Pacific Northwest Laboratory
Monthly Report to Advanced
Nuclear Energy Systems,
Space and Special Purposes
Division for July 1975

August 1975

Prepared for the U.S. Energy
Research and Development Administration
under Contract E(45-1):1830

Battelle
Pacific Northwest Laboratories
NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

PACIFIC NORTHWEST LABORATORY
operated by
BATTelle
for the
U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
Under Contract E(45-1)-1830

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy $4.00; Microfiche $2.25
PACIFIC NORTHWEST LABORATORY MONTHLY REPORT
TO ADVANCED NUCLEAR ENERGY SYSTEMS,
SPACE AND SPECIAL PURPOSES DIVISION
FOR JULY 1975

by
H. T. Fullam

August 1975

Battelle
Pacific Northwest Laboratories
Richland, Washington 99352
STRONTIUM HEAT SOURCE DEVELOPMENT PROGRAM

At Hanford, strontium will be separated from the high-level waste, then converted to the fluoride, and doubly encapsulated in small, high-integrity containers for subsequent long-term storage. The fluoride conversion, encapsulation and storage will take place in the Waste Encapsulation and Storage Facilities (WESF). This encapsulated strontium fluoride represents an economical source of 90Sr if the WESF capsule can be licensed for heat source applications under anticipated use conditions. The objectives of this program are to obtain the data needed to license 90SrF$_2$ heat sources and specifically the WESF 90SrF$_2$ capsules. The information needed for licensing can be divided into three general areas:

1. Long-term SrF$_2$ compatibility data.
2. Chemical and physical property data on 90SrF$_2$.
3. Capsule property data such as external corrosion resistance, crush strength, etc.

The current program is designed to provide the required information.

SHORT-TERM COMPATIBILITY TESTS

The first draft of the topical report summarizing the results of the short-term compatibility tests has been completed. The report has been expanded to include the thermodynamic analysis of strontium fluoride compatibility. As soon as the draft is typed it will be sent to DANES for review and comment.

LONG-TERM COMPATIBILITY TESTS

Based on current ARHCO scheduling, fuel-grade 90SrF$_2$ will be available from WESF in November. We will require 6 to 7 kg of the fuel-grade 90SrF$_2$.
for the long-term compatibility tests, and efforts are now under way to arrange for shipment of the fluoride from ARHCO to PNL. Recently instituted shipping regulations require that the shipments be made using approved containers in a licensed cask. A suitable cask has been identified and is available for use at the time required. The fluoride will be shipped to PNL loose-packed in the standard double walled WESF capsule. Each capsule will contain about 1 kg of loose 90SrF$_2$ powder, thus requiring a total of seven capsules. At PNL the capsules will be transferred to a shielded cell where they will be opened and the fluoride removed for subsequent use. Preparation of the detailed work procedure and safety analysis review required for the fluoride shipment is now under way.

The testing conditions and couple design for the long-term compatibility studies have been defined. They will be reviewed with DANES at Germantown in August. Long-term testing of nonradioactive SrF$_2$ couples will start in September, while testing of the radioactive couples should start in December (depending on the availability of fuel-grade 90SrF$_2$ from ARHCO).

THERMAL AGING OF HASTELLOY C-4

When considering the use of superalloys as a containment material for 90SrF$_2$, the problem of thermal aging of the superalloy must be taken into account. For example, Haynes 25 provides good resistance to attack by WESF-grade 90SrF$_2$. However, Haynes 25 undergoes a severe loss of impact strength, toughness and ductility when thermally aged at 650 to 900°C, reducing its usefulness as a container material for 90SrF$_2$. Most superalloys undergo aging reactions when heated in the same temperature ranges that affect their mechanical properties. Hastelloy C-4 is reported to suffer less from thermal aging reactions than most superalloys. Therefore a series of thermal aging tests have been started to see if Hastelloy C-4 can be considered for use as the strength member of a double-walled container for 90Sr in the range of 800 to 900°C. Hastelloy C-4 Charpy V Notch specimens are being tested at 600, 800 and 900°C for periods of 1000, 5000 and 10,000 hr and at 1000°C for 1000 and 5000 hr. Three specimens are being tested at each set of conditions.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Offsite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ERDA Chicago Patent Attorney</td>
</tr>
<tr>
<td></td>
<td>9800 S. Cass Avenue</td>
</tr>
<tr>
<td></td>
<td>Argonne, IL 60439</td>
</tr>
<tr>
<td></td>
<td>A. A. Churm</td>
</tr>
<tr>
<td>1</td>
<td>ERDA Division of Biomedical and Environmental Research</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20545</td>
</tr>
<tr>
<td></td>
<td>J. N. Maddox</td>
</tr>
<tr>
<td>1</td>
<td>ERDA Division of Nuclear Fuel Cycle and Production</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20545</td>
</tr>
<tr>
<td></td>
<td>F. P. Baranowski</td>
</tr>
<tr>
<td></td>
<td>R. W. Ramsey, Jr.</td>
</tr>
<tr>
<td>11</td>
<td>ERDA Advanced Nuclear Energy Systems, Space and Special Purposes Division</td>
</tr>
<tr>
<td></td>
<td>Washington, DC 20545</td>
</tr>
<tr>
<td></td>
<td>R. T. Carpenter</td>
</tr>
<tr>
<td></td>
<td>G. P. Dix</td>
</tr>
<tr>
<td></td>
<td>T. J. Dobry, Jr.</td>
</tr>
<tr>
<td></td>
<td>N. Goldenberg</td>
</tr>
<tr>
<td></td>
<td>A. P. Litman (3)</td>
</tr>
<tr>
<td></td>
<td>J. J. Lombardo</td>
</tr>
<tr>
<td></td>
<td>G. A. Newby</td>
</tr>
<tr>
<td></td>
<td>B. J. Rock</td>
</tr>
<tr>
<td></td>
<td>E. J. Wahlquist</td>
</tr>
<tr>
<td>1</td>
<td>ERDA Oak Ridge Operations Office</td>
</tr>
<tr>
<td></td>
<td>P. O. Box E</td>
</tr>
<tr>
<td></td>
<td>Oak Ridge, TN 37830</td>
</tr>
<tr>
<td></td>
<td>D. C. Davis, Jr.</td>
</tr>
</tbody>
</table>
ERDA Savannah River Operations Office
P. O. Box A
Aiken, SC 29801
R. H. Bass
T. B. Hindman
R. K. Huntoon

ERDA Technical Information Center
Department of the Army
Headquarters, U.S. Army
Facilities Engineering Support Agency
Fort Belvoir, VA 22060
H. Musselman, Technical Director

Electronics and Applied Physics Division
Building 347.3, AERE Harwell
Oxfordshire OX11 ORA
Great Britain
E. H. Cooke-Yarborough

General Atomic Company
P. O. Box 81601
San Diego, CA 92138
H. C. Carney

General Electric Company MSVD
P. O. Box 8555
Philadelphia, PA 19101
P. E. Brown

General Electric Company, Vallecitos Laboratory
P. O. Box 846
Pleasanton, CA 94566
G. E. Robinson

Los Alamos Scientific Laboratory
P. O. Box 1663
Los Alamos, NM 87544
S. E. Bronisz
R. A. Kent
R. N. Mulford
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Institution</th>
</tr>
</thead>
</table>
| 1 | Monsanto Research Corporation
Mound Laboratory (ERDA)
Nuclear Operations
P. O. Box 32
Miamisburg, OH 45342
W. T. Cave |
| 1 | Naval Nuclear Power Division
Ft. Belvoir, VA 22060
F. E. Roselle |
| 2 | Naval Facilities Engineering Command
Nuclear Power Division (FAC042)
Washington, DC 20390
T. P. Fleming
G. E. Krauter |
| 1 | Navy Office of the Chief of Naval Operations
Washington, DC 20390
Head, Reactor Branch |
| 4 | Holifield National Laboratory
Oak Ridge, TN 37830
R. S. Crouse
J. R. DiStefano
E. Lamb
A. C. Schaffhauser |
| 3 | Teledyne Energy Systems
110 W. Timonium Road
Timonium, MD 21093
P. Dick
R. Hannah
P. Vogelberger |
| 1 | Westinghouse Astronuclear Laboratory
P. O. Box 10864
Pittsburgh, PA 15236
C. C. Silverstein |
No. of Copies

ONSITE

2
ERDA Richland Operations Office
 W. C. Johnson
 B. J. Melton

7
Atlantic Richfield Hanford Company
 L. I. Brecke
 R. E. Isaacson
 L. M. Knights
 C. W. Malody
 J. D. Moore
 G. C. Oberg
 H. P. Shaw

23
Battelle-Northwest
 J. W. Bartlett
 R. E. Burns
 T. D. Chikalla
 R. L. Dillon
 J. W. Finnigan
 H. T. Fullam (3)
 A. J. Haverfield
 J. H. Jarrett
 R. S. Kemper
 R. P. Marshall
 R. W. McKee
 J. M. Nielsen
 R. E. Nightingale
 L. D. Perrigo
 A. M. Platt
 J. L. Simmons
 H. H. Van Tuyl
 Technical Information Files (3)
 Technical Publications

Distr-4