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On the following pages is a summary of the research which

has been carried on under contract No. At(11-1)-2059 at the

Department of Physics and Astronomy of the University of Iowa.

The requirements of the contract have been complied with.

Since the beginning of the current term of agreement,

the principal investigator has devoted 50% of his time to the

project; he expects to dev6te the same amount of time during

the remainder of the term.

Professor Glenn Joyce has participated in the project,

d.:voting  50%  of  his  time.

-·      Dr.  J.:NUehrenberg .has.-been working  on the project since

September 1969 and is devoting 100% of his time.

Thamas Burns, a graduate student, has been working for

the project.full time.

This summer another graduate student, Mark Emery, will

begin work on the project.
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I.  STATEMENT OF THE PROBLEM

The equation which governs the motion of a tenuous

collisionless plasma, the Vlasov equation, is given by

M; + v.  M.+F.  ·1   =   0 (1)at - BE - av

for  ions and electrons. The force    per  unit  mass is given  by

F  = mE(E+  v  X B) .    E, the electric field,  and 8, the magnetic

field, are determined by Maxwell equations.  For the electrostatic

I case, B = constant or zero and

E    - 79 ·                                    (2)

The potential 9 is then determined self-consistently by

+   92   9     =      -4TT  (ni   -   ne)                                                                             (3)

where ni  e = ..  fi /e d3v is the density of the ions or electrons,

respectively.  The system (1), (2), and (3) is self-consistent if

appropriate initial values are given and boundary values are

prescribed.

11
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The state of the art of transform methods as compared to

the by-naw quite advanced and sophisticated particle pushing

methods, can still be considefed to be in its infancy.  In view

of this, we felt we should concentrate on developing basic

methods which are economical and fast, to solve the Vlasov system,

rather than trying to solve a variety of physical conditions with

methods which still leave much to be desired.

When reviewing the two existing transform methods, the

method of characteristics and the Hermite expansion, it has been

been found that actually the two methods are in a way closely

related.  This is described in Chapter II.  A new transform

called the "pcwer transform" has been develcped.

It was found that the number of terms taken into account

can be greatly reduced by introducing a new kind of cut-off

procedure in the transformed velocity space.  Whereas the number

of coefficients necessary in the older work of Armstrong was

around 1000, we are now working with a number of coefficients

ranging between 40 and 60 without applying any artificial

damping to the coefficients.  This is described in Chapter III.

When the same methods are applied to the linear theory,

it was found that Landau damping can still be represented to

better than 1% accuracy by choosing not more than 10 coefficients.
1

Computations  are  done for times  t  =  100 w in a matter of
Pe
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seconds.  This work has been reported during the Third Annual

Numerical Plasma Simulation Conference at Stanford in 1969.

In Chapter IV a general program, which has been developed

by G. Joyce, using the power transform method, is described.

Simultaneously with this full nonlinear program T. Burns

has also developed a program using the power transform, which

program simulates the quasilinear theory.  This quasilinear theory

is obtained from the full nonlinear equations by omitting the

mode -mode coupling terms. By comparing   both,    it   will be possible

to obtain more information about the deficiencies and merits of

the quasilinear theory. This is described in Chapter V.

In   Chapter   VI   some the oretical considerations are reported

which shaw that non-resonant particles which are neglected in the

ordinary formulation of the quasilinear theory (e.g., Bernstein
I

and  Erigelmann)  do  play ari important  part.     It is shawn  that  the

quasilinear theory conserves momentum and energy if they are

included but not if they are neglected.

In Chapter VII a program is described, which program uses

a Fourier transform in velocity space but leaves configuration

space unchanged.  It is being developed by J. Nuehrenberg. The

advantage of such an approach is twofold.  All mode coupling

terms are combined  in  one  term  y  E  (x,   t)   F  (x,   y, t) which allows

a faster camputation than the corresponding convolution sum
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+00

Ey EF which appears when the individual modes are computedk k-qq=-00
directly. Second, with this method one should be able to compute

shock-like solutions of the Vlasov equation.

Finally, J. Nuehrenberg and the principal investigator

considered analytically what simplifications can be introduced in

describing the electron component of an ion electron plasma.

When the process considered is slow, e.g., ion waves, a natural

assumption is to use the constancy of the adiabatic invariant of

the electrons. This is an additional constraint which makes the

equation of motion of the electrons simpler (in principle).  It is

shown that the equation of state n  (x, t) = n  (9 (x, t)), i.e.,

electron density depends on space and time only via the p6tential

cp (x, t), which is usually applied for analytical and numerical

investigations, does not conserve energy. On the other hand, the

actual equation of motion remains so complicated that numerical

integration of the electron distribution will still require an

appreciable effort.
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II. RELATION BETWEEN CHARACTERISTIC TRANSFORM
AND HERMITE EXPANSION

We want to show the close relation between the characteristic

function and the Hermite transform.  We consider the system,

consisting of the Vlasov equation

% . .5- ,l a s  =  e                                    (4)3v

and the Poisson equation

6     1 -   f (x, v, t) dv .                       (5)

+ 00

ax
-03

We apply a Fourier transform in configuration space

+00
ikx

f (x, v, t) I  f  (v, t) en
-00

+CO

E (x, t) E  En (t) e
ikx                   (6)

-00

and obtain the system

Bfn                   +°°        af- + ink  v f-  Z  E          0
at     .0 n n-q BV

q= -00
+00

inko  En         .  -  .1,    fn  (v,   t)  dv  .                                               ( 7)
•••00
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We now apply another Fourier transform in velocity space

+00

Fn (y, t) WI'    fn  (v,   t)   eiyv  dv                     
                      (8)

-00

to obtain

3Fn        AF'n (Y' t)
+0 F (0 t)

- +k n -y  I
q   ,

at    o        ay                   q      Fn-q Cy' t)q=-00

0        (9)

and

iko n En (t) Fn (0, t)
. (10)

Fn Cy, t) is th& characteristic 'function.   When we expand Fn (y' t)

around y=O i n a pawer series, we obtain

°°                                                                        -        -1/2    y2

Fn (y, t) =Ea (t) g  yv e                 (11)

V=0 n, v           v

cv+2,

The factor g =d has been added for convenience.  It.v/2 r <2'
v                         r   ( v+i)

has the effect that in a numerical computation a .      v   -    0,     1    ...n, v'

are all essentially of the same order of magnitude.  The factor

exp (-   1,2 ) has to be added in order to assure convergence of

the expression for y -• m.
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Inserting Eq. (8) into Eq. (6) and comparing equal pawers

of y leads to the following set of equations:

g.- 1

6    + nk [a 5+1    (v+1)    - a -1=1 ]
n, v o   n, v+1 gv n, v-1  9-V

g.- ,
+CO

- l|ki  -3 1   E   lim aib, o     n-m, v-1
a 0. (12)

m= -co

This is the pawer transformation.  From its derivation it is

clear that it is closely related to the characteristic function

method. -It can also be shawn, using the theorem that the Fourier

transformation·of a cylinder function is again, apart from a

factor, the same cylinder function, that the a are proportional
n, v

to the coefficients Z , when we write:
n, V

-                  -1/2 2
fn (v, t)  =  E

Z He  (v) e
v==0

n, v    v

This is clearly the Hermite expansion.
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III. CUT-OFF PROCEDURE IN TRANSFORMED VELOCITY SPACE.
APPLICATIONS TO LINEAR AND NONLINEAR THEORY.

When system (12) is integrated, it has to be cut off at

same vmax.  However, in order to compute an,V for the next time

step, the knowledge of a is required.  When doing an actual
n, v +1         -

calculation for the linearized Vlasov equation, it was found that

the a   's for v 2 5 appear to be arranged in a very regular form.
n, v

It was, therefore, natural to guess a by putting an
n, vmax+1

interpolation polynomial through a
,    B  =   1,2,3,4.

n'   vmax -11
The result was that Landau damping could be recovered from

numerical calculations using as few as 10 coefficients a
n,V

The deviation of the damping decrement turned out to be only

67/7 - 0.8%.  The mathematical reason for this phenomenon, which

saves a fantastic amount of computer time, has been clarified

by H. Meier, ORNL.  The linear part of system (12) without the

nonlinear last term on the right can be solved as an eigernralue

problem. It turns out that

a    - He  (-w  )
n,v v nk0

where w is the continuous, real eigenvalue. The general solution

can be written as

1
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+                 .  -1/2 07 + imt
an, v .f  dm h(w) He  (-L) ev nk 0--

where  h  ( w)   is an arbitrary function. a can thus be repre-
n, v

sented as an integral over a continuous eigenvalue spectrum.

a  -1/2 t2It can be shawn that a tends to zero like t  e
n, V

when t = co . When system (9) is cut off at some v the result-
max'

ing solution is no longer an integral but a sum over a finite

number of eigenvalues:

N             w     -1/2 u,2 + iwt
a               =       E     h   (c )    Hev   ( E-*-)    e                   Bn, v

&1-1                0

This is an almost periodic function in time and a does no
n, v

longer tend to zero as t = m . The recurrence is interpreted

"as  "instability».   The remedy..is, to .replace w by w + i k  .
This can most easily be done by an appropriately chosen extrapola-

tion formula.

\



13

IV.  NONLINEAR RROGRAM USING POWER TRANSFORM.
COMPARISON BETWEEN NONLINEAR AND

QUASILINEAR THEORY

The truncation methods discussed in Chapter II have been

implemented in nonlinear programs which are being used to test the

validity of the quasilinear theory of Drummond and Pines, 1 and

to see the effect of including mode coupling on the "bump-on-the-

tail" distribution. The distribution of particles has the form

A fo(v)

.V

l-
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where the bump occurs at 4 times the thermal velocity.  The results

of these calculation are still in a preliminary stage, but certain

results are beginning to emerge. For example, sane modes which are

linearly stable begin to grow after the electric field becomes

appreciable.  This may be due to instabilities induced by the

trapped particles.2 This implies that the region (in k space) of

large amplitude waves may be much larger than is predicted by the

quasilinear theory.

The advantage of the truncation method can be seen in this

calculation. Previously a similar problem has been investigated

by Armstrong and Montgomery. 3  Their calculation took 8 hours on

the University of Iowa BM 360. A typical computer run using

the truncation method takes about four minutes.

The results of keeping the full nonlinear set of Eqs. (12)

have been compared with the equation witho t the mode coupling

terms. This simplification is represented by

6    + nk [a  Y+1 (v+1) - an v-1    1 1n, v o  n, v+1   v V

- 1/ko f 1 1/n an o a o v-1 -0 0               (13)- ''

ho v - 1/ko   -1  E  1/ma   =0. (14)
m, 0  -m, v-1v  m=-oo
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While the qualitative features of the two sets of equations are

similar, the second set does not represent the interaction of

particles with the wave correctly, and the appearance of the

trapped particle instability is modified considerably.

Considerable analysis of these results remains before

concrete statements can be made regarding the effect of amitting

the mode coupling terms.

+        t.'4.

1
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V.  NON-RESONANT RARTICLE CONTRIBUTIONS
IN QUASILINEAR THEORY

We want to show that non-resonant particles may contribute

significantly in the quasilinear theory.  We first derive the

equations of the quasilinear theory. amitting the mode coupling

terms for n 0 0 i n Eq. (7) results in

Bf
Bfu + ink  vf  - E  -2:= 0
Bt o n n  Bv

+00

inko En =- f fn (vit)
dv (15)

-00

af    4.-and     0- =Z E f (16)
Bt         -n  nn=-co

Fram Eq.  (15) we derive with the WKB Ansatz f  - f  exp(-i.fw(t')dt')n

o bfo av
f    =  E                                                                                              (17)
n   n  i(konv-wn)

With the help of Eq. (17) we can rewrite Eq. (16) as

1-              -
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Bf Bf (18)
0= 1- D -9

at   av   av

+n   |E  2    -    27 |E 12
where  D=  E       m      = I

m m
m=-co lk(v-w/k) (k v-Rewm)2 + 7mam=o   m

These are the familiar equations of the quasilinear theory.

Usually D is replaced by a delta function, which takes into account

the resonant particles   only.      A more careful expansion   of g (v)/(v-w/k)

leads to the following expansion with u = v-iy/k, where u is real.

g(V) g(U+i7/k)

v-w/k   =  u -Rew/k

This expression can be rewritten as

I P 11-R m/k [  1 + iy/k  u + . . .  ] g(u) + in[6(u-Reu,/k)

- iy/k 6'(u-Rew/k)]] g(u)

where P refers to the·principle value when integrated over v.  This

result, applied to the dispersion equation leads to the well known

formulae:

1.
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2         f    Bfo/ Buk =P du
* .u-Rew/k

*t   J   h'2
7/k P  du = - FT afQ/Bu (Rew/k)  .u-Rew/k

When applied to Eq. (4) we obtain

+CO
2 72/k  2

D =ml- kim 'Em'2{P u-RJwm/kom
-i + NO(u-Rea)/k)}  .du..

It can be shown that mamentum and energy are conserved with this

form of the diffusion coefficient.  The. appearance of a principal

value integral indicates that contributions of particles which are
.,  ,-.. *..

not resonant are important.

-'...4
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VI.  A FINITE DIFFERENCE SCHEME FOR VLASOV'S EQUATION

For the numerical solution of the one-dimensional Vlasov

equation, a difference scheme approach in x-space seems to be more

adequate than a Fourier analysis if the solution is not periodic

in x-space or if a periodic solution contains many Fourier modes.

Since a difference scheme in v-space would fail because of the

so-called free-streaming term (see Ref. 4) a Fourier trans-

formation of velocity space is made, so that Vlasov's equation

af     af     af
3:E + v 32 - E.57= 0 (19)

2·
BF     a Fis transformed into 3€ -i- +i y E F=0 (20)

axay-

where   ,=f f„'v' dy. (2I)
-00

In the following, a difference scheme in x and y is developed for

Eq. (2).  Since f is real, the reality condition for F is

F(x,    -y,   t )   =  F*(x,   y,   t ) (22)

L-
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So that it is sufficient to consider y > 0. The difference equations

have to be supplemented by a cut-off prescription at the· largest

value of y, which is retained in the numerical procedure.

A.  The Difference Scheme

In order to get a difference approximation of second order

accuracy in time an approach is used which is analogous to the

Lax-Wendroff technique   ( see · Ref.    5) .       In the Taylor expansion   to

second order in At of F(x, y, t + At)

F(x,.y,  t. +  At)  =  F(x,  y,  t)  -1-  At  ·   (x,  y,  t)  -1- · 2·82 60, y, t)
Bt

BF                                 B F
2

E  is inserted from Eq. (20) and     2  from the time derivative of
at

Eq. (20).  The result is

2
,B FF(x, u, t  +  At)  =  F(x, y, t)  +  ibt   ( - -y EF)axay

. - (At)2 (   824F 2 -  6 F (Y EF) + iy .  · (EF)) .
ax By

(23)

Since a zeroth order approximation of the term  8 (EF) is sufficient,
at

this term can be approximated by

1    (EF)    =   E(t    +    At /2)F(t    +   At/2)    -   E(t)F(t)
at                      At/2
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Therefore, the two terms AtEF and (At2/2)   (EF) can be combined,
so that

2

F(x, y, t  +  At)  =  F(x, y, t)  + iat - -  -(y Ef))82F  - (At)2(  34F    3axay     2     2 2 axay
ax By

-  iybtE(t  +  At/2)   ·  F(x, y, t  +  At/2)·

(24)

It   can be shown   that the following two-step procedure

Fn + 1/2= Fn     + i _At_ ·(  0. Fn     - 118xbyyE'  F'9  .  )
j, k j, k 8   Axay         ..      j r k J  J, K

+ 1= Fn    i At t..Fn + 1/2 n + 1/2  +.1/2
) - iybt Ej.            5,    k  -, »       j,     k         .I   Axayc'. j,k 3, k

(25)

where the indices n, j,k correspond to t, x, y, respectively and

00
H -H -H -H +H."j,k-     j   +   1,k   +   1        j   +  1,k-l j-1,k   +  1     J   -1,k-1

is  a difference approximation  of  Eq. (24). Considering the free-

streaming case, i.e., the simplified equation
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2          24
a F    (at)    3 FF(x, y, t + At) = F(x, y, t) + ibt Bxsy - 2 2 2'

ax By

one can show that the correspondingly simplified version of Eq. (25)

is stable according to the von Neumann stability condition (see

Ref. 5), if At,  Ax,  Ay + 0 in such a way that

At                         1                     (26)
4/3

const ·

(Axay)

A numerical program  for Eq. (25)can· be writtan  so  as to· contain  only

four multiplications ·per mesh point and time step.·

B.  The Conservatioh Laws

There are several ways of determining the time dependence of

the electric field .      One way would  be  to use Poisson' s equation;

BE
another one is to use Maxwell's equation j=i- - In terms of

Bt ·

F the latter can be written as

·   (x, 0, t)   =  +  i  · 

so that (using Eq. (22)

Fn+1/2 - F +1/2* n+1    n
E.   - E.

J,i               J,              =  i     J                J                                                      (27 )
2Ay               At

U-
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is a possible way of integrating the electric field in time.

The first application   of  Eq.   (24)  and  (27) will  be the strongly

nonlinear, spatially periodic case in which many Fourier modes

exist.  In this case (spatial periodicity), it can be shown that

using Eq. (27) to supplement Eq. (24) the following expressions

are exactly conserved by the difference scheme

E t.
J,0

J

IF' 1
j, 1

3
n*

1 2 E (F    -2do +.·Fil) + I EI 2J,1 0, U,      J(ay)  j

n  1 ,_n
0 S j < j F.   + - CE -En   - max J,O 26x j+1   j-1

(28)

Since the expressions (28 a-d) correspond to difference approximations

for

     F (x, 0, t)   dx

BLE (Yot) dx (because of Eq. (22))
Joay.''

-  fl B  F  (x, 0, t)  dx  +  .11  E2(x)  dx
By

BE ,
(n  +  sx  ) j  =   1   according to Poisson' s equation.

3
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n.is the electron density.  The conservation of expressions (28 a-c)

corresponds to conservation of the total number of electrons,

mamentum, and energy. -The accuracy with which Eq.  (28 d) is equal

to one for t = 0, indicates the accuracy with which Poisson's

equation is solved.    Thus,  Eq. (24) suppltmented by  Eq.   (27)  has

exact conservation laws which would not be the case if the time

integration of the electric field were performed in a different

way.

C.  Numerical Calculations

Preliminary numerical calculations show the validity of

the stability condition Eq. (26) in the free-streaming case and

that the cut-off prescription at y = 5. has. some influence on
max

the numerical result.  So far, extrapolations of zeroth and first

order in by have been used; the latter seems to be preferable.
'.... ....,L'

Further investigations have shawn-that the difference scheme exhibits

correct linear Landau damping (or a linearly instable behavior).

In the near future, the scheme will be applied to a variety of

strongly nonlinear periodic and spatially nonperiodic cases.
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VII. ELECTRON MOTION FOR SLOW PROCESSES IN PLASMAS

When we follow ion and electron trajectories on a camputer,

the time step must be adjusted in such a way that a plasma oscil-

lation can still be represented. Thi s means, however,    that we spend

most   of our computing effort   on   the time. scale   of the electrons.

Following the evolution of an ion wave, for example, it becomes

either extremely time consuming or practically impossible.  When

the electron gas is collision free, the adiabatic invariant of the

electrons is conserved if the potential change is slow in. a certain

sense. The adiabatic invariant is given by

J=.fvdx - 1  42/m   (W  +  ef(xlt))     dx , (29)

W being the total energy of an electron.  We can express the constancy

of J by

·a-  f   (J, t)   =  0      0at  e

If we want to express the distribution function by the total energy

W of the electrons, we can write the above equation as
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Bf(W,t)   =  -  2    Bf(W,t) (30)
at        at      BW

where AW represents the energy a particle has gained in time At,

At comprising many bounce periods.  Explicitly, we obtain:

fe = fe [w -wIET- ToI ] . (31)

wITI is given by the relation

VwrEY  +   eg(x, 0)   dx   =   f,/ wIET  +   ecp(x, t)   dy . (32)

It is important to realize that Eq. (31) and Eq. (32) are indeed

much simpler than the full Vlasov equation because W(t) changes on

the-  time  scalehef  the  slow motion.
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