This document confirmed as unclassified by Division of Classification by Milrow Seismic Effects Preliminary Report

P1517

by

Eric R. Engdahl
U. S. Coast and Geodetic Survey
Rockville, Maryland 20852

Legal Notice

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights;
or

B. assumes any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "persons acting on behalf of the Commission" includes any employee or contractor of the Commission, or employees of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

Distribution of this document is unlimited.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
ABSTRACT

The historical earthquake record has been examined in detail relative to nuclear testing on Amchitka Island. The record indicates that the Aleutian Arc is an area of high seismic activity. Furthermore, this earthquake activity is highly variable in rate of occurrence and spatial distribution. Recent evidence indicates large earthquakes and tsunamis may originate along a major thrust fault which passes under the Aleutian Ridge. On the basis of all available data, however, no large earthquakes are believed to have occurred along this fault directly under Amchitka Island.

To determine the natural earthquake patterns and the possibly adverse effects of nuclear detonations in the Aleutian Islands, particularly in the Amchitka Island region, the AEC established last spring a network of highly sensitive seismic stations to monitor continuously the seismic activity. This network has significantly improved the capability to detect and locate earthquakes in the region. Following MILROW, data obtained from this network were compared with the historical record and pre-MILROW monitoring. Except in the immediate vicinity of ground zero, there was no evidence for a temporal or spatial change in the pattern of natural earthquake occurrence in the Aleutian Islands.
The exception was a swarm of hundreds of very small earthquakes, occurring immediately after detonation in a zone not more than 3 miles in radius from ground zero. This activity terminated abruptly 37 hours later at the time of the MILROW cavity collapse. The largest of these earthquakes were more than 100 times smaller than the explosion, in terms of energy release. The occurrence of these small seismic events is not unusual and has been noted following nuclear tests in Nevada. Many of the events are believed to be adjustments within the cavity region. Since they are very small, of short duration, and occur in the immediate vicinity of the explosion, they do not constitute a hazard to the major fault zone under Amchitka Island.
The Aleutian Arc is one of the more distinctive island arc structures of the circum-Pacific belt. In Figure 1 are shown bathymetric details for a portion of the Arc centered on Amchitka Island. The Bowers Ridge is a singularly prominent feature, but has little or no seismicity. An offset in the Aleutian terrace, not readily evident in planar view, indicates other structural changes close to Amchitka. Severe cuts in the ridge will be shown to be areas of high seismic activity. The tectonics represented in this schematic are subject to reinterpretation.

The generalized spatial distribution and focal mechanism solutions of earthquakes along the Aleutian Arc were examined using hypocenter determinations for the period 1961-1969 and short-period P and PKP first-motion data from 1963-1966. In Figure 2, first-motion data within a given encircled region are treated as a single event, and the nodal plane orientation for which there are a maximum number of consistent first motions was determined. The results are displayed on the lower hemisphere of a focal sphere. Quadrants of dilatational first motions are shaded and the ratio of consistent first motions indicated. Regions of seismic activity along the trench demonstrate tensional foci of the type discussed by Stauder. Shallow-focus earthquakes occurring under the ridge are interpreted as underthrusting by an oceanic plate, in conjunction with left-lateral strike-slip block movements.
LITHOLOGY SCHEMATIC BASED ON SEISMIC PROFILES

- UNCONSOLIDATED SEDIMENTS
- SEDIMENTARY ROCKS
- IGNEOUS ROCKS

ALEUTIAN RIDGE AND BOWERS RIDGE

VERTICAL EXAGGERATION 10 to 1
Focal depth distribution is an important factor for understanding the tectonics of the Aleutian Arc in terms of underthrusting by an oceanic plate. In Figure 3, focal depths determined from 1961 to 1969 along the Arc are plotted as a function of distance to the trench axis and compared to the bathymetric profile across Amchitka Island. Symbols are scaled according to the magnitude. In this profile, an intense amount of seismic activity appears to be concentrated in a zone about 50 km thick under the ridge proper. In terms of plate tectonics, the Aleutian Arc is not as well defined in focal depth distribution as other regions, such as the Kurils. It is unique, however, in the considerable numbers of shocks located in and near the trench. Better definition of this section will be made possible by continued analysis of data from the local network.

Instrumentation for the MILROW seismic program (shown in Figure 4) consisted of seven land-based stations, in continual operation since July 1969, and ten ocean bottom stations which operated during the approximate period September 26 to October 19. Three of the ocean bottom seismometers, OB5, OB6, and OB8, will probably provide useful data to the program.

The C&GS land stations are high-gain, high-frequency systems, particularly suited for the detection of nearby microearthquakes. In Figure 5, the response of the filtered NGC-2l system is compared to that of the Lamont system.
MILROW SEISMIC PROGRAM

- MILROW
- LAND STATIONS
- OCEAN BOTTOM STATIONS
STATION ASD

MAGNIFICATION (x10^3)

NGC-21 SYSTEM
2 Hz low-cut filter

LAMONT SYSTEM

FREQUENCY (Hz)
Operating gains within 18 db of the maximum shown here were achieved over the period of this investigation.

With the exception of shallow events occurring in the immediate vicinity of MILROW, the set of events located from August 7 through November 8, 1969, using C&GS network data is plotted in Figure 6. Pre-MILROW events are indicated by solid circles, post-MILROW by solid triangles. The world teleseismic network, which has a threshold magnitude of about 4.0 for the Aleutian Arc, did not detect most of the events shown in Figure 6. The capability of the local network drops off markedly at about 150-km distance from Amchitka, owing to the instrumentation characteristics, decreased location capability, and the fact that this area represents the approximate PG-PN crossover point for the region.

The accuracy of these epicenters is a function of the network configuration and arrival-time data for each event. In general, there is more confidence in epicenters which are close to or enclosed by the network geometry. Using additional data from the ocean bottom seismometers, recomputation of events in the 50-hour period following MILROW did not change the original epicenters by more than 5 km. Gross errors in the hypocentral parameters are also kept to a minimum by the use of both P and S data in the computational procedure.
The correlation of plotted epicenters to structural patterns makes a strong case for the internal consistency of these data.

The concentration of epicenters to the east of Amchitka for this time period suggests simply that, excluding the possibility of extreme attenuation to the west, the eastern region is more active seismically. On the other hand, the western region was a source of intense activity at the time of the 1965 Rat Islands aftershock sequence. The general distribution of epicenters, particularly near Amchitka, seems to correlate well with bathymetric features indicative of deeper structure. Seymour Canyon located just south of Amchitka, for example, is quite active and may be the true source area for the 1965 Rat Islands main shock (indicated by a star to the west of the region). A considerable amount of activity was detected in the vicinity of Amchitka Pass and south of the Delarof Islands, which were the source of several large earthquakes and aftershocks in September and late October 1969. The Aleutian terrace is notably quiet, which confirms an indication from the historical record that this region has a relatively low rate of seismic activity. In general, focal depths on and to the south of the ridge are within 50 km of the surface. To the north of the ridge, earthquakes may occur as deep as 200 km. The pattern of these foci in relation to a cross-section of the arc may provide important clues as to the dimensions and configuration of plates or blocks.
in motion in the region. In Figure 7, the relationship of epicenters south of Amchitka to structural features is shown in more detail.

Following MILROW, hundreds of small, shallow-focus earthquakes occurred within a zone not more than 5 km in radius from ground zero. This activity terminated abruptly 37 hours later, at the time of the MILROW cavity collapse. The largest of these aftershocks were more than 100 times smaller than the explosion, in terms of energy release, and none was detected teleseismically. The distribution of aftershock epicenters is shown in Figure 8 by X's. The largest of these events were located near ground zero, and are probably related to cavity adjustments; however, the asymmetric radiation pattern, general trend, and relation to nearby faults suggest a tectonic origin for many of these aftershocks. Small, shallow-focus earthquakes were also detected over this period and are indicated by open circles and triangles in Figure 8. It is highly relevant to the question of "triggering" that there was no apparent change in the distribution or rate of occurrence of these shocks, even though this activity is only 3 km or less from ground zero. Only compressional first motions were observed at the tripartite stations (ASB, ASC, ASD) for these natural events, in accord with a dip-slip source of the sense shown by natural faults in this region. Also significant are the location and focal depths of earthquakes which
may be related to movements along major tectonic blocks in close proximity to ground zero. The epicenters and focal depths of earthquakes in this category are shown in Figure 8 by solid circles and triangles. The focal depths are remarkably similar and indicate movements along a fault very close to 28 km under Amchitka. That this depth constitutes the location of a major thrust fault passing under the ridge at this point is highly likely.

The frequency of occurrence of aftershocks following MILROW is shown in Figure 9. Identified aftershocks are defined as those events which, on the basis of clearly defined P and S arrivals at the tripartite stations, are located approximately in the zone of aftershock epicenters shown in Figure 8. Except for a few signals of the same character several days later, the aftershock activity effectively terminated 37 hours after MILROW at the time of the cavity collapse. The greatest number of aftershocks occurred shortly after the explosion and immediately before the collapse to the degree that individual events were not distinguishable. In general, the first half of the activity was characterized by a sharpness in phase arrivals, as opposed to the more emergent behavior of signals before the collapse. The possibility that the activity occurring just before the cavity collapse was, in effect, small collapse phenomena and the earlier activity mainly tectonic must be considered.

In Figure 10, the daily numbers of events (many of which were not located because of insufficient data) are compiled over the period of observation.
MILROW COLLAPSE $m_B = 4.3$

IDENTIFIED AFTERSHOCKS

INTENSE ACTIVITY

NUMBER OF EVENTS

HOUR

0 3 6 9 12 15 18 21 24 27 30 33 36 39
NETWORK DETECTIONS

NUMBER OF EVENTS

AUG SEPT OCT NOV
This distribution shown also reflects, of course, the variable capability of the network due to weather conditions and operational data dropout. The 382 events following MILROW are predominantly aftershocks of the type previously discussed. Outside this phenomenon, there is little in the frequency of natural earthquake activity following MILROW to distinguish it from the pre-MILROW monitoring.

In an alternative attempt to interpret these data, frequency of occurrence was compiled as a function of distance to MILROW for events located by the network (Figure 11). Again, pre-MILROW seismicity is not greatly different from post-MILROW seismicity, with the exception of the 0- to 10-km class, which includes the shallow aftershock activity (the generally lower numbers of post-MILROW events reflect the shorter period of observation).
PRE-MILROW SEISMICITY
AUGUST 7 - OCTOBER 2

POST-MILROW SEISMICITY
OCTOBER 2 - NOVEMBER 8

DISTANCE TO MILROW (Km)

EAST OF MILROW
WEST OF MILROW

$\textbf{m}_b = 6.0$