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On the following pages is:a sumary of the research Which
has been carried on under contract No. At(11-1)-2059 at the
Department of Physics and Astronomy éf the University of Iowa.
The requirements of the contract have been complied with.
| Sinée the beginning of the current tefm'of.agreement,
the principal investigator has.devoted 50% qf his time to the
project; he expects to devote the same amount of time during
the remainder of the term. |

Professor Glenn Joyce has participated in the project,
d.-voting 50% of his time.

'*~{'Dr;‘J;iygehrenberg,has;bee? working on thé project since
September,l969 and is devoting 100% of his time.

Thomas Burns, a gradﬁate student, has been working for
the project .full time.

This summer another gfaduate student, Mark Emery, will

begin work on the project.




I. STATEMENT OF THE PROBLEM

The equation which governs the motion of a tenuous

collisionless plasma, the Vlasov equation, is given by

at+-1'a§+z'av = 0. (1)

for ions and electrons. . The force F per unit mass is given by
F = %-(§_+ v X g). E, the electric field, and Eb the magnetic

field, are determined by Maxwell equations. For the electrostatic

case, B = constant or zero and

E = -9 | " : (2)
The potential ¢ is then deﬁgrmiped self-consi;tentl& by

F o = dn(ng - n) e
where ni/e = I fi/e d%v is the depsity.of the ions or electrons,
réspectively. The system (1), (2), and (3) is self-consistent'if

appropriate initial values are given and boundary values are

prescribed.




The state of the art of transform methods as compared to
the by-now quite advanced and sophisticated particle pﬁshing
methods, can still be considered to be inlits infancy. In view
of this, we felt we should c¢oncentrate on developing basic
methods which are economical and fast, to solve the Vlasov system,
rather than trying to solve a variety of physical conditions with
methods which still leave much to be desired.

When reviewing the two existing transform methods, the
method of characteristics and the Hermite expansion, it has been
been found th;t actﬁally the two methods are in a way closely
related. This is described in Chapter II. A new transfofm
called the "power transform” has been develcped.

It was found that the nﬁmber_of ferms taken into account
can be greatly reduced by intrddﬁcing a new kind of cut-off
proceduré in the transformed velocity spacé. Whéféas tﬁe number
of coefficients necessary in the older work of Armstrong was
around 1000, we are now working with a ﬁumber of coefficients
ranging between 4O and 60 without applying any artificial
damping to the coefficients. This is described in Chapter III.

When the same methdds are appiied to the linear‘theory,
it was found that Landau damping can still be represented to
better than 1% accuracy by choosing not more than 10 coefficients.

‘ -1
Computations are done for times't = 100 ube in a matter of



seconds. This work has been reported during the Third Annual
Numerical Plasma Simulation Conference'at Stanfofd in 1969;

In Chapter IV a general program, which has been developed
by G. Joyce, using the power transform method, is'described.

Simultaneously with this full nonlinear program T. Burns
has also deVeloped a program using the power transform, which
program simulates the quasilinear theory. This quasilihear theory
is obtained from thé full nonlinear equations by bmitting the
mode-mode coupling terms. By comparing both, it will be possible
‘to dbtain.moré information,aboutvthe deficiencies and merits of
the quasilineaé theory. This is described in Chapter V.

In Chapter VI scme theoretical considerations are reported
which show that non-resonant particles which are neglected in the
ordinary formulation. of the quasilineér theory (e.g., Bernstein
" and Engelmann) do play an important part. Tt is shown that the
quasilinear theory conserves momentum and energy if they are
included but not if they are neglected.

In Chépter VII a program is described, which program uses
a Fourier transform.in velocity space but leaves configuration
space unchanged. It is being developed by J. Nuehrenberg. The
adv;ntage of such an approach is twofold. A;l mode coupling

terms are combined in one termy E (x, t) F (x, y, t) which allows

a faster computation than the correspondihg convolution sum
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T?;;y Ek Fk-q which appears when fh;.individﬁal modes are gomputéd
d;rectly..'Second, with this method one should be able to compute
shock-like solutions of the Vlasov equation.

Finall&; 5. Nuehrenbgrg and the principal investigator
considered analytically what simplifications can be introduced in
describing the eleétron coﬁponent of an ion electron plasma.

When the process conéidered is slow, e.g., ion waves, a natural
‘assumption is to use the constancy of the adiabatic invariant of
~ the electrons. This is an additional constraint which makes the
‘ equationbof motion of the‘electroné simpler (in‘principle). If is
‘shown that the equation of state ng (x, t) = n, (o (%, t)), i.e.,
electron.densityldepends oﬁ space and time oﬁly #ia the pctentigl
o (x,.t), which is usually applied for analytical and numerical
investigations, does not conserve energy. On the dfher hand, the
.actual equétion of motion remains-so complicated thét numerical

intégration of the electron distribution will still require an

appreciable effort.




/-
-II'. RELATION BETWEEN CHARACTERISTIC TRANSFORM
AND HERMITE EXPANSION

We want to show the close relation between the characteristic
function and the Hermite transform. We consider the system,

consisting of the Vlasov equation

. _ M(u)l

of of gof
3t VT aw
and the Pbisson equation -
_.gg.: 1'.'J‘f(x,v,t)dv. ' (5)

=00

‘We apply a Fourier transform in configuration space

+o

£(x, v, t) = ¢ £ (v, 1) el
-c0
e .
E(x, t) = £ E (t)e™ (6)
-0 ’ :
and obtain the system
of ' +e - of
¢ t+ik vE - ¥ E =% =
K .0 D e 0 ;v
4o ‘

ik, By o= - f(ne)av. | (7



We now apply another Fourier transform in velocity space

+o

F, (v, 0 - Ity (v t)_;w av ®)
to oftain
, %;?:+ k, n §Fn ;i: t) f y’qgim. Eghfgi;zl Fn_qn(y, t) N
=0 ‘(A9).‘
and
ik_n En‘ (¢) = F,_ (0, t) . o | (io)»

F#.t&; ﬁ).isw%ﬁ%'CharactéfisfibAfunétion. When we expand Fh (y, t)

around y = O in a power series, we obtain

. - | o 5
: -1/2
Pyt =z e (e VeV L
' v=0 ™V - v .
3 2y
= 2V/2 r 2 has been added~for convenience. It .

The factor g,\) F—(Vle

has the effect that in a numerical computation ahy V= 0, 1...
: . s .

are all essentially of the same order of magnitude. The factor

exp (- %-y?) has to be added in order to assure convergence of

the expression for y —» .
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Inserting Eq. (8) into Eq. (6) and comparing equal powers

of y leads to the following set of equations:

v+l v-1
an,v + nko [an,v+l (v+1) an,v-l g, ]
vl o ‘ ' '
- l/k m=z_m _l/m R 0. (12)

This is the<power transformation. From its derivation it is

clear tﬁat it is close;y related to the characferistic function
methqd. "It can also be éhowh, usingAthe theorem that the Foufier
transformation-of a cyiinder~function is again, apart ffoﬁ a
factbr, the same cylinder function, that the én,v are prcporticnal

to the coefficients zZ, v when we write: -
. ). .

o 5
S _ . o Alfe v
£ (v, t) = » Z y Hev (v) e .

This is clearly the Hermite expansion.




ITI. CUT-OFF PROCEDURE IN TRANSFORMED VELOCITY SPACE.
APPLICATIONS TO LINEAR AND NONLINEAR THEORY.

When system (12) is integrated, it has to be cut off at

some v . However, in order to compute a, for the next time
max 4 Y : .

step, the knowledge of a is required. When doing an actual

n,y+l

calculation for the linearized Vlasov equation, it was found that

the a, V,'s'for v > 5 appear to be arranged in a very regular form.
) . .

It was, therefore, natural to guess a, +1 by putting an

)

’vm_ax_u:u )v::

The result was that Landau damping could be recovered from

interpolation polynomial through a,

numérical calculations using as few as 10 coefficients an,v
The deviation of the damping decrement(turned out to be only
sy/y = 0.8%.  The mathematical reason for Fhis phenoménon, which
saves a fantastic amount of computer time, has been clarified
by H. Meier, ORNL. The linear part of systemi (12) without the

nonlinear last term on the right can be solved as an eigenvalue

problem. It turns out that

a ~ He ( —=2-)

where @ is the continuous, real eigenvalue. The general solution

can be written as
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4o -

CE - I dw h(w) He

( W -1/2 u)2 + igt
n, e

v 'n
kO

-0

where h (w) is an arbitrary.function. a, ; can thus be repre-
2 .

-sented as an integral over a continuous eigenvalue spectrum.
It can be.shown that 20,y tends to zero like t& e-l/2 2

when t = ». When system (9) is cut off at some Vpax? Che result-
ing solution is no'longer an integral but a suﬁ over a fiﬁité
number of éigenvalues:

oo (wu‘), e, (;ﬁ_ ) o1/ wﬁ + iat

n,v u=l

This is an almost periodic function in time and an v does no
haw s

longer tend to zero as t -+ ». The recurrence is interpreted

,,as-ﬁinstabilityg; The remedy .is, to replace w by w+ 1A

This can most easily be done by an appropriately chosen extrapola-

tion formula.
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IV. NONLINEAR PROGRAM USING‘éGWER TRANSFORM.
COMPARISON BETWEEN NONLINEAR AND
QUASTILINEAR THEORY

The truncation methods discussed in lChapter'II havé been
implemenfed in nonlinear programs which are being used to test the
validity of the Aq-u.asilinear theory of Drummond and P:i.n_es,'1 and
to see thé effect of inclﬁding mode coupling on the "bump-on-the-

tail" distribution. The distribution of particles has the form

A f (v)




1

where the bump occurs at 4 times _th‘e thermal velocity. The results
of these calculation are sfill in a preliminary stage, ‘but certain ‘
results are beginning‘to' emerée. For example, same modes which are
linearly stable begin to grow after the electric fieid becomes
appreciable. This may be due to instabilities induced by the
trapped particles.® This implies that the region (in-k. space) of
large amplitude waves may be mﬁch larger than is predicted by the
quasilinear theory.

The advantage of the truncation method can be seen in this
calculation. Previously a similar problem has been investiéated
by Armstrong and 'Mbntgomery.3 Their calculation took 8 hours on
the Universityi of Iowa IEM _360. A typical computer run using
the trunca.tipn method takes about four minutes.

The results of keeping the full nonlinear set of Egs. (12)
have beeﬁ conip'aréd with the equation withoixt‘ the. ﬁ;od.e coupling

terms. This simplification is represented by

, g ' g 4

a + nk_[a v+l (v+1) - a —v-1 ]

n,v Q " n,v+l &y n,v-1 8,

- l/k iri l/n a a A: 0 - (13)

o g n,0 "o,v-1 ’
g +c
D CPve]l . _
| By " 1/ko = = 1/m %0 om -1 = 0. (14)

A'2 N=—x
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While the qualitative features of the two sets of equations are
éimilar, the second set does not repreéént the interacfion of
particles with the wave correctly, and the appearance of the
trapped particle instability ié modified considerably.
Considerable analysis of these resﬁlts remains befére

concrete statements can be made regarding the effect of amitting

the mode coupling terms.

L oee o



16

V. NON-RESONANT PARTICLE CONTRIBUTIONS
IN QUASILINEAR THEORY

We want to show that non-resonant particles may contribute
significantly in the quasilinear theory. We first derive the
equations of the quasilinear theory. Omitting the mode coupling |

terms for n # O in Eq. (7) results in

-of
aﬁl . - __2__
at'+ 1nko v1n En v - 0
+o0 e
ink E =- imfn(vlt) av (15)
- and afo = ' ) (16)
_— =X E f . . _
ot -n n ,

n=-o

From Eq. (15) we derive with-the WKB Ansatz £~ £, exp(-ijw(t')dt')

o afo/av

th = By iikonv-wni : (17)

With the help of Eq. (17) we can rewrite Eq. (16) as



af 3f . © (18)

o_2 ;%
ot ov Qv
s g |P = 2y g |7
where D= X ﬁ%—y= z mmg =
- = ik(v-w/k) m=o (km v-Reqmjﬁ’+ Y

These are the familiar equations of the quasilinear theory.
Usﬁally D is replaced by a delta funétion, which takes into account
the resonant particles only. A more careful expansion of g(v)/(v-w/k)

" leads to the following expansion with u = v-iy/k , where u is real.

g(v) _ glutiy/x)
v~-wfk ~ u-Rew/k '

‘This expression can be rewritten as

(P u-Riw7k [1+drk % +... ] g(u) + inf8(u-Rew/k)

- i7/k.6-'(u-Rew/k)]'} g<u)

where Pzrefers to the -principle value when integratedoner v. This
result, applied to the dispersion equation leads to the well known

formulae:
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‘2 'afo/au
K =P SR W
3t/ ou°

7/k P‘f du m = -m afo/au (1.?80.)/1{)

When applied to Eq. (4) we obtain

. ~~+°° , ) 7m/k m .
D =m=-m-§— IE | { m 4 + né(u-Rew/k)}

It can be shown that momentum and energy are conserved with this
form of the diffusion coefficient. The appearance of a principal

value 1ntegral 1nd1cates that contrlbutlons of particles which are

not resonant are 1mportant.

L tde
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VI. A FINITE DIFFERENCE SCHEME FOR VIASOV'S EQUATION

For the numerical soiution of the one-dimensional Vlasov
equation, a difference scheme approach in x-space seems fo be more
: adéqﬁate than a Fpurier analysis if the sqlution is not periodig
in x-space or if a‘periodic solution contains many Fourier modes.
Since a difference scheme in v-space would fail because of the
so-called free-streaming term (see Ref. 4) a Fourier trans-

formation of velocity space is made, so that Vlasov's equation

f 3 . of

3 \r&-E-a;:o | (19)
: 3F Pr '
is transformed into ¥ - lagyt EF = 0 .‘ (20)
h = p 1W .V ' 2)
where F f £, av (1)

In the following, a difference scheme in x and y is developed for

Eq. (2). Since f is real, the reality condition for F is

F(X} =¥, t) = F*(X, Ys t) . . (22)
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So that it is sufficiént to consider y > O. The-différence equations
have to be supplemented by a cut-off prescription at the largest

value of'y,.which is retained in the numerical procédure.

A. The Difference Scheme

In order to get a difference approximation of second order
accuracy in time an approach is used which is analogous to the
Lax-Wendroff technique (see Ref. 5). In the Taylor expansion to

second order in At of F(x, y, t + At)

' ' 2 2
F At
F(x, y, t + &t) = F(x, y, t) + At_%; (x, ¥, t) + :tg@5y,t)

. ‘ : 2., ‘
is inserted fram Eq. (20) and 9—% from the time derivative of

ot

&%

Eq. (20). The result is

P :

) F
F(x,u?t + At) = F(x,y,t) + 1At ( gxay = y EF)
: 2 -k 2 '
\ - (at) (2F 3 -
- - Y EF) + iy == (EF)).
2 axeayz XY dt

(23)
Since a zeroth order approximation of the term é% (EF) is sufficient,

this term can be approximated by

E(t + At/Q)F(t + At/2) - E(t)F(t)

3
5t (BF) = XIE
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Therefore, the two terms AtEF and_(Atz/Q) g% (EF) can be combined,
so that '
' 2 2 U 2
_ o O F  (at)” J'F 3
F(x, Y;t + At) - F(x} y’t) + lAt axay 2 \ax2ay2 - axay\y Ef))

- iyAtE(t + at/2) - F(x,y,t + at/2) .

(24)

It can be shown that the following two-step procedure

i M6 .. D o
: T L G N O e ol e
J> k j, k8 bxby ( J» k 55 %5, k )

 n+1 _ i M, .. n+1/2y ... on+1l/on+ 1/
R A +,’IA-__§'_('f_.F§,k ) -yt By TR

(25)

where the indices n, j,k correspond to t,x,y, respectively and

.. H =H

5k B e e e %

54,k -1 ok +1™M Lk -1
is a difference approximation of Eq. (2L4). Considering the free-

streaming case, i.e., the simplified equation
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L ()? 3'F
axéy' 2 axgay?

b

F(x,y,t + At) = F(x,y,t) + it

one can show that the éorrespondingly simplified version of Eq. (25)
is stable according to the von Neumann stability condition (see

Ref. 5), if 4t, Ax, Ay — O in such a way that

At

o | } _ : 4 .
—ZZ;Z;3H73 = const - A : - (26)

A numerical program for Ea. (25) can' be written so as to contain only

four multiplications per mesh point and time step.

B. Thé,Conservatioh Laws

There are several ways of determining the time dependence of

the electric field. One way would be to use‘Poiésbn's.equation;
. SE .

another one is to use Maxwell's equation j =1 3 In terms of
F the latter can be written as
L (xot)=+1 g ﬂ
so that (using Eq. (22)
+ + * +1
e A o
: m— =i - (21)

2by At
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is a possible way of integratiné the electric field in time.

The first application of Eq. (24) and (27)will be the strongly
nonlinear, spatially peribdic case in which many Fourier modes
exist. In this case (spatial periodicity), it can be shown that
using Eq. (27) to supplemeht Eq. (24) the following expressions

are exactly conserved by the difference scheme

£ F,
j J,0
LF,
j J}l
‘ n* 2
L 5 T (Fr 1" oF, , +F, ) +T E
(Ay) i ds ds do J
. n 1 ,.n n
0=4J Imax FJ,O 246x (L'J + 1 Ej - 1)

(28)

Since the expressions (28 a-d) correspond to difference approximations

for ‘

IL F(x,0,t) dx

(o]

L -3F

Sy (x,0,t) dx (because of Eq. (22))
o

o
L F [, _2
- ‘fo'-:—y?(x,o,t) dx+j‘OE (x) ax

~ (n + -g—f'c ')j: 1 according to Poisson's equation.

———
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n. is the electron density. The conservation oflexpressions (28 a-c)
corresponds to conservation of the totai‘number of electrons,

' mamentum, and energy. The accuracy with which Eq.'(28 d) is equal
to one for t = 0, indicates the accuracy with which Pbissoh's
equation is solved. Thus, Eq. (2&) supplémented by Eq. (27) has
exact conservation laws thch weuldrnot be the case if the time
ihtegration of the eleetric field were performed in a different

way.

C. Numerical Calculations

Preliminary numerical calculations show the validity of -
the stability condition Eq. (26) in the free-streaming case and
that the cut-off prescription:at y = xmax has. some influence on |
the numerical result So far, extrapolations of zeroth end first
order 1n Ay have been used. the latter seems to be preferable
‘Further 1nvee£;;atlons have ShOWn that the difference scheme exhlblts

correct linear Landau damping (or a linearly instable behavior).

In the near future, the scheme will be applied to a variety of

strongly nonlinear periodic and spatially nonperiodic cases.
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VII.. ELECTRON MOTION FOR SLOW PROCESSES IN PLASMAS

When we follow ion.and electron ﬁrajectqries on a computer,
the time Step must be adjusted in such a way that a plasma oscil- ;
lation can still be reéresented. This means, however, that we spend
. most of our cdmputing'effort on the tﬂme,scale~of the eleétrons.
Following the evolutioﬁ 6f an ion wave, for example, it becomes
either extremely time consuming or practicélly‘impossible. When .

. the electron gas is collision free, the adiabatic‘invériént‘of the
electrons is conserved if the-poténtial change is slow in a certain

sense. The adiabatic invariant is given by

T fvex - § B T eRleE) ax, o (29)

W being the total energy of an electron. We can express the constancy
of J by

9 .

3 fe(J,t) =0

If we want to express the distribution function by the total energy

W of the electrons, we can write the above equation as
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.afng't);_ﬁ 3f (W, t) —_— . (30)

ot At oW

where AW represents the energy a particle has gained in time At,

At comprising many bounce periods. Explicitly, we obtain:

fe=fe[w-w(t5-vﬂ67] . ~(31)

Ww(t) is giVen by the relatioh

$/7T00) + eqplx,0) ax = $/W(T) + eqliyt) a7 . (32)

Tt is important to realize that Eq. (31) and Eq. (32) are indeed

much simpler than the full Vlasov equation because W(t) changes on

‘the” time scale.-of the slow motion. -
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