rays is deternined from the reutron age at the collisicn site and is incremented by determinirg the time required to travel between collisions at the speed of light. For fission problens the age of the parent is given to the daughters at birth.

There are several types of importance sampling techniques included in the code. The Russian roulette and splitting logic of 1 SR is an option in U/RSE. Also the exponential transforn is provided vith paraneters allowed as a function of energy and region. Source energy biasing is an option as well as energy biasing at each collision. In fission problens the fission weights may be renormalized as a function of an estimate of k su thet the numer of histories per generation remain approximately constant. If desired, all importance sampling may be turned off.

Some orher general features include the ability to run problems vithout the use of magnetic tapes, the ability to terninate a job internally after a set elapsed c.p.u. time and obtain the output based on the number of histories treated up to that time, batch processing for the purpose of determining statistics for groups of particles, and a repeat run feature so that results for a time-dependent fission prodem may be obtained with statistical estimates. The output of numerous counters permits one to obtain an insight into the physics of the problem.

Detailed descriptions of the subroutines with the logicai fiow charts are found on the following pages. The appendices contain detailed derivations of various forms of the transport equation, a detailed derivation of the treatment of the angui ar distribution of scattering, and a detailed description of the required input.

II. Randan Valk Yodule

The basic random walk process of choosing a source particle and then following it tiorough ite history of events is governed by the routines in this module of MORSE. A given problen is performed by folloring a number or oatches of particles which then constitute a rin. Multiple runs are also permitted. The batch process feature is used so that statistical variations between groups of particles can be deternined. Thus a batch of source particles is generated and stored in the bank. The rando walk for this batch of particles is deternined by picking one particle out of the bank and transporting it from collision to collision, splitting it into tyo particles, killing by Russian roulette, and generating secondary particles (either gama rays or fission neutrons) and storing them in tine bank for future processing. Termination of a history when a particie iesiss from the system, reaches an energy cutoff, reaches an age linit, or is killed by Russian roulette.

The randon walk module perforns the necessary bookkeeping for the bank and the transportation and generation of new particles and relays this information to the analysis module for estimation of the desired quantities. Use is made of the eross-section module and the geometry module during the random walk process and the input-output routines for the reading and printing of pertinent information about the problem.

In this module the main program is used to set aside the storage required in blark common and to pass this information to subroutine MgRSE which is the executive routine for the random walk process. After performing the necessary input operations and setting up storage requirements, the walk process consists of three nested loops: one for runs, one for batches, and the inner-most is for particles. After each termination of the batch loop, some bookkeeping is required before the generation of a new batch of source particles. After the termination of a run, a sumary of the particle terminations, scattering counters, and secondary production counters are output, as well as the results of Russian roulette and splitting for each group and region.
 the randon walk routines. Tables I and II list the definitions of the variables in these two commons. Ncte that in Table II "current" and "previous" refer to values of parameters leavirg ihe current and previous event sites; respectively (WIBC is the exception, being the veight entering the current event site). Also note that "event" includes boundary crossings, albedo collisions, etc., as vell as reul collisions. A description of blank comon is given in Pig. 2, along with definitions in Table III. The locations of the variables are given in Table IV. All the variables used as location labels, except NGP在, locate celi zero of an array. Cells MLAST + 1 to MLAST + MLEFF are available to the user for analysis arrays.

A description and a logical flow chart for the subroutines that make up the randon walk module are given the folloring pages in this chapter.

Table I. Definition of Variables in Comon APDLIS

Variable	Definition
AESYRTI	Input starting age of source particle
DDP	Starting particle veight as determined in Sthis
DBADATP(5)	The surned veights of the particles at deats. The iour deaths are: Russian roulette, escape, exergy, and age iimit. DEADTI(5) is unused.
ErA	Mean-free-path between collisions
BTATH	Distance in cm to the next collision if the particle does not encounter a change in total cross section
ETAUSD	Flight path in m.f.p. that has been used since the last event
UIMP, VIIP,	
WIIP	Input direction cosines for source particle
YISTRTI	Input starting yeight
XSTRPR, YSTRM,	
ZSTRI	Input starting coordinates for source particle
TCUT	Age limit at which particles are retired
XIRRA(10)	Not used
10,11	Output and input logical units
MEDIA	Humber of media for which there are cross sections
IADJM	Switch indicating an adjoint problem ii > 0
ISBIAS	Switch indicating that source energy distribution is to be biased if > 0
IS\$UR	Input source energy group if >0; othervise, S \varnothing RIN is called to read input spectrum
ITERS	Number of catches still to be processed in the run
ITIME	Not used
ITSTR	Switch indicating that secondary fissions are to be the source for the next batch if > 0
LACWTS	Starting location in blank common of the weight standards and Other arrays MGPREG -ong (see Fig. 2 and Table IV)
LACFWL	Starting location in blank common of the fission weights
LめCEPR	Starting location in blank common of the energy-biasing parameters

Table I (cont.)
Variable Defisition

LfCNSC LdCFSN	Starting location in blank common of the scattering counters Starting location in klank common of the fission and gamageneration prcbaioilities for each mediun and grour
MAXCP	Maximue number of energy groups for which there are weight stardards or path-length stretching parameters
MAXTIM	The elapsed clock time at which the probien is terminated
MEDALB	Medium number for the albedo mixium
McPreg	Product of nuaber of weight standard groups (MAXGP) and regions (MXREG)
MXREG	Marimum number of regions in the syster
HaLb	An iadex indicating that an albedo scattering has occurred if > 0
NDEAD (5)	Number of deaths of each type (see DEADNT).
SEWITM	Name of the last particle in the bank
NGEDM	Location of first cell of geometry data storage in blank common
MGPQT1*	The lowest energy group (largest group number) for which primary particles are to be followed
HGPQT2*	The number of primary particle groups
NGPQT3*	The lowest energy group (largest group number) for which any particle is to be followed
NGPQTG*	Number of energy groups of secondary particles to be followed
NGPQTN*	Number of energy groups of primary particles to be followed
MITS	Number of batches per run
NKCALC	The first batch to be used for a k calculation. If $0, k$ is not calculated
NKILL	An index to indicate that Russian roulette is to be played if > 0
NLAST	The last cell in blank common that was used by the crosssection s^{t},orage or is set aside for banking

[^1]Table I (cont.)

See page 11 for diagram of energy group structure.

Table I (cont.)
Variable
Definition
NSPLT An index to indicate that splitting is to be considered if >0

NSTRT The number of particles to be started in each batch NXITRA(10) Not used.

Diagram of Energy Groun Structure

Table II. Definition of Variables in NUTRg Common

Variable	Definition
WALP	Particle's first name.
havex	Particle's family name. (Hote that particles do not marry.)
IG	Current energy group index.
IGX	Previous energy group index.
S14(1)	Medium number at current location.
MEDULD	Medium number at previous location.
NREI;	Kegion number at current location.
U,V,W	Current direction cosine.
UØLD,VØLD, WgLD	Previous direction cosines.
$\mathbf{X}, \mathrm{Y}, \mathrm{Z}$	Current location.
$\begin{aligned} & \text { X } \varnothing \mathrm{LD}, Y \not \subset L D, \\ & \text { Z } \varnothing \mathrm{LD} \end{aligned}$	Previous location.
WATE	Current weight.
GLDWT	Previous weight.
WIBC	Weight just before current collision.
BLCATP	Current block and zone number (packed).
	Previous block and zone number (packed).
AGE	Current age.
¢LDAGE	Frevious age.

Fig. 2. Layout of Blank Common

Table IIT. Definitions of Variables in Blank Coman

Memonic Variable Hame	Definition
Emer(IG)	Upper energy boundary of group IG (in eV).
VEL(IG)	Velocity corresponding to the mean energy for neutron groups and the speed of light for gama-ray groups (in ci/sec).
FS(IG)	Unbiased source spectrum - unnormalized fraction et source particies in each energy group - transformed to c.d.f. by Sprin.
BFS(IG)	Biased source spectrum - relative importance of each energy group - transformed te biased c.d.f. by SøRIN.
$\begin{aligned} & \text { WIHI(IG; } \\ & \text { HREG) } \end{aligned}$	Weight above which splitting is performed (vs. group and region).
$\begin{aligned} & \text { WTL } \phi(I G, \\ & \text { HKEG) } \end{aligned}$	Weight below which Russian roulette is performed (vs. group and region).
$\begin{aligned} & \text { YTAV(IG, } \\ & \text { EREG) } \end{aligned}$	Weight to be assigned Russian roulette survivors (vs. group and region).
$\begin{aligned} & \text { PATH(IG, } \\ & \text { RREG) } \end{aligned}$	Exponential tiansform parsmeters (vs. group and region).
$\begin{aligned} & \text { ESPLíIG, } \\ & \text { RREG } \end{aligned}$	Splitting counter (vs. group and region).
$\begin{aligned} & \text { USPL(IG, } \\ & \text { NREG) } \end{aligned}$	Weight equivalent to ismpl.
$\begin{aligned} & \operatorname{HgSP}(I G, \\ & \text { iREG) } \end{aligned}$	Counter for full bank when spititing was requested (vs. group and region).
	Weight equivalent to misp.
$\begin{aligned} & \text { ERKL(IG, } \\ & \text { RREG) } \end{aligned}$	Russian roulette death counter (vs. group and region).
$\begin{aligned} & \text { WRKL(IG, } \\ & \text { HREG) } \end{aligned}$	Weight equivalent to RRXL.
$\begin{aligned} & \text { ERBUU(IG, } \\ & \text { DERG) } \end{aligned}$	Finssian roulette survival counter (ve. group and region),
	Weight erquivalent to Rried.
$\begin{aligned} & \text { TMINBI: } \\ & \text { (IG, MEG) } \end{aligned}$	Initial values of WiHI array.

Table III (cont.)

Mnemonic Variable Name	Definition
INIWL (IG,MREG)	Initial values of WTL\$ array.
INIWAV (IG_NREG)	Initial yalues of UTAV array.
FNLG(MREG)	Weights to be assigred to fission daughters (vs. region).
IRIFI\$ (NREG)	Initial values of FWLS.
$\begin{aligned} & \text { GNLG(IG, } \\ & \text { NREG) } \end{aligned}$	Weights to be assigned to secondary particles (vs. group and region).
$\begin{aligned} & \text { EPRB(IG, } \\ & \text { NREG) } \end{aligned}$	Relative importance of energy groups after scattering (vs. group and region).
$\begin{aligned} & \text { MSCT(IG, } \\ & \text { MREG) } \end{aligned}$	Number of real scatterings (vs. group and region).
$\begin{aligned} & \text { USCT(IG, } \\ & \text { NREG) } \end{aligned}$	Weight equivalent to HSCT.
$\begin{aligned} & \text { MALB (IG, } \\ & \text { IREG) } \end{aligned}$	Wumer of albedo scatterings (78. group and region).
$\begin{aligned} & \text { WALB(IG, } \\ & \text { WREG) } \end{aligned}$	Weight equivalent to MALB.
$\begin{aligned} & \text { MFIZ(IG, } \\ & \text { IREG) } \end{aligned}$	Wumber of fissions (vs. group and region).
$\begin{aligned} & \text { WFIZ(IG, } \\ & \text { RREG) } \end{aligned}$	Weight equivalent, to WFIZ.
$\begin{aligned} & \text { HGAM(IG, } \\ & \text { HREG) } \end{aligned}$	Rumber of secondary productions (rs. group and region).
$\begin{aligned} & \text { WGAM(IG, } \\ & \text { IREG) } \end{aligned}$	Weight equivalent to HGM.
ISCA (INED)	Scattering counter (vs. cross-section mediu).
$\begin{aligned} & \text { FISH(IG, } \\ & \text { IESD) } \end{aligned}$	Probability of generating fission neutron (vs. group and medium).
$\begin{aligned} & \text { FSE(IG, } \\ & \text { IMED) } \end{aligned}$	Source spectrun for fission-induced neutrons for each group input as frequency of group IG.
$\begin{aligned} & \text { GYi̛níIG, } \\ & \text { IMRD) } \end{aligned}$	Probability of generating secondary particle (v8. group and medium).

Table IV. Location of Blank Comm Arrays

Mremonic Variable Eare	Location of Array in Blank Comon (BC(I) or $\mathrm{BC}(\mathrm{I})$)
ETER(IG)	$\operatorname{BC}(\mathrm{I}) ; \mathrm{I}=\mathrm{IG}$
VEL(IG)	$I=$ marg +IG
FS(IG)	$I=2 \mathrm{marg}+\mathrm{IG}$
BFS(IG)	$I=3$ minig $+I G$
WIHI (IG, MREG)	
WIIS(IG, IREES	$I=$ IACHTS + MCPRES $+($ (RREC-1 $)$ MAKGP + IG
WTAY(IG, MREG)	
PATH (IG, IREE)	
ESFL (IG, HREG)	
USPL (IG, MREG)	
	$I=$ LACHIS +6 MYAPREG + (MREG-1) WMAXCP + IG
Mugh (IG, MREG)	
RIKXL (IG, MREG)	
WRKL (IG, HREG)	
RRSU(IG, MREG)	
URSU(IG, MREG)	
IIINHI(IG, IREG)	
IIIULO(IG, IREG)	
IIIHAV (IG, IREG)	$I=$ LACWIS +14 MGPREG + (IRRG-1) WAXCP + IG
FWEO(IREG)	$\mathrm{BC}(\mathrm{I})$; $I=$ LACFNL + HREG
ITFPLA(EPEG)	$I=$ IACPNT + MPRES + IRPR
GILd(IG, IREG)	
EPRB(IG, IREG)	$\operatorname{BC}(\mathrm{I}) ; \mathrm{I}=$ L¢CEERR $+($ RREG -1$)$ minct +IG
ESCT(IG, HRES)	
TALE(IG, MFEG)	
WALP(IG, MREG)	

Table IV (cont.)

Mremonic Variable Name	Location of Array in Blank Common (BC(I) or $\mathrm{HC}(\mathrm{I}))$
IFIZ	
WFIZ	
HGAM	
WGAM	
ISCA (IMISD)	
FISH (IG ,IMED)	
FSE (IG,IMED)	$I=$ LGCFSK + NHIG\#MEDIA $+($ IMED -1$)$ FMMIG + IG
GMGII (IG , IMED)	

Main Propran

The main program performs the following functions:

1. Sets the maximum allowed size of blank common (ail other routines using blank coumon use a dumay dimension of 1);
2. Bnsures that certain labelleat comenons are loaded in a specified order (which miist agree with the order of these commons in the diagnostic routines using the iff function);
3. Loads the junk word (48484848_{16}) in blank conmon and all labelled commons present in this routine;
4. Sets the two variables used for input and output logical units; and
5. Calls MORSE fo: the actual administration of the jcb. (The size of blank comsan is transferred to M\&RSE as an argument.)
Subroutines calleã: MpRSE
Functions required: LdC (library function at Oak Ridge Mational Laboratory - output is the absolute address (in 8-bit bytes) of the cell given as the argument)
Variables required: JUNK
Variables cinanged: ITgUY (IO in most other routines)
ITII (I] in most other routines).
 pal, RESULT, GEGNC, HوRMAL, PDET, USER, DUMEY.

Helpful Eints:

1. Lote that if a nev cross section, geometry, or anaiysis package is used, the labelled commons here nay have to be modified correspondingly.
2. The junk word is the bit pattern that comes closest to being output identically as either a fixed or floeting number. It is al so recognized by subroutine HELPER that the cell has not been usea by the code.
3. The Lod function returns an absolicte address of a variable in bytes, requiring division iy 4 to oidain the number of 4 -byte (32 bit) words.*
4. To change the size of blank common only the statement defining the commos needs to be chsnged, since the LdC function is used to obtain this value to be transferred to MisSE.

See Appendix E for a description oi all library routines used in MORSE.
5. It is recommended that this routine always be compiled and that it be the first routine compiled. This insures that it is loaded first and that the commons it specifies are loaded first, and in the desired order, in the common area.
6. The program size, in bytes, is usually on the order of $150000 \div 4^{*}$ (blank common size in words).

Main Routine

Subroutine kyRSE (NLFT)

MyRSE is the executive routine for the walk process and controls the succession of events which comprise the Munte Carlo process. The problem is assumed to consist of NQUIT runs, each consisting of NITS batches, and starting out with KSTRT particles in each batch. Thus the functions of MARSE are logically broken dow into nested loops with the inner loop consisting of the execution of the walk process for each particle. The next loop is for each batch of particles and the outer loop is for each run. Several problems may be run in succession by stacking input data.

There is no significant part of the walk process pertormed in MøRSE except for the termination of histories. The bookkeeping of veforecollision parameters, the determination of history terminations, and the ordering of the subroutine calls are the basic functions. The option of terminating a problem by an execution time limit is provided; this option may only be executed at the end of a batch and the normal termination of a problem occurs in that all end of run processes are completed.

Called from: Main program.
 GEYMIT, TESTW, NXTCYLL, BAKKR(10), ALBD9, BAIKR(6), GHIED, FPR安, GPRđB, CøLISN, 3 AMKR(5), BAMKR(9),

Comons required: Blank, APDLLd, NUIRq, FISBNK.
Variables required: ELFT, HKILL, WSPLT, HGPGIn, HGPQIG, HITS, HQUIT, ESTRT, AFISH, ITCTR, WHEM, MAXITM, TCUT
HALB - index indicating that an albedo collision has occurred.
MFISTP - index indicating that fissions are allowed if >0.

Variables changed:

$\operatorname{NDEAD}(I), \operatorname{DEADHT}(I)$ - counters
I = 1 - Russian roulette kill
= 2 - particle escaped the system
= 3-particle reached energy cutoff
= 4 - particle reached age limit - it was retired.
NPSCL(I) - counters
$I=5$ - number of real collisions
= 6 - number of albedo collisions
= 9-number of energy deaths
= 10 - number of age terminations.

Subroxtine MRSE(MLFi)

MHRE (Randon Walk, cont.)

Subrcoutine DATE (A, WU)
Given an array A, DATR inserts a hollerith string with the day of the wek, the month, the day of the month, and the year. It will use as many as 32 bytes, so A mast be dimensioned at 8 for single precision. WW, on return, is the mumer of h-byte words which must be output.

Typical calling sequence:
DIMEXSI Arday (8)
CALL DATE (ARRAY, MUN)
PRTIT 1, (ARRAY (I), $I=1$, IUMA)
1 Ftame ('Thay Is ', 8,
producing, if called on hay 30, 1970:
'TtDar is sarurday, may 30, 1970'.
called from: IIPUP
Boatines calied:
Ineser
IrytBC (library function at Oak Ridge Hational Laboratory, converts
a H-byte integer to an EBCDIC string)
IIIBCD - seme as InrdBC except also returns the number of bytes in the EBCDIC string

Comans: DATMAT which contains arrays of EBCDIC characters for months and weekdays; arrays of numbers of EBCDIC characters and starting points. It is loeded in a Block Data routine with the following values:
 IMEES(8), ingex (8)

Index	$\begin{gathered} \text { XV中ITH } \\ \text { (REALE8) } \end{gathered}$	$\begin{gathered} \text { WEKE } \\ \text { (RBAL }-8) \end{gathered}$	$\begin{gathered} \text { DAY } \\ \text { (REAL=8) } \end{gathered}$	Inderth	Mndith	INEKE	ITESE
1	January ${ }^{\text {(1)* }}$	HUH?SUn(1)	DAY, (1)19 (1)) 0	7	0	4
2	FEBRUARY	mon(1)Tues		8	8	4	3
3	MARCH (3)	UEDIIES (2)		16	5	8	3
4	APRIL (3)	THURS (3)		24	5	12	4
5	MAY (1) Jne	FRI (5)		32	3	16	6
6	Julyaugu	SATUR (3)		36	4	24	5
7	ST@SEPT			40	4	32	3
8	ExBER (3)			44	6	40	5
9	9CTdBEI 11			52	9		
10	H\%VENBER			64	7		
11	DECEMBER			72	8		
12.				80	8		

*(1) denotes II blanks.

This routine is provided for the user to deternine the numer of mean free paths betreen two points in the systen. It vill eitner return the total number of mean free peths or vill return the first boundary intersection point and the nuwber of mean free paths to that point.

Called rom: GByEM
Subroutines called: Germ, LAdz, MSIGIA.
Functions used: DSQRP (library)
Cosmons requirea: Gyyc.
Variables required:
MRK - Set to 1 upon calling,
X1, I1, 21 - coordinates of starting point, X2, Y2, $\mathrm{Z2}$ - coordinates of end point, P1P2 - distance between starting and end points, IG - energ group index, MID $=0$ for total mean free paths
$\neq 0$ for intersection points and mean free ppths between.
Variables cheaged:
ME = 1 for flight reaching the end point,
$=0$ roc a flight crossing a mediun boundary (ir $\neq 0 \mathrm{only}$),
$=-1$ for a flight escaping the system,
$=-2$ for a flight encountering an internal void (II $\neq 0$ ouly),
$\mathbf{X 1}, \mathbf{Y}, \mathrm{Zl}=$ returns boumdary intersection point if IID $\neq 0$,
ARG - negative of number of mem free paths,
MID - if MID $\# 0$ on input, will return as -1 if an eacape occurs,
MeIVM - mediun mumer of end point.
Significant internal variables:
Max - Hag set by crin (returned as Mick - defined above)
IIIV - internal flag eet to 1 when traverging an internal void (nediun 1000).

Linitations: No provision is made in this version for abedo bocndaries.

Sobroutine FMT
Fissican neutrons are stored by FBNK in the area in bleok comen set aside for this purpose. Seven parameters can be stored for midsr neutrons in this fission benk. If it is called as man as 50 times when the benk is mil, HISP and EXIT are called.

Called from: Fplis.
Sobroutines called: HISTP, EXIT (Iibrary).
Comons required: Blank, MUFT, APOIId, FISBEX:
Varishlea reguired:
LFISs: - location of cell sero of the fission benk in tlank comen,
TIS: - naiber of neutrons in fissicn benk,
MNT - maxim muber of particles allowed in benk,
shirsp - weicht of fission neutron to be benked,
FMrIB - total weight of benked fissian neutrons,

Variables chmaed:
IFISI - incremented after benking,
FHAES - incremented by wirif after benking.
Sigificant internal varisbles:
HIUL - incremented upon each call when benk is full.

Subroutine FBANK

Samon Mumer Packare

The raxdon numer package is essentially the 0 SR package as modified for the IBM-360 computers. Six-byte (48 b bt) arithmetic is used with a cenerator (constant multiplier) equal to 14 Fiv4930 ${ }_{16}\left(=3277244615_{8}\right)$. If no startiag rumber is given (a value of zero input) the routine uses 35Pa931 1_{16} which is twice the generator. The trailing zero bit restricts the significmee of the arithmetic to 47 bits so that the pseudo-random seavence generated by the CDC-1604 pankege may be dur'seated. (The CDC1604 pacizage must use 3277244615_{8} as the generator and starting number to give the same sequence.)

The following subnrograms are available in the package:

Herram Ca	Randon Eumber Generated
$A=$ Fhring (0)	Uniformiy distributed on the interval (0,1)
$A=$ Efraf (0)	Unifornly distributed on the incervel ($-1,1$).
	Exponentialily distribuied: $P(R) d R=e^{-R_{d R}}$ $0 \leq \mathrm{R}<\boldsymbol{\omega}$.
	The sise and cosine of witere is uniformaly distributed on the interval $(0,2 \pi)$. A random azimathal angle.
	The sine and cosine of θ where cose is uniformly distributed on the interval ($-1,1$). A renda polar angle.
cars oinsy (x, y, z)	An isotropic unit vector. $X=\cos \theta, Y=\cos \phi$ $\sin \theta, Z=\sin \sin \theta$ where θ is a random polar angle and is a ranaion azinuthal angle.
$H=1 \operatorname{lan} \times(T)$	Maxwellian energy:
R = FISEMP (0)	$P(R) d R=\left(\frac{4}{T^{3} \pi}\right)^{1 / 2} R^{1 / 2} e^{-R / T} d R$ A neutron speed squared from the Whtt fission spectrum: $P(R) d R=e^{-R / T} \sinh \left(2 / E^{\omega} E_{f} / T\right)$, where $T=0.965 \times 1.913220092 \times 10^{18}$ and $E=$ $0.533 \times 1.913220092 \times 10^{18}$ (ref. 8) .

(cont.)
F FRTRAM Calling Statement Rendion Mumber Generated

CALL RKDİ(R)	Loads R into $R A M D A(I), I=2,4$ if $R \neq 0$. R is read with a 212 format and must be double precision (8 bytes).
CALL RHDSUT(R)	

Note: The argments of FLIFMF, SPLRAP, EXPRWF, FISRITF are not used by the routines.

Subroutime FPR
FPits calculates the expected veight of fission neutrons at a collision point and tinen splits or plays Ruseian roulette so as to prodnce the correct average number of fissions, all of weicht FIW (apecified in problem input for each region). FBNIS is called for each neutron produced, to be stored for processing in the next generation.

Celled from: Mifese.
Subroutines called: GNAD, BAIKR(3), FBAMK, METP, BRATR (library).

Variables required:

LfCFSI - location in blank common of cell sero of array of fission cross secticas,

LJCMSC - location in blank common cell zero of scattering counter arrays,

DAT - crose-section mediun of collision point,
MOREG - maximu region number,
Mag - total nuiber of enerey groups,
FINTL - total of fission weights from all collisions,
LfCFIL - location in ulank common of cell zero of array Fildn, IPSCL(3) - Pission counter.

Variables changed:
WATEF - Plssion weight transíerred to Fbaik
FYTHL
MPSCL(́3)
Significant internal variables:
FHL - current value from array Fild,
ISCT - location in blank comon of (IG, NREG) cell of scattering counter array 1 MIZ (and later WFIZ).

Sumoutive Fe最

This routine is called by the source executive routine, MSNR, when the scurce for the present batch is to be taken from the previous batch Pissions. Its function is to transfer the neutron parameters from. the fission bank to the neutron benk. If there were no fissions in the previous batch, it sets a Rlag, Frints a message, and returns.

Celled fros: Madur.
Subroutines called:
 in the neutron benk.

Variables required:
MFISH - number of fissions produced in the previous batch,
mum - set equal to MFISH,
IIIS - number of batches requested for the run,
ITERS - batch counter,
HFISBT - location in blank commor cell zero of the fission bank.
Variables changed:

ITERS - set to zero if MFISH $=0$,	
MASMES	
HREG	set to zero (in Murrill common, see page 12)
$\mathrm{U}, \mathrm{V}, \mathrm{W}$ (
BLEAT	
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	
	set to values found in fissiun bank (in NUTR common,
ALB	see page 12)
HAMEX	Wote: IG is group index of neutron geusing fission.

Subroutine FSJUR

Sumportine (rixM

The subroutineciniMA selects EMA, the numer of mean-free-paths for the next flight, fron an appropriate exponential distribution. Pathlength stretching based on the exponential transfong $9-11$ is included, as vell as an option to select fron a modified distribution which does not pernit a particle to secgye from the syster.

The rabiased flight path distribution function is given by

$$
P_{0}(n)=e^{-n}
$$

where n is the distance traveled in mean-fres paths. Selection of a particular Nigint path EPA from $P_{0}(n)$ is done by the function ExPrip (in randion numer package, see page 34).

If an external boundary occurs at some distance, ARG mean-free paths from the starting point aloag the flight direction, then the probabilits of escape is $e^{-A R G}$. If it is required that no particle escape, then the distribution function $e^{-\eta}$ is nornalized over the interval ($0, A R G$), and the flight path is selected fram the modified distribution

$$
P_{1}(n)=\frac{e^{-n}}{\left(1-e^{-A R G}\right)}
$$

and the particle's weight is adjusted by the factor

$$
\frac{P_{0}(n)}{P_{1}(n)}=\left(1-e^{-A R G}\right)
$$

Path-length stretching, which is a form of biasing (or importance sempling), can be accomplished by selecting from the modified distribution

$$
P_{2}(n)=\frac{1}{B I A S} e^{-n / B I A S}
$$

which produces values of EIA a factor of BIAS times those produced by the unbiased distribution $P_{0}(n)$. Therefore, values of BIAS greater than
unity will stretch the path length and values less then unity will shoink the path leagth. The actual selection is accomplished in terme of the distribution function for $\eta^{\prime}=\eta / B I A S$,

$$
P_{2}\left(n^{\prime}\right)=P_{2}(n)\left|\frac{d n}{d n^{\prime}}\right|=e^{-n^{\prime}} .
$$

A selection is made from $P_{2}\left(\eta^{\prime}\right)$ which yields values of sin' and then

$$
\text { ETR }=\text { BIAS }^{\top} \text { ETA' . }
$$

If patb-length biasing is usei, then the particle's veicht must be adjusted by the factor

$$
\frac{P_{0}(E I A)}{P_{2}(E I A)}=\text { BIAS } e^{-[1-(1 / B I A S)] \operatorname{BrIA}} .
$$

For the combination of path-length stretching and no escape, the modified distribution is given by

$$
P_{3}(n)=\frac{e^{-n / B I A S}}{B I A S^{*}\left(1-e^{-A R G / B I A S}\right)}
$$

with the actual selection of EPA' being made from the modified distribution

$$
P_{3}\left(n^{\prime}\right)=P_{3}(n)\left|\frac{d n}{d n^{\prime}}\right|=\frac{e^{-n^{\prime}}}{\left(1-e^{-A R G / B I A S}\right)}
$$

where $n=$ BIAS* $^{\prime \prime}$ '. The path-length EIA is then given by

$$
\text { EIA }=\text { BIAS }^{\star} E E A \text {, }
$$

and the particle's weight multiplied by the factor

$$
\frac{P_{0}(E T A)}{P_{3}(E I I A)}=\text { BIAS }^{W}\left[1-e^{-E T A(1-1 / B I A S)}\right]\left(1-e^{-A R G / B I A S}\right) .
$$

The form for the factor BIAS used in this version of GELEIA is based on the exponential transform and can be expressed as

$$
\text { BIAS }=\frac{1}{(1-P \cdot \operatorname{cin})}
$$

stere

DIBEC is the coaine of the angle between the flicht direction and the most inportant direction (calculated by the user function DIFBC),
Paifi is a measure of the maxime amount of path-leagth stretching to be applied. A value of zero correaponds to BLAS $=1.0$, and no biasing is accoplished. Lareer values of parix but leas then unity) yield values of BIAS >1.0 when DIELSC >0, add the particle's path length is stretched accordincly. Conversely, when DIRBC < 0 (the particle is traveling enay frow the important direction) BIAS <1.0 and the track is shori_ned.

Called from: Inucili.
Subroutines called: EUCLID.
Commons required: BJank, Mritin, APdid.
Variables required:

maxcP - number of energ groups for weight standards and/or pathlength stretchis 3 parmeters Payif,
Mgrenk - an index for nonleakage biasing,
RAD - the largest overall dimension in the system,
PNTH - path-length stretching parameters (in blank common).
Variables changed:
EIA - the number of mean-free paths to the next collision,
WATE - the particle's weight corrected for the biasing enployed during the present flight selection.
Significant internal variaoles:
ARG - the distance in mean-free paths from the last collisicn site to an external boundary along the present flight direction.

Sobroutine GMIT(I)

Three entry points are used in this routine. Entry SETnT saves the adiress (in vords) of the first ce' vailable for the neutron bank in blank comman returns the address of .iv last cell it will use. Entiy
 in the ncutron bank and Batry Cerwr(I) does the reverse; it picks up variables from the bank and puts them in common IUTR裉.
 dUIPT (GELIT)

Commons required: Blank, Muritu. The area of blank common used for the neutron bank is shown in Pig. 3. Wotice that IG, HANE, NANEX, MESD, and IREG are stored in 2-lyyte words (and are therefore limited to ≤ 65535), symbolized by a dotted line splitting the normal 4-byte word.

Variables required:
SEMWI: ILAST
HIUST
GEITIT: I

Variables changed:
SEHIT: BLAST
CEINT: variables in common MUIR病 required by SEFHT above,
STORNT: 12 consecutive locations in blank cumon. Significant internal variables:
mad - location in biank common of start of neutron bank.

Fig. 3. Layout of the Feutron Bank in Blank Common

Subroutine GEmit(N)

Subroutine GQST (TSIG, MARK)

The end-of-flight coordinates are computed assuming the starting medium extends infinitely. The proper data are stored in GEPMC before calling GEDM and is restored after the CEgM call. If the Plight is starting in interior void (NIED $=1000$), velocity components (or direction cosines) rather than an end point are given to GBgh, if an albedo medium is encomtered the flag NALB is set to the albedo medium number, and then HGRIL and GdMFIP are called, respectively, to determine the normal to the surface encountered, and to reset certain parax $t e r s$ for GEd to use later in going away from the albedo surface.

Called from: NXICDL.
Subroutines called: GEM, N\&R:IL.
Punctions used: SQRT (library)
Commons required: APdLI\$, RUIF
Variāles required:

IBLZф - packed wora cortaining block and zone numbers for starting point,
ETATH - distance to be traveled (in cme if the flight remains in the starting medium,
MARK - initial value of flag used by GEdM,
TSIG - total cross section of starting point medium,
ENA - flight distance in m.f.p.
Variables changed:
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ - end point of flight,
HALB - albedo flag ($=$ MEDALB or 0),
MARK - Mag indicating type of terminadion of flight,
EMA - actual flight distance (in m.f.p.) if albedo collision occurs,
NMED - medium of end point,
IREG - region of end point,
ETAUSD - actual flight distance (in m.f.p.),
IBIZN - block and zone of end point,
ETATH - actual flight distance (in cm).

Subror-ine GHST (TSIG, MaRK)

Subroutine GPR但

This subroutine is the executive routine for the generation and storage of secondary gamma rays (or neutrons for an adjoint, coupled problem). The probability of generating a gamma ray is determined and the resulting gamma-ray veight, WATEG, is compared with input values of the desired gama-ray weight, GWL. Russian roulette and splitting are used to produce gamma rays of veight GWL. That is, if the gamma-raj weight is less than the input values, then the gama ray is killed with probability (GWL-|WATEG|)/GNL and stored with probability (|WATEG|)/GWL. If the gaman-ray weight is greater then the input value, then there are $J=$ WATEG/GWL gamma rays stcred with weight GWL with Russian roulette played with the remaining gamma ray of weight WATEG - $J * G W L$.

Ancther version of GPR\&F which has been found to be more useful in some cases does nut use GWL as a desired gamma weight but instead uses it as the probability of generating a gama ray. Thus, a randon number, if compared with GiL, and, if greater, no gama ray is generated; if less than or equal, then a ganena ray with weight $=$ WATE $\because P G E N / G H L$ is stored. This procedure produces gama rays of vawing weights, but the number of gavas rays may be controlled easily. Called from: MopsE

Subroutines called: GAMGEN, GSTQRE, HELP, ERRGR. Punctions used: SIGI, ABS (library).

Commons required: Blank, RUTR(IN, AFфLLめ.
Variables required: IG - primary particle energy group, NMED - geometry medium, WATE - primary particle weight, GHL - input weight values for gama rays, NREG - geometry region, NMIG - total number of particle groups, MXPEG - number of regions for which there are weight standards.

Significant internal variables:
WATEG - gamma-ray weight,
PGEN - ganmanray generation probability.

Subroutine GST促E (W8G, IGG)
This subroutine checks to see if there is room in the bank, and if so stores the significant variables for the generated gamma ray (or neutron in an adjoint coupled problem). Since the information in NUTRWN common is stored, the current neutron parameters must be saved temporarily and then restored. It is assumed that the gamma ray is emitted uniformly in direction. An option for analyzing the generated gamma ray is provided througa the BANKR interface.

Called from: CPRøB.

Commons required: NUTR加, APøLLø.
Variables required:
W8G - gamma-ray weight,
IGG - gamma-ray energy group,
LACHSC - location in blank common of cell zero of scattering counter arrays,

INIEM - last location in bank that has been used,
MHST - maximum number of particles allowed in the bank,
MriG - total number of energy groups,
MXRREG - maximum region number,
IG
HREG
WATE (from NUIRDin common, see page 12)
HAME
U,V,W
Variables ehanged:
mian - last location in bank that has been used,
IEWNM - the gamma-ray name.
Significant internal variables:
$\mathrm{U}, \mathrm{V}, \mathrm{W}$ - direction cosines of gamma ray.
Limitations: Isotropic gemma-rag emission.

Subroutine GST SRE 2

Subroutine IMPPT

The basic functions of subroutine INPUT are to read, from cards, the basic problem description, and to print out this information, to initialize parameters, to perform some initial transformations on basic problem data, and to call other more specialized routines that perform similar initializations. As an example, several group indices must be set differently depending on whether the problem is a neutron only, gama only, or combined neutron and gamma. If an adjoint problem is being done, many quantities mist be tored differently since all values are input as though a forward calcula tion was being done. For complete details, refer to the flow chart.

Called from: Mg RSE.
Subroutines called:
DATE - provides EBCDIC siring containing day of week and date,
S \emptyset RII - reads cards E, source spectra and relative importance of source groups, if biasing is desired,

RNDII - stores initial random number,
FND\$UUT - retrieves current random number,
JdinN - reads geometry data,
XSEC - reads cross-section data,
SETIFT - sets up neutron bank,
EXIT - library,
SCøRIN - user routine for reading analysis data,
GAMCEH - provides gamma-generation probabilities,
FISGFW - provides fission-generation probabilities.
Punctions called:
ICNMPA ($\mathrm{A}, \mathrm{B}, \mathrm{H}$) (library function at Oak Ridge National Laboratory compares, bit by bit, \mathbb{K} bytes of locations A and 3 ; returns zero if A and B are identicai)

MODEL - (library function at Oak Ridge National Laboratory which determines the model of the computer)

Commons required: Blank, GEQNC, BAFK, USER, BIKAMC, NUIRQN, APQLLD, FISBIK, W \varnothing RMAL.
Variables input: (see definitions of variables in common APCLId, iUTIR(1), USER, pages 8, 12, 167. A more detailed listing of input is given in Appendix C.)

CARD A (20A4)

Title
(Any character other than a blank or alphameric in column one wili terminate the job.)
CARD B (14I5)
 IADJM, MAXTIM, MEJIA, MEDALB

CARD C ($415,5 \mathrm{El} 10.5$)
IS§UR, HGPFS, ISBIAS, (unused), WISTRT, EB $\not / T N$, EB $\neq T G$, TCUT, VELTH
CARD D (TE10.4)
XSTRT, YSTRT, 2STRT, AGSTRT, UINP, VIMP, WINP
 FS(I), $I=1$, IGPFS

CARDS E2 (TE10.4) (skipped if IS申UR >0) (skipped if ISBIAS ≤ 0) (read by SøRIN)
$\operatorname{BFS}(I), I=1, \operatorname{MGPFS}$
CARDS F (TE10.4)
EIIRR (I), I - I, MMTG
CARD G (2I5,5X,36I1,5X,13II)
HHISTR, HHISNX, (MBIKD(J$), \mathrm{J}=1,36),(\operatorname{MCdLLS}(\mathrm{J}), \mathrm{J}=1,13)$
CARE H (212)
RAMDK'M
CARD I (14I5)
HSPLT, HKILL, BPAST, HøLBAK, IEBIAS, MXXRE, MAXCP
CARDS J (6I5, +E10.5)
HGP1, NDG, KGP2, HRG1, HDRG, WRG2, WTHIH1, WTL\&H1, WTAVE1, PATH (read until MGPl < O)

CARDS K (7E10.4) (sixipped if IEBIAS ≤ 0)

CARD L (14I5)
MSФUR, MFISTP, KKCALC, HDRMP
CARDS M (7E10.4) (skipped if MFISTP ≤ 0) (FKLD(I) , $I=1, \mathrm{NCRREG})$
CARI ; N (TE10.4) (skipped if MFISTP ≤ 0) ($\operatorname{FSE}($ IG, IMED) , IG $=1$, , $N M G P$) , IMED $=1$,MEDIA)
CARDS 0 (TE10.4) (skipped if NGPQTN or NGPQTG $=0$)
((GND (IG,NREG) ,IG=1, NMGP or MMTG-NMGP), NREG=1, MXREG)
J\$uIn called for geometry data
XSEC called for cross-section data
SCRIM celled for analysis data.

Variables changed:

All in common USER - set for use by analysis routines,
All in common H \emptyset RNAL - zeroed,
All in common Gran - zeroed,
All in common NUTR (filled with junk word ($48484848{ }_{16}$),
All in common APgLLD - except Il, IO, ITIME, HLAST are filled with junk word,

MAXIM
DEF
MGPQTO
HGPQTI
HGPQT2
for definitions, see common AP\$LL\$, page 8,
HGPQT3
MuPCdL
and diagram of energy group structure, page 11

HC及IPR
RAND AM - set to internal number by RMDII if zero is read in, MAXGP - set to 1 if 0 is read in,

MXRREG - set to 1 if 0 is read in,
MGPREG - MAXGPHXXRE
Lficwis

Subroetine 1 IPUT

Pmetion INESX (MAH, IDAT, ITEAR)

This routine vill lock up the date for you if you don't know it and $f 111$ in integer values for M, MH, IDAT, and IMEAR (requested with MinH ≤ 0). It also returns, as the function value, an integer from 1 to 7 representing the day of the veek. If it is given a positive vaiue of n'init, it assumes you have given it a month, day of month, and year and vill not disturb these but will sinply deternine the day of the week. If you stum it (by specifying a jear before 1901 or after 2099) IWEEK is returned as zero.

Called by: DAIE

Boutines called:

IDAY - library routine at ORM; the output is two 4-byte vords containing 8 EBCDIC characters representing the number of the month, a hyphen, the day of the month, a hyphen, and the last two digits of the jear. That is, on May 30,1970 , the argument for IDAY vill return containing the EBCDIC representation of 05-30-70.
Variables required:
Mhri ≤ 0 - Plag to calculate MhrH, IDAT, and IMRAR. > 0 - flag to leave arguments aloce.
Variables modified:
Minil - integer representing wanth
IDAT - integer representing day o: month
IMRAR - integer representing jear
iNESK - integer representing day of week.

Punction IMEEK (M, MH, IDAT, IMEAR)

Subroutine MSMR

MSWUR is the executive routine for the generation and storage of the source parameters at the starting of each batch. The source parameters may be read into IIPUI on caris, genersted by subrcutine SfURCE or obsained from the fission bank for a multiplying system. For either type of problem the calculations by subroutine SqURCE override the fission bank input or the velues read from cards. If the direction cosines are all imput as zero, an isotropic source direction is generated. The group number obtained from the fission bank is the group causing fission and may be used in the selection of the source group for the fission neutrons. PSE in blank common contains the group distribution for each medium.

Called from: MdRE

 Leddrz

Comons required: NUTR
Variables required:
ITSTR - an injex which deternines if the source should be obtained from the previous batch fissions (ITSTR $\neq 0$) or generated by SquRCE or from input data (ITSIR $=0$)
ISdUR - an index wich deternines the options for the enerny distribution of the source. If IS $\$ \mathrm{R} \boldsymbol{R} \geqslant 0$ the source energies are all generated in energy group IS ${ }^{(1)}$ R. If IS\$UR ≤ 0 subroutine IIPUP calls S Φ RII and the energy is selected by S\$JJRCE

HHEM - the n:mber of particles to be generated for the batch $=$ HSTART for non-rissioning systens and WFISH for multiplyirg systems
ZSTRT, YSTRT, ZSTRT
WISTRT, AGSTRT
UIIP, VIIP, ZIIP
starting parameters input from cards, from common APTLID, see page 8
Variables changed:

MEDYLD, $\square L D A G E$ - previous collision parameters are zeroed for the source.
ØLDWT - previous collision weight set equal to UTSTRT
X, Y, Z, WATE, AGE, HAMEX,
IBLZN, NREG, RMIED, NAME,
$\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{IG}$
parameters set for each particle generated, put in NUTRףN common, see rage 12

NPSCL(1) - counter for number of sources
NEWNM - set to name of last particle generated
$\left.\begin{array}{l}\text { FISIL } \\ \text { FIATE } \\ \text { NFISH }\end{array}\right\}$ zeroed for the next batch

Subroutine NXTCØL

This subroutine is called by the main program to determine the spatial coordinates, the block and zone number, particle's age, and nonabsorption probability at the next collision site and at every boundary crossing encountered along the way. The total number of boundary crossings is. recorded as is the number of escapes. If a particle escapes, its weight is set equal to zero and the history vill be terminated by the main program.

Called from: MpRSE
Subroutines called: GETETA, HSIGTA, G\&MST, BANKR(7), BANKR(8). Commons required: Blank, NUTRqN, APQLL申

Variables required:
AGE - shronological age of the narticle at the previous collision site, BLZNT - a packed worc containing the block and zone number at the previous collision site,

NNED - the medium number at the previous collision site,
X $O I D, Y \not \subset L D, Z \phi L D$ - spatial coordinates at the previous collision site,

TSIG - total cross section.
Variables rkanged:
AGE - chronological age at new collision site,
BLZNT - a packed word containing the block and zone number at the new collision site,

NMED - end-of-flight medium,
NPSCL(7) - total number of bounủary crossings,
NPSCL(8: - number of escapes,
X, Y, Z - end-of-flight spatial coordinates,
WATE - weight of particle undergoing flight to the new collision site. Significant internal variables:

MARK - an index which identifies tine type of event at (X, Y, Z); MARK $=0$, normal boundary crossing, MARK $=1$, flight ended within the medium, MARK $=-1$, particle escaped, MARK $=-2$, particle entered an interior void,

ETA - mean-free paths of flight remaining afte: a boundary crossing,

ETATH - total distance that a particle vould travel if the medium at the starting point was extended indefinitely,
ETAUSD - mean-free paths of flight consumed while traversing a given medium.

Subroutine mact

Subroutine 侯IPT (KEY)

This routine controls the calculation and output of the average values of the source parameters (beginning of the batch, KEY $=1$) and the ccllision counters at the end of each batch (KEY = 2). At the end of the run (YEY $=3$), results for the number of scatterings, the ways in which the particles were terminated, and the counters for splitting and Russian rculette are printed.

For k calculations, the estimete of k at the end of each batch is output, vith the final value of k and its standard deviation output at the end of the run.

In addition, the c.p.u. time used is output for each batch.
Called from: MpRSE
Subroutines called: THIER, RNDSUT, GEINTT, ФUIPT2

Variables required: (neariy all variabies from NUTR ϕ N common, see page 12 for definition)
NITS, ITERS, MMEM, RAKDDM
MPSCL (I).
 Significant internal variables:

FNKFY - a running count of the total number of particles starting,
SWATE - the sum of the source particle weights,
FKSUM - running sum of the k values weighted by the number of particles starting the batch,
VARK - running sum of the square of the k values weightea by the number of particles starting the batch,
NITSK - number of batches used for k calculation.

Subroutine GUIPT2 (MI, WII, MAXGP, MXREG, I \varnothing)
This sutroutine is used to output tine number (NI) and weight (WNI) counters indicating the results of Russian rouiette, splitting, and scatterings for the complete problem. The output arrays depend on region and energy group.

Called from: \&UTPT
Variables required: NI - the two-dimensional array to be output, WhI - the tric-dimensional array to be output,

MAXGP - the largest group for which Russian roulette and splitting were considered,

MXREG - the number of regions for weight standards,
Iø - logical output tape number.

Subroutine ØUIPT2

Subroutine S ϕ RIM (DFF, NGPFS)
The source energy spectrum (in group form) and, if needed for tiasing, the relative importance of source groups, are input and transformed to curulative distribution functions (c.d.f.) by this routine. (Note that the biased spectrum is not input but rather calculated by S \varnothing RIN.) Forward and adjoint cases are handled automatically. If an adjoint problem is being done, the c.d.f.'s start at 1.0 and decrease with group so they will be in the correct order after INPUT reverses the arrays. NGPFS values of the natural spectrum (referred to as the array FS) ind, if requested, the relative importance (referred to as the array BFS) are input into blank common. After FS is input the summaticns DDF over groups 1 to KGPFS, and DFF over all groups actually being used up to NGPFS are formed. DDF is replaced by (DFF/DDF)*WTSTRT for use, in S\&/URCE, as a weight correction when less than HGPFS groups are being used in the problem. DFF is transferred to common USER for use by the analysis as a normalization in adjoint problems. It should be noted that the array FS, as input, is treated as fractions of particles to be emitted in the natural distributions, but, for the adjoint case, should consist of averages over the group width, not integrals.

Called from: IMFUT
Punctions used: ABS, MAXO (library)
Commons required: APøLLD
Variables required:
NGPPS - number of values of FS (and BFS) to be read,
NHTG - total number of groups in cross sections,
HGPQTN - number of neutron groups,
NGPOTG - number of gamma-ray groupg,
NMGP - number of primary particle groups in cross sections,
WTSTRT - starting particle weight, as input,
IADJM - positive for adjoint problem, ≤ 0 for forward,
ISBIAS - source bias switch, biasing used if >0.
Variables input:
$\left.\begin{array}{l}\text { PS(I), } I=1, \text { IGPPS, and } \\ \text { if ISBIAS }>0, \\ \text { BPS }(I), I=1, \text { MGPFS }\end{array}\right\} \quad$ format (TE10.4)

Variables changed:

DFF - sumation of FS over groups being used in problem,
DDF - ratio of DFF to summation of FS over NGPFS groups, times starting weight.

Significant irternal variables:
NGPQT - set to NGPQTN if neutron only or combined problem, set to $\mathbb{N G P Q T G}$ if gamma only problem,
NGI - set to the largest of NGPFS, NGPQTN, NGPQTG for single particle problem, set to $\mathrm{FH} G \mathrm{FP}+1$ for combined probiem,
HG2 - set to MMGP+NGPQTG for combined problem, irrelevant for single particle type problem.

Subroutine SPRII (DFF, MCPFS)

Subrcutine TESTW

TESTW is called after a particle is witharawn from the bank and then sfter each coliision. A test is first performed to determine if the Russian roulette and splitting options have been specified. Then a comparison of the particle's weight is made with the Russian rculette weight standara WTLめR to determine if the particle will experience Russian roulette. If the particle is killed, its weight is set equal to zero, and if it survives it assumes a new weight, WTAVE, which is designated by the user.

If Russian roulette is not performed, a comparison of the particle's weight is made with the splitting weight standard WIHIR to determine if the particle should be split. If the particle is split, each of the two particles will assume a weight which is half that of the original particle. One of the pair is given 1 name not in current use, and then placed in the bank. The splitting process is repeated on the remaining particle until the particle's weight falls below the splitting standard WTHIR.

Called from: MgRSE

Subroutines called: BANKR(11), BANKR(12), STøRNT, BANKR(2).
Commons required: Blank, NUTR $\varnothing N$, APめLL \varnothing

Variables input:

$\left.\begin{array}{l}\text { IG, MAXGP, NKILL, MSPLT, } \\ \text { NM\&ST, NMEM, NEWIM }\end{array}\right\}$ from common APøLLØ, see page 8
WTHIR .. weignt standard for splitting,
WTLøR - weight standard for Russian roulette,
WTAVE - weight assigned to particle which survives Russian roulette.
Variables changed:
WATE - the weight of the particle after splitting or Russian roulette and just before its next collision,
NMEM - the new number of particles in the bank,
NEWNM - the names of the daughter particles created by splitting.

Subroutine TIMER (L,A)
Upon entry to this routine, L is an index having values of $-2,-1$, 0 , or 1 , which spec: fy one of the following opiions:

\underline{L}	Option
-2	Initialize local and globel clocks
-1	Read global clock
0	Read and reset local clock
1	Read local clock.

For all except $L=-2$, the appropriate clock reading is converted to an EBCDIC string of up to 39 bytes. If the number of hours is zero, only minutes and seconds are provided. If both the number of hours and minutes are zero, only the number of seconds is provided. If all three are zero, the string is 'LESS THAN ONE SECOND'. The number of 4 -byte words necessary to contain the string is returned in L.
Typical Usage:
DIMENSIØN ARRAY (in)
CAiLi TIMER (-ć, ARRAY)
D $11 \mathrm{I}=1$, 10
LENGTH $=0$
CALL TIMER (LENGTII, ARRAY)
$1 \operatorname{PRINT}$ 2, I, (ARRAY(J), J = 1, LENGTH)

LENGTH $=-1$
CALL TIMER (LENGTH, ARRAY)
PRINT 3, (ARRAY(I), I = 1, LENCMH)
3 FØRMAT ('TøTAL TIME FøR THIS CALC. WAS ',1OA4)
Called by: MฎRSE, ØUTPT
Routines called:
ICLØCK - iibrary function at Cak Ridge National Laboratory; returns
reading of computer timer (c.p.u. time) in hundredthe of seconds.
INTBCD - library subroutine at ORNL; converts a 4 -byte integer to an EBCDIC string; also returns the length of the string.

INSERT - library subroutine at ORNL; inseris a string of given length at a specified point in anotker string.
Yeriainies required:
L - see above
Variables modified:
A - see above.

III. Multigroup Cross-Section Module

The function of this module in the muitigroup Monte Carlo code is to read ANISN-type cross sections for media or elements, mix several elements together to sbtain media cross sections, determine group-to-group iransfer probabilities and determine the probabilities and angles of scattering for each group-to-groüj transfer. All variables are flexibly dimensioned, and are part of blank common. Many types of cross sections may be treated, such as neutron only, gemma only, neutron-gamanray coupled or ganam rays from a neutron gamma-ray coupled input. Cross sections for either a forvard or adjoint solution may be obtained, and the Legendre coefficients for each group-to-group transfer may be retained for next-flight estimation.

The cross sections are read for one coefficient and one element into a buffer area. Then these eross sections are decomposed into total, fission, and downscatter matrix and stored in temporary arrays so that they may be mixed to form media cross sections. The totsl and fission cross sections are stored only once for an element, but the downscatter matrix is stored for each coefficient. The cross sections are transposed as stored if an adjoint problem is being solved.

After all cross sections are stored the contribution of each element to the cross section for the media is determined. Also at this time the sum of the downscatter vector for each group is determined for the future calculation of the nonabsorption probability; the gama-production cross section is also determined by summing the transfers to the gama groups. After the cross sections for the medium have been deternined, the nonabsorption probability, fission probability, and gama-production probabilities are formed by dividing by the total cross section. The downsatter matrix is converted to a probability table by dividing by the scattering cross section.

The Legendre coefficients for each group-to-group transfer are converted to angles and probabilities of scattering at those angles oy the use of a generalized Gaussian quadraiure using the auguiair distribution as a weight function. mhat is,

$$
\int_{-1}^{+1} f(u) a(u) d j=\sum_{i=1}^{n} f\left(u_{i}\right) \omega_{i},
$$

where
$f(\mu)$ is any polynamia of order $2 n-1$ or 之ess,
$\omega(\mu)$ is the angular distribution for $\underline{\omega}$, the cosine of the satterine anale,
μ_{i} is a set of discrete cosines,
ω_{i} is the probability of the corresponding cosinc.

Thus, a set of μ_{i} 's and p_{i} 's that satisfy the equation must be found. To do this, 2 set of polynomials, Q_{i}, which is orthogonal with respect to the angular distribution, is defined such that

$$
\int_{-1}^{1} \cap_{i}(\mu) Q_{j}(\mu) \omega(\mu) d \mu=\varepsilon_{i j} R_{i}
$$

where F_{i} is a normalization constant.
The moments of the angular distribution $M_{i}, i=1$, $2 n-1$, determine the orthogonal pclynomials, $Q_{i}, i=1, n$. The desired cosines, μ_{i}, are given by the rcots of Q_{n},

$$
Q_{n}\left(\mu_{i}\right)=0,
$$

and the corresponding probabilities are

$$
\omega_{i}=\left(\sum_{k=1}^{n-1} \frac{Q_{k}^{2}\left(\mu_{i}\right)}{n_{i}}\right)^{-1}
$$

In the process of deriving the ortinogonal polynomials, some restrictions on the moments of the angular distribution ara aktainíu. Tnese restrictions arise if both the original digtrikution and the derived point distribution are to be everywhere non-negacive. The restrictions are:

1) $\mathrm{m}_{\mathrm{i}}>0$ for $i=1, \mathrm{n}$.

This restriction may be written in terns of the determinant of the moments:

$$
\left|\begin{array}{lllll}
1 & \mathbf{M}_{1} & \mathbf{M}_{2} & \cdots & M_{i} \\
M_{1} & \mathbf{M}_{2} & \mathbf{M}_{3} & \cdots & M_{i+1} \\
1 & & & & \\
1 & & & & \\
1 & & & & \\
\mathbf{M}_{\mathbf{i}} & M_{i+1} & M_{i+2} & \cdots & M_{2 i}
\end{array}\right|>0
$$

2) The roots of $Q_{i}(\mu)$ must all lie in the interval

$$
-1 \leq \mu_{i} \leq 1
$$

It must be emphasized that the restriction arising from the original distribution being ewerywhere positive (or zero) does not restrict the truncated expansion of the distribution to be everyutere positive. That is, moments from a truncated distribution that is not necessarily everywhere positive are used to derive a discrete distribution vith positive probsbilities.

Other characteristies of this representation are that the information is compact, the angles are clustered where the angular distribution is peaked, and because of the restrictions, cross sections that have blunders in thein ere rejected because they produce angles outside the range of -1 to +1. All of the variables used to locate cross sections occur in comon LofCSIG. Definitions of the variables which are set up in subroutine RSEC are given in Table V. An outline of the storage of the cross sections in blank common is given in Table VI. Other details of the cross-section module are given with the description of the various subroutines. A more detailed description of the theory for the generainizeu Gainssian quadrature is given in Appenifix B.
sable V. Definitions or Variables in Comon IfCSIG

Variable	Derinition
ISTARI	starting location for the total cross-section vector for the first mediun
J.scost	starting location for the scattering cross-section vector for the first medium
IIABjG	starting location for the nonabsorption vector for the first nediv
IGosisg	starting location for the genem-productior vector for the first mediun
IFPDIG	starting location ior the v fission probability vector for the first mediun
IFICP	starting location for the primary-secondary transfer probability matrix
IPSPdG	starting location of the primary downscatter probability matrix
IDSEdG	starting location of the secondary dounscatter probability matrix
IPRBTG	starting location of tre primary scattering angle probability matrix
IPRBGG	starting location of the secondary srattering angle probability matrix
ISCAIG	starting location of the primary scattering angle matrix
ISCAES	starting location of the secondary scattering orgie matrix
ISPtig	size of storage needed for each mediun, not including Legendre coefficients
ISPDRT*	starting location for temorary storage of domscatter matrix
IIPBST IS IEAG	starting location of input buffer region for the F_{0} table starting location for temporary storage of tintal arozs seciion for element 1
IIPPdG LABSAG ITPISG	starting location for temporary stroage of $\mathbf{v E}_{\mathrm{f}}$ for element 1 starting location for temporary storage of downscatter matrix for P_{L} coefficients (primary groups, element 1) total storage required in temporary storage

Table V (cont.)

Variable	Definition
IGP	the number of primary grcups to be treated
IDS	number of downscatters for EGP (usuaily equal to EGP)
IGG	number of seccadary groups to be treated
IDSG	number of domscatters for HGG (usually equal to mGG)
INTP	number of groups for which cross sections are to be iuput
IUDS	number of downscatters for the IIIGP groups
EReP	number of media for winch cross secticns are te be stored should be same as MEDIA (see common APdLld, page 8)
LIELEM	number of elements for which cross sections are to be read
mux	number of elements times density operations to be performed
ECOEF	nuwber of coefficients, including P_{C}
ISCT	number of discrete angles (usually $\mathrm{FCl} \mathrm{EF} / \mathrm{I}_{\text {Integral }}$)
WHS	number of dornscatters for combined primary and secondary groups (usually equal to MrG)
Frg	total nunber of groups (primary + seconiary) = WGP + WGG
TDSTAGP	the number of locations needed for the domscatter matrix for the primary particle
[idsucg	the number of locations needed for the downscatter matrix for the secondary particles
LADJ	same as IADM (see comon APdud, see page 8)
He	indicator for stripping gama rays from a coupled neutron gama-ray cross-section set - set equal to number of neutron groups + 1
LdC	same as LACEPR (see common APdild, see page 8)
Inges	starting location of the indices for starting locatica of tioe downscatter vector for each group (primary)
IISG	same as above for secondary
I1, 10	input and output logical unit numbers
MKX	a running index of the number of cross sections that have already been read in (used in checking the element numbers obtained from tape)
LXTAPE	loginal tape momer of crose-section tape if > 0

Pable V. ícont.)

Variable	Definition
IDBC	starting location for element identifiers which determise the
	element cross sections to be read from tape
IFRAL	amount of storage for prinary and secondary group dounscatters per element
ITIEX	starting location for temporary storage of dornscatter matrix for P_{L} coefficients (secondary groups) for element 1
IRSG	starting location of the mixing parameters
IRDSG	switch to print the eross sections and to test the card sequence as they ere read if >0 (test card sequence only if $=0$, and goes neither if < 0)
ISIR	suitch to print cross sectiors as they are stored it >0
IPRII	switch to print angles and probabilities if >0
IFIJ	switch to print intermediate results of μ 's calculation if >0
Irine	switch to print moments of anguiar distribution if > 0
IDIP	switch to signal that input :Ornat is DIF-IV format if >0; otherwise, AISI format is assumed
ISTAT	flag to store Legendre coefficients if > 0
IPUE	switch to print results of bad Legendre coefficients if > 0 .

If Legendre coefficients are to be restored, then:
IIFIMG - redefined by JIPUP as starting location of P_{1} coefficients for secondary group for medium 1

ITHISC - redefined by JIPUY as total storage required for all medis for each Legendre coefficient
ISP值 - redefined by JUPUT as starting locetion of P_{1} coefficients for primary groups for mediun 1.

Table VI. Location of Permanent Cross Sections in Blank Coman

Location	Information	Size
IESG = MLAST	List of Mixing Tacle	3minix
İGS	$\begin{aligned} & \text { Index to } \\ & \Sigma_{G G}(\text { Primary }) \end{aligned}$	[${ }_{\text {GP }}$
IPSG	Index to $\Sigma_{G G}$ (Secondary)	HGG
IDES	List of Element I.D. Humbers	HELBAFHCOEF if IXTAPE > 0
ISTART	$\boldsymbol{\Sigma}_{\mathbf{T}}$	ITG
Isccsig	Σ_{s}	Frg
Imabig	Σ_{S} / Σ_{T}	HTG
IGAbpig	$\overline{\Sigma_{Y} / \Sigma_{T}}$	EGP
IFPdRG	$\overline{\nu E} / \Sigma_{T}$	ITS
IFIGP	$\sum_{\text {LTor }}$	EGPatig
IPSPdG	$\overline{E S H}^{\text {F }}$	$\frac{(m S+L)(D S S)}{2}$
IDSES	$\bar{\Sigma}_{\mathbf{E}^{\boldsymbol{Y}} \rightarrow \mathrm{g}}$	$\frac{(\text { DSSG }+1)(\text { DSSG })}{2}$
IPRES	$\overline{\mathbf{P}_{g^{\prime}+g}^{I}}$	
IPRBCC	$\overline{\mathbf{P}_{g^{\prime} \rightarrow g}^{Y}}$	$\frac{(1 D S G+1)(1 D S G)}{2} \operatorname{ISS} P$
ISCAIG iscace	$A_{g^{\prime} \rightarrow \mathrm{B}}$	$\frac{(\operatorname{DDS}+1)(\mathrm{mDS})^{1}}{2}$
ISPORG	$\overline{A_{g^{\prime} \rightarrow g}^{Y}}$	$\frac{(1 \text { DSG }+1)(\text { IDSG })}{2} \operatorname{mSCT}$
+ Istart	Repeat for next mediu	ISPDRG

Irable VII (cont.)

Subroutine ATEDQ
This routine is called upon encountering an albedo scattering surface and provides the outgoing neutron parameters for the albedo collision.

The sample routine performs specular reflection at the albedo scattering surface. The requiremenis of specular reflection zay be written as

$$
I \cdot N=-R \cdot N,
$$

and

$$
I \times N=R \times N,
$$

where I is the incoming neutron direction vector,
R is the reflected neutron directicn vector, and
N is the outward ncrmal to the surface ($I \cdot 1<0$).
Manipulation of the above two equations results in

$$
R=I-2(I \cdot N)_{N} .
$$

Called from: wdisE.
Commons required: NUTR旅, H\$RMAL.
Variables required: U, V, W (from comm nurngr, see page 12)
 Variables changed: U, V, W.

Subroutine ALBD\$

Subroutine AMCLES (IGI, JGI, MXX)
This is the main executive routine for the generailized Caussinn quadrature. First it calls GEMMUS which uses the moments of the angular distribution to determine the recurrence relations which generate the orthogonal polynomials. In so doing GETHUS performs the check for $H_{i}>0$, which is one or the requirements on the moments. Meat ANGLES calls FIID in an iterative fashion in order to calculate the roots of the orthogonal polynomials. FIID checks the roots to deternine if the second restriction on the moments, namely that the roots must lie in the interval ($-1,+1$), is satisfied. Next AMGLES calcuiates tine weigit ractors associated with each root in the Gaussian quadrature. Pinally the angles and probabilities which have been calculated are rearranged so that they appear in order of decreasing probability. If the given moments do not satisfy the two requirements, then it is not possible to determine as many angles and weights as initially requested. However, ANCLES deternines as many as it can from the data given.

HOTE: If $2 n+1$ moments are given (and all are acceptable), then a discrete distribution with $n+1$ scattering angles may be deterained. If only $2 n$ moments are given, then there is a certain amount of freedom in choosing a $2 n+1-s t$ moment to complete the calculation. In these cases AFGLES will compute a value of μ_{n+1} (and hence of $\mu_{2 n+1}$) which is in the middre of the allowed range for μ_{n+1} and, using this value of μ_{n+1}, complete the calculation of a $(n+1)$-angle distribution.

Called from: JMPUT
Subroutines called: GENMUS, PIID, Q, EXIT, BADAM, XSCHLP.
Commons required: MEAK, RESULT, MPAENT, LACSIG.
Variables required:
$\left.\begin{array}{l}\text { IGI } \\ \text { JGI }\end{array}\right\} \begin{aligned} & \text { indices of group-to-group transfer being } \\ & \text { calculated }\end{aligned}$
nufin - number of moments sizen:

Incurn $\} \begin{aligned} & >0 \text { print moments } \\ & \leq 0 \text { do not print moments }\end{aligned}$
MX - medium number

IPUI ≤ 0 do not print error messages
Iq - output unit number,
ESCT - number of scattering angles expected.
Variables changed:
$P \emptyset I T(I)=X_{i}=$ cosine of scattering angle for $I=1$, $\mathbb{W}+1$,
Weight $(I)=W_{i}=$ probahility of scattering angle for $I=1, I V+1$.
IM - number of μ values accepted,
WV - number of σ^{2} values accepted.
Significant internal variables:
$\operatorname{zag}(I)-\mu_{i}$,
$\operatorname{VAR}(I)-\sigma_{i}^{2}$,
$\operatorname{xadPL}(I) \cdots \mathrm{H}_{\mathrm{i}}$,
Eatrin (I, J) - Ith root of $Q_{J}(X)$,
IIP $=\mathrm{IV}+1=$ number of angles in discrete distribution,
IACC $=\mathrm{MH}+\mathrm{IN}=$ number of moments accepted.
Output:
ronturit $(I)=M_{i}, I=1$, mint.
Indices of group, number of moments accepted (only if muber accepted is less than number given.

Srobroutine ancirs

Subroutine Bander
In the erent that a moment has been rejected because it implied negativity in the angular distribution, Badyin is called to provide a printout to the user giving the value of the quantity rejected, μ_{i} or σ_{i}^{2}, of the moment rejected, and of the Legendre coefficient which was rejected. In addition, the allowed limits on these quantities are also printed out.

See mathematical description for formulas used.
Called from: NiGLES.
Subroutines called: MMisnT.
Functions used: Q.
Commons required: MALEAT, MEAIS, QAL, LACSIG.
Variables required:
H - number of $\sigma^{2 / s}$ accepted,
III - number of μ ' s accepted,

Minerr(I) $-M_{i}$,
$\operatorname{MU}(I)-\mu_{i}$,
$\operatorname{VAR}(I)-\sigma_{i}^{2}$,
$H\left(\operatorname{RM}(I)-H_{i}\right.$,
$Q R(I)=q_{i}=L_{i} / M_{i-1}$,
$A(I, K)-a_{i k}$.
((ote that $I=1$, but $K=k+1$)
Significant internal variables:
IMM $=\mathrm{M}+\mathrm{HII}=$ number of moments accepted, IBAD $=\min +1=$ index of moment rejected,
HP1 - $\mathrm{N}+1$,
$\min =\square-1$.
Output:
MOT - $\mu^{\max }$,
MUB - $\mu^{\text {min }}$,
VARI - $\left(\sigma^{2}\right)^{\text {max }}$,
VARB - $\left(\sigma^{2}\right)^{\text {min }}$,
minct - ming

$$
\begin{aligned}
& \text { MAB - } \mathrm{M}^{\text {in }} \text {, } \\
& \text { FT - } \mathbf{P}^{\text {max }} \text {, } \\
& \text { FB }-\mathrm{f}^{\text {min }} \text {. }
\end{aligned}
$$

Subroutine Badrat

Subroutine COLISI (IG, U, V, W, WATE, IMED, NREG)
The subroutine is called at each collision and the incoming grcup number, direction cosines, and particle weignt are converted into postcollision parameters. The outgoing group is zelected from the downscatter matrix (the vector corresponding to the incoming group). After determining the outgoing group the cosine of the angle of scattering is jetermined frcm the set of probabilities and angles for the particular group-to-group trensfer. The outgoing direction cosines in the laboratory coordinate system are determined from the incoming directions and the angle of scattering and a uniformly selected azimuthal angle. The particle's weight is altered by the non-absorption probability in lieu of absorption.

As an importance sampling scheme the outgoing group probability distribution may be altered and selection of the outgoing group is made from this biased distribution. If this option is chosen, LøCEPR >0, and subroutine GTiøUT is called.

Called from: MøRSE
Subroutines called: GTMED, GTIф才T, GTIS \varnothing, AZIRR.
Functions used: FLTRNF, SQRT (library).
Commons required: Blank, LøCSIG.
Variables required:
IG - the precollision energy group,
$\mathrm{U}, \mathrm{V}, \mathrm{W}$ - the precollision direction cosines,
WATE - precollision particle weight,
IMED - geometry medium of collision,
HREG - eometry region of collision.
(Various indices from common LøCSIG, see page 88)
Variables changed:
IG - post-collision group,
$\mathrm{U}, \mathrm{V}, \mathrm{W}$ - post-collision direction cosines,
WATE - post-collision weight.

Significant internal variables:
FIAB - non-absorption probability,
IH - group number = IG for primary particie,
= IG - IGP for secondary farticle,
MADDPG - number of locations setueen sxarting location of siattering angle probabilities for primary and secondary particles,
R - randam number,
IND - location of biasine parameters for (̄) IGp IG,
KDSK - number of dornscatter groups,
FM - cosine of polar angle of scattering,
SINETA $\}$ sine and cosine of azimuthal angle of scátiocring
coseta
Limitations: number of angles is equal to number of probabilities for each group (assumed in use of MALDPG).

Subroutine CøLISK

Subroutine FIND (L, NF)
This subroutine determines if the roots of $Q_{L}(x)$, the Lth order orthogonal polynomiai, lie within the range ($-1,+1$). If not, a flag, NF, is set to 1 and the subroutine returns. If the roots ife within the range $(-1,+1)$, then $N F=0$, and the subroutine proceeds to calculate the roots. The roots, $x_{k}, k=1, L$, ere stored in $R \notin T(K, L), K=1, L$ in labelled common RESULT. The roots are in increasing order $\operatorname{RW} \phi \mathrm{T}(1, \mathrm{~L})<\mathrm{F} \| \mathrm{T}(2, \mathrm{~L})<\ldots$ $<\operatorname{RgOT}(\mathrm{L}, \mathrm{L})$.

FIND presumes that the roots of $Q_{[-1}(x)$ have already been calculated and stored in RXIT($K, i-1$), $K=1, L-1$. Thus it is necessary to use FIsD in a bootstrapping manner. First $\operatorname{Ref} \mathrm{T}^{\prime}(1,1)=M_{1}$, the root of $Q_{1}(x)$, is stored. Then one sequentially calls $\operatorname{FIND}(2, \mathrm{NF}), \operatorname{PIND}(3, \mathrm{NF})$, etc. It is also presumed that the roots of $Q_{I-1}(x)$ are in the interval $(-1,+1)$.

FIND uses the property of orthogonal polynomials that the roots of Q_{L} and Q_{L-1} "interleave." Thus:

1) Q_{L} has no roots above +1 if Q_{L-1} has no roots above +1 and $Q_{L}(+1)$ >0. (Remember that $Q_{L}(+\infty)>0$.)
2) Q_{L} has no roots below -1 if $Q_{L}(-1)$ differs in sign from $Q_{L}(R \notin Q T(1$, $L-1)$) where $\operatorname{RgOT}(1, L-1)$ is the lowest root of $Q_{L-1}(x)$.
3) The Kth root and no other root of Q_{L} lies between the $K-1$ th and the Kth roots of Q_{I-1}.

Once the root has been isolated as being between $\mathrm{XL} \phi \mathrm{W}=\mathrm{R} \phi \mathrm{T}(\mathrm{K}-1, \mathrm{~L}-1)$ and KUP $=\operatorname{RGOT}(K, L-1)$, it is found by a very simple procedure. The interval ($\mathrm{X}, \phi \mathrm{W}, \mathrm{XUP}$) is bisected by $\mathrm{XITRY}=(\mathrm{XI} \phi \mathrm{W}+\mathrm{XUP}$)/2. Then the subinterval containing the root is determined by the fact that the sign of Q_{L} mist change in passing ovor the root. Thus the root iies in (X (6 ' W , XIRY) if sign $\left[Q_{L}(X L \phi W)\right] \neq \operatorname{sign}\left[Q_{L}(X T R Y)\right]$ and it lies in (XIRY, XUP) otherwise. XIRY replaces the apprcpriate iimit, XUP or $\mathrm{XL} \varnothing \mathrm{W}$, and the process is repeated. Each iteration reduces the size of the boundary interval by 2 , or, in other words, increases the accuracy to which the roct is known by one binary bit. Obviously, after as many iterations as the computer word has bits, XIRY will be as close to the root as can be calculated by the computer.

Called from: AMGLES

Subroutines called: Q

Commons required: RESULT, LøCSIG
Variables required:
L - the order of the polynomial whose roots are desired,
$\operatorname{Rad} \mathrm{F}(K, L-1), K=1, L-1$ - the roots of $Q_{L-1}(x)$ in increasing order, IPUSI $- \begin{cases}\leq & 0 \text { do not print error message } \\ > & 0 \text { print error message }\end{cases}$
Varinizies changed:
MF $-\left\{\begin{array}{l}=0, \text { the roots of } Q_{L}(x) \text { lie in the interval }(-1,+1) \\ =1, \text { the roots of } Q_{L}(x) \text { do not lie in the interval }(-1,+1) .\end{array}\right.$
If $\mathrm{HF}=0$
$\operatorname{radT}(K, L), K=1, L$ - the roots of $Q_{L}(x)$, in increasing order.
Significant internal variables:
$\operatorname{VALUB}(K)-Q_{L}(\operatorname{RgT}(K, L-1)), K=1, L-1$,
LMI $=\mathrm{L}-1$,
HSP - number of iterations taken in root-finding procedure.
Linitatims: L ≤ 14.

Subroutine FTSGES (IG, INED, PNUP)
This gibrontine looks up the value of $\because \Sigma^{\prime} / \Sigma^{\prime} T$ for the current neutron energy and geometry medium.

Calles from: IMPITr.
Subroutines called: GNED
Commons required: Blank, LqCSIG.
Variables required: ISP伿G, IFPDRG IG, MIED
(from common LACSIG, page 83)
Variables changed: PruF.

Subroutine FISGEA

Subroutine GMGER (IG, NIED, PGES, IGG)
This subroutine provides the function of deternining the energy of the secondary particle to be generated and its probability of generation. For a forvard neutron gama-ray problen, a neutron of energy IG upon suffering a collision in medium IMED may generate a secondary gama ray of energy IGG. For an adjoint gama-ray neutron problen, a gama ray of energy IG generates a neutron of energy IGG.

Called fram: GPRTB
Subrcutines called: GTHES
Punctions used: PLIRIF
Commons required: Blank, LqCSIC
Variables required: ISPDRS, IFBGP, nGG, IGSBTG (rrom common LdCSIG, see page 88)
IG - inconing energy group, IIED - medium of collision site as provided by the geometry module.
Variables changed: PGEA, IGT.

Subroutine GEITUS

This subroutine calculates the quantities μ_{i} and σ_{i}^{2} used in the recurrence relation for the orthogonal polynomials, $Q_{i}(x)$. It uses as input the moments, M_{i}, of the distribution $f(x)$. GEIMUS also checks to setermine if $\sigma_{i}^{2}>0$. If not, a flag is set to indicate this.
 IM + NV where IV $=\operatorname{IND} / \mathbf{/ 2}$ is the number oi σ_{i}^{2} quantities to be calculated and IMN is the number of μ_{i} quentities to te caiculated. $\mathrm{MM}=\mathrm{NV}$ or $\mathrm{NM}=$ IV +1 , depending on whether NQM is even or odd. GEIMUS calculates $\mu_{i}=1, \operatorname{MN}$ and $\sigma_{i}^{2}, i=1, N V$. This is sufficient to determine $Q_{i}(x)$ for $i=0, \mathrm{~mm}$. If it turns out that some value of σ_{i}^{2} is not positive, say $\sigma_{p}^{2} \leq 0$ (this will happen when $H_{p} \leq 0$, a violation of the "non-aegativity" condition on $f(x)$), then the calculation is terminated, a flag is set, and CETMUS returns with $\operatorname{GV}=p-1$ and $\mathrm{NM}=\mathrm{p}$.

The relevant equations are as follows:
The orthogonal polyncmials are written

$$
\begin{aligned}
Q_{i}(x) & =\sum_{k=0}^{i} a_{i k} x^{k} \text { wilh } a_{i i}=1 \\
& =\left(x-\mu_{i}\right) Q_{i-1}(x)-\sigma_{i-1}^{2} Q_{i-2}(x)
\end{aligned}
$$

This leads tn

$$
a_{i k}=a_{i-1, k-1}-\mu_{i} a_{i-1, k}-\sigma_{i-1}^{2} a_{i-2, k}
$$

If we define

$$
\begin{aligned}
& N_{i}=\sum_{k=0}^{i} a_{i k} M_{i+k}, \\
& L_{i}=\sum_{k=0}^{i-1} a_{i-1, k} M_{k+i}, \text { and } \\
& q_{i}=i_{i} / N_{i-1} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& u_{i}=q_{i}-q_{i-1}, \text { and } \\
& \sigma_{i}^{2}=N_{i} / N_{i-1} .
\end{aligned}
$$

The calculation proceeds as follows:
Step 1: initial values for quantities for $i=1$ and 2 are set up from explicit formulas from the moments.
Step 2: set $i=3$.
Step 3: calculate L_{i} from moments and coefficients for $i-1$.
Step 4: caiculate q_{i} from L_{i} and $H_{i \cdots I^{\prime}}$
Step 5: $\mu_{i}=q_{i}-q_{i-1}$.
Step 6: calculate $a_{i k}, k=0$, $i \operatorname{from} \psi_{i}, \sigma_{i-1}^{2}$, and $a_{i-1, k}$.
Step 7: calculate N_{i} from moments and $a_{i, k}$ ' s.
Stee 8: $\quad \sigma_{i}^{2}=K_{i} / N_{i-1}$.
Step 2: Test σ_{i}^{2}. If $\sigma_{i}^{2} \leq 0$, terminate the calculation with $n=i-1$ and set error plag.
Step 10: 1 - iri, return to step 3.
 If NMOM is odd, the calculation terminates at step 5 when $i=(n+1 / 2)$.

Called from: ANGLES
Commons required: MdMENT, MEANS, QAL, LDCSIG

IFMU $\left\{\begin{array}{l}\neq 0 \text { print out all the quantities calculated } \\ \text { by GEIMUS } \\ =0 \text { do not print out data except in case } \\ \text { of error }\left(\sigma_{k}^{2} \leq 0\right) .\end{array}\right.$
Yariables changed:
NV - the number of σ^{2} 's calculated,
NM - the number of u 's calculated,
$\operatorname{MU}(I)=\mu_{i}, i=1, N M$ (type real),
$\operatorname{SIG}(I)=\sigma_{i}^{2}, i=1, R V$,
$\operatorname{N} \emptyset \mathrm{RM}(I)=\mathbb{H}_{i}, i=2, N V$ (type real).

Also calculated and put in labelled common QAL, although they are not used elsewhere in the program,

$$
\begin{aligned}
& Q(I)=q_{i} \quad i=i, N M \\
& M_{i}^{\prime}(1, K)=\mu_{i, K-1} \quad i=1, N V ; K=1, i+1 \\
& L(I)=L_{i} \quad i=1, N M .
\end{aligned}
$$

Limitations: $N M \not \subset \mathrm{M} \leq 27$.

Subroutine GETMU'S

Write error message and resuits of calculation, if desired

RETURN

Subrciatine GTIXUY (IS, J, NREG, NDSK, IG, WATE. IND)
This subroutine is called when the selection of the group-to-group transfer is to be biased. Thus, the natural probabilities of scatter from group I to group $J, P(I \rightarrow J)$, is to be altered by an importance function $V(J)$. Selection of the outgoing group L is made from $P(I \rightarrow J) V(J)$ with an associated weight correction of $N /[V(L)]$ where $N=\sum_{J=1}^{N D S K} V(J) P(I \rightarrow X)$.
Called froı: CøLISN
Functions used: FLTRNF
Commons required: Blank
Variables required:
IS - one less than index for within-group scattering,
NREG - geometrical region of the coliision,
NDSK - number of possible downscatter groups,
IG - incomirg energy group,
WATE - incoming pa-ticle weight,
IND - index for the location of importance of within-group scattering.
Variables changed:
J - the number of downscattering groups,
WATE - modified to correct for the biesing.
Significant internal variables:
SBSIG is the normelization N of the biased distribution.

Si:brcut -ne GIIøUT

Subroutine JNPUT
This subroutine is the executive routine for processing the cross sections from the ANISN or DTF-IV formats to the necessary probivility tables. The major function of this routine is to mix the cross section stored for each element to form media cross sections and tc decompose these cross sections into the individual probability distributions. The Legendre ccefficients for each group-to-group transfer may be restored in a permanent storag.e area after the discrete angles and probabilities have been devermined. Output of the cross sections as read (if INDSG >0) and as stored (if LPRIN > 0) and the gamma-production cross sections is initiated by this routine. If diagnostic printout of cross-section storage is required a call to XSCHLP ($1,4 \mathrm{H} N \mathrm{NPT}$) will give a decimal dump of ell cross-section storage and commons.

Called from: XSEC
Subroutines called: headsg, STøRE, LEGEND, ANGLES
Functions used: IABS (library)
Commons required: Blank, LøCSIC, MøMENT, MEANS, RESULT
Variabies required: all variables in LDCSIG, see page 88
Variables changed: Blank common from ISTART to MMXSEC.
Input read: MIX RH \emptyset times the cross section of the eiement NEL is added NET. to the MIX medium cross section. If NEL is negative, the RH \varnothing current mixing operation completes the cross section for that medium. There are NMIX of these cards read.
Significant internal veriables:
NDSK is the current number of downscatter groups for sarting from present location.
Limitations: If cross sections are to be mixed, and then the Legendre coefficients are to be restored, the first element must be mixel first. The first element should no: appear in several media since the Legendre coefficients stored for medium 1 may write over the element i cross sections. The seriousness of this limitation is strongly cependent on the number of groups, coefficients, are, elements.

Subroutine JNFUT

3

Subroutine LEGEND

Subroutine LEGTND converts Legendre coefficients to moments. The ccefficients are given in labelled common MdMENT in the form

$$
f_{\ell}=\int_{-1}^{1} f(\mu) P_{\ell}(\mu) d \mu \ell=I, N F \text { or } f(\mu)=\sum_{\ell=0}^{N F} \frac{2 \ell+1}{2} f_{\ell} P_{\ell}(\mu)\left(f_{0} \equiv 1\right) .
$$

The cutput of LEGEND consists of che moments,

$$
M_{n}=\int_{-1}^{1} \mu^{n} f(\mu) d \mu n=1, N M \phi M
$$

Method: If we let

$$
P_{n, i}^{-1}=\frac{2 \ell+1}{2} \int_{-1}^{1} \mu^{n} P_{\ell}(\mu) d \mu
$$

Then by using the fundamental recurrence relation for Legendre polynomials we can derive

$$
\begin{aligned}
P_{n, \ell}^{-1} & =\frac{1}{2} \int_{-1}^{1} \mu^{n-1}\left[(2 \ell+1) \mu P_{\ell}(\mu)\right] d \mu \\
& =\frac{1}{2} \int_{-1}^{1} \mu^{n-1}\left[(\ell+1) P_{\ell,+1}(\mu)+\ell P_{\ell-1}(\mu)\right] d \mu \\
& =\frac{\ell+1}{2} \int_{-1}^{1} \mu^{n-1} P_{\ell+1}(\mu) d \mu+\frac{\ell}{2} \int_{-1}^{1} \mu^{n-1} P_{\ell-1}(\mu) d \mu \\
& =\frac{\ell+1}{2 \ell+3} P_{n-1, \ell+1}^{-1}+\frac{\ell}{2 \ell-1} P_{n-i, \hat{l}-1}^{-1} .
\end{aligned}
$$

Since we have trivially $\mathrm{F}_{0, \ell}^{-1}=\delta_{0 \ell}$ and $\mathrm{P}_{1 \ell}^{-1}=\delta_{i \ell}$, the coefficients $\mathrm{P}_{\mathrm{nl}}^{-1}$ may Easily be computed. Then

$$
\begin{aligned}
\mathbf{M}_{\mathbf{n}} & =\int_{-1}^{1} \mu^{\mathbf{n}} \mathrm{f}(\mu) \mathrm{d} \\
& =\sum_{\ell=0}^{\mathrm{n}} \frac{2 \ell+1}{2} f_{\ell} \int_{-1}^{1} \mu^{n} P_{\ell}(\dot{\mu}) \mathrm{d} \mu \\
& =\sum_{\ell=0}^{n} P_{n \ell}^{-1} f_{\ell} .
\end{aligned}
$$

Called from: JNPUT
Commons required: mptiENT
Variables required:
NMめM
$F(L), L=1$, NM $\varnothing M$ (presumably NF \geq NM \bar{M}, no checi is made).

Significant internal variables:

$$
\begin{aligned}
& P 1(\ell)=P_{n-1, \ell}^{-1} \\
& P 2(\ell)=F_{n, \ell}^{-1} \\
& P 10=P_{n-1,0}^{-1} \\
& P 20=P_{n, \ell}^{-1} .
\end{aligned}
$$

Limitations: $N M \not M \leq 24$.

Hote: Recurkion relation term involving zeroth order coefficiente must be harided separetely. P10 is P1(0), etc.

Subroutine MAMENT (NM $\overline{\text { S }}$

This routine converts moments to Legendre oofficients. The moments

$$
M_{n}=\int_{-1}^{1} \mu^{n} f(\mu) d \mu n=1, N \sim \neq
$$

are given in labelled common MDENF. The output of the subroutine consists of the sane number of Legendre coefficients store3 in labelled common M\&MENT.
Method: $f_{\ell}=\int_{-1}^{i} P_{\ell}(\mu) f(\mu) d \mu$

$$
\begin{aligned}
& =\sum_{n=0}^{i} P_{e, n} \int_{-1}^{1} \mu^{n} f(\mu) d \mu \\
& =\sum_{n=0}^{\ell} P_{\ell, n} M_{n},
\end{aligned}
$$

where the $P_{\ell, n}$ are the ccefficients of the lth Legendre polynomial,

$$
P_{\ell}(\mu)=\sum_{n=0}^{\ell} P_{\ell, n} \mu^{n} .
$$

Since

$$
\begin{gathered}
P_{\ell}(\mu)=\frac{(2 \ell-1) \mu P_{\ell-1}(\mu)-(\ell-1) P_{\ell-2}(\mu)}{\ell}, \\
\sum_{n=0}^{\ell} P_{\ell, n} \mu^{n}=\left(\frac{2 \ell-1}{\ell}\right) \sum_{n=0}^{\ell-1} P_{\ell-1, n} \mu^{n+1}-\left(\frac{\ell-1}{\ell}\right)^{\ell-2} \sum_{n=0}^{\ell} P_{\ell-2, n} \mu^{n} .
\end{gathered}
$$

As this is an identity, we may separately ejuate the coefficients of each power of μ giving the reiation

$$
P_{\ell, \mathrm{n}}=\left(\frac{2 \ell-1}{\ell}\right) P_{\ell-1, \mathrm{n}-1}-\left(\frac{\ell-1}{\ell}\right) P_{\ell-2, \mathrm{n}} .
$$

Since

$$
\begin{aligned}
& P_{0}^{(\mu)}=1 \text { and } P_{1}(\mu)=\mu, \text { we have } \\
& P_{0, n}=\delta_{0 n} \text { and } P_{1, n}=\delta_{1 n} .
\end{aligned}
$$

Called from: BADMgM
Comons required: mpMENT

Variables changed: ($F(L), L=1, N M \varnothing)$
Significant internal veriables:

$$
\begin{aligned}
& P 0(n)=P_{\ell-2, n} \\
& P 1(n)=P_{\ell-1, n} \\
& P 2(n)=P_{\ell n} \\
& P 00=P_{\ell-2,0} \\
& P_{10}=P_{\ell-1,0} \\
& P 20=P_{\ell 0}
\end{aligned}
$$

imitations: $N M \leq 25$.

Note: Recursion relations involving zeroth order coefficients anat be bandzed separately. POO is PO(0), etc.

Subroutine NSIGTA (IGA, JMED, TSIG, PNAB)
'the function of this subroutine is to look up the total cross section and non-absorption probability for energy group IGA and geometry medium JMED.

Salled from: EUCLID, NXTCØL, User routines
Subroutines called: GTMED
Commons required: Blank, EøCSIG
Variables required:

IGA - energy group,
JMED - geometry medium.
Variables changed:
TSIG - total cross section,
PNAB - non-absorption probability.

Subroutine NSIGTA

Subroutine PTHETA (IMED,IGØLD, IGQ,THETA, PMU,NMTG)
This routine calculates the probability per steradian of scattering through an angle whose cosine is THETA for an energy transfer from group IGめLD to other grcups. Use is made of the restored Legendre coefficients with the group-to-group transfer incorporated. Thus, evaluation of

$$
P^{I \rightarrow J}(\theta)=\frac{P_{S}^{I \rightarrow J}}{4 \pi}\left\{1+\sum_{\ell=1}^{N M \phi M}(2 \ell+1) f_{\ell}^{I \rightarrow J_{P}}(\theta)\right.
$$

where ${ }_{s}^{I \rightarrow J}$ is the probsbility of scattering from group I to group J,
$f_{\ell}^{I \rightarrow \mathbb{T}}$ is the $\ell t h$ Legendre coefficient for scattering from group I to group J,
$P_{\ell}(\theta)$ is the value of the $\ell t h$ Legendre polynomial for an aigle whose cosine is θ.

There are NCØEF-1 coefficients restored by JNPUT; i.e., the P_{0} table is not restored.

It is assumed that within-group scattering is not zero and is calculated for each entry. An option is prcvided for calculating the probability of scattering to all other groups or to a set number of downscāter groups.

The following recursion relation is used for caiculating the Legendre polynomial:

$$
L P_{L}(x)=(2 L-1) \times P_{L-1}(x)-(L-1) P_{L-2}(x)
$$

Called from: User routines only.
Subroutines called: GTMED, XSCHLP
Commons required: Blank, LøCSIG
Variables required:
IMED - geometry medium,
IGØID - the incoming energy group,

IGQ - the limit of the dowscatter for which $P(\theta)$ is calculated. That is, $P(\theta)$ is determined for group I I $\emptyset \mathrm{LD}$ to IGQ. If IGQ is zero full downscatter is assimed and $P(\theta)$ is determined for IGøLD to NGP,

THETA - cosine of the scattering angle.
Variables required:
ISTAT, NCØEF, NGP, NTG, NTS, ISPØRG, IDSGøG, INSG, IFSPDG (from common LøCSIG, see page 88;

Variables changed:
PMU - tine probabilisy of scattering through an angle whose cosine is θ; PMU is dimensioned by NMTG,
NMTG - the total number groups to be considered in the problem.
Significant internal variables:
$P(K)$ - Legendre polynomial of order K evaluated at θ.
Limitations: dimension of 10 for Legendre soefficients. A change in this dimension will allow higher crúer of expansions.

Finetiun $Q(S D, X)$

This function subprogram generates $Q_{N D}(X)$ - the value at X of the orthogonal polynomial, Q, of order ND. The recurrence relation for the Q pclynomials is employed to generate the function

$$
\begin{aligned}
& Q_{i}(x)=\left(x-\mu_{i}\right) Q_{i-1}(x)-\sigma_{i-1}^{2} Q_{i-2}(x) \\
& Q_{0}(x)=1 . \\
& Q_{1}(x)=\left\{-\mu_{1} .\right.
\end{aligned}
$$

Called from: ANGLES, FIND, BADMめ:
Commons required: MEANS
Variables required:
ND - the degree of the polynomial desired, X - value of the argument desired, $\left.\begin{array}{l}\operatorname{XMU}(i)=\mu_{i} \\ \operatorname{VAR}(i)=\sigma_{i}^{2}\end{array}\right\} \quad$ in labeiled common MEANS

Variables changed:
Q - the value of the function.
Limitations: ND ≤ 14.

Function Q.ND, X)

Subroutine READSG
The purpose of this routine is to read multigroup cross sections and store them in a buffer region of common. If the flag IDTF is greaier than zero, DTF-IV format cross sections may be read; otherwise, the ARISE format is assumed.

The ANISN cross-section format makes use of the repeat feature; thus, there is a mixture of Hollerith and numbers on the card. This subroutine will therefore be different ior various compuiers. On IBM machines each cross-section card is read twice; once for the Hollerith R and once for the cross-section values. For CDC machines decode may be used to separate the Hollerith. DTF-IV format does not permit repeats, and thus the subroutine reads the card numbers directly into the buffer storage region starting at INPBUF.

If cross sections are read from cards, in the ANISN iormant, a card sequence check is performed. Three possibilities are taken into account: (1) an energy group number in columns 73-76 and a sequence number for that group in columns 77-80 (format from codes such as GAM or MUG); (2) same as (1) except columns 13-76 are blank (format from codes such as SUPERTOG or XSDRN); (3) solumns 73-76 are blank and column 77-80 contain a card sequence number starting at 1 ior each set of cross sections (format irom AEISN). Non-numeric characters, including blanks, may precede or follow thz above sequence numbers without affecting the checks.

If a card is out of order, the card image is printed and the program continues. This test may be renoved by setting IRDSG negative. (This also removes the option of printing the cross section as read.)

If IXTAPE >0 then cross sections are read from a standard ANIGN binary cross-section tape. An identification record (4I6,6A8) precedes the cross section for each :oefficient. The desired cross section must be required in the order in which they are on tape, and the element identifiers must be the fourth integer in^{n}. the identification record. These identification numbers are required on input card D of the cross-section input.

Called from: JNPUT
Subroutines called:

| XSCHIP | Library functions at Oak Ridge National Laboratory to determine
 FETYPE
 BCDIOI |
| :--- | :--- | | if a Hollerith is a number or a letter and to convert EBCDIC to |
| :--- |
| integer, respectively. |

Commons required: Blenk, Lificig
Variables required: INPBUF, INGP, INDS, KKK, IXTAPE, IDTF (from common LXCSIG, see page 88)
Input: (INGP(INDS+3)) vaiues of cross sections for each call.
Significant internal variables:
M - number of cross sections for each coefficient,
IP - number of repeats for a particular cross section.
Limitations: Card formats must be either ANISN or DTF-IV, or a binary tape may be used.

Subroutine STORE (IE,IC)

The purpose of subroutine $S T \phi R E$ is to pick up the cross sections for element IE and coefficient IC from the input buffer region and store the total, fission, and dowscatter matrix in the temporary storage. Only those parts of the input cross sections that are to be reused are stored. That is, the neutrons may be stripped from a coupled neutron-gamma set, or the gammas may be stripped from a coupled neutron-gamma set. Also, during the restoring the cross sections are transposed if an adjoint solution is desired.

Called from: JNPTT
Commons required: Blank, LøCSIG
Vàriables required: IE - element number
IC - coefficient number
cross sections in blank common from IIPBUP to
INPBUF+IMGP* (INDS+3)
INPBUP, HTG, NTS NCDEF, ISP\$RT; INFP INDS, IADJ, MME (from common LøCSIG, see page 88).
Variables changed: cross sections in blank common from ISPDRT to IT ϕ TSG Significant internal variables:

INDX - starting location of downscatter matrix for the IE element and IC coefficient,

IE1 - number of locations to be skipped in the total cross-section array for other elements.

Subroutine XSEC (IADJM, LøCEPR, MEDALB , MEDIA ,NLAST ,NMGP , MMFG , MLEFT , I \varnothing, IN)
Subroutine XSEC is the primary interface of the cross-section module with the rest of MoRSE.

The function of XSEC is to read the cross-section information defining the number of groups, coefficients, eiements, media, etc., and to set up the storage locations required. All variables in common LøCSIG are defined in subroutine XSEC. (Three variables are redefined in JNPUT if Legendre coefficients are restored.) After the storage is allocatad, subroutine JNPUT is called and is the executive routine for manipulating the cross sections.

The first medium cross sections are stored from ISTART to ISPめRG+ ISTART; each successive medium requires ISP $\mathrm{IRG}_{\mathrm{R}}$ cross sections. The Legendre coefficients are stored behind the media cross sections.

Called from: INPUT
Subroutines called: JNPUT, ALBIN, XSCHIP
Commons required: Blank, LøCSIG
Variables required:
IADJM - switch indicating that the problem is an adjoint problem if >0,
LơCEPR - location of energu-biesing parameters; ji 0 , no enerigy biasing will be used,

MEDALB - mediun number for the albedo scatterer; MEDALB > 0 signals a combined albedo and normal transport problem; $=0$ is flag for normal transport only and ALBII will not be called; < 0 signals an albedo only problem, normal cross sections will not be read, MEDALB is the albedo mediu,
MEDIA - number of media for which cross sections are to be read, NLAST - the cell used in blank common before XSEC was called. Input: There are four cards read by subroutine XSEC. These cards contain: 青 Pirst Card - comment card,

Second Card - HGP, NDC, NGG, IDSG, IIGP, INDS, MMED, NELEM, MMX, NCQETP, NSCT, ISTAT, IXTAPE. Por definitions see connon LACSIG, page 88.

[^2]Third Card - IRDSG, ISTR, IFMU, IM $\not \subset M$, IPRIN, IPUN, IDTF. For definitions see common LqCSIG, page 88.

Fourth Card (omitted if IXTAPE ≤ 0) - element identifiers of cross sections to be read from tape.

Variables chaugeà:

MEDALB - set to 7777 if there is no albedo surface in problen,
ILAST - She last cell of permanent storage required,
Significant internal variables:
IEC - number of cross sections to be read from tape.

IV．Diagnostic Module

Frequently in debugging a problem or in trying to gain further insight into the physics of a problem，it is desirable to dump the contents of certain labelled commons or parts of biank common．This module of MøRSE makes it possible to print out in a readaije format the values of these variables．

The key routine in this module is subroutine HELPER which prints out， in decimal form，any part of a single－precision（4－byte word）array． This routine，along with two machine－language（IBM－360 series）routines， decides whether a number is an integer or a flcating point number and converts to EBCDIC accordingly．It also recogrizes the＂junk＂word $\left(48484848_{16}\right.$ ）and outputs the string＂NOT USED＂in its place．This feature is included because it is nci aiways feasible to depend on the core being zeroed or filled with any particular constant．Selected portions of core are therefore filled with this word，which was selected because it is essentially the same number when treated as an integer or as a floating point number．

A more inclusive dump may be obtained with subroutine HRLP which outputs， on request，selected portions of blank common and commons AP巾LLめ，FISBNK， NUTRめK，and ISER．

[^3]Subroutine BNKHLP (NAME)
This routine outputs (one parincle to a line) all of the particle bank and, if used, all of the fission bank. If identical lines are encountered, it prints a message giving the number of Edentical lines. The last line is always printed.

Called from:
HELP - when index IGXBP < 0.
Subroutines called:
ICdep (A, B, M) (1itrary function at Oak Ridge National Laboratory compares, bit by bit, N bytes of locations A and B; returns zero if A and B are identical)

Commons recuired:
Blank, APØILD, FISBIK
Variables required:
NSIGL - location in blank common of cell zero of the particle bani,
HMST - maximum number of particles allowed for in the bank(s),
IO - logical unit for output,
MPISTP - index indicating that fissions are to be considered if >0,
WFISBM - location in blank common of cell zers of the fission bank.

Subroutine BNKHLP (NCME)

Subroutine HRLP (ICALL, INUMP, ILABP, IGXBP, IUSRP)
This routine is used to output values of selected variables used by the code, at any desired point in the solution of the problem. It will provide, with setting or the proper switch, prints of:

1) blank common frum ceil one up to the geometry data storage,
2) first and last eight words of geometry and cross-section data storage areas,
3) first and last 12 words of the neutron bank, or the entire neutron and fission (if used) banks,
4) all the user area in blank common (beyond the neutron and fission banks), and
5) labelled commons APøLL ϕ, FISBBIK, NUTR ϕ, and USER.

HELP has been found useful to the uriters of the code in debugging. For this purpose, temporary calls are inserted at pcints of interest. As the code stands now, calls are made in MORSE just after each problem is completed, and also at a few points in the code that will not be reached unless an error occurs.

Called from: M \downarrow RSE, FBAIK, FPR ϕ B, GPR ϕB.
Subroutines called:

HELPER

BWKHLP - prints ali of the neutron bank and all of the fissior bank if it is being used.
Function used: Lod
Commons required: Blank, HUTR ϕ, FISENK, APDLL ϕ, USER.
Variables required:
ICALL - 4 EBCDIC characters representing locatim of call,
IRUNP - > 0 for print of blank common,
ILABP - > 0 for print of labelled camons,
IGXBP - > 0 for print of first and last 8 cells of geometry and cross-section storage, and the first and last 12 cells of the bank,
< 0 for above print of geometry and cross section and also
 (if used) banks.
iusirir - > 0 for print of usar area in blank coumen,
narg - total number of energy groups,
LhWIS - location of cell zero of yeight standards arrays,
MGPREG - product of number of groups and regions for veight standards,
L\&CWN - location of cell zero of FId array,
MCFBG - nuejer of regions for veight standards,
LdCESR - location of cell zero of energy group bias array, ($=0$ if energy group bias not being used)

LACISC - location of cell zero of scattering counter arrays, mand - numer of media ill sross sections, LfCCPSI - location of cell zero of FISH array, wgefin - location of cell one of geonetry data storage, WSIGL - location of last cell in permanent cross-section storage, IIAST - last cell used by neutron or fission bank, WLEET - number of cells available to user beyond banks.

Subroutine HELP (ICALL, MTURP, ILABP, IGXBP, IUSRP)

Subroutine HEIPER (A, IMIT, NLAST, MANE, IO)
GEIPER enables the user to output, in decinal forn, any part of a single-precision (4-byte vord) array at any point in the program. The user need not know whether the numbers are integer or floating point. Fumbers that can be translated as integers in the range $\pm 16^{6}(+16777216)$ will be printed as such; floating numbers are handled correctly between $\pm 1 \epsilon^{-64}\left(\sim 10^{-76}\right)$ and $\pm 16^{63}\left(\sim 10^{75}\right)$. If the sunk vord $\left(48484848{ }_{16}\right)$ is ercountered, "Hक्T USED" is printed. Mumbers are printed eight to a line in an Ell. 5 or Ill format and identical lines are replaced by a RREPATIEG LIIE PATTEF" nessage (except that the last line of an array output is aivays printed.

Called from: HEiP, XSCHLP
Subroutines called:
SUBRT
ICSAPA - (library function at Oak Ridge Kational Laboratory; see bakhip writeup).
Variables required:
A - first word of array of interest,
InIT - first 4 -byte vore of array A to be output,
ILAST - last 4-byte word of array to be output,
WAME - 4 hollerith characters to be used as a label,
IO - output unit.

Subroutine HELPER (A, IIIT, MLAST, MNE, IO)

Subroutine SUBET (A, M, Al)
SUBRT is an assembly larguage rcutine cailed by HELPER to perforn conversion of a b-byte conputer word to a string of hollerith characters. It tests for unused elements ($48 \div 34848_{i 6}$) returning the string "not USED," decides whether the number is an integer or floating point, converts the number into hollerith if floating point, and calls IFTBCD if integer. Ifrbciv is cailea to convert ail nubbers it receives as integers into hollerith and passes control back to SUBRT.

Called from: HELPER
Routines called: INTECD - library subroutine at ORML; converts a b-byte integer to an EBCUIC string.

Variables required:
A - 4-byte word to be converted,
N - fornat size (HELPER calls with $1=11$ resulting in IIl and 1FE11.5 formats).

Variables changed:
Al - first word of 12-byte array for storage of hollerith string.

Subrout ine XSCHLP (IBCDUM, MAME)
This routine outputs in decimal or integer form the contents of the commons used in the cross-section module, as well as the contents of the various cross-section arrays in blank common. (See Table VI for layout of the cross-section area.) This subroutiine way be called from any location. Called from: READSG, PTHETA, XSEC, and ANGLE (just before error calls).

Subroutines called: HELPER
Punctions used: LgC
Commons required: Blarik, LøCSIG, MEANS, MdEFNT, QAL, RESULT.
Variables required:
IBCDUM - contents of blark common are printed if >0.
HAME - a four-character word to indicate the calling program.

Subroutine XSCHLP (IBCDUM, WNAE)

V. Analrsis Interface and Serple User Routines

The MORSE interface to user-provided analysis routines is tisough salls to function DIREL', and subrcutines GFESi, SCVAIM, SAURCE, and especially Barkr. Punction DIFEC supplies the dot product between the weution direction vector and the most inportant direction. It is used by GEIETA, which deternines the length of the next flight, to vary the amount of path-length biasing depending on weether the particle is traveling in an important direction or not. If path-length biasing is not desired (or if it is desired to bias all paths independently of direction), DIREC should return 1.0. GINED is used to reiate cross-section and geometry media. It is called from every roistine needing cross-section data. These calling routines have available the medium of the point of interest, as specified by the ceometry data, and need the proper medium to give the cross-section routines. In most cases, the geometry and crose-section media are the same, but for special cases such as the infinite homogeneous media with a boundary crossing estimator two different media for certh are required. All data required by user-written routines are input by subroutine SCWIII wich is called after the ceseral problem specification, ceometry, and cross-section date are input. Subroutive SAURCE is called for each source particle (including neutrons just produced by fission) so that the user may specify the phase space coordinates of each (if it is not desirale to use the constant values specified ty input cards to the valk routines).

Banch is the primary interface to tie analysia packace, being called with as many as 17 values of the argument index to direct the analysis. These arguments and their meaning are outlined in Table VII.

It should be noted that not all the Baricr celle issted in Table VII are actually programed in the code (those not progremed are included es coments); the user eny have to add shese cails for his special purposes. Several labelled commons transfer date for use in the analysis, and, in addition, the unuced portion of blank common is made available. Data vhich ere deternined by the problem specificution (which are not endiried by the malk or whose initial value may be usetul) are loaded in comen USTR by subroutipe IMPUr. These quantities are diven in Table VIII.

Table VII. BAIKR Arguments

BMIKR Argurent	Called Prom	Location of call in walk
-i	Mese	After call to INPSi - to set parameters for nes problem.
-2	Mese	At the beginning of each batch of MSTRT particles.
-3	Mese	At the end of eacio batcin of istrif particles.
-4	Hense	At the end of each set of MITS batches a nev problem is about to begin.
1	MStur	Arter a source event.
2	TESTW	After a splitting has occurred.
3	FPRPB	After a fission has occurred.
4	CSTMEE	After a secondary particle has been generated.
5	Mfrse	After a real collision has occurred -post-collision parameters are available.
6	HESE	After an albedo cullision has occurred -post-collision parameters are available.
7	nerces	After a boundary crossiag occurs (the track has encountered a new geometry medium other than the albedo or void media).
8	H2TCOL	After an escape occurs (the geometry has encountered medium zero).
9	WTESE	After the post-collisin: energy group exceeds the maxima desired.
10	HeSE	After the maximun chronological age has been exceeded.
11	TESTW	After a Russian roulette kill occurs.
12	TESTH	After a Russian roulette survival occurs.
13	Csture	Arter a secondary particle has been generated but no room in the bank is available.

Table VIII. Definition of Variables in Common USER

ACSTRT	Initial age (input on card D).
WTSTETT	Iṅさtial reight (inpuit uñ cara c)
XSTRT	Initial \times position (input on card D).
YSTRT	Initial y positicn (imput on card D).
ZSTRT	Initial z position (input on card D).
DFP	Mormalization for adjoint problems - calculated in S \emptyset RII.
EBCITM	Lower energy boundary of last neutron group.
EBgTG	Lower energy boundary of last gama-ray group.
TCUT	Age limit (imput on card C).
IO	Logical unit for output.
II	Logical unit for input.
IADJM	Adjoint switch (>0 for adjoint problem).
$\left.\begin{array}{l} \text { MGPGT1 } \\ \text { YGPQT2 } \\ \text { HGPQT3 } \end{array}\right\}$	Problem dependen: energy group limits - see flow chart for subroutine IMPUF.
HGPQTG	Lowest energy gamma-ray group.
HgPeits	Lowest energy neutron group.
NITS	Number of batches (imput on card B).
HLAST	Last cell in blank common used by either cross-section package or bank(s), whinhever is larger.
HLEFT	Humber of cells in blank common available to user.
miger	Number of primary (neutron) groups (input on card B).
MITG	Number of tetal groups (input on card B).
MSTRT	Number of source particles for each batch (input on card B).

The user will alsc need command wich contains prior and present collision parameters (the pre-collision weight is also provided).

All other variables in the wall: which may be needed by the user should be transmitted by the prinary interface routine, BANKR, as arguments in the called routine. See BAIIKR writeup for examples.

Sample User Routines

The problem chosen for this example is to calcuiate fluence at up to 20 distances from a point, isotropic source in an infinite median. A boundary-crossing estimator is used along with alternating geometry media 1 and 2 in concentric spherical shells. The information required by the sample analysis routines is passed by common DET. The variables required are defined in Table IX. Descriptions of each routine including flow charts and listings follow.

A description of the versatile analysis pacirage SAMBO is contained in reference 1. Some of the user routines described here are replaced by more general routines in SAMBO; other routines cymplement those in SAMBO.

Tabie IX. Derinition of Yeriakles in Comm DET

Variable	Definition
[1D	Number of detectors.
HSCAPE	Counter for boundary crossings beyond the last detector.
RAD(20;	Radii in cl of the spherical detectors (mist be media boundaries).
Mn(20)	Humber of estimates at each detector.
Un'(20)	Uncoliided response for the current batch.
SUD(20)	Uncollided response (UD) summed over bitches.
SuD2(20)	Sum, over batches, of the squares of the uncollided response
SD(20)	Total (uncollided plus collided) response for the current batch.
SSD (20)	Total response (SD) sumed over batches.
SSD2(20)	Sum, over batches, of the squares of the total response esti-
FDCFP(100)	Response function array.

[^4]
Subroutime BMIGR (IBTIEID)

The function of BAKAR is to call analysis and diagnostic subroutines as specified by the user. The particular subroutines called in the analysis module are deternined by the index IBaKID. In this problem: BNIKR (-4)
 calls STHIN and HELP; 'BAMKR (1) calls SDATA; and BALKR (7) ealls BDRYX. Ang other values of HBIKID result in a return.
A version of BAMKR that urites a collision tape similar to that written by 0 R is also available.

There are 36 possible variables that may be vritter on the tape for each of the 13 types of events. The use of the tepe-mpiting version of BMISR is not encouraged but it is provided for that oscasionsl circustance where it is advantageous.
 Subroutines called: STRUM, STBTCH, BBATCH, IRUN, SDATA, BDFIX, HEIP. Comms rezuired: APdild.
Variables required:
SBMKID - an index which identifies the type of collision and/or subroutine called (MBKKID $=-4,-3,-2,-1,1,2, \ldots$ i3),
IITS - number of batches to be run,
ITERS - number of batches which remain to be grocessed,
nquit - number of runs remaining plus one (set to negative of the number of runs completed, when an execution time kill occurs),

LNEM - number of particles which remain to be processed in a given batch.

Significant internal variables:
HBAT - the batch number less one,
ISAVE - the number of particles starting the current batch.

Benx 10
C 0 ail cal Evalo Finm corne？

大ジミK 20
1 MIMPoHTSTRT。XSTRT.VSTRT.2STRT.TCUT.XTMA1101. Bank 31

BnMR 36

Mamx = Men 10
BAMER 50
IF (memal 100.10こ.140
IF IMAMKI 100,10こ.150 BAMR 60
100 meme $=$ mins 65
BMER 70

$\therefore 01$ call stmun
C
CALL MELPIGHSTRU.1.1.1.1)
ReTunt
102 MAT = METS - ITERS
msAVE = WMEm
CALL STETEMimATS
C Mat is tme Batch no. iess one
RETUNM
1EE CALL MATCNTMSAVEI
C MSAVE IS THE MD. OF PARTICES STARTED IM THE LAST AATEM BAMM 180
FETCNM
104 CAL mumemitsimoust
C MITS IS THE MO. OF ATCMES COMPLETEO IM THE RUN MST COMMETED
E NOIT GT. I IF MONE RUNS EEMAIM
C
C
NOUIT GT. I IF MONE RUNS PEMIM
C
C

execution time kile oceurs
HTMEN

Banse 80

BAME 100
Bank 110
8an 120
8 ANM 120

BAN 140
bank 160
Bam 170
Batm 150
Bark 190
Ban 200

- ma 210
BRK 220
$\operatorname{san} 220$
Bar 230
C Mamed cal Trpe

Subroutine BDRYX

This routine is called whenever the particle in the walk encounters a change in geometry media．If the source－to－collision distance corresponds to a detector position，the reciprocal of the cosine of the angle from the radius vectcr is used as a fluence estimate．The response valte for the appropriate energy group modifies the estimate，which is then stored in the counter for the apprcpriate detector．

Called from：BAIKR（7）
Subwoutines Called：ERR伿（library）
ABS（library function）
Commons required：USER，NUTR期，DET

Variables requir：a：

X, Y, Z, U, V, W, WATE（from comion NUTR有，see page 12）
ID，ISCAPE， $\mathrm{MH}(\mathrm{I}), \operatorname{FDCF}(I), \operatorname{SD}(I), \mathrm{KAD}(I)$（from common DET，see page 169）
Variables changed：HSCAPE，HN，SD．
Significant internal variables：
R21－radial distance to boundary crossing，
R2－99\％of R21，
R22－101\％of R21，
CdS－cosine of angle between particle direction and radius vector，
ABCdS－absolute value of CdS，
C 倍－fluence estimate，
Chid－response estimate．

Subroutine BDRYX

	SUPROUT IME ECRYX	80RYX 10
$\begin{array}{ll}c & \\ c & \\ c & \\ c & \\ c & \\ c & \\ & \\ & \\ & 2 \\ & \\ & \\ & \\ & \\ & \end{array}$		scarx 20
	FGR USE IN SPHERICAL GEOMETRY ONLY	scryx 30
		sorrx 40
	IOENTIEIES DETECTO P POSITIOM MITH A GOMMCARY CROSSIMG AMD TMEN	somy 50
	CALCULATES ANO SUMS OUANTITIES OF INTEREST FCR EACH BATCH.	Gourx 60
		B0RYK 70
	COMMOW /USER/ AGSTRT, WTSTRY, XSTRT,YSTRT, 2 STRT, CFF, EROTM, EBOTG,	sotry 80
	1 TCUT, IO, IL, IADJM, NGPOT:, NGPOT2, MGPOT3,NGPOTG, MGPOTM, NITS, MLAST.	B0prx 11
	2 MLEFT, MAGP, MATG,NSTRT	B0RYX 62
		80nyx 90
	1 SC(20), SSD(20), SSO2120), FOCF:1C0)	80RYx 91
	COYMEN /HUTRON/ MAME, MAMEX,IG, IGC,NMED, MECOLD, MEEG, U, V,W, UOLD,VO	Demar 100
		Eb0ny 102
	$621=S C R T$ ix**2 + Y**2 + 2**21	B0RY 110
	$R_{2}=R 21 * 0.99$	B9nt 120
	R22 $=221$ 1.01	eonr 130
	$005 \mathrm{l}=1, \mathrm{NO}$	800\% 140
	IF (R2-RADCII) $15.15,5$	Exa 150
5	CONTIMUE	BCRY 160
	NSC APE = MSCAPE+1	B0RY 173
10	RETJRA	80xY 180
15	IF (R22-RADIII) : $0,20.20$	60RY 150
20	ERA $=\mathrm{U*} \times \mathrm{X}$ + V*Y + W*2	Bdar 200
	COS = ERAPR21-1.E-10	copr 210
	IF (COS) 30,25, 30	copr 220
25	WRITE (10,1000)	802Y 230
1000	FORMAT IMO.14H COS=0., RETURNI	bear 240
	RETUFM	con: 250
30	AECCS=ABS (CCS)	e0ar 260
	IF (AECOS-1.0091) 40,40,25	cony 270
35	WRITE (10.1010) ACCOS	bear 230
1010	FDFMAT (1HO, 'MBCOS.GT.1. = 'E10.4)	edar 290
	CAIL EPRDR	bopy 300
40	IF (ABCOS -0.01) 45,50.50	sory 310
45	ABCOS $=0.005$	eckr 320
50	COW=WATE/ABCOS	sodr 330
	NWN(1) $=$ NiN($11+1$	soar 340
	COND = CONFFDCFI 161	s0RY 350
	SD(I) = SDC 11 + COND	80RY 360
	RETURN	80nY 380
	END	eory 380

Pumction DIRBC (DUNTY)

This function provides the dot product of the neutron direction rector and the radius vector. Thus DIREC $=1.0$ for an outgoins neutron and $=$ -1.0 for an invard going neutron. These values result in marimen path stretching and shrinking, respectively, when used in the calling routine CETETA.

Callet from: certera
Punction used: SQRI (1ibrary)
Comms required: murata
Variables required:
UNLD, VOLD, HILD - prior collision direction cosines (at this point they are equal to the current collision values),
x they are equal to the current collision values).
Variables changed:
DIREC - the function value.

Function DIREC (DUMRX)

666	Pumerian olateciel	DIREC 10
	Smugical gegmethy versicm	DIREC 30
		DIaEc so
		pelatc so
		diact is
	Ri cupieerolequouralemoneezo	ofaec 0
		diace 70
	If 108-2.E-61 20.10 .5	oinec co
5	cosenicaz	- Iatc 90
	pinsecos	diae 100
10	merumin	Offe 110
	DIRECER.	diae 120
	Eeruter	diae 130

Subroutine GTNED (MDGE/A, MDXSEC)
This subroutine allows one to equate the cross sections for two different geometric media. Thus, if one uses a bcandary crossing estimator, CES requires that the media on both sides of the boundary differ. Hovever, for a homogeneous problem, the transport needs only one cross section to be stored. For any problem not involving a boundary crossing estimator for a homogeneous system, UDGE and MDXSEC may be equivalenced and the subroutine calls removed.

A data siatement sots the two media numbers that are to have the same cross sections.

Called from: MøRSE, FPRøB, NSIGTA, C CDLISN, PTHETA, FISGEN, GAMGEN Variables required: MDCEM, MEDIE, MED2E
Variables changed: MDXSEC

Subroutine GIMED (MDGEGM, MDXSEC)

SUBAOUTIME GTMEDIMDGEOM, MOXSECI
GTMED 10
DSTA MEDIE/1/. WEDZE/2/
GTMED 20
IF (MDGEOM - MEDZEI IC.S.IC
MOXSEC = MEDIE
GTMED 30
RETURM
MOXSEC = MDGEOM
RETURM
GTMED 40
GTMED 50
GTMED 60
GTMED 70
GTMED 80

Subroutine MBATCH (MS \varnothing RC)

This routine is culled at the end of each batch to perform the sums needed for calculation of batch statistics. Provision is made, although noi used in this case, for batches of different sizes. Beceuse of this, the summation of the square of the accumulated estimate is divided by the number of particles starting the batch. (See VARI writeup for statisticai formulae.)

Called from: BANKR (-3)
Cormons required: DET
Variables required:
ND, $U D(I), \operatorname{SUD}(I), \operatorname{SUD} 2(I), \operatorname{SD}(I), \operatorname{SSD}(I), \operatorname{SSD}$ (I) (from comion DET, see page 169)
NSФRC - number of particles beginning the batch. Variables modified: $\operatorname{SUD}(I), \operatorname{SUD2}(I), \operatorname{SSD}(I), \operatorname{SSD2}(I)$.

Subroutine NBATCH (ROdPC)


```
c sumburiter mantommsoncs
C
```



```
CO 5 fel.mo
F - ver:11
sumis= suecsi - F
swozil! = suaziti - Fmezruscac
* - senit
sserid - sseril - 6
ssazili - sseziti - scezmusomc
mevmen
CN
```

Subroutine HEMR (MRUNS, MQUIT)
This routine is cailed at the end of each run (consisting of wiuns batches of MSifi particles in this case). The calculated quantities are normalized and output, aloas with fractional standard deviations.

celled fram: BMMCR(-4)

Subroutines called:
VARI - calculases fractional standard deviations.
Commons required: DES, USER

Variables required:

MUWS - number of batiobes completed (note the IITS in common USER is the requested number of batches, not necessarily the actual number completed),
BquIT - number of rans remaining plus one, or negative of the number of runs completed when an execution time kill occurs,
MSTRT - number of particles per batch,
IDD, $\operatorname{SUD}(I), \operatorname{SUDP}(I), \operatorname{SSD}(I), \operatorname{SSD2}(I), \min (I), \operatorname{RAD}(I), \operatorname{HSCAPE}$ (from camon DET, see page 169)

Yariables changed:

SUD(I)
SSD (I) $\}$
norsalized to unit source particle
Variables output: $\operatorname{RAD}(I), \operatorname{SUD}(I), \operatorname{SUD2}(I), \operatorname{SSD}(I), \operatorname{SSD2}(I)$, FIN (MM(I) normalized

Subroutine MEME (MRUN, MQUTT)

Subroutine SCXRIN
This rutine is called by subroutine INPUT for the user to input necessary aralysis data. In this sample, a title card, the number and radii of detectors, and values of the response function are read in and oivtput.

Called from: INPUT
Cormmons required: USER, DET
Variables input snd output:
K MENT $^{-8} 80$ hollerith characters,
ND - number of detectors,
$\mathrm{RAD}(\mathrm{I})$ - radii for each of ND detectors,
$\operatorname{FDCF}(I)$ - NGPQT3 (=NGFQTN in this case) values if the response function.

Subroutine SC ϕ RIm

SUBROUTINE SCORIN			SCORI 10
c			SCORI 20
$\begin{array}{ll}\text { c } & \\ \text { C } & \\ & \\ & \\ & \\ & \end{array}$	ANALYSIS INPUT DATA ARE READ INTO SCORIN		SCORI 30
			SCORI 40
	COMMON /USER/ AGSTRT,WTSTRT,XSTRT,YSTRT,ZSTRT,DFF,EBOTA,EBOTG, 1 TCUT,I2,I1,IADJM,NGPQT1,NGPQT2,NGPQT3,NGPQTG,NGPQTN,NITS,NLAST,		SCORI 50
			SCORI 51
	2 NLEFT, NMGP, NMTG,NSTRT		SCORI 52
	COMMON /DET/ ND,NSCAPE,RAD(20), NN(20), UD (20), SUD (20), SUD? 20 ,		SCORI 60
	1 SO(20),SSD(20), SSD2(20), FDCF(100)		SCORI 61
	DIMENSION KOMENT(20)		SCORI 70
	READ (11,1000) KOMENT		SCORI 80
1000	FORMAT (20A4)		SCORI 90
c	read in problem output parameters		SCOR 100
c			SCOR 110
C			SCOR 120
c	Where		SCOR 130
c	ND = NUMBER OF DETECTORS		SCOR 140
c			SCOR 150
	READ (11,1010) ND		SCOR 160
1010	FORMAT (8110)		SCOR 170
C			SCOR 180
c	READ IN DETECTOR POSITIONS IMUST CORRESPOND TO detector must not be placed at the last medium	MEDIA BOUNDARIESI	SCOR 190
c		BOUNDARY.	SCOR 200
c			SCOR 210
			SCOR 220
c^{1020}			SCOR 230
	READ IN NGPQT3 VALUES OF THE RESPONSE FUNCT		SCOR 240
C			SCOR 250
	READ in ngpot 3 values of the response funct		SCOR 260
	REAC (11,1020) (FDCF(1),I=1,NGPQT3)		SCOR 270
C	WRITE (12,1030) KOMENT		SCOR 280
	WRITE (12,1030) KOMENT		SCOR 290
1030	ELRMAT (1H1,20A4)		SCOR 300
	WRITE (12,1040) ND, (RAD(1), Im 1,ND)		SCOR 310
1040	FORMAT $11 \mathrm{HO}, 19 \mathrm{HNUMBER}$ OF DETECTORS, 14/20H	OETECTOR RADII.	SCOR 320
	1 (1PSE14.3))		SCOR 321
	WRITE (12,1050) (FOCF(1),I=1,NGPQT3)		SCOR 330
1050	FORMAT (1 12,0 RESPONSE FUNCTION	1.1.6(1PE14.31)	SCOR 340
	RETU.N		SCOR 350
	ENC		SCOR 360

Subroutine SDATA
Called by RANKR(1), from MSøUR, for each source collision, this routine calculates uncollided response for each detector.

Calied from: BANKR(1)
Subroutines called: INSIGTA
Functions required: EXP (library)
Commons required: USER, DET, NUTRøI
Variables required:
IG - energy group index,
NMED - nedium number,
TSIG - total cross section providec by HSIGTA,
ND - number of detectors,
$\operatorname{RAD}(I)$ - array of detector radii,
WATE - neutron weight,
$\operatorname{FDCF}(I)$ - array of response functions
Variables modified:
LD(I) - array of uncollided responses.

Subroutine SDATA

Subroutine SAURCE (IG, U, V, W, X, Y, Z, WATE, MED, AE, ISøUR, ITSTR, HGPQT3, DDF, ISBIAS, RNIG)

This subroutine determines the initial parameters foi all primary particles. If the variabler which are input to $\mathrm{P} \mid \mathrm{RSE}$ are not altered by Squfice tben those input parameters are used for every particle. If a fission problem is being considered, the particle group at the time SqURCE is called is the group causing ine fission event and the source energy group for the new particle must be reset. The version of source discussed here merely selects from an input energy spectrum. An option to select from a biased enery distribution is provided. The weight correction for selecting from the modified distribution is given by the ratio of the natural probability to the biased probability at the selected energy group.

Called from: MS\&UR
Commons required: Blank
Variables required:
ISqUR - a switch which deternines the type of source - see IIIPUP, ITSIR - a switch which indicates whether fission is an originai source particle or a laughter (irrelevant in this problem), IGPQT3 - total number of groups over wich the problem is defined, DDF - starting weight corrected for source being defined over different number of groups than actually being ised in the problen, ISBIAS - switch indicating if biased sampling is used for source energy,

MMTG - total number of groups.
Variables changed:
WATE - particle source veight,
IG - particle energy group.
Significant internal variables:
HWP - location of group zero source probability (either biased or unbiased).

Limitations: This version only selects an erergy group.

Subroutine SøURCE (IG,U,V,W,X,Y,Z,WATE,MED, AG,ISøUR,ITSTR NGPQT3,DDF,ISBIAS,NMTG)

Subroutine STBTCH (NBATCH)

The arrays used to accumulate uncollided and total respcase are zeroed t_{j} this routine. In addition, if NBATCH $=0$ Endicating the first batch in a rur is about to begin, all arrays are zeroed which accumulate estimates and squared estimates over batches.

Called Prox: M6RSE
Subroutines called: ERR R_{R} (library)
Commons required: DET, USER
Va:iables required:
NBATCH - batch number less one,
ND - number of detectors.
Variables modified:
NSCAPE, $\operatorname{MNH}(I), \operatorname{SUD}(I), \operatorname{SUD2}(I), \operatorname{SSD}(I), \operatorname{SSD2}(I), \operatorname{SD}(I), \operatorname{UD}(I)$ (from common LET, see page 169).

Subroutine STBRCH (NBATCH)


```
    SUBROUT INE STBTCH(NBATCH) STBTC 10
C STBTC 20
    the following quanities are initializeg in steatch
        STBTC 30
        UD(I) = UNCOLLIDED RESPONSE SUMMED OVER A SINGLE BATCH STBTC 50
        STBTC 40
        SUD(i) = SUM OF UNCOLLIDED RESPONSE SUMMED OVER ALL BATCHES
        SUD2(II = SUM OF UD(I)**2 STBTC 70
STBTC 60
        SD(I) = TOTAL RESPONSE SUMMED OVER A SINGLE BATCH STBTC 80
        SSO(I) = SUM OF TOTAL RESPONSE CVER ALL BATCHES STBTC 90
        SSD2(I) = SUM OF SD(I)**2 STBT 100
        WHERE
        ! IS THE INDEX FOR DETECTORS (CM)
        COMMON /OET/ ND,NSCAPE,RAD(20),NN(20),UD(2C),SUD(20),SUD2(20),
    1 SD(20),SSO(20),SSD2(20),FDCF(100)
    COMMGN /USER/ AGSTRT,WTSTRT, XSTRT,YSTRT,ZSTRT,OFF,EROTN,EBCTG,
    1 TCUT,IO,II,IADJM,NGPQTI,NGPQT2,NGPQTZ,NGPQTG,NGPQTN,NITS,NLAST,
    2 NLEFT,NMGP,NMTG,NSTRT
        IF (NEATCH) 5,10,20
    CALL ERROR
5 CALLERROR
    DO 15 1=1,NC
    NN(I)=0
    Sun(I) = 0.0
    SUD2(I) = 0.0
    SSD(I) = 0.0
15 SSDZ(I) = 0.0
20 DC 25 I=1,NC
SO(I) = 0.0
25 UD(I) = 0.0
25 UDII) =0.0
    END
sTar 110
    WHERE
STBT 120
```

```
STBT }14
STBT 150
STBT 151
STBT 160
STBT 160
STBT 161
STBT }16
STBT }17
STBT 180
STBT 190
STBT 200
STBT 210
STBT 220
    PETURN
STBT 230
STBT 240
STBT 250
STBT 260
STBT 290
END
```

Subroutine STRUN
This routine is called at the beginning of each set of WITS batches and is normally used only for problems like time-dependent fissioning systems. In this sample, it is used to print out the first 50 random numbers for assistance to users trying to duplicate the random number generator. Note that the starting random number is saved and restored before returning.

Called from: $B^{W} \operatorname{TKR}(-1)$
Subröutines called:
RNDOUP
FRDIN
Functions used: FLTRNF

Subroutine STRUN

suacoutime strun sthum 10
C * TMIS RJUTIME IS ENTERED OMY AT THE BEGIMNIME OF EACM SET OF MITS BATCNES

- * THIS VERSIOM MINTS A LIST OF THE FIRST FEM RAMOON MUMCERS SO TMAT USERS
- of various machines mar dunlicate the ramoom mumera secuemce strum to
REALFE R MNOON.RSAVE
strum 50
$\begin{array}{ll}\text { CALL RMDOUT (RANCOM } & \text { STRMM } 60 \\ \text { RSAVE }=\text { RAMDOM } & \text { STRUM } 70\end{array}$
strin 60
WRITE 16.10COI RMNOON
staum 70
stacm 80
1000 FIRMAT 1° THE IMITIAL RAMDON MMMER. IN HEX. 15 . 216.1 STRUN 90
1 - THE MEXT 50 mamBERS FOLCOW•/B STRUM 91
$005 I=1,50$
$x=$ FLIRMF (x)
CALL RMDOUT (RANDOMI
5 WRITE 86. 1005 R RRAMOCN
1305 FORHAT (F2N.8.4K.2121
RAMDON = RSAVE
CALL PMDIMI RAMDOMI
RAMOON = RSAVE
CALL PMDIMI RMMDOMI
RETURM
ENO STRU 180
stru 100
STRU 210
STRU 120
路
STRU 140
MIMIRAMOOM) 5 SRU 150
sTRE 176

Subroutine VARI (SX, SX2, M, XBAT, IPART)
This routine calculates variances and frational standard deviations (f.s.d.) for batch statistics allowing for unequallv weighted batches. The formula for the variance of the mean is

$$
\sigma_{\bar{x}}^{2}=\frac{1}{(N-1)}\left(\frac{1}{n} \sum_{i=1}^{N} n_{i} x_{i}^{2}-\frac{1}{n^{2}}\left(\sum_{i=1}^{N} n_{i} x_{i}\right)^{2}\right),
$$

where $\mathrm{N}=$ number of batches,
$\mathrm{n}=$ total number of independent histories,
$n_{i}=$ number of independent historics in the ith batch,
$x_{i}=$ accumulated estimate in the ith batch.
Note that

$$
\begin{aligned}
& n=\sum_{i=1}^{N} n_{i} \\
& x_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} x_{i j},
\end{aligned}
$$

where $x_{i j}$ is the estimate from the j th history in the ith batch,

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{N} n_{i} x_{i},
$$

where \bar{x} is the mean, averaged over n histories.
The fractional standard deviation is

$$
\text { P.s.d. }=\sqrt{\sigma_{\mathbf{x}}^{2}} / \overline{\mathrm{x}} .
$$

Hote that the routine must be called before the array $S X(=n \bar{x})$ is normalized.
Called from: NRUN
Functions required: SQRT, Ā̃̃ ('ilibrary functions).
Variables required:

$$
S X(I) \text { - array of values of } n \bar{x}=\sum_{i=1}^{N} n_{i} x_{i} \text {, }
$$

SX2(I) - array of values of $\sum_{i=1}^{M} n_{i} x_{i}^{2}$,

M - number of elements in SX and SX2,
HBAT $=\mathrm{H}$,
IPART $=\mathrm{n}$.

Variables changed:

SX2(I) changed to f.s.d.

Subroutine VARI (SX, SXC, M, RBAT, MPART)

		vask 10
c	MAAT IS TME MD. OF IMOEPEMNEMT MTCNES	Yan 20
6	Mant is tme total mumear of panticaes mmucesso	uarl 30
C	IT IS ASSUnEC TMAT THE SXMSO man mas acommuated Th	TICRES
C	TIMES THE scrane of the match ameance itmis is outalm	50
C	THE SJUMED OATCM SUN EY TME mman of particles STA	H1 6e
		varl 70
	IF IMEAT-11 S.S.15	varl 0
5	$0010 \mathrm{l}=1 . \mathrm{m}$	vand 30
10	SX2111 $=0.0$	varl 100
	RETUR	vand 110
15	0035 I=1.n	vant 120
	If 15x1118 25,20.25	vas 130
20	SE2111 = 0.0	vant 140
	601030	vant 150
25	SX2111 = SSEIIIMMPART - iSxilifmpantieezicinsat-1.1	vart 160
	SX2II) = SQRTIABSISX2IIIDI/SXIIDEMPART	var1 170
36	COMTIMUE	Yax2 182
	RETURM	varl 190
	EMD	vall 290

Seple Proble.

The fast-neutron fluence at several radial distances is calculated for a point, isotropic, fission source in an infinite mediun of air The air was assumed to be made up of only oxygen and nitrogen with a total density of $1.29 \mathrm{~g} / \mathrm{s}$. The special spherical geonetry was used to describe the concentric spherical shells of air surrounding the point source. Although the entire medius was air, the geometry medium numbers alternate between each of the silells for use with the boundary-crossing esiimator. This estimator requires that each detector lie on a boundary separating two media. The aross sections for air usec in this calculation were for 22 neutron groups with five Legendre coefficients used for the angular expansion. Only the top 13 neutron groups were analyzed. The group structure with the corresponding fraction of particles emitted in each group is given in Table X. Splitting, Russian roulecte, and path length stretching were also implemented.

The problem input and output are listed as follows:

Table X. Pission Spectru in 14-Group Structure

Group No.	Energy Linits (HeV)	Fraction of Source Meutrons
1	$15.0-12.21$	$1.5529(-4)^{2}$
2	$12.21-10.0$	$8.9338(-4)$
3	$10.0-8.187$	$3.4786(-3)$
4	$8.187-6.36$	$1.3903(-2 ;$
5	$6.36-4.966$	$3.4557(-2)$
6	$4.906-4.066$	$3.5047(-2)$
7	$4.056-3.012$	$1.0724(-1)$
8	$3.012-2.466$	$8.8963(-2)$
9	$2.466-2.350$	$2.3186(-2)$
10	$2.350-1.827$	$1.2030(-1)$
11	$1.827-1.108$	$2.1503(-1)$
12	$1.108-0.5502$	$1.3837(-1)$
13	$0.5502-0.1111$	$1.4036(-1)$
14	$0.1111-0.3308$	$1.5489(-2)$

Read as 1.5529×10^{-4}.


```
MORSE SAMPLE PROBLEM POINT FISSION SOURCE IN AIR
THIS CASE WAS BEGUN ON TUESDAY, AUGUST 4, 1970
```



```
XSTRT=0.0 YSTRT=0.0 ZSTRT=0.0 AGSTRT=0.0
UINP=0.0 VINP=0.0
```

$Z S T R T=0.0$ WINP=O.O

EBOTG=0.0 $\quad 0 \quad T C U T=0.1000 E 01$
$A G S T R T=0.0$

VELTH=0.2200E 06

```
DDF IS DIFFERENT FROM WTSTRT, DDF \(=0.98451 E 00\)
spectrum of cumulative group probabilities
\begin{tabular}{ll} 
FS( 1\()=0.1582 E-03\) & FS \((2)=0.1066 E-02\) \\
FS( 3\()=0.4599 E-02\) & FS \((4)=0.1872 E-01\) \\
FS( 5\()=0.5382 E-01\) & FS \((6)=0.8942 E-01\) \\
FS( 7\()=0.1984 E 00\) & FS \((8)=0.2887 E 0 C\) \\
FS( 9\()=0.3123 E 00\) & FS \((10)=0.4345 E 00\) \\
FS(11) \(=0.6559 E 00\) & FS \((12)=0.8574 E 00\) \\
FS(13) \(00.1000 E 01\) & FS \((14)=0.0\).
\end{tabular}
GROUP PARAMETERS, GROUP NUMBERS GREATER THAN 22 CORRESPOND TO SECONDARY PARTICLES
```

GROUP	UPPER EDGE (EV)	velocity (CN/SEC)
:	O.:500E 08	0.5102510
2	$0.1221 E 08$	0.4609 E 10
3	0.1000E 08	0.4171 E 10
4	0.8187E 07	0.3730510
5	0.6360 E 07	0.3291510
6	$0.4966 E 07$	0.29 こ9E 10
7	0.4066 ET	0.2602 E 10
8	0.3012 ET	0.2289E 10
9	$0.2466 E 07$	0.2146 E 10
10	0.2350E 07	0.1999 E 10
11	0.1827E 07	0.1675 E 10
12	0.1108 ET	0.1259 E 10
13	0.5502 ES	0.7952E 09

INITIAL RANDOM NUMBER $=000035$ FA731:

```
NSPLT=1 NKILL=1 NPAST=1 NOLEAK= 0 IEBIAS=0 MXREG= 1 MAXGP= 13
```

WEIGHT STANDAROS =OR SPLITTING ANC RUSSIAN ROULETTE AND PATHLENGTH STRETCHING PARAMETERS

SPHERICAL GEOM

MEDIUM	RACIUS	
1	0.300000	04
2	$0.50000 D$	04
1	0.750000	04
2	$0.10000 D$	05
1	$0.15000 D$	05
2	0.200000	05
1	0.300000	05
2	0.600000	05
1	0.700000	05
2	0.900000	05
1	0.120000	06
2	0.150000	06
1	0.100000	07

REGION RADIUS 0.10000007

NGEOM $=$ 529, NGLAST $=528$

```
22 GROUP AIR CROSS SECTIONS --- P5 --- DENSITY = 1.29 G/L
NUMBER OF NEUTRON GROUPS 22
NUMBER OF NEUTRON DCWNSCATTERS }2
NUMBER OF GAMMA GRCUPS O
number of gamma downsCATTERS 0
NUMBER OF INPUT GROUFS 22
NUMBER OF INPUT DOWNSCATTERS 22
NUMBER OF MFDIA I
NUMBER OF INPUT ELEMENTS I
NUMBER OF MIXING ENTRIES 1
NUMBER OF COEFFICIENTS 6
NUMBER OF ANGLES ?
ADJOINT SWITCH O
```



```
IITF= 0 ISTAT= 0 IXTAPE= 0
CROSS SECTIONS START AT 529
LAST LOCATIGN USEC (PERM) 2435
LAST LOCATION USEC (TEMP) 422.8
ELEMENT 1 APPEARS IN MEDIA 1 WITH DENSITY 1.16COE 00

```

ANALYSIS INPUT DATA

```

```

 9.000E 04 1.200E 05
    ```


you are using the default version of source milch sets mate to cef ano provides an energy if
***Start eatch 1 randomacaffetil2al2
SOURCE DATA


time dequired fer the prececing batch mas 7 seconos.
***START BATCH 2 RANDOM-A0902979ESSA
SOURCE OATA.


time requireo for the ideceding batch was 6 seconds.
***START BATCH 3 RANDOMAC BEDAB96TTOA


time aequired for the piecec:ng baich was 7 seconos.
***START BATCH \& RANOOM*28889AESBOE2


time requiat: d for the rrececing batch was 7 secinds.
***start batch 5 randomabaoszccsolia


```

tIME REQUIRED EOR thE PrfCecing batch was b SECONDS.
\#\#\#START BATCH 6 GANDOM=A2EIIO2G?TE2

```

```

time required for the prececing oatch was 7 seconos.
***STart batch }
RANDOM=423C ADCCECCA

```


```

time required for fhe prececing batch was 7 seconds
***START BATCH B RANDOM=BL9?B628586A

```

```

MNMAER OF COLI:ISIONS OF TYPE NCOLL_
time hequired for the pagceding batch was g seconds.
***START OATCH Q RANOOM=92EB73g30EAA

```


```

time required for the preceding batch was }7\mathrm{ seconds.
***START BATCH 10 RANDOM=106829364452

```

```

MUMEER OF COLLISIONS OF TYPE NCOLL
time requireo for the preceding batch was o seconds

```


REAL SCATTERING COUNTERS
\begin{tabular}{|c|c|c|}
\hline ENERGY GROUP & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { REGION } \\
& \text { NUMBER }
\end{aligned}
\]} \\
\hline 1 & 0 & C. 0 \\
\hline 2 & 7 & \(2.57 E 00\) \\
\hline 3 & 11 & 7.08E 00 \\
\hline 4 & 50 & 5.15E 01 \\
\hline 5 & 151 & \(1.17 E 02\) \\
\hline 6 & 28 ? & 2.C7E 02 \\
\hline 7 & 835 & 5.69 E 02 \\
\hline 8 & 766 & 5.32E 02 \\
\hline 9 & 257 & 1.68 E 02 \\
\hline 10 & 1617 & \(1.06 E 03\) \\
\hline 11 & 4619 & \(3.29 E 03\) \\
\hline 12 & 8313 & 6.12 E 03 \\
\hline 13 & 21101 & 1.62 E \\
\hline 14 & 0 & 0.0 \\
\hline 15 & 0 & 0.0 \\
\hline 16 & 0 & 0.0 \\
\hline 17 & 0 & 0.0 \\
\hline 18 & 0 & 0.0 \\
\hline 19 & 0 & 0.0 \\
\hline 20 & 0 & 0.0 \\
\hline 21 & 0 & 0.0 \\
\hline 22 & 0 & 0.0 \\
\hline
\end{tabular}
nUMBER OF SPLITTINGS
\begin{tabular}{ccl} 
ENERGY & \begin{tabular}{c} 
REGION I \\
GROUP
\end{tabular} & NUMBER
\end{tabular} WEIGHT

NUMBER OF SPLITTINGS PREVENTED BY LACK BE ROOM
\begin{tabular}{ccc} 
ENERGY & \multicolumn{2}{c}{\begin{tabular}{c} 
REGION \\
GROUP
\end{tabular}} \\
1 & NUMBER & WEIGHT \\
2 & 0 & 0.0 \\
3 & 0 & 0.0 \\
3 & 0 & 0.0 \\
4 & 0 & 0.0 \\
5 & 0 & 0.0 \\
6 & 0 & 0.0 \\
7 & 0 & 0.0 \\
8 & 0 & 0.0 \\
9 & 0 & 0.0 \\
10 & 0 & 0.0 \\
11 & 0 & 0.0 \\
12 & 0 & 0.0 \\
13 & 0 & 0.0
\end{tabular}

\section*{NURBER OF RUSSIAN RCULETTE KILLS}
\begin{tabular}{|c|c|c|}
\hline ENERGY & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { REGION } \\
& \text { NUMBEQ WEIGHT }
\end{aligned}
\]}} \\
\hline GROUP & & \\
\hline 1 & 0 & 0.0 \\
\hline 2 & 0 & 0.0 \\
\hline \% & 0 & 0.0 \\
\hline 4 & 0 & 0.0 \\
\hline 5 & 1 & 4.16!-0? \\
\hline 6 & 0 & 0.0 \\
\hline 7 & 5 & 3.17E-02 \\
\hline 8 & 7 & 3.41E-0? \\
\hline 9 & \(i\) & \(4.59 \mathrm{E}-03\) \\
\hline 10 & 6 & 4.03 E-02 \\
\hline 12 & 34 & 2.105-02 \\
\hline 12 & \(4 ?\) & 2.82 \(=-01\) \\
\hline :3 & 129 & 9.04E-01 \\
\hline
\end{tabular}

NUMBER OF FUSSIAN RCULETTE SURVIVALS
\begin{tabular}{ccc} 
ENERGY & REGION \\
GROUP & NIJMBER WFIGHT \\
\(!\) & 0 & 0.0 \\
2 & 0 & 0.0 \\
2 & 0 & 0.0 \\
4 & 0 & 0.0 \\
5 & 0 & 0.0 \\
6 & 0 & 0.0 \\
7 & 1 & \(9.98 E-03\) \\
8 & 0 & 0.0 \\
9 & 0 & 0.0 \\
10 & \(C\) & 0.0 \\
11 & 1 & \(9.94 E-02\) \\
\(i 2\) & 3 & \(2.24 E-\) \\
13 & 10 & \(8.4!E-02\)
\end{tabular}

TOTAL CPL TIME FOR THIS PROBLEM WAS 1.28 MINUTES.
\$\$\$\$\$\$\$\$\$\$ MCRSE SAMPLE PQOBLEM ******************

\section*{VI. Geometry Module}

MORSE uses the geometry packages that are used with 05R with minor changes. That is, there are spherical, slab, cylindrical, and general three-dimensional geometry packages that can be used. There are several descriptions of the various geometry routines in the 05 R manual \({ }^{6}\) and in the helpful hints for 05 R iser's marial.?

Changes were made to all of the GEOM packages to allow for albeds, scattering from any material surface and for variable input-output logical units. The GFOM packages are available in double precision for the IBM-360.

The geometry packages may be replaced with any special-purpose geometry routines the user might write. The three main functions of the geometry package are performed by the three subroutines discussed below.

Subroutine JQMIN (NADD, INTAPE, IQTAPE)
This subroutine reads geometry input and NADD is the rirst location in blank common that may ce used for input storage. In the special geometry packages blank common is not used, so NADD is not incremented; otherwise, NADD must be incremented by the storage required by geometry data.

Subroutine LøøKZ ( \(Y, Y, Z\) )
This subroutine determines the block and zone number, medium, and region for the point \(X, Y, Z\). This routine is called from MS \(\varnothing U R\) to det,ermine the starting region and medium for source particles.

\section*{Subroutine GE}

This is the main executive routine in that it determines the end point of a flight given the starting point, direction cosines or a tentative end point, and the number of mean free paths (or physical distance in any desired units) the particle will travel. It is called from GøMST and the information is transferred through common GEØMC (see Table XI). In the more complicated geometry packages there are many routines that assist subroutine GEDM in determining the collision point.

To facilitate the use of the various geometry packages, a trief description of each is included here, and the input instructions for each are given in Appendix D.

Table XI. Definitions of Variables in Common GE\&MC As Found in Subroutine GEDM
\begin{tabular}{|c|c|}
\hline Variable & Definition \\
\hline X2,Y2,Z2 & Coordinates at tentative end-of-flight or if the trajectory is in an internal void; \(\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z} 2\) are the direction cosines of the tieajectory. \\
\hline XI, Yl, Zl & Starting coordinates for the parti=le. \\
\hline ETA & Number of mean free paths to be traversed if flight goes to \(\mathrm{X} 2, \mathrm{Y} 2, \mathrm{Z2}\). \\
\hline ETAUSD & Number of mean free paths sctüaily traversed after the call to GEDM. \\
\hline IREz & An index to the medium number for the special geometry packages. For GENERAL GEQM, IBLZ is a packed word giving the block and zone of the end of flight. \\
\hline IBZN & A dummy variable. \\
\hline MARK & \begin{tabular}{l}
A flag set by GEØM indieating the results of the trajectcry calculation. \\
\(=1\) for completed flight. \\
= 0 for boundary crossing. \\
= -1 for escape. \\
\(=-2\) for el :ering an internal void.
\end{tabular} \\
\hline NMED & Medium number at end of plight or of medium about to be entered at a boundary crossing. \\
\hline NFEG & Region number at end of flight; not set at boundary crossings. \\
\hline
\end{tabular}

\section*{SPAERICAL GEなM*}

Spherical GEM is used to dessribe up to 20 concentric spheres centered at \(X=Y=Z=0\). Internal voils may be used in ary location and media numbers need not be ordered with increasing radii; however, regions must be numbered consecutively from the center. The medium and regions are bounded by the outer radius input. For example, the first region is interior to the surface of radius \(R_{1}\). External (pure absorber) voids are not allowed except outside the maximum racius.

Subroutine GøMFLP sets the medium inåax IBLZ and region number NREG to the values appropriate to the medium re-entered after a reflection. Subroutine \(N \not \subset R M L\) calculates the direction cosines of the normal to the spherical surface.

Subroutines required: GEøM, JøMIN, Lø
Input instructions are given ori page D-1.

\footnotetext{
Taken from references \(\epsilon\) and 7.
}

\section*{SLAB GEqM*}

SLAB GEXM can be used whenever there are rectangular paralielepipeds with normals to mediur and region boundaries parallel to tine \(\underset{\sim}{2}\) axis. A finite width and height are allowed. A maximum of 20 medium and region boundaries may be used with internal visis (medium 1000) allowed, but external voids (medium 0) are not permitted inside the system. Media may be numbered in any order but regions must be numbered consecutively with the region of lowest \(Z\) being region 1. The media and regions may have different internal boundaries but the external boundsry must be the same. Subroutines
 GE GM \(^{2}\)

Subroutines required: GEØM, JøMIN, Lф \(\emptyset K Z, G \not M F L P, ~ N \emptyset R M L\).
Input instructions are given on page D-2.

\footnotetext{
Originally written by R. A. Betz.
}

\section*{CYLIRDRICAL GEXAH}
 cylindrical surfaces with up to 20 heights and 20 radial boundaries. The radial boundaries may be different for each height interval and internal voids (medium 1000) are allowed. Negative heights, i.e., \(\mathrm{Z}<0\), are not allowed. itedia and regions numbers may be used in any order.

Subroutines required: GE ЈøМб, ЈøЕ9, ЈøМ10.

Input instructions are given on page D-3.

\footnotetext{
Originally written by K. D. Franz and W. Morrison.
}

\section*{GENEKAL GEXMM*}

The general three-dimensional geometry package has been described in detail elsewhere. The only limitation of geometry detail that may be treated is that surfaces must be describable by quadratic surfaces.

The description of the system must include a rectangular parallelepiped whose faces are parallel to the \(X Y, Y Z\), and \(X Z\) coordinate planes. This parallelepiped is then divided into zones with planes that extend across the entire system. The zones are divided into blocks with planes parallel to coordinate axes bui which extend only across the individual zones. Each block is then divided into sectors by quadratic surfaces with the sector defined by whether the volume is positive or negative with respect to the quajratic surfaces. Each sector may contain only one mediua; therefore, if a medium cannot be described by a single quadratic surface, it must be divided into several sectors.

Besides material boundaries, internal (medium 1000) and exiernal (medium 0 ) voids may be used. If an external void is interior to the system it behayes as a perfect absorber since the particle is assumed to have escaped upon entering.

Region geometry may also be described for use in importance sampling. The block and zore boundaries for region geometry must be identical with the material boundaries. A description of geom input is given on page \(D-4\). A code, PICTURE \({ }^{13}\), has been written to aid in debusging both material and region geometry input.

Subroutines required: GEDM, J \(M M N\), L中


Pigure 4 shows the hierarchy of subroutines for GEHERAL GEDM. Detailed descriptions of the various routines are given in references 6 and 7 ; however, some changes have been mede since those reports were written. The two main changes incorporated in Subroutines Ghalip and HGRML are discussed.

\footnotetext{
Discussion taken from references 6 and 7 .
}


Fig. 4. Hierarchy of Subroutines in GENERAL GE \(\varnothing M\)

\section*{Changes to Geometry Packages}

In order to implement the albedo option, it was necessary to make a minor change to the general GEDM package (and to all other special geometry packages). Previously a perticle was always traced through the geometry to a collision point inside a medium. In the albedo option a particle is tracked to the bouniāary of the albedu medium where it undergoes a collision and departs in a different direction. In addition, the scattering and other routines needed to know the normal direction to the surface of the aibedo medium and the region in which the altedo scattering occurred. ic accomplish this, two subroutines were written and added to the GEXM package. These are G \(G M F L P\), which prepares \(G E \emptyset M\) for the particle to reverse direction on its next flight, and NøRML, which calculates the normal to the albedo surface. One change was made to subroutine GEXM to implement this: at block boundary crossings the variable NCUE, indicating which boundary was crossed, is saved in NCUESV located in labelled common GEDML. The storine of NCUESV is made at F \(\varnothing\) RTRAN statement 7 and the previous statement 7 becomes the next statement in the program.

In addition to the above modification, two other changes to the general GEXM package, which is described in reference 7, have been made. The first consists of putting several additional variables in labelled common for greater ease in examining dunps while debugging. The second change was made only to the IBM-3() version of GEXM. This involved changing the logical unit numbers used for the standard input and output units to variables IIN and H H UT which were stored in comen JhMIhX. The calling sequence for JøMIN was changed to CALL J JMIN (ADDR, NIN, INUT) so that the user could convey the desired logical unit numbers to the GEDM subroutines.

\section*{Additional Paraneters in Labelled Common}

In JOM5 and JOMS, the GEfM56 common adied the parameter REG which is a packed word that describes the present position of the particle with respect to the quadris surfaces in the block. \(A^{n} 1^{\prime \prime}\) indicates the particle is on the positive side of the surface, \(a\) " 0 " the negative side. The surfaces are in the order fin wich they were mentioned in the block description, starting at the last bit in the word and working back.

In JゆMT a new labelled common, GEØM70, was added to contain the variables \(P, Q, f(0), f(1),\left(Q^{2}-P F_{0}\right), u, v, w, A u, B v, C w,(A u+D v+E w),(B v+F w)\) used in calculating intersections with the quadric surfaces.

In J J M9 and L \(W \emptyset K \mathcal{B}\), the parameters in their calling sequence were changed to \(\mathrm{XI}, \mathrm{Yl}\), an̉ Zl . Then the statements
\(\mathrm{X} \not \subset \mathrm{I} E=\mathrm{XI}\)
Y (INE \(=\mathrm{Yl}\)
\(\mathrm{ZONE}=\mathrm{Zl}\)
were added at the start of the program. Finally, X \(\mathrm{XDNE}, \mathrm{Y} \varnothing \mathrm{NE}\), and ZøNE were added to the labelled common GEdM39. The error message "YOU ARE LOST," indicating that a point is located outside the system, has been modified to print out the coordinates of the offending juint.

The purpose of this subroutine is to prepare GED for the fact that an albedo-scattered particle is about to reverse direction while at a boundary. The indicators specifying that the particle has crossed the boundary and is entering the new medium must be flipped to indicate that the particle is reentering its original medium. It also calls JфM6 to obtain the region number of the albedo-scattering site and stores this in NREG in GEdtc cogmon.


\section*{Subroutine NqRMI (General CEgM)}

Subroutine \(K \varnothing R M L\) letermines the \(n_{\text {u mal }}\) to the albedo surface. The normal is stored in UNøRM, VHøRM, WIØRM in labe? led common HøRMAL and always points out of the albedo medium.

Subroutine NQRML


\section*{REFERETCES}
1. V. R. Cain, "SAMBO, A Collision Analysis Package for Multigroup Monte Carlo Codes" (to be published).
2. Radiation Shielding Information Center, Oat Ridge Mational Laboratory, Oak Ridge, Tennessee.
3. K. D. Lathrop, "DTP-IV, A PORTRAN-IV Program For Solving the Multigroup Transport Equation wi'h Anisotropic Scattering," LA-3373, Los Alemes Scientific Laboratory (1965).
4. H. H. Engle, Jr., "A User's Manual for AnISE," K-1693 (196?).
5. F. R. Mynatt, F. J. Muckenthaler, and P. R. Stevens, "Development of Two-Dimensional Discrete Ordinates Transport Theory for Radiation Shielding," CTC-IIP-952 (1969).
6. D. C. Irving, R. M. Freestone, Jr., and F. B. K. Kan, "gjR, A General Purpose Monte Carlo Meutron Transport Code," ORNL-3622 (1965).
7. D. C. Irving, V. R. Cain, ard P. M. Preestone, Jr., "An Amplification of Selected Portions of the \(\Phi \bar{\sigma}\) R Monte Carlo Code Jser' \(\approx\) Manual," ORIL-TM-2601 (1969).
8. L. Cranberg et al., Phys. Rev. 103, 662 (1956).
9. F. H. Clark and E. A. Betz, "Importance Samping Devices fcr Selecting Track Lengths and Directions After Scatter in 95 , " ORNL-TH-1484 (1966).
10. F. H. Clark, "The Exponential Transforn as an Importance-Sampling Device - A Review," ORIL-RSIC-14 (1966).
11. V. R. Cain, E. A. Straker, and G. Thayer, "Monte Carlo Path Length Selection Routines Based on Some Specific Forms of the Irportance Punction," ORIL-TM-1967 (1969).
12. T. J. Tyrrell, "TDUNP - A Translation Routine For Use in Truming PORTRAN ATrays," ORIL-CP-TO-7-8 (197C).
13. D. C. Irving and G. W. Norrison, "PiCTURE: An Aid in Debugging GEOM Input Data," ORNL-TM-2892 (1970).

\section*{APPENDIX A}

The Many Integral Forms of the Boltzmann Transport Equation and its Adioint

The purpose here is to derive a complete set of forward and adjoint integral transport equations in energy-group notatior and to relate these equations to the Monte Carlo procedures used in the MqRSE code.

\section*{The Boltzmann Transport Ejuation}

The derivation begins with the general time-dependent integro-differentia] form of the Boltzinann transport equation, the derivation of which can be regarded as a bookkeeping process that sets the net storage of particles within a differential element of phase space ( \(\mathrm{d}_{\mathrm{r}} \mathrm{dE} \mathrm{\Omega}_{\mathrm{\Omega}}\) ) equal to the particle gains minus particle losses in (draEd§) and leads to the following familiar and useful form:
\[
\begin{align*}
& \frac{1}{\nabla} \frac{\partial}{\partial t} \phi(\bar{r}, E, \bar{\Omega}, t)+\nabla \cdot \phi(\bar{r}, E, \bar{\Omega}, t)+\Sigma_{t}(\bar{r}, E) \phi(\bar{r}, E, \bar{\Omega}, t) \\
& \quad=s(\bar{r}, E, \bar{\Omega}, t)+\iint d E^{\prime} d \bar{\Omega}^{\prime} \Sigma_{s}\left(\bar{r}, E^{\prime}+E, \bar{\Omega}^{\prime}+\bar{\Omega}\right) \phi\left(\bar{r}, E^{\prime}, \bar{\Omega}^{\prime}, t\right) \tag{1}
\end{align*}
\]
where
( \(\bar{r}, E, \bar{\Omega}, t\) ) denotes the general seven-dimensional phsse space,
\(\bar{r}=\) position variable,
\(E=\) the particle's kinetic energy,
\(\mathbf{V}=\) the particle's speed corresponding to its kinetic energy E ,
\(\bar{\Omega}=a\) unit vector which describes the particle's direction of moition,
\(\mathrm{t}=\mathrm{time}\) variable,
\(\phi(\bar{r}, E, \bar{\Omega}, t)=\) the time-dependent angular flux,
\(\phi(\bar{r}, E, \bar{\Omega}, t) d E d \bar{\Omega}=\) the number of particles that cross a unit area normal to the \(\bar{\Omega}\) direction per unit time at the space point \(\bar{r}\) and time \(t\) with energies in \(d E\) about \(E\) and with directions that lie within the differential solid angle \(d \bar{\Omega}\) about the unit vector \(\bar{\Omega}\),
\(\frac{1}{\nabla} \frac{\partial}{\partial t} \phi(\bar{r}, E, \bar{\Omega}, t) d E d \bar{\Omega}=\) net storage (gains minus losses) per unit volume and tirs at the space point \(\bar{r}\) and time \(t\) of particles with energies in \(d E\) about \(E\) and with directions which lie in \(d \boldsymbol{R}\) about \(\AA\).
\(\bar{\Omega} \cdot \nabla \phi(\bar{r}, E, \bar{X}, t)\) asd \(=\) net convective loss per unit volume and time at the space point \(\overline{\mathrm{F}}\) and time t of particles with energies in \(d E\) about \(E\) and directions which lie ir. dis about \(\bar{D}\),
\(\Sigma_{t}(\bar{r}, E)=\) the total cross section at the space point \(\overline{\mathbf{r}}\) for particles of energy \(E\),
\(\varepsilon_{t}(\bar{r}, E) \phi\left(\bar{r}, B_{,}, t\right) d E d \bar{\Omega}=\) collision loss per unit volume and tine at the space point \(\bar{r}\) and time \(t\) of particles with energies in \(d E\) about \(E\) and directions wich lie in \(d 8\) about \(\bar{\Omega}\),
\(\sum_{\delta}\left(\bar{r}, E^{\prime}+E^{\prime},^{\prime}+\bar{\Omega}\right)\) dEd \(=\) the differential scattering cross section which deseribes the probability per unit path that a particle with an initiai energy \(E^{\prime}\) and an initial direction \(\Pi^{\prime}\) undergoes a sconttering collision at \(\overline{\mathrm{r}}\) wich places it into a direction that lies in \(\mathrm{d} \bar{\Omega}\) about \(\bar{\Omega}\) with a new energy in \(d B\) about \(E\).
 unit volume and time at the space point \(\bar{r}\) and time \(t\) of parti=les with energiea in \(d B\) about \(E\) and directions which lie in about \(\bar{\Omega}\),
\(S(\bar{r}, E, \bar{\Omega}, t) d B d \bar{\Omega}=\) source particles eaitted per unit volume and time at the space point \(\bar{r}\) and time \(t\) with energies in \(d E\) about \(E\) and directions which lie in ablat \(\bar{\Omega}\).
An effect of intciest such as biological dose, energy deposition, or particle flux (denoted by \(\lambda\) ) for a given probles can be expressed in terms of the flux field \(\varphi(\bar{r}, E, \bar{R}, t)\) and an appropriate response function \(P^{\varphi}(\bar{r}, E, \bar{R}, t)\) due to a unit angular flux and is given by:
\[
\begin{equation*}
\lambda=\iiint \int P^{t}\left(\bar{r}_{2} E_{2} \mathcal{R}_{2} t\right) \ell(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{d} d t . \tag{z}
\end{equation*}
\]

Consistent with the yise code, the energy dependence of Equation (1) wil' be represented in terms of energy groups wich are defined such that:
\(\Delta E_{g}=\)-nergy width of the gth group,
\(G=1\) corresponds to the highest energy group,
\(B=G\) corresponds to the lovest energy group,
with the obvious constraint that
\(\sum_{G=1}^{G} \Delta E_{g}=\int_{0}^{E_{0}} d E=E_{0}\), the maximim particle enercy.
A "group" form of Equation (1) is obtained by integrating each tern with respect to the enercy variable over the enercy interval \(\Delta E_{g}\) :
\[
\begin{align*}
& \frac{\partial}{\partial t} \int_{\Delta E_{g}} \frac{1}{\nabla} \phi(\bar{r}, E, \bar{\Omega}, t) d E+\bar{\Omega} \cdot \bar{\nabla} \int_{\Delta E_{g}} \phi(\bar{r}, E, \bar{\Omega}, t) d E+\int_{\Delta E_{g}} \Sigma_{t}(\bar{r}, E) \phi(\bar{r}, F, \bar{\Omega}, t) d E \tag{3}
\end{align*}
\]

Equation (3) provides the formal basis for the following group parameters: * \(\bullet_{g}(\bar{r}, \bar{\Omega}, t)=\) time-dependent group angular Plux;
\[
\begin{equation*}
=\int_{\Delta E_{g}}(\bar{r}, E, \bar{\Omega}, t) d E= \tag{4}
\end{equation*}
\]
\(\Sigma_{t}^{g}(\bar{r})=\) energy-averaged tot/al cross section for the gth group,

\(\nabla_{G}=\) energy-avereged particie speed ior the gth group,
\[
\begin{equation*}
\equiv \frac{\int_{\Delta E_{G}} \phi(\bar{r}, \bar{E}, \bar{M}, \hat{t}) \overrightarrow{A E}}{\int_{\Delta E_{G}} \frac{l}{V} \phi\left(\bar{r}, E, \overline{D_{G} t}\right) d E} \tag{6}
\end{equation*}
\]
\(\Sigma_{g}^{g^{g} \rightarrow g}\left(\bar{r}, g^{n-\alpha a}\right)=\) group \(g^{\prime}\) to group g scattering cross section,
\[
\begin{equation*}
\equiv \frac{\int_{\Delta E_{R^{\prime}}} \int_{\Delta_{B}} \sum_{E_{B}}\left(\bar{r}, E^{\prime}+E^{\prime}, \bar{\Omega}^{\prime}+\bar{\Omega}\right) \phi\left(\bar{r}, E^{\prime}, \Omega^{\prime}, t\right) d E^{\prime} d E}{\int_{\Delta E_{g^{\prime}}} \phi\left(\bar{r}, E^{\prime}, \Omega^{\prime}, t\right) d E^{\prime}} \tag{7}
\end{equation*}
\]
\(S_{g}(\bar{r}, \bar{\Omega}, t)=\) distribution of source particles for the gth group,
\[
\begin{equation*}
\equiv \int_{\Delta E_{g}} S(\bar{r}, E, \bar{\Omega}, t) d E \tag{8}
\end{equation*}
\]

\footnotetext{
These paraseters will be referred to as forvard-weigited group parameters.
}

The group form of the Boltzmann equation expressed in terms of the aforedefined group paramoters is given by
\[
\begin{align*}
& \frac{1}{v_{g}} \frac{\partial}{\partial t} \oint_{g}(\bar{r}, \bar{\Omega}, t)+\bar{\Omega} \cdot \nabla_{g}(\bar{r}, \bar{\Omega}, t)+\Sigma_{t}^{g}(\bar{r}) \varphi_{g}(\bar{r}, \bar{\Omega}, t)  \tag{9}\\
& =S_{g}(\bar{r}, \bar{\Omega}, t)+\sum_{\bar{B}^{\prime}=\tilde{B}}^{1} \int_{4 \pi} d \bar{\Omega}^{\prime} \varepsilon_{S}^{g^{\prime}+g_{g}\left(\bar{r}, \bar{\Omega}^{\prime}+\bar{\Omega}\right)} \phi_{g^{\prime}}\left(\bar{r}, \bar{\Omega}^{\prime}, t\right),
\end{align*}
\]
where the summation over energy groups could be expanded over all \(g^{\prime}\) to allow for upscattering -- not usually considered important in shieiding problems.

\section*{Integral Flux Density Equation}

The transformation of Equation (9) into an integral form is now considered. To accomplish this, the combination of the convection and storage terms are first expressed in terms of the spatial variable R wich relates a fixed point in space ( \(\bar{r}\) ) to an arbitrary point ( \(\bar{r}{ }^{\prime}\) ), as show in Fig. A.l.


Figure A. 1

The total derivative of the angular flux with respect to \(R\) is given by
\[
\frac{d}{d R} \phi\left(\bar{r}^{\prime}, E, \bar{\Omega}, t^{\prime}\right)=\frac{\partial x}{\partial R} \frac{\partial \phi}{\partial x}+\frac{\partial y}{\partial R} \frac{\partial \phi}{\partial y}+\frac{\partial z}{\partial R} \frac{\partial \phi}{\partial z}+\frac{\partial t}{\partial R} \frac{\partial \phi}{\partial t}
\]
which, according to Fig. A.l and noting that the particle's speed (iv) is equal to ( \(-d R / d t\) ) can be rewritten as
\[
\begin{align*}
\frac{d}{d R} \phi\left(\bar{r}^{\prime}, E, \bar{\Omega}, t^{\prime}\right) & =-\Omega_{x} \frac{\partial \dot{\phi}}{\partial x}-\Omega_{y} \frac{\partial \phi}{\partial y}-\Omega_{z} \frac{\partial \hat{\phi}}{\partial z}-\frac{1}{v} \frac{\partial \phi}{\partial t} \\
& =-\bar{\Omega} \cdot \nabla \phi\left(\bar{r}^{\prime}, E, \Omega, t^{\prime}\right)-\frac{1}{v} \frac{\partial \phi}{\partial t} . \tag{10}
\end{align*}
\]

Equation (10) can be expressed in group notation as
\[
\begin{equation*}
-\frac{d}{d R} \phi_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)=\frac{1}{\nabla_{g}} \frac{\partial}{\partial t} \oint_{E}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)+\bar{\Omega} \cdot \nabla \oint_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right) . \tag{11}
\end{equation*}
\]

Sabstitution of Eq. (11) into Eq. (8) with \(\overline{\mathbf{r}} \equiv \overline{\mathrm{r}}^{\prime}\) and \(\mathrm{t} \equiv \mathrm{t}^{\prime}\) yields
\[
\begin{align*}
& -\frac{d}{d R} \phi_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)+\Sigma_{t}^{g}\left(\bar{r}^{\prime}\right) \phi_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)=S_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t\right) \\
& \quad+\sum_{g^{\prime}=z}^{l} \int_{4_{\pi}} d \bar{\Omega}^{\prime} \Sigma_{s}^{g^{\prime}+g}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}+\bar{\Omega}\right) \phi_{g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right) . \tag{12}
\end{align*}
\]

The integrating factor
\[
e^{-\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}-R^{\prime} \bar{\Omega}\right) d R^{\prime}}
\]
is introduced in the following manner:
\[
\begin{align*}
& \left.\left.\frac{d}{d R} \|_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right) e^{-\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}-R^{\prime} \bar{\Omega}\right) d R^{\prime}}\right)\right]=-e^{-\int_{0}^{R} \varepsilon_{t}^{g}\left(\bar{r}-R^{\prime} \bar{\Omega}\right) \dot{\alpha} R^{\prime}} \\
& \quad \times\left(-\frac{\phi_{g}}{d R}+\varepsilon_{t}^{g}\left(\bar{r}^{\prime}\right) \phi_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)\right) \tag{13}
\end{align*}
\]

Using Eq. (23), Bq. (12) can be rewritten as
\[
\left.\begin{array}{l}
-\frac{d}{d R}\left(\phi_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right) e^{-\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}-R^{\prime} \bar{\Omega}\right) d R^{\prime}}\right)=e^{-\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}-R^{\prime} \bar{\Omega}\right) d R^{\prime}}  \tag{14}\\
\quad \times\left[S_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)+\sum_{g^{\prime}}^{1} \int_{g} \int_{4 \pi} d \bar{\Omega}^{\prime} \Sigma_{s}^{g^{\prime}+g_{g}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}+\bar{\Omega}\right)} \varphi_{g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)\right.
\end{array}\right) .
\]

Multiply Bq. (14) by \(d R\) and integrate ( \(R=0\) to \(R=\infty\) ); then
\[
\begin{align*}
& \phi_{g}(\bar{r}, \bar{\Omega}, t)-\phi_{g}\left(\infty, \bar{\Omega}, t_{\infty}\right) e^{-\int_{0}^{\infty} \Sigma_{t}^{g}\left(\bar{r}-R^{\prime} \bar{\Omega}\right) d R^{\prime}} \\
& =\int_{0}^{\infty} d R e^{-\int_{0}^{R} \Sigma_{t}^{E}\left(\bar{r}-R^{\prime} \bar{\Omega}\right) d R^{\prime}} \int S_{g}\left(\bar{r}-R \bar{\Omega}, \bar{\Omega}, t-\frac{R}{v}\right)  \tag{15}\\
& \left.+\sum_{g^{\prime}=g}^{\frac{1}{2}} \int_{4 \pi} \bar{d}^{-} \cdot \Sigma_{s}^{g^{\prime}+g}\left(\bar{r}-R \bar{\Omega}, \bar{\Omega}{ }^{\prime}+\bar{\Omega}\right) \phi_{g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}{ }^{\prime}, t^{\prime}\right)\right\}
\end{align*}
\]

Require that
\[
\begin{equation*}
\left\{\phi_{g}\left(\infty, \bar{\Omega}, t_{\infty}\right) e^{-\int_{0}^{\infty} \Sigma_{t}^{g}\left(\bar{r}-R^{\prime} \bar{\Omega}\right) d R^{\prime}}\right)=0 \tag{26}
\end{equation*}
\]
and introduce the "optical thickness"
\[
\begin{equation*}
\beta_{g}(\bar{r}, \bar{R} \bar{\Omega}) \equiv \int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}-R^{\prime} \bar{\Omega}\right) d R^{\prime} \tag{17}
\end{equation*}
\]
and Eq. (15) beccuues
\[
\begin{align*}
\emptyset_{g}(\bar{r}, \bar{\Omega}, t) & =\int_{0}^{\infty} d R e^{-\beta_{g}(\bar{r}, R \bar{\Omega})}\left\{S_{g}(\bar{r}-R \bar{R}, \bar{\Omega}, t-R / v)\right.  \tag{18}\\
& \left.+\sum_{g^{\prime}=g}^{1} \int_{4_{\pi}} d \bar{\Omega}^{\prime} \cdot \varepsilon_{g}^{g^{\prime}+g\left(\bar{r}-R \bar{\Omega} \bar{\Omega}^{\prime}+\bar{\Omega}\right)} \varphi_{g^{\prime}}\left(\bar{r}^{\prime} \bar{\Omega}^{\prime}, t^{\prime}\right)\right\} .
\end{align*}
\]

Equation (18) will be referred to as the "Integral Flux Density Equation." An effect of interest \(\lambda\) in group notation can be expressed as
\[
\begin{equation*}
\lambda_{g}=\iiint_{J} P_{g}^{\phi}(\bar{r}, \bar{\Omega}, t) \phi_{g}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t \tag{19}
\end{equation*}
\]
where
\(P_{g}^{\phi}(\bar{r}, \bar{\Omega}, t)=\) the response function of the effect of interest due to a urit angular group flux (group \(g, \bar{r}, \bar{\Omega}\), time \(t\) ),
\[
=\frac{\int_{\Delta E} P^{\phi}(\bar{r}, E, \bar{\Omega}, t) \phi(\bar{r}, E, \bar{\Omega}, t) d E}{\int_{\Delta E_{g}}(\bar{r}, E, \bar{\Omega}, t) d E}
\]
\(\lambda_{g}=\) that portion of the effect of interest associated with the gth energy grouy.

The \(\lambda_{g}\) are so defined that the total effect of interest \(i\) is given by the summation
\[
\begin{equation*}
\lambda=\sum_{g=1}^{G} \lambda_{g} \tag{20}
\end{equation*}
\]

\section*{Integral Event Density Equation}

The "event density" \(\psi_{g}(\bar{r}, \bar{\Omega}, t)\) describes the density of particles going into a collision and is related to the group angular flux in the following manner:
\[
\begin{equation*}
\psi_{g}(\bar{r}, \bar{\Omega}, t) \equiv \varepsilon_{t}^{g}(\bar{r}) \varphi_{G}(\bar{r}, \bar{\Omega}, t) \tag{21}
\end{equation*}
\]
where
\(\psi_{g}(\dot{r}, \bar{\Omega}, t) d \bar{\Omega}=\) the number of collision events per unit volume and tise at the space point \(\bar{r}\) and time \(\pm\) experienced by particles having enargies within the gth energy group and directions in disout \(\bar{\Omega}\). The defining equation for the event density is obtained by multiplying both sides of Eq. (18) by the group total cross section \(\Sigma_{t}^{g}(\bar{r})\) and identifying the product \(\Sigma_{t}^{\mathcal{G}}(\bar{r})_{g}(\bar{r}, \bar{\Omega}, t)\) as the event density \(\emptyset_{g}(\bar{r}, \bar{\Omega}, t)\) :
\[
\begin{align*}
& \psi_{G}(\bar{r}, \bar{\Omega}, t)=\int_{0}^{\infty} d R \varepsilon_{t}^{g}(\bar{r}) e^{-\beta_{g}(\bar{r}, R, \bar{\Omega})}\left\{S_{g}(\bar{r}-R \bar{R}, \bar{\Omega}, t-R / v)\right. \tag{22}
\end{align*}
\]

Equation (22) will be referred to as the "Integral Event Density Equation."
The effect of interest \(\lambda_{g}\) can be expressed in terms of the event density; consider Eq. (19) rewritten as
\[
\begin{align*}
\lambda_{g} & =\iiint \frac{P_{B}^{\phi}(\bar{r}, \bar{\Omega}, t)}{\Sigma_{t}^{g}(\bar{r})} \Sigma_{t}^{g}(\bar{r}) \phi(\bar{r}, \bar{R}, t) d \bar{r} d \bar{d} d t  \tag{23}\\
& =\iiint P_{g}^{\phi}(\bar{r}, \bar{\Omega}, t) \psi_{g}(\bar{r} \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t,
\end{align*}
\]
where
\[
\begin{align*}
& P_{g}^{\phi}(\bar{r}, \Phi, t)=\text { the response function of the effect of interest due to a } \\
& \text { particle which experiences an event at (group g, } \overline{\mathrm{r}}, \bar{\Omega}, \text { time } \mathrm{t} \text { ), } \\
& P_{g}^{\$}(\bar{r}, \bar{\Omega}, t)=P_{g}^{\ell}(\bar{r}, \bar{\Omega}, t) / \Sigma_{t}^{g}(\bar{r}) \\
& \text { or } \\
& P_{g}^{\phi}(\bar{r}, \bar{\Omega}, t)=\varepsilon_{t}^{B}(\bar{r}) P_{g}^{\phi}(\bar{r}, \bar{\Omega}, t) . \tag{24}
\end{align*}
\]

\section*{Integral Emergent Particle Density Equation}

Define the emergent particle density \(X_{g}(\bar{r}, \bar{\Omega}, t)\) as the density of particles leaving a source or amerging from a real collision with phase space coordinates (group \(g, \bar{r}, \bar{\Omega}, t\) ),
\[
\begin{equation*}
x_{g}(\bar{r}, \bar{\Omega}, t)=S_{g}(\bar{r}, \bar{\Omega}, t)+\sum_{g^{\prime}} \int_{M_{\pi}} d \bar{\Omega}^{\prime} \sum_{g}^{g^{\prime} \rightarrow g}\left(\bar{r}, \bar{\Omega}^{\prime}+\bar{\Omega}\right) g_{g^{\prime}}\left(\bar{r}, \bar{\Omega}^{\prime}, t\right) \tag{25}
\end{equation*}
\]

Then Eq. (18) can be written as
\[
\begin{equation*}
\phi_{g}(\bar{r}, \bar{\Omega}, t)=\int_{0}^{0} d R e^{-B_{g}(\bar{r}, R, \bar{\Omega})} x_{g}\left(\bar{r}, \bar{\Omega}, t^{\prime}\right) \tag{26}
\end{equation*}
\]

The "Integral Pmergent Particle Density Equation" is obtained oy substituting Eq. (26) into Eq. (25) :
\(x_{g}(\bar{r}, \bar{n}, t)\)


The effect of interest \(\lambda_{g}\) can also be expressed in terns of the emergent particle density
\[
\begin{equation*}
\lambda_{g}=\iiint P_{g}^{X}(\bar{r}, \bar{\Omega}, t) x_{g}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t . \tag{26}
\end{equation*}
\]

The response function \(P_{g}^{X}(\bar{r}, \bar{\Omega}, t)\) is nbtained by considering a particle which emerges from a coilision at \(\bar{r}\) with phase space coordinates (group \(g, \bar{R}\), time \(t\) ). This particle will experience an event in \(d R\) about \(\overline{\mathbf{r}}=\overline{\mathbf{r}}+\mathrm{R} \overline{\mathrm{M}}\) at time \(t^{\prime}=t+R i v\) with the probability
\[
\Sigma_{t}^{g}\left(\bar{r}^{\prime}\right) e^{-\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \bar{\ell}\right) d R}
\] dR ,
and the contribution of this event is the response function \(\left.P_{G}^{\phi}(\bar{r})^{\prime}, \bar{\Omega}, t \cdot\right)\). The sum of all such contributions to the effect of interest is given by
\[
\int_{0}^{E} d R \varepsilon_{t}^{g}\left(\bar{r}^{\prime}\right) e^{-\int_{0}^{P} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \Omega\right) d R^{\prime}} P_{g}^{\phi}\left(\bar{r}^{\prime}, \Omega, t^{\prime}\right),
\]
and should be the same as a response function \(P_{g}^{X}(\bar{r}, \bar{\Omega}, t)\) which is based on emergent particle density. This leads to the following relationship:
\[
\begin{equation*}
P_{E}^{X}(\bar{r}, \bar{\Omega}, t)=\int_{0}^{0}\left\{R \Sigma_{t}^{E}\left(\bar{r}^{\prime}\right) e^{-B^{*( }(\bar{r}, R, \bar{\Omega})_{P^{W}}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right),}\right. \tag{29}
\end{equation*}
\]
where
\(f_{G}^{X}(\bar{r}, \bar{\Omega}, t) \equiv\) the response function (of the effect of interest due to a particle which emerges from a collision having the phase space coordinates (group \(g, \bar{r}, \bar{L}\), time \(t\) )
\[
\begin{equation*}
\beta^{*}(\bar{r}, R, \bar{\Omega}) \equiv \int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \bar{\Omega}\right) d R^{\prime} \tag{30}
\end{equation*}
\]

It is noted that \(\beta_{g}^{\prime \prime}(\bar{r}, R, \bar{\Omega})\) differs from the optical thickness \(\beta_{g}(\bar{r}, R, \bar{\Omega})\) as defined by Eq. (17) in that the integration is performed in the positive \(\overline{2}\) direction and as such \(\beta_{g}^{e}(\bar{r}, R, \bar{\Omega})\) is the adjoint of \(\beta_{g}(\bar{r}, R, \bar{\Omega})\). \(\mathcal{P}_{g}^{X}(\bar{r}, \bar{\Omega}, t)\) can also be expressed in terms of \(P_{G}^{\hat{t}}(\bar{r}, \bar{\Omega}, t)\) by substituting Eq. (25) into Eq. (29), yielding
\[
\begin{equation*}
\mathbb{P}_{\boldsymbol{g}}^{X}(\bar{r}, \bar{\Omega}, t)=\int_{0}^{\infty} d R e^{-B_{B}^{\#}(\bar{r}, R, \bar{\Omega})}{ }_{P_{g}^{\dot{\varphi}}}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right) \tag{31}
\end{equation*}
\]

\section*{Operatire Motation and Sumary of the Forvard Equations}

De.fine the transport intagral operator
\[
\begin{equation*}
T_{g}(\bar{r} \cdot \bar{T}, \bar{\Omega}) \equiv \int_{0}^{\infty} d R \Sigma_{t}^{g}(\bar{r}) e^{-\beta_{g}(\bar{r}, R, \bar{\Omega})}, \tag{32}
\end{equation*}
\]
and the col:ision integral operator
\[
\begin{equation*}
C_{g^{\prime} \rightarrow g}(\bar{r}, \bar{\Omega}+\bar{L})=\sum_{g^{\prime}=g}^{1} \int d \bar{K}^{\prime} \frac{\Sigma_{g}^{g_{g}^{\prime}+g}\left(\bar{r}, \bar{\Omega}^{\prime}+\bar{\Omega}\right)}{\Sigma_{t}^{g^{\prime}}(\bar{r})}, \tag{33}
\end{equation*}
\]
which can be rewritten as
where

In Eq. (34), \(\left[\Sigma_{s}^{g^{\prime} \vec{G}}\left(\bar{r}, \bar{\Omega}{ }^{\prime} \rightarrow \bar{\Omega}\right) / \Sigma_{s}^{g^{\prime}}(\bar{r})\right]\) is a normalized probability density function from which the selection of a new energy group and direction can be accomplished and \(\left[\Sigma_{s}^{g^{\prime}}(\bar{r}) / \Sigma_{t}^{g^{\prime}}(\bar{r})\right]\) is the nonabsorption probability.

Using the transport and collision integral operators, Eq. (22) can be rewritten as
\[
\begin{equation*}
\psi_{g}(\bar{r}, \bar{\Omega}, t)=T_{g}\left(\bar{r}^{\prime}+\bar{r}, \bar{\Omega}\right) S_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)+C_{g^{\prime}+g}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}+\bar{\Omega}^{\prime}\right) \psi_{g}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}, t^{\prime}\right) \tag{36}
\end{equation*}
\]

The term \(T_{g}\left(\bar{r}{ }^{\prime}, \bar{r}, \bar{\Omega}\right) S_{g}\left(\overline{r^{\prime}}, \bar{\Omega}, t^{\prime}\right)\) can be identified as the "first collision source" and denoted by
\[
\begin{equation*}
S_{c}^{g}(\bar{x}, \underline{\Omega}, t) \equiv T_{g}\left(\bar{r}^{\prime}+\bar{r}, \bar{\Omega}\right) S_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right), \tag{37}
\end{equation*}
\]
and the "Integral Event Density Equation" becomes
\[
\begin{equation*}
\phi_{g}(\bar{r}, \bar{\Omega}, t)=S_{c}^{g}(\bar{r}, \bar{\Omega}, t)+T\left(\bar{r}^{\prime} \rightarrow \bar{r}, \bar{\Omega}\right) C_{g^{\prime}+g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}+\bar{\Omega}\right) ;_{g}\left(\bar{r}:, \Omega^{\prime} ; \pm^{\prime}\right) \tag{38}
\end{equation*}
\]

Using the relationship \(\psi_{g}(\bar{r}, \bar{\Omega}, t)=\Sigma_{t}^{g}(\bar{r})_{g}(\bar{r}, \bar{\Omega}, t)\), Eq. (30) can be transformed into the "Integral Flux Density Equation:"
\[
\begin{equation*}
\phi_{g}(\bar{r}, \bar{\Omega}, t)=\frac{S_{c}^{\bar{E}}(\bar{r}, \bar{\Omega}, t)}{\Sigma_{t}^{g}(\bar{r})}+T_{g}\left(\bar{r}^{\prime}, \bar{r}, \bar{\Omega}\right) c_{g^{\prime}+g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}-\bar{\Omega}^{\bar{\Omega}}\right) \frac{\Sigma_{t}^{g^{\prime}}\left(\bar{r}^{\prime}\right)}{\sum_{t}^{g}(\bar{r})} \phi_{g}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}, t^{\prime}\right) . \tag{39}
\end{equation*}
\]

Finally, the integral operators are introduced into Eq. (28) and the following form for the "Integral Eaergent Particle Density Equation" is obtained:
\[
\begin{equation*}
X_{g}(\bar{r}, \bar{\Omega}, t)=S_{g}(\bar{r}, \bar{\Omega}, t)+C_{g^{\prime} \rightarrow g}\left(\bar{r}, \bar{\Omega} '^{\prime}-\bar{\Omega}\right) T_{g^{\prime}}\left(\bar{r}^{\prime}+\bar{r}, \bar{\Omega}^{\prime}\right) X_{g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega} \bar{\prime}^{\prime}, t^{\prime}\right) \tag{40}
\end{equation*}
\]

An examination of Equations (38), (39), and (40) would reveal that either the "Integral Event Density Equation" or the "Integral Emergent Particle Density Equation" would provide a reasonable basis for a Monte Carlo random walk. Equation (40) was selected for the MPRSE code since the source particles would be introduced according to the natural distrirution rather than the distribution of :irst collisions. However, it is noted that after the intpoduction of the source particle, the subsequent
random walk can be regarded in terms of either Eq. (38) or Eq. (40) with the particle's weight at a collisigu site being the weight befure collision (WTBC) or the weigit after collision (WATE), respectively.

The rancion walk based on the "Integral Emergent Particle Density Equation" vould introduce a particle into the system according to the source function. The particle travels to the sice of its first col_isio. as deternized by the transport kernel. Its weight is modified by the non-absorption probability and a new energy group and flight direction are selected frow the coilision kernel. The transport and collision kernels are applied successively determining the particle's emergent phase snace coordinates corresponding to the second, third, ete., collision sites until the randon walk is terminated due to the reduction of the particie's veight below scme cut.-off value or because the particle escapes from that portion of phase space associated with a particular problem (for exeaple, escape fiom the system, slowing dorn below an enerey cutoff, or excesding some arbitrarily specified age cut-off).

\section*{Rendian Walk Procedure}

The actual implesientation of the random walk procedure is accomplished by approximating the integrals implied in the coliision and transport integral operators by the sum
\[
\begin{equation*}
x_{E}(\bar{r}, \bar{\Omega}, t)=\sum_{n=0}^{\infty} x_{g}^{n}(\bar{r}, \Omega, t), \tag{41}
\end{equation*}
\]
where
\[
\begin{aligned}
& X_{B}^{E}(\bar{r}, \Omega, t) d \bar{\Omega}=\text { the emergent partisle density of particles emerging } \\
& \text { from its zith collision and having phase space coordinates (group } \\
& \text { B, } \bar{r}, ~ d \Omega \text { about } \bar{\Omega} \text {, time } t \text { ), } \\
& x_{g}^{0}(\bar{r}, \bar{\Omega}, t)=S_{g}(\bar{r}, \Omega, t),
\end{aligned}
\]

Thus, the source conrinates (grouo \(g_{0}, \bar{r}_{0}, \delta_{0}\), time \(\varepsilon_{0}\) ) are selected irom \(\delta_{g}(\bar{r}, \bar{L}, t)\) end a Hight Aistance \(R\) is picked \(\Sigma_{t}^{S_{0}}(\bar{r}) e^{-\beta_{g_{0}}}\left(\bar{r}, R, \Omega_{0}\right)\) to deteraine the site for the first collisicy \(\bar{r}_{1}\) and the particle's age \(t_{1}=t_{0}+R / y_{G_{0}}\). The probability of acettering is \(\varepsilon_{s}^{\mathcal{E}_{0}}\left(\bar{r}_{1}\right) / \Sigma_{t}^{g_{0}}\left(\bar{r}_{1}\right)\). All particles are forced to scatter and the'r weight is modified with this probability. A new group \(g_{1}\) is selected according to the distribution
\[
\frac{\int_{\sum_{i \pi}} d \bar{\Omega} \sum_{s}^{g_{0}+g}\left(\bar{r}_{p} \Omega_{0}+\bar{\Omega}\right)}{\sum_{s}^{g_{0}}\left(\bar{r}_{1}\right)} .
\]
and then a nev direction \(\bar{\Omega}\) is determined from
\[
\frac{\varepsilon_{\mathrm{g}}^{g_{0}+g_{1}}\left(\bar{r}_{p} \bar{\Omega}{ }_{0}+\bar{\Omega}\right)}{\Sigma_{s}^{g_{0}+g_{1}}\left(\bar{r}_{1}\right)} .
\]

The process is repeated until the particle history is terminated. Contrioutions to the quantity of interest are estimated at appropriate points in the random valk (boundary crossings, before or after real collisions, etc.) using the particle's WATS and the estimator \(P_{g}^{X}(\bar{r}, \bar{\Omega}, t)\).
Derivation of the Adioint Integro-Differintial Boitzaann Transport Equation
Consider a (as yet unspecified) function \({ }^{(\bar{r}, E, \bar{\Omega}, t) \text { which exists over }}\) the same phase spase and satisfies the same kind of boundary conditions satisfied by the forward angular flux \(\phi(\bar{r}, E, \bar{\Omega}, t)\). Further, let an operator \(0^{*}\) be defined such that the following integral relationship is satisfied:
\[
\begin{aligned}
& \left.\iiint \int \phi^{(\bar{r}, E} \bar{\Omega}, t\right) 0 \phi(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{\rho} d t
\end{aligned}
\]

The 0 * operator will be referred to as the adjoint operator to the corresponding forward operator 0 .

Multiply each term of the Boltzmann transport equation, Eq. (1), by the fuaction \({ }^{(\prime)}(\bar{r}, E, \Gamma, t)\) and integrate tiae resultant equation (term by term) over all phase space:
\[
\begin{align*}
& \left.\iiint \int \phi^{\#}(\bar{r}, E, \bar{\Omega}, t) \frac{1}{\bar{v}} \frac{\partial}{\partial t} \phi(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{\Omega} d t+\iiint \int \phi^{(\bar{r}}, E, \bar{\Omega}, t\right) \\
& \times \nabla \cdot \bar{\Omega} \phi(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{\Omega} d t+\iiint \int(\bar{r}, E, \bar{\Omega}, t) \varepsilon_{t}(\overline{\tilde{B}}, E)  \tag{42}\\
& \times \phi(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{\Omega} d t=\iiint \int \phi^{m}(\bar{r}, E, \bar{\Omega}, t) s(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{\Omega} d t \\
& +\iiint \int \varphi^{\prime \prime}(\bar{r}, E, \bar{\Omega}, t) \iint \Sigma_{\beta}\left(\bar{r}, E^{\prime}+E, \Omega^{\prime}+\bar{\Omega}\right) \phi\left(\bar{r}, E^{\prime}, \bar{\Omega}{ }^{\prime}, t\right) d E^{\prime} d \bar{\Omega}{ }^{\prime} d \bar{r} d E d \bar{\Omega} d t .
\end{align*}
\]

It can be shown that the foliowing adjoint relationships are true for the conditions associated with a particle transport problem:
\[
\begin{aligned}
& \iiint \int(\bar{r}, E, \bar{Q}, t) \frac{1}{\nabla} \frac{\partial}{\partial t} \phi(\bar{r}, 3, \bar{Q}, t) d \bar{r} d B A \bar{R} d t=-\iiint \int(\bar{r}, E, E, t) \frac{1}{v} \frac{\partial}{\partial t}
\end{aligned}
\]
\[
\begin{aligned}
& \iiint \int \phi(\bar{r}, E, \bar{\Omega}, t) \varepsilon_{t}(\bar{r}, E) \phi(\bar{r}, E, \bar{\Omega} t) d \bar{r} d E d \bar{d} t=\iiint \int \phi(\bar{r}, E, \bar{\Omega}, t) \\
& \times \Sigma_{t}(\bar{r}, E) \cdot(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{C} d t \text {, } \\
& \left.\iiint \int \psi^{(\bar{r}}, E, \bar{\Omega}, t\right) \quad \nabla \cdot \bar{\Omega} \phi(\bar{r}, E, \bar{L}, t) d \bar{r} d E d \bar{d} d t=-\iiint \int \phi(\bar{r}, E, \bar{\Omega}, t)
\end{aligned}
\]
\[
\begin{aligned}
& =\iiint \int \phi(\bar{r}, E, \bar{\Omega}, t) \iint \Sigma_{s}\left(\bar{r}, B+E^{\prime}, \bar{\Omega}+\bar{\Omega}{ }^{\prime}\right) \geqslant\left(\bar{r}, E^{\prime}, \bar{\Omega}{ }^{\prime}, t\right) d E^{\prime} d \overline{B^{\prime}} d \bar{r} d E d \bar{Z} d t
\end{aligned}
\]

The boundary terms wich occur in Equations (43) and (45) may be made to vanish while conforning to the natural characteristics of the system under analysis. For example, the extent of the time domein can be aefined such that initial and final values of and/or * are zero [and the boundary term of Eq. (43) vanishes]. Also, the surface within which the spatial domain of phase space is contained can be so located trat the combination [4 *"] is zero everywhere on that surface [and the boundary term of Eq. (45) vanishes]. For most Monte Carlo analyses, the elimination of the boundary terms in no way restricts the gererality of the solution obtained.

Using the adjoint relationships given by Equations (43) through (46), and presinaing that the boundary terms \(\operatorname{vanish}, \mathrm{Eq}\). (42) can be rewritten as
\[
\begin{aligned}
& -\iiint \int \phi(\bar{r}, E, \bar{\Omega}, t) \frac{1}{V} \frac{\partial}{\partial t} \phi(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{\Omega} \bar{A} t-\iiint \int \phi(\bar{r}, E, \bar{\Omega}, t)
\end{aligned}
\]
\[
\begin{align*}
& =\iiint \int \phi(\bar{r}, E, \bar{\Omega}, t) S^{*}(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{\Omega} d t+\iiint \int \phi(\bar{r}, E, \bar{\Omega}, t) \tag{47}
\end{align*}
\]

Where the edjoint source tern \(S^{* \prime}(\bar{r}, E, \bar{\Omega}, t)\) is defined suci that
\[
\begin{align*}
& \iiint \int_{0}(\bar{r}, E, \bar{\Omega}, t) S^{\#}(\bar{r}, E, \bar{\Omega}, t) d \bar{r} d E d \bar{d} d t \\
&=\iiint \int \rho^{\#}(\bar{r}, E, \bar{\Omega}, t) S(\bar{r}, E, \bar{\Omega}, t) d \bar{r} \bar{\alpha} E A \bar{\Omega} d t . \tag{48}
\end{align*}
\]

耳oting that the forvard flux \(\phi(\bar{r}, E, \bar{\Omega}, t)\) can be factored from each term, Bq. (47) can be rearranged as follove:
\[
\begin{aligned}
& \left.\iiint \int \phi(\bar{r}, E, \bar{\Omega}, t) \quad\left[-\frac{1}{v} \frac{\partial}{\partial t} \phi^{(\bar{r}}, \bar{E}, \bar{\Omega}, t\right)-\nabla \cdot \bar{\Omega} \varphi^{(\bar{r}}, E, \bar{\Omega}, t\right)
\end{aligned}
\]
\[
\begin{align*}
& \left.x \phi^{\prime \prime}\left(\bar{r}, E^{\prime}, \bar{\Omega} ', t\right) d E \cdot d \bar{\Omega} \cdot\right) d \bar{r} d E d \bar{\Omega} d t=0 . \tag{49}
\end{align*}
\]

It is required that the forward angular flux \(\phi(\bar{r}, E, \bar{\Omega}, t)\) correspond to non-trivial physical situations, i.e., \((\bar{r}, E, \bar{\Omega}, t)>0\) over at least some portion of phase space. The observation is made that \(\psi^{*}(\bar{r}, E, \bar{\Omega}, t)\) is still essentially undefined and that many functions \({ }^{*}(\bar{r}, E, \bar{\Omega}, t)\) probably satisfy Eq. (49). At this point, \(\boldsymbol{q}^{*}(\overline{\mathrm{r}}, \mathrm{E}, \bar{\Omega}, \mathrm{t})\) f.s defined to be that function which satisfies the following equation:
\[
\begin{aligned}
& {\left[-\frac{1}{v} \frac{\partial}{\partial t} \phi^{*}(\bar{r}, E, \bar{\Omega}, t)-\nabla \cdot \bar{\Omega}^{*}(\bar{r}, E, \bar{\Omega}, t)+\Sigma_{t}(\bar{r}, E) \phi^{*}(\bar{r}, E, \bar{\Omega}, t)-S^{*}(\bar{r}, E, \bar{\Omega}, t)\right.} \\
& \left.\quad-\iint \Sigma_{s}\left(\bar{r}, E \rightarrow E^{\prime}, \Omega_{\Omega \rightarrow \bar{\Omega}^{\prime}}\right) \phi^{*}\left(\bar{r}, E^{\prime}, \bar{\Omega}^{\prime}, t\right) \sum^{\prime} d \bar{\Omega}^{\prime}\right)=0 .
\end{aligned}
\]

This condition also satisfies Eq. (49) exactly and provides the following \(\phi^{*}(\bar{r}, E, \bar{\Omega}, t)\)-defining integro-differential equation:
\[
\begin{align*}
& -\frac{J}{\psi} \frac{\partial}{\partial t} \phi^{*}(\bar{r}, E, \bar{\Omega}, t)-\nabla \cdot \bar{\Omega} \phi^{*}(\bar{r}, E, \bar{\Omega}, t)+\varepsilon_{t}(\bar{r}, E) \phi^{*}(\bar{r}, E, \bar{\Omega}, t) \tag{50}
\end{align*}
\]
whicn is commonly called the "Adjoint Integro-Differential Boltzmann Equation." However, it will not be the practice here to refer to the function \(\phi^{\prime \prime}(\bar{r}, E, \Omega, t)\)
as the adjoint flux; consistent terninology will be introduced later in this section.

At this point, two procedures for defining and calculating group adjoint fluxes are considered. One method involves integrating each term of Eq. (50) over the energy interval \(\Delta E_{g}\), which leads to the following group equations:
\[
\begin{equation*}
\hat{\mathrm{S}}_{\mathbf{G}}^{\#}(\overline{\mathrm{r}}, \bar{\Omega}, t)=\frac{1}{\Delta E_{G}} \int_{\Delta \mathbb{E}_{g}} S^{*}(\bar{r}, E, \bar{\Omega}, t) d E \tag{56}
\end{equation*}
\]
\[
\begin{align*}
& \hat{\phi}_{g}^{\#}(\bar{r}, \bar{\Omega}, t)=\frac{1}{\Delta E_{g}} \int_{\Delta E_{g}} \phi^{*}(\bar{r}, E, \bar{\Omega}, t) d E,  \tag{52}\\
& \hat{\nabla}_{G}=\frac{\int_{\dot{S E}_{g}} \phi^{*}(\bar{r}, E, \bar{\Omega}, t) d E}{\int_{\Delta E_{G}} \frac{1}{V} \phi^{*}(\bar{r}, E, \bar{\Omega}, t) d E}  \tag{53}\\
& \int_{\Delta E} \Sigma_{t}(\bar{r}, E) \phi(\bar{r}, E, \bar{\Omega}, t) d E \\
& \hat{\Sigma}_{t}^{g}(\bar{r}) \equiv \frac{\Delta E_{g}}{},  \tag{54}\\
& \int_{\Delta E_{g}} \phi^{\#}(\bar{r}, E, \bar{\Omega}, t) d E
\end{align*}
\]
\[
\begin{align*}
& =S_{S}^{\# \#}(\bar{r}, \bar{\Omega}, t)+\sum_{g^{\prime}=g}^{G} \int d \bar{\Omega} \cdot \hat{\Sigma}_{s}^{g^{+} g^{\prime}\left(\bar{\Omega}+\bar{\Omega}^{\prime}\right) \hat{\varphi}_{g}^{\#},(\bar{r}, \bar{\Omega}, t), ~}  \tag{5i}\\
& \mathrm{~g}=1,2, \ldots \mathrm{G}
\end{align*}
\]

The \(\hat{\dot{L}}_{t}^{\mathrm{g}}(\overline{\mathrm{r}}), \hat{\bar{\Sigma}}_{\mathrm{s}}^{\mathrm{g}+\mathrm{g}^{\prime}}\left(\overline{\mathrm{r}}, \bar{\Omega}+\overline{\delta^{\prime}}\right)\), and \(\hat{\mathbf{v}}_{\mathrm{g}}\) are adjoint weighted group parameters and their use in the solution of Eq. (51) provides group adjoint fluxes defined by Eq. (52) where ( \(\overline{\mathrm{r}}, \mathrm{E}, \bar{\Omega}, \mathrm{t}\) ) represents the solution of Bq . (50).

Another approach for defining group adjoint fluxes is to directly devise the equation which is adjoint to the group form of the Boltzmann equation [Bq. (9)]. The group adjoint equation so obtained* is given by
\[
\begin{aligned}
& g=1,2, \ldots . .
\end{aligned}
\]
where \(v_{g}, \Sigma_{t}^{g}(\bar{r})\) are forvard weighted group parameters identified to those which occur in Eq. (9) and the matrix \(\mathcal{E}_{s}^{\mathcal{E}+\mathcal{B}^{\prime}}(\bar{r}, \bar{\Omega}+\bar{\Omega} 1)\) is simply the transposition of the forward weighted group-to-group differential scattering proessection matrix.

The group adjoint fluxes \({ }_{\bar{g}}(\bar{r}, \bar{\Omega}, t)\) which represent the solution of Eq. (57) are adjoint to the group fluxes \(g_{g}\) and do not necessarily assume the same values as the group adjoint fluxes \(\hat{\Phi}_{\bar{G}}^{\#}(\bar{r}, \bar{\Omega}, t)\), i.e.,
\[
\Phi_{G}^{*}(\bar{r}, \bar{\Omega}, t) \neq \frac{1}{\Delta E_{G}} \int_{\Delta E_{g}} \Phi^{*}(\bar{r}, E, \bar{\Omega}, t) d E .
\]

This follows since \(\Sigma_{t}^{g}(\bar{r}), \Sigma_{s}^{g \rightarrow g^{\prime}}\left(\bar{r}, \bar{\Omega} \rightarrow \overline{h^{\prime}}\right)\), and \(v_{g}\) are, in general, different from the adjoint weighted values. Usually forward weignted group parameters, as implied by Eq. (57), are used in MORSE. However, other weighting schemes, such as adjoint or adjoint and forward, deserve consideration when cross-section weighting is a problem. When a sufficiently fine group structure is employed, the group parameters become less sensitive to the weighting scheme and the corresponding group adjoint fluxes are also nearly the same.

\footnotetext{
The derivation of Eq. (57) is not presented here because of its similarity with the previous derivation of Eq. (50); the integrals over energy are simply replaced by appropriate group summations.
}

\section*{Integral Point-Value Bquation}

Bquation (57) is now transformed into an integel form following essentially the same procedures used with the forvard equations. As shown in Fig. A.2, let \(\bar{r}^{\prime}=\bar{r}+\mathrm{R} \overline{\mathrm{I}}\) rather than \(\overline{\mathrm{r}}^{\prime}=\overline{\mathbf{r}}-\mathrm{R} \overline{\mathrm{I}}\) as was the convention with the forvari equations. The total derivative of \({ }_{g}(\bar{r}, \bar{\Omega}, t)\) with respect to \(R\) is given by
\[
\begin{equation*}
\frac{d}{d R} \phi_{g}^{\#}\left(r^{\prime}, \Omega, t^{\prime}\right)=\frac{1}{\nabla_{g}} \frac{\partial}{\partial t} \oint_{g}^{( }\left(r^{\prime}, \Omega, t^{\prime}\right)+\nabla \cdot \Omega_{g}^{\left(r^{\prime}, \Omega, t^{\prime}\right)} \tag{58}
\end{equation*}
\]


Pigure A. 2
\[
-\int_{0}^{R} \Sigma_{\dot{t}}^{g}\left(\bar{r}+R^{\prime} \bar{\Omega}\right) d P^{\prime}
\]
provides the following
Use of the integrating factor e relationship:
\[
\begin{aligned}
& -\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \delta^{\prime}\right) d R^{\prime} \\
& \frac{d}{d R}\left\{\varphi_{g}\left(\bar{F}, D_{3} t^{\prime}\right) e^{0}\right\}
\end{aligned}
\]
\[
\begin{align*}
& x e^{-\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \bar{\Sigma}\right) d R^{\prime}}=e^{-\int_{0}^{E} \Sigma_{t}^{g}\left(\overline{r^{\prime}}+R^{\prime} \bar{Q}\right) d R^{\prime}} \tag{59}
\end{align*}
\]

Equation (59), together with Eq. (58), can be arranged to give
\[
\begin{align*}
& \left(-\frac{1}{\nabla_{g}} \frac{\partial}{\partial t} \phi_{g}^{\# \#}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)-\nabla_{0} \bar{\Omega} \oint_{g}^{\prime \prime}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)+\varepsilon_{t}^{g}\left(\bar{r}^{\prime}\right) \phi_{g}^{\# \#}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)\right) \\
& =e^{+\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \bar{\Omega}\right) d R^{\prime}}{ }^{\frac{d}{d R}}\left(\rho_{\bar{\prime}}^{\prime \prime}\left(\bar{r}{ }^{\prime}, \bar{\Omega}, t^{\prime}\right) e^{-\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \bar{\Omega}\right) d R^{\prime}}\right) . \tag{60}
\end{align*}
\]

It is noted that Eq. ( 60 ) is identically the left-hand side of Eq. (57) which can now be rewritten as
\[
\begin{align*}
& -\frac{d}{d R}\left(\phi_{g}^{\prime \prime \prime}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right) e^{-\int_{0}^{8} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \bar{\Omega}\right) d R^{\prime}}\right)=e^{-\int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \bar{\Omega}\right) d R^{\prime}}  \tag{61}\\
& \quad \times\left\{S_{g}^{\|}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)+\sum_{g^{\prime}=g}^{G} \int d \bar{\Omega}^{\prime} \Sigma_{g}^{g^{\prime} g^{\prime}}\left(\bar{r}^{\prime}, \Omega^{\prime}+\bar{\Omega}^{\prime}\right) \varphi_{g^{\prime}}^{\prime \prime}\left(\bar{r}^{\prime}, \Omega^{\prime}, t^{\prime}\right)\right\} .
\end{align*}
\]

\section*{Integrate Eq. (61) froe R \(=0\) to \(R=\infty\) and assume that}
\[
\begin{equation*}
\left.-e^{-\int_{0}^{\infty} \varepsilon_{t}^{g}\left(\bar{r}+R^{\prime} \bar{\Omega}\right) d R^{\prime}} \quad\right\} \equiv 0 ; \tag{62}
\end{equation*}
\]
then the following integral expression for \(\psi_{E}(\bar{r}, \bar{D}, t)\) is obtained:

Equation (63) contains the adjoint optical thickness \(\beta_{g}^{\prime \prime}(\bar{r}, R, \bar{\Omega})\) which was defined earlior by Eq. (30) as
\[
\beta_{g}^{z}(\bar{r}, R \bar{\Omega}) \equiv \int_{0}^{R} \Sigma_{t}^{g}\left(\bar{r}+R^{\prime} \bar{\Omega}\right) d R^{\prime}
\]

Redefine the source term an
\[
\begin{equation*}
S_{G B}^{E}\left(\overline{r_{s}} \bar{\Omega}, t\right)=\int_{0}^{R} d R e^{-\varepsilon_{B}^{*}(\bar{r}, R, \bar{\Omega})} S_{g}^{*}\left(\bar{r}+R \bar{\Omega}, \bar{\Omega}, t+R / \nabla_{B}\right), \tag{64}
\end{equation*}
\]
and Eq. (63) can be rewritten as
\[
\begin{align*}
& \times \phi_{g^{\prime}}\left(\bar{r}^{\prime}, \Omega^{\prime}, t^{\prime}\right)=S_{T g}^{*}(\bar{r}, \Omega, t)+\int_{0}^{\infty} d R \Sigma_{t}^{g}\left(\bar{r}+R^{\Omega}\right) e^{-B_{g}^{\#}(\bar{r}, R, \bar{\Omega})} \tag{65}
\end{align*}
\]
and in teras of the transport and caliision operators, Eq. (65) becomes

A comparison of Eq. (66) with Equatisos (38), (39), and \(i \approx 0\) ) reveals that the function \(\rho_{8}(\bar{r}, \bar{\pi}, t)\) as defined by Eq. \((66)\) is edjoint to the energent particle density \(x_{g}(\bar{r}, \bar{\Omega}, t)\) as derined by Eq. (40). Therefore, let \({ }_{8}(\bar{r}, \bar{\Omega}, t)\) be denoted by \(\left.X_{g}^{(i r}, \bar{D}, \pm\right)\) and Eq. (66) beacmes

The reture of \(\left.X_{g}^{(\bar{r}}, \bar{\Omega}, t\right)\) vill depend on \(S_{\text {Is }}(\bar{r}, \bar{\Omega}, t)\) - how or on wat besis should \(S_{T_{5}}(\bar{r}, \bar{\Omega}, t)\) be specified If \(S^{*}\left(\bar{r}, E_{i} \bar{l}, t\right)\) is set equal to \(P^{\dagger}(\bar{r}, E, \Omega, t)\) (the response function of the effect of interest \(\lambda\) due to a unit aguiar flux), then

Accoriling to Eq. (48), the effect of interest \(\lambda\) would also be given by
\[
\begin{equation*}
\lambda=\iiint \int \rho^{\#}(\bar{r}, E, \bar{\Omega}, t) S(\bar{r}, E, \bar{\Omega}, t) d_{\bar{r}} d E d \bar{\Omega} d t . \tag{69}
\end{equation*}
\]

The effect of interest as giren by Eq. (69) can also be expressed in group notation
\[
\begin{aligned}
& \lambda_{E}=\iiint \hat{i}_{g}(\bar{r}, \bar{\Omega}, t) \hat{S}_{g}(\bar{r}, \bar{\Omega}, t) \mathrm{d} \bar{r} \bar{\Omega} d t \\
& =\iiint{ }_{g}(\bar{r}, \bar{\Omega}, t) \hat{S}_{\bar{B}}(\bar{r}, \bar{\Omega}, t) d \bar{r} \alpha \widehat{\Omega} d t,
\end{aligned}
\]
where
\(\hat{i}_{8}^{n}(\bar{r}, \bar{a}, t)\) is the group adjoint flux corresponding to the adjoint weighted group parameters,

However, es noted earlier, usually forward veighted group parameters are
 As a direct consequence of the derivation of the \(\frac{\operatorname{c}}{\mathbf{E}}(\bar{r}, \bar{\Omega}, t)\) defining equation, Eq. (57), the effect of interest for the gth group is also given by
\[
\begin{align*}
\lambda_{g} & =\iiint_{g}(\bar{r}, \bar{\Omega}, t) S_{g}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\alpha} \bar{d} \\
& =\iiint_{g}(\bar{r}, \bar{\Omega}, t) S_{g}^{n}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t \tag{70}
\end{align*}
\]
where
© \((\bar{r}, \bar{\Omega}, t)\) is the group adjoint 1 lux corresponding to the forward weighted group parameters,
\[
\begin{equation*}
S_{g}(\bar{r}, \bar{\Omega}, t)=\int_{\Delta E_{G}} S(\bar{r}, E, \bar{\Omega}, t) d E, \tag{71}
\end{equation*}
\]
\[
S_{G}^{\#}(\bar{r}, \bar{\Omega},+,)=P_{G}^{\varphi}(\bar{r}, \bar{\Omega}, t) .
\]
'Ihe derivation from this point on will implicitly assume forward weighted group parameters. However, the results can, with slight madificatiou, be made to correspond to the adjoint weighted group parameters.
\[
\begin{aligned}
& \text { A-22 }
\end{aligned}
\]

Substitution of Eq. (71) into Eq. (64) yields
\[
\begin{equation*}
S_{T g}^{*}(\bar{r}, \bar{\Omega}, t)=\int A R e^{-\beta^{n}(\bar{r}, R, \bar{\Omega})} \mathbb{P}_{g}^{\phi}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right), \tag{72}
\end{equation*}
\]
and accoraing to Equations ( \(\overline{25}\) ) and ( 29 ), Eq. ( 72 ) can be rewrititen as Equations (73) and (74), respectively:
\[
\begin{equation*}
S_{T_{g}}^{*}(\bar{r}, \bar{\Omega}, t)=\int d R \Sigma_{t}^{g}\left(\bar{x}^{\prime}\right) e^{-B_{g}^{(i)}(\bar{r}, R, \bar{\Omega})} P_{\mathbf{g}}^{\dagger}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right) \tag{73}
\end{equation*}
\]
and

Substitution of Bq. (73) into Eq. (67) and Eq. (74) into Eq. (67) yields the following forms for the "Integral Point-Value Equation:"
and
\[
x_{g}^{*}(\bar{r}, \bar{\Omega}, t)=P_{g}^{X}(\bar{r}, \bar{\Omega}, \dot{t})+T_{g}\left(\bar{r} \rightarrow \bar{r}^{\prime}, \bar{\Omega}\right) C_{G \rightarrow g^{\prime}}\left(\bar{r}^{\prime}, \Omega_{\Omega}+\bar{\Omega} '^{\prime}!x_{g}^{\prime \prime}\left(\bar{r}^{\prime}, \Omega^{\prime}, t^{\prime}\right) .(76)\right.
\]

\section*{Integral Event-Value Equation}

At this point let us introduce a value function based on the event density and to relate this quantity to the point-valua function by considering a particle leaving a collision at \(\overline{\mathbf{r}}\) with phase space coordinates (group \(g\), \(\Omega\), time \(t\) ). The value of this particie to the effect of interest is the point-value function \(X_{g}^{( }(\bar{r}, \bar{\Omega}, t)\). This particle will experience an
 and the value of this event (to the effect of interest) will be referred to as the "event-value" and be denoted by \(W_{g}\left(\bar{r}{ }^{\prime}, \bar{\Omega}, t^{\prime}\right)\). That is, the "event-value" \(H_{g}\left(\bar{r} ', \bar{\Omega}, t^{\prime}\right)\) is defined as the value (to the effect of interest) of having an event at \(\bar{r}\) ' with an incoming particle which has
phase space coordinates (group \(g, \bar{\Omega}\), time t'). The sum of all such contributions to the effect of interest is given by
\[
\int_{0}^{\infty} d R \Sigma_{t}^{g}\left(\bar{r}^{\prime}\right) e^{-\beta_{g}^{*}(\bar{r}, R, \bar{\Omega})} W_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right),
\]
and, if the event-value finction is properly defined, should equal the point-value function; that is,
\[
\begin{equation*}
x_{g}^{*}(\bar{r}, \bar{\Omega}, t)=\int_{0}^{\infty} d P \varepsilon_{t}^{g}\left(\bar{r}^{\prime}\right) e^{-\beta_{g}^{*}(\bar{r}, R, \bar{\Omega})} H_{g}\left(\bar{r}, \bar{\Omega}, t^{\prime}\right) \tag{77}
\end{equation*}
\]
or
\[
\begin{equation*}
x_{g}^{*}(\bar{r}, \bar{\Omega}, t)=T_{g}\left(\bar{r} \bar{r}^{\prime}, \bar{\Omega}\right) W_{g}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right) . \tag{78}
\end{equation*}
\]

A comparison of Eq. (78) with Eq. (75) would show that \(W_{g}(\bar{r}, \bar{\Omega}, t)\) can be identified as
\[
\begin{equation*}
W_{g}(\bar{r}, \bar{\Omega}, t)=P_{g}^{\psi}(\bar{r}, \bar{\Omega}, t)+C_{g \rightarrow g^{\prime}}\left(\bar{r}, \bar{\Omega}^{\prime}+\bar{\Omega}^{\prime}\right) x_{g}^{*},(\bar{r}, \bar{\Omega} ', t), \tag{79}
\end{equation*}
\]
and substitution of Eq. (78) into Eq. (79) yields the defining equation for the "Event-Value Function"
\[
\begin{equation*}
W_{g}(\bar{r}, \bar{\Omega}, t)=P_{g}^{\psi}(\bar{r}, \bar{\Omega}, t)+C_{g \rightarrow g^{\prime}}\left(\bar{r}, \bar{\Omega}^{\circ}+\bar{\Omega}^{\prime}\right) T_{g}\left(\bar{r} \bar{r}^{\prime}, \bar{\Omega}^{\prime}\right) W_{g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}, t^{\prime}\right) . \tag{80}
\end{equation*}
\]

Equation ( 80 ) will be referred to as the "Integral Event-Value Equation." A comparison of Eq. (80) with Eq. (38) would show that the event-value function \(W_{g}(\bar{r}, \bar{\Omega}, t)\) is adjoint to the event density \(\psi_{g}(\bar{r}, \bar{\Omega}, t)\). Therefore the effect of interest \(\lambda_{g}\) is given by
\[
\begin{equation*}
\lambda_{g}=\iiint S_{c}^{g}(\bar{r}, \bar{\Omega}, t) W_{g}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t \tag{81}
\end{equation*}
\]

\section*{Integral Emergent Adjuncton Density Equation}

The solution of either the point-value equation, Eq. (76), or the event-value equation, Eq. (79), could be accomplished by monte Carlo procedures; however, the random walk would not be the same as that implied by Eq. (40)*. Consider the following altered form of Eq. (76),

\footnotetext{
The desire in MøRSE :s to use the same random walk logic for both forward and adjoint calculations.
}
\[
\begin{aligned}
& X_{g}^{*}(\bar{r}, \bar{\Omega}, t)=P_{g}^{\psi}(\bar{r}, \bar{\Omega}, t)+\int d R \Gamma_{t}^{g}(\bar{r}) e^{-\beta_{g}^{*}(\bar{r}, R, \bar{\Omega})}\left(\frac{\sum_{t}^{g}\left(\bar{r}{ }^{\prime}\right)}{\sum_{t}^{g}(\bar{r})}\right)
\end{aligned}
\]

The adaitional weight factor \(\left[\underline{\Sigma}_{t}^{g}(\bar{r}) ; \Gamma_{t}^{g}(\bar{r})\right]\) arises since Eq. (76) and its altered form (Eq. (82), are actubily flux-like equations, even though \(X_{g}^{*}(\bar{r}, \bar{\Omega}, t)\) is adjoint to the emergent particle density \(x_{g}(\bar{r}, \bar{\Omega}, t)\).

In a fashion analogous to the forward problem, the following new quantities are defined:
\[
\begin{equation*}
H_{g}(\bar{r}, \bar{\Omega}, t) \equiv \varepsilon_{t}^{\bar{J}}(\bar{r}) x_{g}^{(\bar{r}, \bar{\Omega}, t)} \tag{83}
\end{equation*}
\]
and
\[
\begin{equation*}
H_{g}(\bar{r}, \bar{\Omega}, t)=T_{g}(\bar{r} \rightarrow \bar{r} ', \bar{\Omega}) G_{g}\left(\bar{r} ', \bar{\Omega}, t '^{\prime}\right) . \tag{84}
\end{equation*}
\]

Since \(X_{g}^{*}(\bar{r}, \bar{\Omega}, t)\) is a flux-like variable, the new variable \(H_{g}(\bar{r}, \bar{\Omega}, t)\) can be regaided as an event density and \(G_{g}(\bar{r}, \bar{\Omega}, t)\) like an emergent particle dersity. The defining integral equation for \(G_{g}(\bar{r}, \bar{\Omega}, t)\) should be the proper basis for an adjoint randow walk.

The defining equation for the adjoint event density function \(H_{g}(\bar{F}, \bar{\Omega}, t)\) is obtained by considering the following altered form of Eq. (75):
\[
\begin{align*}
& x_{g}^{*}(\bar{r}, \bar{\Omega}, t)=\int a R \Sigma_{t}^{g}\left(\bar{r}^{\prime}\right) e^{-\beta_{g}^{*}(\bar{r}, R, \bar{\Omega})}\left[P_{g}^{\psi}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)\right.  \tag{85}\\
& \left.\quad+C_{g \rightarrow g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}+\bar{\Omega}^{\prime}\right) x_{g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}, t^{\prime}\right)\right] .
\end{align*}
\]

Multiply Ec. (íc) by \(\Sigma_{t}^{g}(\bar{r})\) and rearrange as follcws:
\[
\begin{align*}
& \Sigma_{t}^{g}(\bar{r}) x_{g}^{*}(\bar{r}, \bar{\Omega}, t)=\int d R \Sigma_{t}^{g}(\bar{r}) e^{-\beta_{g}^{*( }\left(\bar{r}, R, \bar{\Omega}^{\prime}\right)}\left[\Sigma_{t}^{g}\left(\bar{r}^{\prime}\right) P_{g}^{\psi}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)\right. \\
& \left.\quad+\stackrel{V}{G}_{g \rightarrow g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega} \rightarrow \bar{\Omega}^{\prime}\right) \Sigma_{t}^{g^{\prime}}\left(\bar{r}^{\prime}\right) x_{g}^{*},\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}, t^{\prime}\right)\right] \tag{86}
\end{align*}
\]
where

Noting that:
\[
\begin{aligned}
& H_{g}(\bar{r}, \bar{\Omega}, t)=\Sigma_{t}^{g}(\bar{r}) x_{g}^{*}(\bar{r}, \bar{\Omega}, t), \\
& \int \alpha \bar{R} \varepsilon_{t}^{\underline{g}}(\bar{r}) e^{-\beta_{g}^{*}(\bar{r}, R, \bar{\Omega})}=I_{g}\left(\bar{r} \bar{r}^{\prime} \overline{\bar{r}}, \bar{\Omega}\right),
\end{aligned}
\]
and
\[
\Sigma_{t}^{g}(\bar{r}) P_{g}^{\psi}(\bar{r}, \bar{\Omega}, t)=P_{g}^{\phi}(\bar{r}, \bar{\Omega}, t),
\]

Eq. (86) becomes
\[
\begin{equation*}
H_{g}(\bar{r}, \bar{\Omega}, t)=T_{g}\left(\bar{r}^{\prime} \bar{r}, \bar{\Omega}\right)\left[P_{g}^{\phi}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right)+\check{C}_{g \rightarrow g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}+\bar{\Omega}^{\prime}\right) H_{g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}, t^{\prime}\right)\right] . \tag{88}
\end{equation*}
\]

A comparison of Eq. (88) with Eq. (84) reveals that
\[
\begin{equation*}
G_{g}(\bar{r}, \bar{\Omega}, t)=F_{g}^{\phi}(\bar{r}, \bar{\Omega}, t)+\breve{C}_{g \rightarrow g^{\prime}}\left(\bar{r}, \bar{\Omega}^{\prime} \bar{\Omega}^{\prime}\right) H_{g}\left(\bar{r}, \bar{\Omega}^{\prime}, t\right) \cdot \tag{89}
\end{equation*}
\]
and the subsequent substitution of Eq. (84) into Eq. (89) yieids the following defining equation for the adjoint emergent particle density:
\[
G_{g}(\bar{r}, \bar{\Omega}, t)=P_{g}^{\phi}(\bar{r}, \bar{\Omega}, t)+\check{C}_{g \rightarrow g^{\prime}}\left(\bar{r}, \bar{\Omega}^{\prime}+\bar{\Omega}^{\prime}\right) T_{g^{\prime}}\left(\bar{r}+\bar{r}^{\prime}, \bar{\Omega}^{\prime}\right) G_{g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}, t t^{\prime}\right) .(90)
\]

Equation (90) is almost identical with Eq. (40) which defines the forward emergent particle density \(x_{g}(\bar{r}, \bar{\Omega}, t)\) and alsc serves as the formal basis for the forward random walk. At this point, let us interpret Eq. (90) in terms of the transport of pseudo-particles called "adjunctons" in the ( \(P^{\prime} \rightarrow P\) ) direction of phase space. This presents two immediate problems:
1) The transport of the adjunctons from \(\overline{\mathbf{r}}=\overline{\mathbf{r}}+\mathrm{R} \bar{\Omega}\) to \(\overline{\mathbf{r}}\) would be in a direction opposite to the direction vector \(\bar{\Omega}\) - therefore, the direction vector for the adjuncton should be \(\hat{\Omega} \equiv-\bar{\Omega}\), and \(\overline{\mathbf{r}}^{\prime}=\overline{\mathbf{r}}-\mathrm{R} \dot{\Omega}\).
2) The collision kernel should be interpreted as describing the ( \(P^{\prime} \rightarrow P\) ) change in phase space experienced by the adjuncton during its random walk; therefore, let
\[
\begin{equation*}
C_{g^{\prime} \rightarrow g}\left(\bar{r}, \hat{\Omega}^{\prime}+\hat{\Omega}\right) \equiv \check{c}_{g \rightarrow g^{\prime}}\left(\bar{r}, \Omega_{\rightarrow} \rightarrow \bar{\Omega}^{\prime}\right)=\sum_{g^{\prime}} \int d \bar{\Omega} \cdot \frac{\Sigma_{s}^{g \rightarrow g^{\prime}}\left(\bar{r}, \bar{\Omega}+\bar{\Omega} \bar{\Omega}^{\prime}\right)}{\Sigma_{t}^{g^{\prime}}(\bar{r})} . \tag{91}
\end{equation*}
\]

Equation (91) may be rewritten in terms of a no-malized collision kernel and a weight factor:

The selection of new phase space coor linates (group g, \(\hat{\lambda}=-\ddot{\Omega}\) ) is made from the normalized kernel and the weight of the adjuncton is modified by the weight factor []* which is no longer a simple non-absorption probability and may assume values in excess of unity. Therefore, there is no "analogue" scattering for adjunctons and the adjuncton's weight may increase at some ccllisions.

Equation (90) can be rewritten as
\[
G_{g}(\bar{r}, \hat{\Omega}, t)=P_{g}^{\phi}(\bar{r}, \hat{\Omega}, t)+C_{g^{\prime} \rightarrow g}\left(\bar{r}, \hat{\Omega}^{\prime}+\hat{\Omega}\right) T_{g^{\prime}}\left(\bar{r}^{\prime} \rightarrow \bar{r}, \hat{\Omega}^{\prime}\right) G_{g^{\prime}}\left(\bar{r}^{\prime}, \hat{\Omega}^{\prime}, t^{\prime}\right),(93)
\]
which now corresponds to the transpcrt of adjunctons and provides the desired basis for the adjoint random walk in the MøRSE code. Note that the source of adjunctons is provided by \(P_{g}^{\phi}(\bar{r}, \hat{\Omega}, t)\) which is related to \(P_{g}^{\phi}(\bar{r}, \bar{\Omega}, t)\) as follows:
\[
\begin{equation*}
P_{g}^{\phi}(\bar{r}, \hat{\Omega}, t)=P_{g}^{\phi}(\bar{r},-\bar{\Omega}, t), \tag{94}
\end{equation*}
\]
which must be taken into consideration if the response function \(P_{G}^{\phi}(\bar{r}, \bar{\Omega}, t)\) has angular dependence -- however, many physical situations permit an isotropic assumption for the \(\bar{\Omega}\)-dependence.

A Monte Carlo solutiois of Eq. (93), the "integral emergent adjunction density equation," will generate data from which the adjuncton \(\mathrm{flux} X_{g}^{*}(\overline{\mathrm{r}} \hat{\Omega})\) and
other quantities of interest can be determined. The general use of \(x_{g}^{*}(\bar{r}, \hat{\Omega})\) must take into account the reversal of direstion between adjunctons and real particles, i.e., \(\hat{\Omega}=-\bar{\Omega}\). For example, consider the various ways of calculating the answer of interest:
\[
\begin{align*}
& \lambda_{g}=\iiint P_{g}^{\phi}(\bar{r}, \bar{\Omega}, t) \phi_{g}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t  \tag{95}\\
& =\iiint \frac{P_{\bar{B}}^{\phi}(\bar{r}, \bar{\Omega}, t)}{\sum_{t}^{g}(\bar{r})} T_{g}\left(\bar{r}^{\prime} \rightarrow \bar{r}, \bar{\Omega}\right) X_{g}{ }^{(\bar{r}}, \bar{\Omega}, t^{\prime} ; \bar{\gamma} \bar{r} d \bar{\Omega} d t \\
& \lambda_{g}=\iiint S_{g}(\bar{r}, \bar{\Omega}, t) X_{g}^{*}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d_{t}=\iiint_{g}(\bar{r}, \bar{\Omega}, t) X_{g}^{*}(\bar{r},-\hat{\Omega}, t) d \bar{r} d \bar{\Omega} d t  \tag{96}\\
& \lambda_{g}=\iiint \delta_{c}^{g}(\bar{r}, \bar{\Omega}, t) W_{g}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t=\iiint S_{c}^{g}(\bar{r}, \bar{\Omega}, t) W_{g}(\bar{r},-\hat{\Omega}, t) \mathrm{d} \bar{r} d \bar{\Omega} d t \tag{97}
\end{align*}
\]
\[
\begin{align*}
& \lambda_{g}=\iiint \frac{S_{g}(\bar{r}, \bar{\Omega}, t)}{\Sigma_{t}^{g}(\bar{r})} T_{g}\left(\bar{r}^{\prime}-\bar{r}, \bar{\Gamma}_{.}\right) G_{g}\left(\bar{r}{ }^{\prime}, \bar{\Omega}, t^{\prime}\right) d \bar{r} d \bar{\Omega} d t  \tag{99}\\
& =\iiint \frac{S_{g}(\bar{r}, \bar{\Omega}, t)}{\sum_{t}^{g}(\bar{r})} T_{g}(\bar{r}, \bar{r},-\hat{\Omega}) G_{g}\left(\bar{r}^{\prime},-\hat{\Omega}, t^{\prime}\right) \underset{\bar{r}}{ } \bar{\alpha} \bar{\Omega} \mathrm{dt} .
\end{align*}
\]

Further, if outward boundary crcssings woula be scored in the forward problem, the corresponding source adjunctons would be introduced in the inward direct,ion. Likewise, adjunctons would be scored for entering a volume fram which the source particles in the forward problem would be emitted. It should te noted that many sources and response functions are isotropic and the problem of direction reversal need not be considered.

\section*{Multiplying Systems}

The general integral equations in group notation of the previous section are here specialized to the problem cif multipiying systems. In a fissioning system it will be presumed that the source of neutrons for the nth generation somes from fissions which occur uuring the previous generation, the ( \(n-1\) )st generation. In group nctation and sevendimensional phase space, the source term for the \(n\)th generation, \(S_{g}^{n}(\bar{r}, \bar{\Omega}, t)\), is given by
\[
\begin{equation*}
S_{g}^{n}(\bar{r}, \bar{\Omega}, t)=\int_{\Delta E_{g}} S^{n}(\bar{r}, E, \bar{\Omega}, t) d E \tag{i00}
\end{equation*}
\]
where
\(S^{n}(\bar{r}, E, \bar{\Omega}, t) d E d \bar{\Omega}=\) source particles ewitted for the nth generation per init volume and time \(a^{\prime}\) the space point \(\bar{r}\) and time \(t\) with energies in \(d E\) about \(E\) and dire \(t i o n s\) which lie in \(d \bar{\Omega}\) about \(\bar{\Omega}\),
\[
\begin{equation*}
S^{n}(\bar{r}, E, \bar{\Omega}, i)=\frac{f(E)}{4 \bar{\pi}} \iint_{4 \pi} d E^{\prime} d \bar{\Omega} \cdot v \Sigma_{f}\left(\bar{r}, E^{\prime}\right) \phi^{n-1}\left(\bar{r}, E^{\prime}, \bar{\Omega}, t\right) \tag{101}
\end{equation*}
\]
\(f(E) d F=f r a c t i o n\) of fission \(r \in u t r o n s\) emitted heving energies in \(d E\) about \(E\),
\(\phi^{\mathrm{n}-1}(\overline{\mathrm{r}}, E, \bar{\Omega}, t)=\) anguiar neutron flux for the ( \(\mathrm{n}-1\) ) st generation, \(\operatorname{VE}_{f}\left(\overline{\mathrm{r}}, \mathrm{E}^{\prime}\right)=\mathrm{fissi}\) on neutron yield \(x\) macroscopic \(\mathrm{f}^{\prime} \pm\) ssion cross section. Substitution of Eq. (101) into Eq. (100) and expressing the energy integration as a summation over eaergy groups yields
\[
\begin{equation*}
S_{g}^{n}(\bar{r}, \bar{\Omega}, t)=\frac{f_{g}}{4 \pi} \sum_{g^{\prime}=G}^{1} \int_{4 \pi}^{\infty} d \bar{\Omega}^{\prime} v \Sigma_{f}^{g^{\prime}}(\bar{r}) \phi_{g^{\prime}}^{n-1}\left(\bar{r}, \bar{\Omega}^{\prime}, t\right), \tag{102}
\end{equation*}
\]

\footnotetext{
The terms generation and batch will be used interchangeably in this section and will refer to the batches of neutrons processed in the MDRSE Monte Carlo calculation.
}
where
\[
\begin{align*}
& \mathbf{f}_{\mathbf{g}}=\int_{\Delta E_{g}} f(E) d E  \tag{103}\\
& \nu \Sigma_{\mathbf{f}}^{g}(\bar{r})=\frac{\int_{\Delta E_{g}} \nu \Sigma_{f}(\bar{r}, E) \phi(\bar{r}, E, \bar{\Omega}, t) d E}{\int_{\Delta E_{g}} \phi(\bar{r}, E, \bar{\Omega}, t) d E} \tag{104}
\end{align*}
\]

Equation (102) can also be expressed in terms of the emergent particle deasity:
where
\[
\begin{equation*}
\phi_{g^{\prime}}\left(\bar{r}, \bar{\Omega}^{\prime}, t\right)=\int_{0}^{\infty} d R e^{-\beta_{g^{\prime}}\left(\bar{r}, R, \bar{\Omega}^{\prime}\right)} x_{g^{\prime}}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}, t^{\prime}\right), \tag{106}
\end{equation*}
\]
so that for 2 given \(S_{g}^{n}(\bar{r}, \bar{\Omega}, t)\), the emergent particle density distribution for the nth generation can be calculated using the following modified form of Eq. (27):
\[
\begin{aligned}
& x_{G}^{n}(\bar{r}, \bar{\Omega}, t)=S_{g}^{n}(\bar{r}, \bar{\Omega}, t)
\end{aligned}
\]
\[
\begin{align*}
& =S_{g}^{n}(\bar{r}, \bar{\Omega}, t)+C_{g^{\prime} \rightarrow g}\left(\bar{r}, \bar{\Omega}^{\prime}+\bar{\Omega}\right) T_{g}\left(\bar{r}^{\prime}+\bar{r}, \bar{\Omega}^{\prime}\right) X_{g}^{\bar{n}}\left(\bar{r}^{\prime}, \bar{\Omega}^{\prime}, t^{\prime}\right) . \tag{107}
\end{align*}
\]

Equations (105) and (107) can be combined and written as an eigenvalue squation in seven-dimensional phase space
\[
\begin{align*}
& X_{g}(\bar{r}, \bar{\Omega}, t)=\frac{1}{k} \frac{\mathbf{f}_{g}}{4 \pi} \sum_{g^{\prime}=G}^{1} \int_{4 \pi} d \bar{\Omega} \cdot \frac{v \sum_{f}^{g^{\prime}}(\bar{r})}{\Sigma_{t}^{g^{\prime}}(\bar{r})} d R \sum_{t}^{g^{\prime}}(\bar{r}) e^{-\beta_{g}(\bar{r}, R, \bar{\Omega})} \chi_{g(\bar{r}}\left(\bar{\Omega}, t^{\prime}\right) \\
& +\sum_{g^{\prime}=\bar{g}}^{1} \int_{4 \pi} d \bar{\Omega}, \frac{\Sigma_{s}^{g^{\prime} \rightarrow g}\left(\bar{r}, \bar{\Omega}^{\prime} \rightarrow \bar{\Omega}\right)}{\Sigma_{t}^{g^{\prime}}(\bar{r})} \int_{0}^{\infty} d R \Sigma_{t}^{g^{\prime}}(\bar{r}) e^{-\beta_{g}^{\prime}\left(\bar{r}, R, \bar{\Omega}^{\prime}\right)} x_{g^{\prime}}\left(\bar{r}{ }^{\prime}, \bar{\Omega},, t^{\prime}\right) . \tag{108}
\end{align*}
\]

The usual objective in a reactor calculation is to find the eigenfunctions \(\chi_{g}(\bar{r}, \bar{\Omega}, t)\), and the eigenvalue \(k\). In MORSE this is accomplished iteratively, each batch being one iteration. The source for the first batch is unknown and must be assumed. From this source ar estimate o: the resulting emergent particle densities, \(X_{g}^{\prime}\), are caiculated from Eq . '.107). The source for the next batch, \(S_{g}^{2}\), is obtained from Eq. (105) and then estimates of the \(X_{g}^{2}\) are obtaired from \(\mathbb{E}_{q}\). (107). After the source has converged (usuaily after a few batches), the \(X_{g}^{n}\) are presumed to be a valid estimate of the eigenfunction \(X_{g}\) in Eq. (108) and ar estimate of the multiplication factor can be obtained for eash of the succeeding batches.

The muitiplication factor corresponding to the nth generation (or batch) is defined as the ratio of the total proajction of fission neutrons during the nth generation to the total number of source neutrons introduced into the rith generation
which can also be expressed as the ratio of successive sources
\[
\begin{equation*}
k_{n}=\frac{\sum_{g^{\prime}}^{1} \iiint S_{g^{\prime}}^{n+1}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t}{\sum_{g^{\prime}}^{1} \iiint S_{g^{\prime}}^{n}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t} \tag{110}
\end{equation*}
\]

The multiplication factor is calculated at the end oi each batch and the eigenvalue, \(k\), is taken as the mean value if the \(k_{n}\) averaged over all the batches calculated after convergence of the eigenfunctions was ac ieved.

Equation (107) is solved by MøRSE in the same manner as it would be for non-fissioning systems. The fission event is treated as an absorption and the neutron's weight is modified accordingly, i.e., fissions that occur do not introduce new neutrons into the present generation. The multiplica-
 \(W_{b}\) at every collision ( \(W_{b}\), the neutron's weight before collision, is an estimate of the collision density). At the end of the batch, \(k_{n}\) is divided by \(H\), the total starting weight of the batch.

The source for the next batch is not obtained direcily from the individual contributions ( \(\nu \Sigma_{\mathbf{f}}^{g_{-}} H_{b}\) ). Rather, Russien roulette and splitting are used to discretize these contributions intc ones of equel raide. The splitting and Russian rouletie parameters used are determined by the input parameter, FMLON, the desired value of a single contribution. To keep the number of neutrons from multip-ying or decreasing indefini亡ely, FWID is modified from batch tc batch such that the number of source neutrons for each batch remains nearly constant. The value of FulgW for the \((n+1)\) st batch is calculated at the completion of the nth batch as follcus:
\[
F N L \varnothing_{n+1}=F W L \phi_{n} \cdot \bar{k}_{n} \cdot \frac{\text { (fissior. neutrons produced during the nth batch) }}{(\text { source neutrons introduced into the first batch) }} \text {, (111) }
\]
where \(\bar{k}_{n}\) is an accumulative estimate of \(k\) through \(n\) batciaes. The \(\bar{k}_{n}\) modifying factor is requirea since the FWIO calculated arter the nth batch affects the number of source neutrons in the \((n+2)\) nd batch.

The adjoint problem for the fissioning system is solved by MøRSE in terms of the random walk of "adjunctons" as described by the integral emergent adjuncton density equation, Eq. (93), that car: be revritten in batch notation as
\[
\begin{equation*}
G_{g}^{n}(\bar{r}, \hat{\Omega}, t)=\left[P_{g}^{\phi}(\bar{r}, \hat{\Omega}, t)\right]^{n}+C_{g^{\prime}+g}\left(\bar{r}, \hat{\Omega}^{\prime}+\hat{\Omega}^{\prime}\right) T_{g^{\prime}}\left(\bar{r}^{\prime} \bar{r}^{\bar{R}}, \hat{\Omega}^{\prime}\right) G_{E^{\prime}}^{n}\left(\bar{r}^{\prime}, \hat{\Omega}^{\prime}, t^{\prime}\right) \tag{112}
\end{equation*}
\]
with the source of adjunctons being provided by the response function based on flux density, \(P_{g}^{\phi}\). The effect of interest for the rth generscion, \(\lambda_{g}^{n}\), is the production of fission neutrons due to fissions in group \(g\) that appear at the fission site in the next generation according to the group fission spectrum, \(f_{g}\), and is given by
\[
\begin{aligned}
& \lambda_{g}^{\mathrm{n}-1}=\iiint_{\rho}\left[P_{R}^{\phi}(\bar{r}, \bar{\Omega}, t)\right]^{n_{g}}{ }_{g}^{\mathrm{n}-1}(\bar{r}, \bar{\Omega}, t) d \bar{r} d \bar{\Omega} d t
\end{aligned}
\]
where
\[
\begin{aligned}
& x_{g}^{{ }_{\mathrm{F}}^{\mathrm{n}}}(\bar{r}, \bar{\Omega}, t)=\text { the value to the effect of interest in the nth generation } \\
& \text { of an emergent neutron with phase space coordinates (group } g, \\
& \bar{r}, \bar{\Omega}, t) \text {. }
\end{aligned}
\]

From Eq. (113), the source of adjunctons for the nth generation is identifieà as
\[
\begin{equation*}
\left[P_{g}^{\phi}(\bar{r}, \bar{\alpha}, t)\right]^{n}=v \Sigma_{f}^{g}(\bar{r}) \sum_{g^{\prime}=G}^{\frac{1}{1}} \int_{4 \pi} d \bar{\Omega} \cdot \frac{P_{g^{\prime}}}{4 \pi} \check{n}_{G^{\prime}}^{n_{n}-1}(\bar{r}, \bar{\Omega}, t) \tag{114}
\end{equation*}
\]

Noting that according to Equations (83) and (84)
\[
\begin{equation*}
x_{g}^{* n}(\bar{r}, \bar{\Omega}, t)=\frac{1}{\Sigma_{t}^{g}(\bar{r})} T_{g}\left(\bar{r} \bar{r}^{\prime} \bar{r}, \bar{\Omega}\right) G_{g}^{n}\left(\bar{r}^{\prime}, \bar{\Omega}, t^{\prime}\right) \tag{1.15}
\end{equation*}
\]

Eq. (114) can be rewritten as
\[
\begin{align*}
& {\left[P_{g}^{\varphi}(\bar{r}, \bar{\Omega}, t)\right]^{n}=\nu \Sigma_{f}^{g}(\bar{r}) \quad \sum_{g^{\prime}=G}^{1} \int_{4 \pi} d \bar{\Omega}^{\prime} \frac{\mathbf{P}_{g^{\prime}}}{4 \pi \Sigma_{t}^{g^{\prime}}(\bar{r})} T_{g^{\prime}}\left(\bar{r} \mapsto \bar{r}, \bar{\Omega}^{\prime}\right) G_{g}^{n-1}\left(\bar{r} \bar{r}^{\prime}, \bar{\Omega}{ }^{\prime}, t^{\prime}\right)} \\
& =\frac{v \Sigma_{\mathbf{f}}^{g}(\bar{r})}{4 \pi} \sum_{g^{\prime}=G}^{1} \int_{4 \pi} d \bar{\Omega}^{\prime} f_{g^{\prime}} \int_{0}^{\infty} d R e^{-\beta_{g^{\prime}}\left(\bar{r}, R, \bar{\Omega}^{\prime}\right)} G_{g^{\prime}}^{n-1}\left(\overline{r^{\prime}}, \overline{\Omega^{\prime}, t},{ }^{\prime}\right) . \tag{116}
\end{align*}
\]

Noting that the fission process is indeperdent of the incident neutron's direction and that the fission neutrons are emitted isotropically
\[
\begin{equation*}
\left[P_{g}^{\phi}(\ddot{r}, \bar{\Omega}, t)\right]^{n} \equiv\left[P_{g}^{\phi}(\bar{r}, \hat{\Omega}, t)\right]^{n} \tag{117}
\end{equation*}
\]
and Eq. (116) can be used in conjunctjon with Eq. (112), i.e., \(\bar{\Omega}\) replaced by \(\hat{\Omega}\).

Equation ill6) can be rewritten as
\[
\begin{align*}
& {\left[P_{g}^{\phi}(\overline{\bar{r}}, \hat{\Omega}, t)\right]^{n}=\frac{1}{4 \pi} \frac{v \Sigma_{f}^{g}(\bar{r})}{v \Sigma_{f}(\bar{r})} \sum_{g^{\prime}=G}^{1} \int_{4 \pi} d \hat{\Omega}^{\prime}\left[f_{g^{\prime}} v \Sigma_{f}(\bar{r})\right] \int_{0}^{\infty} d R e^{-\beta_{g},\left(\bar{r}, R, \hat{\Omega}^{\prime}\right)}} \\
& \quad \times G_{g^{\prime}}^{n-1}\left(\bar{r}^{\prime}, \hat{\Omega}^{\prime}, t^{\prime}\right), \tag{118}
\end{align*}
\]
where
\[
\begin{equation*}
v \Sigma_{f}(\bar{r})=\sum_{g=G}^{1} v \dot{z}_{f}^{g}(\bar{r}) \tag{119}
\end{equation*}
\]
\(\frac{v \sum_{f}^{g}(\bar{r})}{v \Sigma_{f}(\bar{r})}=\) energy disiribution of adjunctons emerging from an adjoint
fission,
\(\left[f_{g}, v \varepsilon_{f}(\bar{r})\right]=\) the \(g\) 'th group cross section for adjoint fission.

It is noted that the integral emergent particl. density equation, Eq. (107), is identical in form with the integral emergent adjuncton density equation, Eq. (112), so that essentially the same randor walk procedures can apply to the solution of the forward and adjoint fissioning systems. The adjoint source, Eq. (118), differs from the forwari source, Eq. (105), only in that the fission cross section and the group fission spectrum have charged their roles. The adjoint-fission group cross section is \(\left[f_{g} \cdot v \Sigma_{f}(\bar{r})\right]\) and the energy distribution of the adjunctons emerging from an adjoint fission is \(\nu \Sigma_{f}^{g}(\bar{r}) / \nu \Sigma_{f}(\bar{r})\).

\footnotetext{
The same differences will exist between the forward and adjoint collision kernels here as was the case for non-fissioning systems.
}

The adjoint solution is started by assumine scue arbitrary initial source, \(\left[P_{g}^{\phi}(\bar{r}, \widehat{\Omega}, t)\right]^{l}\), and calculating the \(G_{g}^{\dagger}(\bar{r}, \widehat{\Omega}, t)\) using Ea.(ll2). A new source term, \(\left[P_{g}^{\phi}\left(\frac{g}{r}, \widehat{\Omega}\right)\right]^{2}\) is then calculated from Eq. (118) and the next estimate, \(G_{6}^{2}(\bar{r}, \hat{O})\) is calculated using Eq. (112). This procedure continues until, as in the forward case, the source has converged and the \(G_{g}^{n}\),s are presured to be an estimate of the eigenfunctions \(G\). Then for each succeeding batch, the following estimate is made for the eigenvalue \(k\) :
and the eigenvalue, \(k\), is taken as the mean value of the \(k_{n}\) averaged over all the batches calculated after convergence of the eigenfunctions was achieved -- exactly the same procedure used in the forward calculation.

\section*{B-1}

\section*{APPENDIX B}

\section*{Generalized Gsussian Quadrature}

\section*{General Statement of the Problem and Its Solution}

Given \(\omega(x), a \leq x \leq b\), such that \(\omega(x) \geq 0\) (Resiriction I).
Problem: find \(\left\{y_{i}, \omega_{i}\right\}\) for \(i=1, n\) so that:
\[
\int_{a}^{t} f(x) \omega^{\prime}(x) d x=\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \omega_{i} \quad \text { (Restriction II) }
\]
holds for adl. \(f(x)\) where \(f(x)\) is a polynomial of degree \(2 n-1\) or less.
Solution: Determine a set of polynomials \(Q_{i}(x)(i=1, n)\) orthogonal with respect, to \(\omega(x)\). That is
\[
\int_{a}^{b} Q_{i}(x) Q_{j}(x) \omega(x) d x=\delta_{i j} N_{i}
\]
where \(\delta_{i j}\) is the Kronecker delta and \(N_{i}\) is a normalization constant. Then \(\left\{x_{i}\right\}_{i=1}^{n}\) are given by the roots of \(Q_{n}(x), Q_{n}\left(x_{i}\right)=0\), and
\[
\omega_{i}=\left(\sum_{i=1}^{n-1} Q_{i}^{2}\left(x_{i}\right) / N_{i}\right)^{-1}
\]

Note: Since the functions \(1, x, x^{2}, \ldots, x^{2 n-1}\) are independent and form a basis for the space of all polynomials of degree \(2 n-1\) or less, it is equivalent to Restriction II to require that
\[
M_{v}=\int_{a}^{b} x^{v} \omega(x) d x=\sum_{i=1}^{n} x_{i}^{v} \cdot \omega_{i} \text { for } v=0,2 n-i
\]

In other words, the problem is that of finding a discrete distribution.
\[
\omega^{*}(x)=\sum_{i=1}^{n_{i}} \omega_{i} \delta\left(x-x_{i}\right)
\]

\title{
BLANK PAGE
}
B-2.
having its first \(2 n\) moments, \(\left\{M_{v}\right\}_{v=0}^{2 n-1}\) identical to tiose of the original distribution \(\omega(x)\).

It is then possible to relax the non-negativity restriction, \(\omega(x) \geq 0\), and in fact to state that di'(x) yeed not be compietely specified but only its first \(2 n\) moments be given. Restriction I then becomes two restrictions on the moments:
\[
I_{a}: \quad\left|c_{i}\right| \geq 0 \quad i=1, n-i
\]
where \(\left|C_{\underline{i}}\right|\) is the Gram determinant
\[
\left|C_{i}\right|=\left|\begin{array}{l}
M_{0} M_{1} \\
M_{2} M_{2}
\end{array}\right|,\left|C_{2}\right|=\left|\begin{array}{ll}
M_{0} M_{1} M_{2} \\
M_{1} M_{2} M_{3} \\
M_{2} M_{3} M_{4}
\end{array}\right|, \ldots,\left|C_{n-1}\right|=\left|\begin{array}{lll}
M_{0} M_{1} M_{2} & \ldots & M_{n-1} \\
M_{1} M_{2} & \ldots & M_{n} \\
\vdots & & \\
M_{n-1} M_{n} & \ldots & M_{2 n-2}
\end{array}\right|
\]
and
\(I_{b}\) ) The roots of \(Q_{n}(x)\) lie inside the interval \([a, b]\), i.e., \(a \leq x_{i} \leq b\) whenever \(Q_{n}\left(x_{i}\right)=0\).

\section*{Equivalence of Moments and Legendre Coefficierts}
H. shall use the following form or the Legenc̈re expansion of an angular distribution:
\[
\begin{equation*}
\mathrm{f}(\mu)=\sum_{\ell=0}^{\infty} \frac{2 \ell+1}{2} \mathrm{f}_{\ell} \mathrm{P}_{\ell}(\mu) \tag{1}
\end{equation*}
\]

From this it follows that
\[
\begin{equation*}
\mathrm{f}_{\ell}=\int_{-1}^{1} f(\mu) P_{\ell}(\mu) d \mu \text { and } f_{0} \equiv 1 \tag{2}
\end{equation*}
\]

The moments of the distribution are defined by
\[
\begin{equation*}
M_{n}=\int_{-1}^{1} \mu^{n} f(\mu) d \mu \tag{3}
\end{equation*}
\]

\section*{B-3}

If the Legendre polynozials are writien
\[
\begin{equation*}
P_{\ell}(\mu)=\sum_{n=0}^{\ell} p_{\ell n} \mu^{n}, \tag{4}
\end{equation*}
\]
[the \(p_{\ell n}\) 's may be derived easily from the recurrence relation for \(P_{\ell}(\mu)\) ]. Then it follows simply from Equation (2) that
\[
\begin{equation*}
\underline{f}_{\ell}=\sum_{n=0}^{\ell} P_{\ell n} \int_{-1}^{l} f_{n}\left(\mu^{n} d_{n}=\sum_{n=0}^{\ell} F_{\ell n} M_{n} .\right. \tag{5}
\end{equation*}
\]

Likewise
\[
M_{n}=\int_{-1}^{1} \mu^{n} f(\mu) d \mu=\sum_{\ell=0}^{\infty} \frac{2 \ell+1}{2} f_{\ell} \int_{-1}^{1} \mu^{n} P_{\ell}(\mu) d \mu .
\]

From the orthogonality property we know that \(P_{\ell}(\mu)\) is orthcgonal to any polynomial of degree less than \(\ell\). Hence
\[
\int_{-1}^{1} \mu^{n} P_{\ell}(\mu) d \mu=0 \text { for } \ell>n .
\]

Then
\[
\begin{equation*}
M_{n}=\sum_{\ell=0}^{n} \frac{2 \ell+1}{2} f_{\ell} p_{n \ell}^{-1} \tag{б}
\end{equation*}
\]
where
\[
p_{n \ell}^{-1}=\int_{-1}^{1} \mu^{n} P_{\ell}(\mu) d \mu
\]
are the coefficients for a Legendre expansion of \(\mu^{n}\), that is,
\[
\mu^{n}=\sum_{\ell=0}^{n} \frac{2 \ell+}{2} \underline{P}_{n \ell}^{-1} P_{\ell}(\mu)
\]
[The Legendre polynomial recurrence relation may also be used to derive recurrence relations for the \(p_{n l}^{-1}\).]
B-4

Equations (c) and (6) shcy that the first \(n\) moments of an ang lar distrjbution may be derived from the first \(n\) Legendre coefficients and vice versa.

\section*{Seneration of Polynomiais Orthogonal With Respect to \(\omega(x)\)}

Let us now presume that we are given the first \(2 n\) moments, \(M_{0}, M_{1}\), \(\ldots, M_{2 n-1}\), of an arbitrary function \(\omega(x)\) and are given no ac̄ditional information about \(\omega(x)\). We shall attempt to derive a set of polynomials which are orthogonal with respect to \(\dot{j}(x)\). If we define the notation
\[
E[I(x)]=\int_{a}^{t} I(x) \omega(x) d x,
\]
then wat we wish is to determine \(Q_{0}, Q_{1}, \ldots, Q_{n}\) such that
\[
Q_{i}(x)=\sum_{k=0}^{i} a_{i k} x^{k}
\]
with the normalization condition \(a_{i i}=1\), and that
\[
\begin{equation*}
E\left[Q_{i}(x) Q_{j}(x)\right]=\delta_{i j} N_{i} \tag{8}
\end{equation*}
\]

Hete that
\[
N_{i}=E\left[Q_{i}^{2}(x)\right]=\int_{a}^{b} Q_{i}^{2}(x) \omega(x) d x .
\]

Since \(\omega(x) \geq 0\), then it follows that*
\[
\begin{equation*}
\mathbf{N}_{i}>0 . \tag{9}
\end{equation*}
\]

From the properties of orthogonal polynomials we :now that an arbitrary polynomial of order \(i, S_{i}(x)\), may be expanded ir terms of the \(Q\) polynomials,

Since we wish to relax the non-negativity restriction slightly but not sompletely, we will retain Eq. (9) as a reasonable requirement for e "wellbehaved" \(\omega(\mathbf{x})\). This requirement is essential to allow full use of the properties of orthogonal polynomials. I , is also essential to the eventual use of this development as a Monte Carlo selection technique since it is needed to ensure that the "probabilities," \(\omega_{i}\), be positive.
\[
S_{i}(x)=\sum_{k=0}^{i} s_{i k} Q_{k}(x) .
\]

It follows that
\[
E\left[s_{i}(x) Q_{j}(x)\right]=0 \quad \text { for } i<j
\]

Let us presume that we have obtainea the first i polynomials and are attempting to derive \(Q_{i+1}(x)\). Due to our normalization condition ( \(a_{i j}=1\) ) we have
\[
\begin{equation*}
Q_{i+1}(x)=x^{i+1}+R_{i}(x) \tag{10}
\end{equation*}
\]
where
\[
\begin{aligned}
R_{i}(x) & =\sum_{k=0}^{i} a_{i+1, k} x^{k} \\
Q_{i+1}(x) & =x \cdot x^{i}+R_{i}(x) \\
& =x \cdot\left[Q_{i}(x)-R_{i-1}(x)\right]+R_{i}(x) \\
& =x Q_{i}(x)+\left[R_{i}(x)-x R_{i-1}(x)\right]
\end{aligned}
\]

The term \(R_{i}(x)-x R_{i-1}(x)\) is a polynomial of order \(i\) and may be expanded in jerms of the Q's. Thus
\[
\begin{equation*}
Q_{i+1}(x)=x Q_{i}(x)+\sum_{k=0}^{\dot{\bar{L}}} d_{i k} Q_{k}(x) \tag{11}
\end{equation*}
\]

For \(\mathrm{j} \leq i-2\) we can use the orthogonality relation
\[
\begin{aligned}
E\left[Q_{i+1}(x) Q_{j}(x)\right] & =0=E\left[x Q_{i}(x) Q_{j}(x)\right]+\sum_{k=0}^{i} d_{i!} E\left[Q_{k}(x) Q_{j}(x)\right] \\
& =E\left[Q_{i}(x)\left(x Q_{j}(x)\right)\right]+d_{i j} N_{j} \\
& =d_{i j} N_{j},
\end{aligned}
\]
since \(x Q_{j}(x)\) is a polynomial of order \(\leq i-1\) and is orthogonal to \(Q_{i}(x)\). Since \(\mathrm{K}_{\mathrm{j}}>0\) we must have \(\mathrm{d}_{\mathrm{ij}}=0\).

If we write
\[
\mu_{i+1}=-d_{i, i}
\]
and
\[
\sigma_{i}^{2}=-d_{i, i-1}
\]
then Eq. (11) reduces to
\[
\begin{equation*}
Q_{i+1}(x)=\left(x-\mu_{i+1}\right) Q_{i}(x)-\sigma_{i}^{2} Q_{i-1}(x) \tag{12}
\end{equation*}
\]

This equation is the basic recurrence relation for our polynomials. We have
\[
\begin{aligned}
& E\left[Q_{i+1}(x) Q_{i-1}(x)\right]=0 \\
& = \\
& =E\left[x Q_{i}(x) Q_{i-1}(x)\right]-\mu_{i+1} E\left[Q_{i}(x) Q_{i-1}(x)\right]-\sigma_{i}^{2} E\left[Q_{i-1}^{2}(x)\right] \\
& = \\
& =E\left[Q_{i}(x)\left(x Q_{i-1}(x)\right)\right]-\sigma_{i}^{2} N_{i-1} \\
& = \\
& \left.=E\left[Q_{i}(x)\left\{Q_{i}(x)-\sum_{k=0}^{2}(x)\right]-\sigma_{i}^{2} N_{i-1, k} N_{k}(x)\right\}\right]-\sigma_{i}^{2} N_{i-1} \\
& \quad=N_{i}-\sigma_{i}^{2} N_{i-1} .
\end{aligned}
\]

This is easily solved for
\[
\begin{equation*}
\sigma_{i}^{2}=N_{i} / N_{i-1} \tag{13}
\end{equation*}
\]

If we return tc Equation (10), it is easy to see that
\[
\begin{align*}
N_{i} & =E\left[Q_{i}(: x) Q_{i}(x)\right]=E\left[Q_{i}(x) x^{i}\right]+E\left[Q_{i}(x) R_{i-1}(x)\right] \\
& =E\left[Q_{i}(x) x^{i}\right]=\sum_{k=0}^{i} a_{i k} \int_{a}^{b} x^{k} x^{i} d x=\sum_{k=0}^{i} a_{i k} M_{k+i} . \tag{14}
\end{align*}
\]

\section*{B-7}

Likevise we vill define
\[
\begin{align*}
L_{i+1} & =E\left[Q_{i}(x) x^{i+1}\right] \\
& =\sum_{k=0}^{i} a_{i, k} M_{k+i+1} \tag{15}
\end{align*}
\]

Then the final orthogonality relation used in defining \(Q_{i+1}(x)\) gives us
\[
\begin{aligned}
E\left[Q_{i+1}(x) \hat{Q}_{i}(x)\right] & =0 \\
& =E\left[Q_{i+1}(x) x^{i}\right]+E\left[Q_{i+1}(x) R_{i-1}(x)\right] \\
& =E\left[x Q_{i}(x) x^{i}\right]-\mu_{i+1} E\left[Q_{i}(x) x^{i}\right]-\sigma_{i}^{2} E\left[Q_{i-1}(x) x^{i}\right] \\
& =L_{i+1}-\mu_{i+1} H_{i}-\sigma_{i}^{2} L_{i}
\end{aligned}
\]
or
\[
\begin{align*}
\mu_{i+1} & =\frac{L_{i+1}}{N_{i}}-\sigma_{i}^{2} \frac{L_{i}}{N_{i}} \\
& =\frac{L_{i+1}}{N_{i}}-\frac{L_{i}}{N_{i-1}} \tag{16}
\end{align*}
\]

The coefficients \(a_{i k}\) may be obtained from the recurrerce relation, Eq. (12), by taking the coefficient of \(x^{k}\) on both sides of the equation. This gives
\[
\begin{equation*}
a_{i+1, k}=a_{i, k-1}-\mu_{i+1} a_{i, k}-\sigma_{i}^{2} a_{i-1, k} \tag{17}
\end{equation*}
\]

To recapitulate, one uses moments through \(M_{2 i}\) and the values of \(a_{i k}\) from \(Q_{i}(x)\) to calculate \(N_{i}\left(E q\right.\). 14) . \(N_{i}\), along with the previously determined \(N_{i-1}\), allows one to calculate \(\sigma_{i}^{2}\) (Eq. 13). \(T\) : \(=-\alpha, i \operatorname{ts}\) tinrough \(M_{2 i+1}\) and \(Q_{i}(x)\) determine \(L_{i+1}\) (Eq. 15). This in turn allows the calculation of \(\mu_{i+1}\) (Eq. 16). Witb \(\sigma_{i}^{2}\) and \(\mu_{i+1}\) the recurrence relation (Eq. 12) determines \(Q_{i+1}(x)\). In sum the moments \(M_{0}, M_{1}, \ldots, M_{2 n-1}\) of \(\omega(x)\) allow the determination of the orthogonal polynomials \(Q_{0}(x), Q_{1}(x), \ldots, Q_{n}(x)\).

This is subject only to the restriction \(H_{i}>0, i=0, n\). Aithough it is far irm obvious, this restriction may be written in simple closed form as:

\section*{Froperties of the Roots of the Orthogonal Polynomials}

The rcots of the orthogonal polynomials have two useful properties which we shall prove.

Lemme I: \(Q_{n}(x)\) has \(n\) distinct, reai roots which "interleave" with the roots of \(Q_{n-i}(x)\); that is, between any two adjacent roots of \(Q_{i-1}(x)\) there is one and only one root of \(Q_{n}(x)\), and furthernore there is one root of \(Q_{n}(x)\) greater than the largest root of \(Q_{n-1}(x)\) and one smaller than the least root of \(Q_{n-1}(x)\). Likewise there is one and only one root of \(Q_{n-1}(x)\) between any two adjacent roots of \(Q_{n}(x)\).

Proof: We assume the Lema to be true for \(Q_{n-1}\) and \(Q_{n-2}\). Let \(x_{1}>x_{c}>\ldots . .>x_{n-1}\) be the roots of \(Q_{n-1}\). Then it follows that the sequence \(Q_{n-2}\left(x_{1}\right), Q_{n-2}\left(x_{2}\right), \ldots, Q_{n-2}\left(x_{n-1}\right)\) alternates in sign. Since
\[
\begin{aligned}
Q_{n}\left(x_{i}\right) & =\left(x_{i}-\mu_{n}\right) Q_{n-1}\left(x_{i}\right)-\sigma_{n-1}^{2} Q_{n-2}\left(x_{i}\right) \\
& =-\sigma_{n-1}^{2} Q_{n-2}\left(x_{i}\right) .
\end{aligned}
\]

The sequence \(Q_{n}\left(x_{i}\right), Q_{n}\left(x_{2}\right), \ldots, Q_{n}\left(x_{n-1}\right)\) also alternates in sign. This establishes that there is at least one root of \(Q_{n}\) between any two roots of \(Q_{n-1}\). Because the \(Q_{i}\) 's are normalizer to \(a_{i j}=1\), they are all positive at \(+\infty\) and alternate in sign at \(-\infty\). \(Q_{n-2}\) has no root between \(x_{1}\) and \(+\infty\); hence \(Q_{n-2}\left(x_{1}\right)>0\). But \(\sigma_{n-1}^{2}>0\) (because \(N_{n-1}>0\) and \(N_{n-2}>0\) ); therefore, \(Q_{n}\left(x_{1}\right)<0\) and \(Q_{n}\) must have at least one root greater than \(x_{1}\).

Similar reasoning ieads to the conclusion that \(Q_{n-2}\left(x_{n-1}\right), Q_{n-2}(x \rightarrow-\infty)\), and \(Q_{n}(x \rightarrow-\infty)\) have the same sign wile \(Q_{n}\left(x_{n-1}\right)\) is of the opposite sign. Thus \(Q_{n}\) must have at least one root between \(x_{n-1}\) and \(-\infty\). Since this gives us \(n\) intervals where \(Q_{n}\) must have "at least ore" root, it is clear that \(Q_{n}\) has n distinct roots which interleave vith the rocts of \(Q_{n-1}\)

The proof by induction may be comileted by using similar arguments to show that one of the two roots of \(Q_{2}(x)\) lies above the singie root \(c f\) \(Q_{1}(x)\) and cne below it.

Lemina II: The \(n\) roots of \(Q_{n}(x)\) lie in the interval ( \(a, b\) ).
Proof: Assume that \(Q_{n}(x)\) has only s changes of sign in the interval (a,b) at the point,s \(x_{1}, x_{2}, \ldots, x_{s}\). iet
\[
\theta(x)=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \ldots\left(x-x_{s}\right)
\]
then \(\theta(x) Q_{n}(x)\) does not change sign in the interval (a,b). It follows that*
\[
E\left[\theta(x) Q_{n}(x)\right]=\int_{a}^{b} \theta(x) Q_{n}(x) \omega(x) d x \neq 0
\]

However, \(\theta(x)\) is a polynomial of order \(s\) 二 2 . Since \(Q_{n}(x)\) is orthogonal to all polynomials of order less than \(n\), we must have \(s=n\), thus proving the assertion.

\section*{The Meaning of the Two Restrictions Which Replace the Non-Negativity} Requirement, \(\omega(x) \geq 0\)

In the foregcing development, knowledge of the entire function \(\omega(x)\) is never required. Instead, all that is needed are the noments, \(M_{0}, M_{1}\), \(\ldots, M_{2 n-1}\), of \(\omega(x)\). The generalized quadrature thus develcped is thereby valid for the whole class of functions having those moments. Since the moments are equivalent to the Legendre coefficients, \(f_{0}, f_{1}, \ldots\), \(f_{2 n-1}\), this class is cumprised of all functions having the same truncated

This step relies on the requirement that \(\omega(x)\) be non-negative. We wish to relax this restriction somewhat but not completely. Since Lemme II expresses a property which will be essential to the use of this development as a Monte Carlo selection technique, we will use this property as one of the requirements for a "well-behaved" \(\omega(x)\) with which we shall replace the non-negativity restriction.

Legendre expansion; that is,
\[
\omega(x) \not \approx \omega(x)=\sum_{\ell=0}^{2 n-1} \frac{2 \ell+1}{2} \xi_{\ell} P_{\ell}(x) .
\]

In particular, the discrete distribution derived by this technique is itself one function from this class.

It is not required that all functions of this class be non-negative; in fact, there are infinitely many which are not. It is not even required that the truncated Legendre expansion \(\omega^{*}(x)\) be non-negative. Howeveir, it is essential that at least one function in this class be non-negative. The restrictions
1) \(\mathrm{N}_{\mathrm{i}}>0, \mathrm{i}=1, \ldots, \mathrm{n}\) and
2) \(Q_{n}(x)\) has \(n\) roots in the interval \((-1,+1)\)
express exactly this requirement. Then it follows that \(\omega^{*}(x)\) is the truncated expansion of some unspecified non-negative function. The failure cf either of those two conditions expresses the fact that the given moments (or Legendre coetficients) are not those of any everywhere positive function. Generation of the Generalized Gaussian Quadrature

We are given \(u(x)\), \(a \leq x \leq b\), [or rather, ve are given the moments of \(\omega(x)]\) and we are attempting to find a set of points, \(x_{i}\), and associated weights, \(\omega_{i}\), so that, for any arbitrary polynomial, \(f(x)\), of order \(2 n-1\) or less,
\[
E[f(x)]=\int_{a}^{b} f(x) \omega(x) d x=\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \omega_{i} .
\]

By simple division \(\cap\) polynomials,
\[
f(x)=q_{n-1}(x) Q_{n}(x)+r_{n-1}(x)
\]
where \(a_{n-1}(x)\) and \(r_{n-1}(x)\) are polynomials of order \(n-1\) or less.
\[
\begin{align*}
E[f(x)] & =E\left[q_{n-1}(x) Q_{n}(x ;]+E\left[r_{n-1}(x)\right]\right.  \tag{18}\\
& =E\left[r_{n-1}(x)\right] \text { from the orthogonality property of } Q_{n} .
\end{align*}
\]

However, we want
\[
\begin{align*}
E[f(x)] & =\sum_{i=1}^{n} f\left(x_{i}\right) \cdot \omega_{i}=\sum_{i=1}^{n} q_{n-1}\left(x_{i}\right) Q_{n}\left(x_{i}\right) \cdot \omega_{i}+\sum_{i=1}^{n} r_{n-1}\left(x_{i}\right) \cdot \omega_{i} \\
& =\sum_{i=1}^{n} q_{n-1}\left(x_{i}\right) Q_{n}\left(x_{i}\right) \cdot \omega_{i}+E\left[r_{n-1}(x)\right] . \tag{19}
\end{align*}
\]

By subtracting Eq. (18) from Eq. (19), we find that we must require, for all polynomials, \(q_{n-1}(x)\), that
\[
\begin{equation*}
\sum_{i=1}^{n} q_{n-1}\left(x_{i}\right) Q_{n}\left(x_{i}\right) \cdot \omega_{i}=0 \tag{20}
\end{equation*}
\]

This condition can only be met if
\[
Q_{n}\left(x_{i}\right)=0 \text {, that is, the desired points, } x_{i} \text {, are the roots of } Q_{n}(x) \text {. (21) }
\]

Now we still must pick the weights, \(\omega_{i}\), so that
\[
E\left[r_{n-1}(x)\right]=\sum_{i=1}^{n} r_{n-1}\left(x_{i}\right) \cdot \omega_{i}
\]
where \(r_{n-1}(x)\) is an arbitrary polynomial of order \(n-1\) or less. Since \(r_{n-1}\) may be exparided as a linear sum of the orthogonal polynomials, \(Q_{0}\), \(Q_{1}, \ldots, Q_{n-1}\), it is sufficient to require
\[
\begin{equation*}
E\left[Q_{k}(x)\right]=\sum_{i=1}^{n} Q_{k}\left(x_{i}\right) \cdot w_{i} \text { for } k=0,1, \ldots, n-1 \tag{22}
\end{equation*}
\]

However,
\[
E\left[Q_{k}(x)\right]=E\left[Q_{k}(x) Q_{0}(x)\right]=N_{o} \delta_{k o}
\]

Thus we mist have
\[
\begin{equation*}
\sum_{i=1}^{n} Q_{k}\left(x_{i}\right) \cdot \omega_{i}=N_{0}^{N} \delta_{k o} \text { for } k=0,1, \ldots, n-1 \tag{23}
\end{equation*}
\]

Multiplying Eq. (23) by \(\left[Q_{k}\left(x_{j}\right) / N_{i}\right]\) and summing over \(k\), we find
\[
\begin{gather*}
\sum_{k=0}^{n-1} \frac{Q_{k}\left(x_{j}\right)}{N_{j}} \sum_{i=1}^{\bar{T}} Q_{k}\left(x_{i}\right) \cdot \omega_{i}=\sum_{i=1}^{n} \omega_{i}\left\{\sum_{k=0}^{n-1} \frac{Q_{k}\left(x_{j}\right) Q_{k}\left(x_{j}\right)}{N_{k}}\right\} \\
=\sum_{k=0}^{n-1} \frac{Q_{k}\left(x_{j}\right)}{N_{j}} N_{0} \delta_{k 0}=\frac{Q_{0}\left(x_{j}\right)}{N_{0}} N_{0}=1 . \tag{24}
\end{gather*}
\]

Introducing the function
\[
D_{n-1}(x, y)=\sum_{k=0}^{n-1} \frac{Q_{k}(x) Q_{k}(y)}{N_{k}}
\]
we can write Eq. (24) as
\[
\begin{equation*}
\sum_{i=1}^{n} \omega_{i} D_{n-1}\left(x_{j}, x_{i}\right)=1 \tag{25}
\end{equation*}
\]

To proceed further we must establish the Christoffel-Darboux identit:
\[
\begin{aligned}
& \frac{Q_{n}(x) Q_{n-1}(y)-Q_{n-1}(x) Q_{n}^{\prime} y^{\prime}}{N_{n-1}(x-y)} \\
& =\frac{\left[\left(x-\mu_{n}\right) Q_{n-1}(x)-\sigma_{n-1}^{2} Q_{n-2}(x)\right] Q_{n-1}(y)-Q_{n-1}(x)\left[\left(y-\mu_{n}\right) Q_{n-1}(y)-\sigma_{n-1}^{2} Q_{n-2}(y)\right]}{N_{n-1}(x-y)} \\
& =\frac{(x-y) Q_{n-1}(x) Q_{n-1}(y)+\sigma_{n-1}^{2}\left[Q_{n-1}(x) Q_{n-2}(y)-Q_{n-2}(x) Q_{n-1}(y)\right]}{N_{n-1}(x-y)} \\
& =\frac{\left.Q_{n-1}{ }^{\prime} x\right) Q_{n-1}(y)}{N_{n-1}}+\frac{Q_{n-1}(x) Q_{n-2}(y)-Q_{n-2}(x) Q_{n-1}(y)}{N_{n-1}(x-y)} \cdot \frac{N_{n-1}}{N_{n-2}} \\
& =\frac{Q_{n-1}(x) Q_{n-1}(y)}{N_{n-1}}+\frac{Q_{n-1}(x) Q_{n-2}(y)-Q_{n-2}(x) Q_{n-1}(y)}{N_{n-2}(x-y)} \\
& =\frac{Q_{n-1}(x) Q_{n-1}(y)}{N_{n-1}}+\frac{Q_{n-2}(x) Q_{n-2}(y)}{N_{n-2}}+Q_{n-2}(x) Q_{n-3}(y)-Q_{n-3}(x) Q_{n-2}(y) \\
& N_{n-3}(x-y)
\end{aligned}
\]
\[
\begin{align*}
& \sum_{i=1}^{n} \frac{Q_{k}(x) Q_{k}(y)}{N_{k}}+\frac{Q_{1}(x) Q_{0}(y)-Q_{0}(x) Q_{1}(y)}{N_{0}(x-y)} \\
= & \sum_{k=1}^{n-1} \frac{Q_{k}(x) Q_{k}(y)}{N_{k}}+\frac{\left(x-\mu_{1}\right)-\left(y-i_{1}\right)}{N_{0}(x-y)}  \tag{26}\\
= & \sum_{k=1}^{n-1} \frac{Q_{K}(x) Q_{k}(y)}{N_{k}}+\frac{1}{N_{0}}=\sum_{k=1}^{n-1} \frac{Q_{k}(x) Q_{k}(y)}{N_{k}}+\frac{Q_{0}(x) Q_{0}(y)}{N_{0}} \\
= & \sum_{k=0}^{r-1} \frac{Q_{K}(x) Q_{k}(y)}{N_{k}}=D_{n-1}(x, y) .
\end{align*}
\]

Therefore
\[
\begin{equation*}
D_{n-1}\left(x_{j}, x_{i}\right)=\frac{Q_{n}\left(x_{j}\right) Q_{n-1}\left(x_{i}\right)-Q_{n-1}\left(x_{j}\right) Q_{n}\left(x_{i}\right)}{i_{n-1}\left(x_{j}-x_{i}\right)} \tag{27}
\end{equation*}
\]

For \(i \neq j\) and \(Q_{n}\left(x_{j}\right)=Q_{n}\left(x_{i}\right)=0\),
\[
D_{1-i}\left(x_{j}, x_{i}\right)=0
\]

Therefore, returning to Eq. (25),
\[
\sum_{i=1}^{n} w_{i} D_{n-1}\left(x_{j}, x_{i}\right)=\omega_{j} D_{n-1}\left(x_{j}, x_{j}\right)=1
\]
or
\[
\begin{equation*}
\omega_{j}=\left\{D_{n-1}\left(x_{j}, x_{j}\right)\right]^{-1}=\left(\sum_{k=0}^{\pi-1} \frac{Q_{k}^{2}\left(x_{j}\right)}{N_{k}}\right)^{-1} \tag{28}
\end{equation*}
\]

Limits of \(\mu_{i}\) and \(\sigma_{i}^{2}\)
In the calculations leading to the generalized Gaussian queirature we obtained two restrictions which had to be satisfied in order to have a positive distribution located on the interval \((-1,+1)\). These restrictions were:
1) \(\mathbf{N}_{\mathrm{i}}>0\).
2) All the roots of \(Q_{i}(x)\) lie in the interval \((-1,+1)\).

Let us determine first what limitations these two restrictions place on the quantities \(\mu_{i}, \sigma_{i}^{2}\). Consider first the effect of adding an infinitesimal amount \(\Delta \mu\) to \(\psi_{i}\). We have
\[
Q_{i}(x)=\left(x-\mu_{i}\right) Q_{i-1}(x)-\sigma_{i-1}^{2} Q_{i-2}(x)
\]
and
\[
Q_{i}^{*}(x)=\left(x-\mu_{i}-\Delta \mu\right) Q_{i-1}(x)-\sigma_{i-1}^{2} Q_{i-2}(x)=\psi_{i}(x)-\Delta \mu Q_{i-1}(x) .
\]

If \(Q_{i}\) has a root at \(x_{0}\), then \(Q_{i}^{*}\) will have a root at \(x_{0}+\Delta x_{0}\)
\[
Q_{i}^{*}\left(x_{0}+\Delta x_{0}\right)=0=Q_{i}\left(x_{0}+\Delta x_{0}\right)-\Delta \mu Q_{i-1}\left(x_{0}+\Delta x_{0}\right)
\]

If we expand the right-hand side and keep only first order terms
\[
0=Q_{i}\left(x_{0}\right)+\Delta x_{0} Q_{i}^{\prime}\left(x_{0}\right)-\Delta \mu Q_{i-1}\left(x_{0}\right)=\Delta x_{0} Q_{i}^{\prime}\left(x_{0}\right)-\Delta \mu Q_{i-1}\left(x_{c}\right)
\]
or
\[
\begin{equation*}
\Delta x_{c}=\frac{Q_{i-1}\left(x_{0}\right)}{Q_{i}^{\prime}\left(x_{0}\right)} \Delta \mu \tag{29}
\end{equation*}
\]

Since \(Q_{i}(x)\) is positive as \(x\) approaches \(+\infty\), then \(Q_{i}^{\prime}\left(x_{0}\right)>0\) at \(x_{0}\) equal to the largest root of \(Q_{i}\). At successively smaller roots of \(Q_{i}\) the sign of \(Q_{i}^{\prime}(x)\) alternates from positive tc njaiive. \(Q_{i-1}(x)\) is similarly positive at \(+\infty\). Also, it has no rocts greater than the largest root of \(Q_{i}\). Therefore \(Q_{i-1}(x)>0\) at the largest root of \(Q_{i}\). Because the roots of \(Q_{i-1}\) "interleave" with the roots of \(Q_{i}\), the \(\operatorname{sign}\) of \(Q_{i-1}(x)\) must
alternate at successive roots of \(Q_{i}(x)\). Therefore, at ail roots of \(Q_{i}(x)\) we must have:
\[
\begin{equation*}
\frac{Q_{i-1}(x)}{Q_{i}^{\prime}(x)}>0 \tag{30}
\end{equation*}
\]
or, going back to Equation (29)
\[
\frac{d x_{0}}{d r_{i}}>0
\]

Therefore, as \(\mu_{i}\) is increased, the roots of \(Q_{i}(x)\) shift to the right, and, as \(\mu_{i}\) is decreased, the roots shift downard. If \(\mu_{i}\) is steadily increased, the largest root of \(Q_{i}\) will eventually equal 1 . This point is determined by
\[
Q_{i}(1)=0=\left(I-\mu_{i}\right) Q_{i-1}(I)-\sigma_{i-1}^{2} Q_{i-2}(i)
\]
or
\[
\mu_{i}=1-\sigma_{i-1}^{2} \frac{Q_{i-2}(1)}{Q_{i-1}(1)}
\]

This is clearly the maximum value of \(\mu_{i}\), which will generate positivity in the interval \((-1,+1)\). Likewise there is a minimum value at which the lowest root of \(Q_{i}\) occurs at \(x=-1\).
\[
Q_{i}(-1)=0=\left(-1-\mu_{i}\right) Q_{i-1}(-1)-c_{i-1}^{2} Q_{i-2}(-1)
\]
or
\[
\mu_{i}^{\min }=-1-\sigma_{i-1}^{2} \frac{Q_{i-2}(-1)}{Q_{i-1}(-1)}
\]

Note that
\[
a_{i}=\frac{Q_{i-2}(1)}{Q_{i-1}(1)}>0,
\]
due to the positivity of the functions as they approach \(+\infty\) and that
\[
\beta_{i}=-\frac{Q_{i-2}(-1)}{Q_{i-1}(-1)}>0,
\]

\section*{B-16}
due to their alternation in sign at - . Since \(\sigma_{i-1}^{2}>0\), we have the following picture on a \(\mu_{i}\)-axis


Now that we have upper and lower limits for \(\mu_{i}\), what can we say about \(\sigma_{i}^{2}\) ? Since \(\sigma_{i}^{2}=N_{i} / N_{i-1}\), restriction \(I \underset{\min }{\max }\) ies that \(\sigma_{i}^{2}>0\). We can obtain an upper limit to \(\sigma_{i}^{2}\) by setting \(\mu_{i+1}^{\min }=\mu_{i+1}\). For larger values of \(\sigma_{i}^{2}\), \(\mu_{i+1}^{\min }>\mu_{i+1}^{\max }\), which means that there is no value of \(\mu_{i+1}\) which will allow all the roots of \(Q_{i+1}(x)\) to lie inside \((-1,+1)\). Thus
\[
\begin{aligned}
& 1-\left(\sigma_{i}^{2}\right)_{\max } \frac{Q_{i-1}(+1)}{Q_{i}(+1)}=-1-\left(\sigma_{i}^{2}\right)_{\max } \frac{Q_{i-1}(-1)}{Q_{i}(-1)} \\
& 2=\left(\sigma_{i}^{2}\right)_{\max }\left[\frac{Q_{i-1}(+1)}{Q_{i}(+1)}-\frac{Q_{i-1}(-1)}{Q_{i}(-1)}\right] \\
& \left(\sigma_{i}^{2}\right)_{\max }=2 /\left[\frac{Q_{i-1}(+1)}{Q_{i}(+1)}-\frac{Q_{i-1}(-j)}{Q_{i}(-1)}\right]
\end{aligned}
\]

We can work back \(f_{i}\) m the limits on \(\mu_{i}\) and \(\sigma_{i}^{2}\) to obtain limits on the moments.
\[
\begin{gathered}
\sigma_{i}^{2}=N_{i} / N_{i-1} \\
N_{i}=\sum_{k=0}^{i} a_{i k} M_{k+i}=M_{2 i}+\sum_{k=0}^{i-1} a_{i k} M_{k+i} \quad \text { since } a_{i i}=1 .
\end{gathered}
\]

Therefore
\[
0<\sigma_{i}^{2}<2 /\left[\frac{Q_{i-1}(+1)}{Q_{i}(+1)}-\frac{Q_{i-1}(-1)}{Q_{i}(-1)}\right]
\]
implies
\[
\begin{aligned}
& -\sum_{k=0}^{i-1} a_{i k} M_{k+i}<M_{2 i}<\frac{2 N_{i-1}}{\left[\frac{Q_{i-1}(+1)}{Q_{i}(+1)}-\frac{Q_{i-1}(-1)}{Q_{i}(-1)}\right]}-\sum_{k=0}^{i-1} a_{i k} M_{k+i} \\
& \mu_{i+1}=\frac{L_{i+1}}{N_{i}}-\frac{L_{i}}{N_{i-1}} \\
& L_{i+1}=\sum_{k=0}^{i} a_{i k} M_{k+i+1}=M_{2 i+1}+\sum_{k=0}^{i-1} a_{i k} M_{k+i+1} \\
& \mu_{i+1}^{\max }=1-\sigma_{i}^{2} \frac{Q_{i-1}(1)}{Q_{i}(1)} ; \text { therefore, } \\
& L_{i+1}^{\max }=N_{i}-N_{i} \sigma_{i}^{2} \cdot \frac{Q_{i-1}(1)}{Q_{i}(1)}+\frac{N_{i} L_{i}}{N_{i-1}}=N_{i}\left(1-\sigma_{i}^{2} \frac{Q_{i-1}(1)}{Q_{i}(1)}\right)+L_{i} \sigma_{i}^{2} \\
& M_{2 i+1}<N_{i}\left(1-\sigma_{i}^{2} \frac{Q_{i-1}(1)}{Q_{i}(1)}\right)+L_{i} \sigma_{i}^{2}-\sum_{k=0}^{i-1} a_{i k} M_{k+i+1}
\end{aligned}
\]
also
\[
M_{2 i+1}>N_{i}\left(-1-\sigma_{i}^{2} \frac{Q_{i-1}(-1)}{Q_{i}(-1)}\right)+L_{i} \sigma_{i}^{2}-\sum_{k=0}^{i-1} a_{i k} M_{k+i+1}
\]

To obtain the limits on the Legendre coefficients, take the set of moments already determined \(M_{1}, M_{2}, \ldots, M_{2 i-1}\) combined with \(M_{2 i}^{\max }\) and convert from moments to Legendre coefficients. This gives \(f_{2 i}^{\max }\). When \(M_{1}, M_{2}, \ldots, M_{2 i-1}\) are combined with \(M_{2 i}^{\min }\) and converted, one obtains \(f_{2 i}^{m i n}\).

\section*{APPENDIX C}

\section*{MORSE Input Instructions}

There are five subroutines that read information for a complete MøRSE run. A description of the formats and variable definitions is given in this appendix.

The input read by Subroutine INPUT is as follows:
CARD A (20A4)
Title card.
(Any character other than a biank or alphameric in column one will terminate the job.)

CARD B (1515)
NSTRT - number of particles per batch,
NMøST - maximum number of particles allowed for in the bank(s),
NITS - number of batches,
NQUTT - number of sets of NITS batches to be run without calling subroutine INPUT,

NGPQTN*- number of neutron groups being analyzed,
NGPQTG* number of gamma-ray groups being analyzed,
NMGP* - number of primary particle groups for which there are cross sections. Should be the same as NGP (or the same as NGG when NGP \(=0\) ) on card XB read by subroutine XSEC,

NMTG* - total number of groups for which there are cross sections. Should be the same as NGP+NGG as read on card XB read by subroutine XSEC,

NCDLTP - set greater than zero if a coilision tape is desired; the collision tape is written by the user routine BANKR,
IADJM - set greater than zero for an adjoint problem,
MAXIM - maximum clock time in minutes allowed for the problem to be on the computer ( \(360 / 91\) c.p.u. time),

MEDIA - number of cross-section media. Should agree with NMED read by subroutine XSEC,

MLDALB - albedo scattering medium is absolute value of MEDALB; if MEDALB \(=0\), no albedo information to be read in, MEDALB < 0, albedo only problem - no cross sections are to be read,
MEDAI,B > 0 , coupled albedo and transport problem.

\footnotetext{
See Table C-II, page C-8, for sample input.
}

BLANK PAGE

CARD C (4I5, 5E10.5)
ISØUR - source energy group if \(>0\) : if IS \(\varnothing\) UR \(\leq 0\), SøRIN is called for input,
NGPFS - number of groups for which the source spectrum is to be defined,
ISBIAS - no source energy biasing if set equal to zero; otherwise the source energy is to be biased,
\(N \not \subset T U S D\) - an unused variable,
WISTRT - weight assigned to each sourse particle,
EBOTN - lower energy limit of lowest neutron group (eV) (group inḱff),
EBøTG - lower energy limit of lowest gamma-ray group (eV) (group NMTG),
TCUT - age in sec at which particles are retired,
VELITH - velocity of group NMGP when NGPQTN > 0; i.e., thermalneutron velocity ( \(\mathrm{cm} / \mathrm{sec}\) ).

CARD D
\(\left.\begin{array}{l}\text { XSTRT } \\ \text { YSTRT } \\ \text { ZSTRT }\end{array}\right\} \begin{aligned} & \text { coordinates for source pariticles } \\ & \text { (values may be overridden by subroutine SøURCE) }\end{aligned}\)
AGSTRT - starting age for source particles,
\(\left.\begin{array}{l}\text { UINP } \\ \text { VINP } \\ \text { WINP }\end{array}\right\} \begin{aligned} & \text { source particle direction cosines } \\ & \text { if all are zero, isotropic directions are chosen }\end{aligned}\)
If ISØUR on card \(C\) is \(\leq 0\), subroutine S S \(\varnothing\) RiN will be called for the input, of source data. For the sample problem en input spect.rum with biasing parameters is input.

CARDS El (TE10.4)
NGPFS values of \(\operatorname{FS}(I)\), the fraction of source particles in group \(I\), are required.
CARDS E2 (TE1O.4)
If ISEIAS > 0 , NGPFS values of \(\mathrm{BFS}(\mathrm{I})\), the relative importance of a source in group I, are required.

Reminder: Cards El and E2 are not needed if JSøUR > 0 .

CARUS F (7E1O.4)
NMIG values of ENER, the energies (in eV) at the upper edge of the energy group boundaries.

Note: The lower energies of groups NMGP and MMTS were read on Card C. If a collision tape is desireã (NCøL: \(P>0\) ) on carà 5 , include Card G; otherwise amit.

CARD G (2I5, 5X, 36II, 13I1)
NHISTR - logical tape number for the first collision tape,
NHISMX - the highest logical number that a collision tape may be assigned,
\(\operatorname{NBIND}(J), \mathrm{J}=1,36\) - an index \(\mathbf{~} 0\) indicate the collision parameters to be writien on tape (see Table C-I for definition of parameters). NCøLIS( \(j\) ), \(J=1,13\) - an index to indicate the types of collisions to be put on tape (BAYKR arguments 1-13, page 166 for definition).

\section*{CARD H (Zl2)}

RANDM - starting random number.
CARD I (14I5)
NSPLT - index indicating that splitting is allowed if \(>0\),
NKILL - index indicating that Russian rouiette is allowed if > 0,
NPAST - index indicating that exponential transform is allowed if \(>0\),
NøLEAK - index indicating that no:i-leakage is allowed if \(>0\),
IEBIAS - index indicating that energy biasing is allowed if \(>0\),
MXREG - maximum number of regions for which there are weight stancards and exponential transform variables (will be set to one if \(\leq 0\) ),

MAXGP - maximum number of groups for which there are weight standards and exponential transform variables (will be set to one if \(\leq 0\) ).
If \((\) NSPLT + NKILL + NPAST \()=0\), omit cards J .
CARD J (6I5, 4E10.5) (see p. 41 of rer. 6)
NGP1 from energy group NGP1 to energy group NGF2, inclusive, NDG NGP2

NRG1 NDRG

NRG2 in steps of NDG and from region NRG1 \(=0\) NRG2, inclusive, in steps of NDRG, the following weight standards and path stretching parameters are assigned. If NGPI \(=0\), groups 1 to MAXGP will be used; if \(\operatorname{NRGl}=0\), regions 1 to MXREG will be used (both ir steps of one).

WTHIHL - weight above which splitting will occur,
windWl - weight below which Russian roulette is played,
WTAVEl - weight given those particles surviving Russian roulette,
PATH - path length stretching parameters for use in exponential transform (usually \(0 \leq\) PATH < 1 ).
The above information is repeated until data for all groups and regions are input. If either NGP1 or NRGl equal zero, th \(\equiv\) values will be stored for all MAXGP and MXREG.
End cards \(J\) with negative value of NGPI (ex., -l in columns 4 and 5). The following cards are omitted if IEBIAS \(\leq 0\)

CARDS K (TEIO.4)
( (EPRØB (IG,NREG), IG = \(1, N M T G)\), NREG \(=1\), MXREG)
Values of the relative energy importance of particles leaving a collision in region NREG. Input for each region must start on a new card.

CARD L (14I5)
NS\&UR - set \(\leq 0\) for a fixed source problem; otherwise the source is from fissions generated in a previous batch,

MFISTP - index for fission problem, if \(\leq 0 \mathrm{nc}\) fissions are allowed,
NKCALC .- the number of the first batch to be included in the estimate of \(k\); \(i f \leq 0\) no estimate of \(k\) is made,
NØRMF - the weight standards and fission weights are unchanged if \(\leq 0\); otherwise fission weights will be multiplied, at the end of each batch, by the latest estimate of \(k\) and the weight standards are multiplied by the ratio of fission weights produced in previous batch to the average starting weight for the previous batch. For time-dependent decaying systems, \(N \emptyset R M F\) should be \(>0\).
If MFISTP \(\leq 0\), omit cards \(M\) and \(N\)
CARDS M (7ElO.4)
(FWLø (I), I = 1, MXREG) values of the weight to be assigned to fission neutrons.
CARDS N (TElO.4)
(FSE(IG,IMED), IG=1, \(: \operatorname{MMGP}), I M E D=1, M E D I A)\) the fraction of fission_ induced source particles in group IG and medium IMED.
Note: Input for each meuiium must start on a new card.
For a combined problem, the following cards must be included; omit for a pure neutron or gamma-ray problem.

CARDS 0 (7E10.5)
 values of the weight to be assigned to the secondary particles being generated. NGPQTN groups are read for each region in a forward problem and NGPQTG for an adjoint. Input for each region must start on a new card.

\section*{Geometry input data}

Read by subroutine JøMIN and the specific input depends on seometry packages used (see ref. 1, pp. 49-53 and p. 18C, and see Appendix D).

\section*{XSEC input data}

Read by subroutine XSEC.
CARD XA (20A4)
Title card for cross sections.
CARD XB (16i5j)
NGP* - the number of primary groups for which there are cross sections to be stored. Should be same as NMGP on card B,
NDS - numider of downscatters for \(\operatorname{KGP}\) (usuajlj \(\operatorname{HGP}\) ),
NGG* - number of secondary groups for which there are cross sections to be stored,
NDSG - number of downscatters for NGG (usually NGG),
INGP* - total number of groups for which cross sections are to be input,
INDS - number of downsatters for the INGP troups (usually INGP),
NMED - number of media for wh: ch cross sections are to te stored should be same as MEDIA on card B,

NELEM - number of elements for which =ross sections are to be read,
NMIX - number of mixing orerations (elements times density operations; to be performed (must be \(\geq 1\) ),
NCØEF - number of coefficients, including \(P_{0}\),
NSCT - number of discrete angles (usually NCøEF/2) Jrtegral,
ISTAT - flag to store Legendre coefficients if greater than zero,
IXTAPE - logical tape unit of binary cross-section tape, set \(=0\) if cross sections are from cards.
CARD XC (16I5)
IRDSG - switch to print the cross sections as they are read if \(>\dot{u}\),
ISTR - switch to print cross sections as they are stored if \(>0\),

\footnotetext{
*See Table C-II, page C-8, for sample input.
}

IFMU－switch to print intermedicte results of \(\mu\)＇s esplculation if \(>0\) ，
IM \(\varnothing M\)－switch to print moments of ensfular distribution if \(>0\) ，
IPRIN－switch to print angles and probabilities if \(>0\) ，
IPUN－switch to print results of bad Legendre coefíicients if \(>0\) ，
IDTF－switch to signal that input format is DTF－IV format if ＞ 0 ；otherwise，ANISN fromat is assumed．
CARD XD（16I5）
Element identifiers for cross－section tape，omit if IXTAPE \(\leq 0\).
Element iᄅentifiers must be in same order as elements are on tape．
The fullowing cards are read by subroutine READSG．

\section*{CARD XE}

ANISN format if IDTF \(\leq 0\) ；otherwise DTF－IV forwat．
Cross sections for INGP groups with INES downscatters for NELEM e］ements each with NCDEF coefficients．

The mixing cards are read \(h_{j}\) subrcutine JNPUT．
CARDS XF（ゴラ，E10．5）
winf（see card \(X B\) ）cards are required．
Ms－medium number，
K8－element number occurring in medium KM（negative value indi－ cates last mixing operation for that medium）．
RHØ－density of element \(K E\) in medium KM．

\section*{Analysis indut data}

Read by subrcutine SC \(\varnothing\) RIR．
For the sample problem，the following cards are required：
CARD SA（20A4）
analysis title card
CARD SB（IIG）
ND－number of detectors．
CARD SC（7E10．4）
\(\operatorname{RAD}(I) I=1, N D-\) detector radii．
CARD SD（7E10．4）
\(\operatorname{FDCF}(I) I=1\) ，NGPQIN－response function for neutrons groups 1．through NGPQTN，see Card B．
\[
C-7
\]
\begin{tabular}{|c|c|c|c|}
\hline J & Variable* & J & Variable \\
\hline 1 & NCOLLL & 10 & WTBC \\
\hline 2 & NAME & 20 & ETAUSD \\
\hline 3 & IG & 21 & ETA \\
\hline 4 & U & 22 & AGE \\
\hline 5 & v & 23 & \(\emptyset\) LDAGE \\
\hline 6 & W & 24 & NTEG \\
\hline 7 & X & 25 & NMED \\
\hline 8 & Y & 26 & famex \\
\hline 9 & Z & 27 & WATEF \\
\hline 10 & WATE & 28 & BLZNT \\
\hline 11 & IGOD & 29 & BLZON \\
\hline 12 & UØLD & 30 & VEL (IG) \\
\hline 13 & VøLD & 31 & VEL(IGQ) \\
\hline 14 & W¢ID & 32 & TSIG \\
\hline 15 & XdLD & 33 & PNAB \\
\hline 16 & YøLD & 34 & NXTKA \\
\hline 17 & 2gID & 35 & EXTRAI \\
\hline 18 & \(\phi\) IDWT & 36 & EXTPAA2 \\
\hline
\end{tabular}

Table C-II. Sample Group Input Numbers for Some Representative Problems*
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Eroblem Type} \\
\hline \begin{tabular}{l}
Incut \\
Variable
\end{tabular} &  &  &  &  &  & \\
\hline \(\left\{\begin{array}{l}\text { NGPQTH } \\ \text { NGPQRE } \\ \text { MMGP } \\ \text { INITG }\end{array}\right.\) & 14
0
22
22 & 0
17
18
18 & 14
0
22
22 & 0
17
18
18 & 14
17
22
40 & \(\left\{\begin{array}{l}\text { CARD B } \\ \text { Variables }\end{array}\right.\) \\
\hline \(\left\{\begin{array}{l}\text { HGP } \\ \text { HGG } \\ \text { IIIGP }\end{array}\right.\) & 22
0
22 & 18
0
18 & 22
0
40 & \[
\begin{array}{r}
0 \\
18 \\
40
\end{array}
\] & \[
\begin{aligned}
& 22 \\
& 18 \\
& 40
\end{aligned}
\] & \(\left\{\begin{array}{l}\text { CARD XB } \\ \text { Variables }\end{array}\right.\) \\
\hline
\end{tabular}

For cross sections with full downscatter NDS \(=\) NGP, NDSG \(=\) NGG and INDS \(=\) INGP .

\section*{APPEKDIX D}

\section*{Geometry Inout Instructions}

\section*{SPHERICAL GE \({ }^{(1)}\)}

CARD GA (I5, D10.5)
MED - medium number interior to \(R(>0)\)
\(R\) - outer radius of sphere or spherical shell containing MED.

Repeat CADD GA for all radii ( \(\leq \underline{20}\) ) in increasing order.
End CARD GA input with blank card.
CARD GB (D10.5)
R - region radius of sphere or spherical shell containing regions. Region numbers are assigned in consecutive order starting with 1 , and \(R\) must be in increasing order.

Repeat CARD GB for the number of regions ( \(\leq 20\) ).
End CARD GB input with blank card. If no regions are desired, a blank carui misi be used to signal no region geometry.

\footnotetext{
"Taken from ref. 6.
}

> D-2

\section*{SLAB GBs俗}

CARD GA (IS, DIO.5)
MED - nedive vith 2 as lower bound (>0)
z - iower limit or medium MED.
Repeat CARD GA for 0 ? 2 tuiuniaries with the last card containing MRD \(=0\) and the boundary of the system.

CARD GB (D10.5)
Z - lower limit of region boundary. Region numbers are assigned in consecutive order starting with 1 and 2 must be in increasing order.

Repeat CARD ©B for all region boundaries.
Fnd CARD GB input with a blank card. if no region geometry is
desired a blank card is required.
CARD GC (4D10.5)
XI - lower boundary of system in \(X\) direction.
XU - upper boundary of system in \(X\) direction.
YL - lower boundary of system in Y direction.
YU - upper boundary of syster in Y direction.

\section*{CYLISDRICAL GEDM}

CARD GA ( \(15,5 \mathrm{X}, \mathrm{A} 8\) )
NREGIN - Plag to indicate material media ( \(=1\) ) or both region and material media (=2).

SEX - sex of programer.
CARD GB (E10.5)
R - radii of the cylindrical shells describing the material media in ascending order.

Repeat CARD GB until all radii have been input.
End CARD GB input with a blank card.
CARD GC (E1C.5, 12I5/8I5)
H - upper height of medium \(M(I)(>0)\).
Cylinders assumed to start at \(\mathrm{H}=0\).
M(I) - media for the cylindrical shells for this height. Repeat CARD GC until all height intervals have been input. End CARD GC input with a blank card or if there are more than 12 radial intervais, 2 blank cards.
CARD GD (E10.5) omit if NREGIN \(=1\)
RG - radii of the cylindrical shells describing the region geometry in assending order.

Repeat CARD GD until all region geometry has been input. End CARD CD with a blank card.
CARD GE (E10.5, 1215/8I5) onit if JREGII \(=1\)
HG - upper height of regicir MG(I).
HG(I) - region numbers for the cylindrical shells for this height.
Repeat CARD GE until all height intervals have been input. Bnd CARD GE input with a blank card or if there are more than 12 radial intervals, 2 blank cards.

\section*{GERERAL GEBM}

CARL GA (i5, \(5 \mathrm{X}, \mathrm{A}, \mathrm{IX}, \mathrm{AT}\) ) Hoileritin left adjusted
NSTAT - flag to indicate material media only if 1 and 3oth region and material media if 2.

SEX - zこ= if the rrogrammer. (Select one from MALE, FEMALE,or blank indicating uncertain.)

STATUS - marital status of progranner.
CARD GB (2A4, A3, SíD10.5, Ai)
DUMY(3) - nollerith characters not used.
FII(I) - zone boundaries in increasing order along the X-axis.
\(\mathrm{BCD}(\mathrm{I})\) - flag to indicate end of input if blenk, eunin means to continue.

Repeat CARD GB if more than five boundaries along the \(Y\) axis are needed. CARD GC - same as CARD GB except for \(Y\) axis.

Repeat CARD GC if more than fire boundaries along the \(I\) axis are needec:
CARD GD - same as CARD GB cacept for \(Z\) axis.
Repeat CARD GD if more than five boundaries along the Z axis are needed.
CARD GE (A4, A2, 3I5)
BCD1 - hollerith ZONE
BCD2. - duvney
NXZ:0 - integers which specify the zone as being the nxZuth
FYX. zone in the \(X\) direction, - \(Y Z\).oth zone in the \(Y\)
KZZWO - direction, and EZZNOth zone in the \(Z\) direction.
CARD GP(2A4, A3, 5(D10.5, A1)
DUyy(3) - hollerith characters not used.
FII(I) - block boundaries in increasing order along the Faxis.
\(\mathrm{BCD}(\mathrm{I})\) - flag to indicate and of imput if blank, comma means to continue.

Repeat CARD GF if more than five boundaries along the \(X\) axis are needed. CARD GC - same as CARD GP except for \(Y\) axis.

Repeat CARD GG if more than five boundaries glong the \(i\) axis are needed. CARD GF - same as CARD GP except for 2 axis.

Pepeat CARD GH if more than five boundaries along the \(Z\) axis are needed. CARDS GI to \(G 0\) describe the geometry for a block and must be included for each biock in the zone.

CARD GI (A4, A2, 3I5)
BCDI - hollerith BLOC
BCD \({ }^{\text { }}\)
NXE: D - integers which specify the bluck as being the
EYBRD - NXBRDth in the \(X\) directicn, the FYBNDth in the
FZBID - \(Y\) direction, and the IZBID in the \(Z\) direction.
GARD CI (3Ah, IO(15,AE)
HAN2 - hollerith MEDI
DUM(2) - dumuy
INP(I) - a list of media sector by sector in the block
\(B C D(I)\) - flag to indicate end of input if blank, a cona Eeans to ccncinue.

Continuation vith \(12(15, A l)\) format is pernissible.
CAPD CX (3A4, 10(I5,A1))
WAM2 - hollerith SURP
DUM(2) - dumay
UIP(I) - a list of quadratic surfaces appes.ring in the block. Numbers mast appear in the order the surfaces are described on CARD GQ.
\(\mathrm{BCD}(\mathrm{I})\) - flag to indicate end of input of blank, a coma reans to continue.

Continuation of CARD GK in \(12(I 5,4)\) format is permissible. CARD GL (A4, AÉ, 18I3)

Sl - hollerith SECT
DUA - dumsity
IND(I) - the designstion of each sector which describes the position of the sector relative to quadratic surfaces. +1 : sector is on positive side of surface, -i: sector is on negative side of surface, 0̂: surface is not needed to define sector.

There must be a CARD GL for each sector and references to quadratic surfaces must be in same order as they are listed on CARD GQ.
CARD GI (3A4, Ir ( \(\mathrm{I} 5, \mathrm{Al}\) )
HAM2 - hollerith REGI
DUM(2) - dumary
INP(I) - a list of regions sector by sector in the block.
\(\operatorname{BCD}(I)\) - flag to indicate end of input if blank, a comana means to continue.

Continuation with \(12(15, \mathrm{Al})\) format is pernissible.
cẫil ge ( \(3 \mathrm{~A} 4,10\) ( \(15, \mathrm{Al}\) ))
IANE - hollerith SURF
DUM(2) - dumay
\(\operatorname{IKP}(\mathrm{I})\left\{\begin{array}{l}\operatorname{BCD}(\mathrm{I})\end{array}\right\} \begin{aligned} & \text { same as for CARD GK except for region input instead of } \\ & \text { material }\end{aligned}\)
CARD CO(A4, A2, 18I3)
Sl - hcilerith SECT
DUM - duany
IKD(I) - same as for CARD GL except ior region input instead of material input.

Repeat CARDS GI to C \(\$\) for each block.
CARD GP ( \(15,16 A 4, ~ A 2\) )
ng \(\mathrm{BD}_{\mathrm{D}}\) - total number of quadratic surfaces in the entire system.
DUM(I) - hollerith characters ignored by the code. (Helpful in identifying input at a later time.)

CARD GQ (4(D10.5, A4, 1X, Al))
CøF(J) - coefficient of the term
\(\operatorname{BCDI}(J)\) - hollerith indicating which term of the equation. XSQ, YSQ, ZSQ, XZ, YX, YZ, XY, ZX, YZ, X, Y, Z, or blank are the possibilities.
\(\operatorname{BCD2}(J)\) - a flag which indicates the quadratic equation continues. Any non-blank character ends the field. The next function must start on new card.

Repeat CARDS GQ until all surfaces have been described.
A sample of the input is shown in Figure D.1.

I-?



APPENDIX E

\section*{Library Subroutines sind Functions}

The following subroutines ard functions are library routines at Oak Ridge National Laboratory and are not provided with MORSE.
\begin{tabular}{c} 
Subroutine or \\
Function \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Function & Called From \\
\hline LDC & Main, XSCHLP, HELP \\
\hline INT \(\varnothing\) BC & DATE \\
\hline INTBCD & DATE, TIMER, SUBFT \\
\hline IETYP: & READSG \\
\hline
\end{tabular}

BCDI I I
IC \({ }^{2}\) MPA

MØDEL

IDAY

ІСLøСK
INSEPT

READSG
INPUT, BNAHLP, HELPER

INPUT

IWEEK

TIMER, MゆRSE
TIMER

\section*{Purpose}

Determine absolute address of cell given as argument.

Converts integer to EBCDIC. Converts integer to EBCDIC and returns number of bytes in EBCDIC string. Determines if a character is a number or a letter.

Converts EBCDIC to integer.
Comcares bit by bit \(N\) bytes of two variables; returns zero if the two variables are identical.

Determines whether the problem is being executed on the IBM- 360 model 75 or 91. Determines number of the month, day, and year.

Determines c.p.u. time.
Inserts a string of given length at a specified point in another string of characters.

There are several uses of these library routines. One is to provide the time, day or the week, and year that the job is being executed. A second use, provided by Subroutine TIMER, is ir determining the amount of c.p.i. time used per batch and for input and output. To obviate several of these library subroutines, dummy subroutines TIMER and DATE nay be used. A third use is in the diagnostic module. The absolute location of variables in commons, the determination of a repeating array, a "not used" feature, and an integer or floeting point output are the features
E-2
of the diagnostic module that require these special routines. If similar routines are not available, other user-written routines can be supplied for XSHLP, BNKHLP, and HELP.

Several other uses of these routines are made, but they are relatively unimportant. MODEL is used to scale MAXIIM, depending on the machine on which the job is being executed. ICAPA is used by INPUF to terminate a job when a non-blank or alphanumeric character appears in the first column of Card A. READSG has an option of checking for seçuence errors in the cross-section cards. While none of these features are necessary to the operation of MCNEE, they have proven to be quite useful.```


[^0]:    * A versatile analysis package, SAMBO, which handles most of the drudgery associated with estimation from randum walk events is described in ref. 1.

[^1]:    *See page 11 for diagram of energy group structure.

[^2]:    A more detailed description is given in Appendix C.

[^3]:    HELPER is a 3light revision of TDUMP． 12

[^4]:    *NSøRC is the number of particles starting the batch.

