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ABSTRACT

.

Relativistic, self-consistent field eigenfunctions for cerium have

been obtained which satisfy the two Dirac equations with a potential

1/3
corrected for. exchange by Slater's p method and for·self-interaction

by Latter's method.  The solutions were obtained subject to appropriate

boundary conditions  at the surface  of a sphere of radius R. Substahtial

variation of the eigenvalues with R is observed. The cillurt of con-

figuration  was   also · studied.
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INTRODUCTION

Recently the authors obtained self-consistent relativistic Dirac-

Slater-Vave functions for the free cerium ata .  Usd of the computer

program discussed by Liberman, Waber ard Cromer (1) made it feasible to

investigate the extent to which the electronic configuration is influenced.

when the atam is· placed in an environment of similar nearby atams,  i.e.

when all of the electrons are confined in a sphere of small radius 6nd

appropriate continuity conditions at the sphere boundary are applied.

Gschneidner and Smoluchowski (2) have presented a variety of physical

and chemical evidence which indicates that metallic cerium at normal

density has a single 4f electron localized (and thus part of the ion core)

and has 3 electrons presumably arising from the 5d and 6s atomic states.

The latter behave as conduction or valence electrons.  However, in
1,

compression, the normal face-centered cubic gamma phase is transformed to

alpha, another face-centered cubic phase, of 1.17 times the normal density.

They concluded that on the average only approximately one-half of a 4f

electron can be identified as part of the ion core in this collapsed phase.

In'view of this background of experimental evidence, the effect of

compression on the energy levels was investigated.

The Dirad-Slater differential equations were solved subject to ap-

propriate boundary conditions applied at the surface of a sphere.  These

boundary conditions were different from the conventional Wigner-Seitz

boundary conditions (3) because of the nature of the differential equations.

Solutions yere obtained for four different configurations and for ten

different .sphere radii R, the two smallest being smaller than the radius
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which corresponds to the atomid volume in the collapsed alpha phase.

In addition to following the change of the energy eigenvalues

relative to cell radius, the total energy was camputed by using the

method outlined by Snow, Canfield and Waber. (4)  This energy was used

to determine which electronic configuration was the most stable for each

radius.  In this way, evidence supporting an electronic structure change

due to compression was obtained.  A method of camputing the pressure was

also investigated.

DESCRIPTION CF THE CALCULATION

Basic Equations
\

It was assumed that the wave functions of an atom can be presented by

a   determinant of one-electron wave functions. These were computed by using,

the.approximation for exchange suggested by Slater (5); namely, by replacing

the exchange potential with one characteristic of a. free electron gas

having the local density of a given point in the atam.· The direct

potential acting on an electron is that of the nucleus and of all the

electrons (spherically averaged if there is an unfilled shell). Further t

details of the model and the method of calculating a self-consistent set
:/.

of solutions are discussed in the paper by Liberman, Waber and Cramer. (1)

We.write the four camponent Dirac equation in the form

< 1r f  (r)  i Z  ojlm   j                                                     (1)$  (r)  = 1
\   g  (r)  i  1,0.         /Jf'm /

1.  I. where   the  '0' s   are two-component normali zed spinors  with the indicated

quarrtum·numbers. The relation between the various quantum. numbers may be
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conveniently expressed as

f' =f t s

j  =Z+1/2s =f' - 1/2s
(2)

k  = -s (j + 1/2)

s  =f l
The coupled differential equations for the major j f(r) and the minor

r
component j g(r) of the radial function may be written in atomic units

r
as

8.f kf          o/V-E  -W  5+F=         cs          g
/       (3)

!3.E-ka_-
(V + E o-W)   fd r r- \c s

where E  is the rest energy of electron, W=E+E   wherein E i s the

energy eigenvalue of the (nlj) electron and V is the central potential.
-

In atamic units f = fl =m=1 and the velocity of light c= 137.037.·

The  quantity rV(r), defined  as

rr     r-       1/3 (4)rv(r)'= -Z +  4nr,2 p(r')dr' + r  4rlr' p(r')dr' - Cr Ip(r)1

where  Z  is the nuclear charge,   p (r')   is the local total electronic charge

density and C is (81/8TT)1/3, should approach N-Z-1 at large r.  However,

because Slater' s apprdximation was  used,  rV(r) will approach  N-Z.    We

adopt Latter'·s suggestion (6)  and set rV(r) equal to N-Z-1 for all values

of the radii greater than r  where it first reaches that value.  For all

but a few of the larger values of cell radius R. r  will lie outside the
'    0

region of interest.
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Boundary Conditions

- -                                  The correct boundary condition  for a Dirac electron  on the surface   of
-

a cell.of the crystal lattice is
.--

5                                                   '  = egs. (El  - re)  9,0  (r#)                                                      (5)t'k (E-1, 2 -d
\

where El and re are two points on the surface which differ by a lattice

vector. We shall deal only with the case k=0 (assuming that changes in

. '    the electron energies for other  k' s  are much  the  same hs  for this point  in

the   band  when the lattice constant is varied).      We will a proximate   *0 (E)

-    ·- .  .   as well.as possible by a single term in a spherical harmonic expansion.
M

With this drastic approximation it is only possible to satisfy the boundary
· i                                                                                                        ..-'r:.7.-1„.f...

condition at one pair of points.  We choose El to be a boundiry point on a ,
'line joining two nearest neighbors in the lattice.   Then.  '= -rl. and our

boundary condition becomes                                                            -

00(rl) = 90(-rl) (6)      '

The dependence of the major component of the spinor on the angle

0 is of even parity if f is even, i-e- 0 is an even function of cos 9,Vjm

but the dependence   of the minor camponent·is odd since.  f '   =  f   +  s.      That

is, the parity of the minor camponent is opposite that of the major.

The equality in (6)  can only be maintained for 2- = 0 if .                           *

f(-Rl  = a and gi(Rl) = 0 1 even
(7)

fi(Rl)  = 0  and  g  (Rl) ·= b f odd

where a and b are constants not defined explicitly here.
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Pressure Exerted at the Boundary                 '

The pressure at the boundary has been obtained from the virial function

by the method outlined by Hirschfelder,.Curtis and Bird. (7)    Use  of the Dirac

equation yields a somewhat simpler derivation' than the Schroedinger equation

since the former is first order.

The pressure could have been estimated from the slope of the ET versus ·

R curve, however, the mesh in R was too coarse to obtain accurate values.

An expression for the derivative of ET Tras derived.

At zero temperature the pressure is given by
--

5.TFV = -V  -                                                 (8)dV

For a -spherical cell of radius.R with V = 11•rrR3/3   we have

dW
PV = - 0./3) R ER                                                                    (9)

and         r
*                F

w  = f*   (E)   [   92'2  +  Pm«2  +  v<K) |   9 (I)   dpE                                                               (10)

*                To-simplify taking the derivative of the integral, the coordinate K
..:

is replaced by RE.  Then the limits of integration are fixed.  It is also
\

necessary  that the normalization   of   the wave function, regarded   as   a

t     function of R, be a constant, say unity..  Fram the normalization condition,
we have                                           ..

r   -  R  iR   1  =  0  =  R   Rj: ilt'.(PE)  R)  4  (RE.  -R) -APE /

=3 +   (r. R+R 6 )  19(K, R)  :,dlE                     (11)
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1

The derivative of the energy is

R    A  R 514*  (RE'  R)   [ca  .  S  9% + Bm,2 + V(le]  0(%1  R)Apx

=3 w+ P (r.R+R  ) 19(E.'R)12 6
+1    **(0    I  -   ca   '   p  +  r..   s  ve]   0 (E)   d                             .  (12)

Camparing the first ti·ro terms Frith the derivative of the normalization

condition shar·Ts that their   scon  is    zero.       Only  the   last   term  must be dealt

with and it can be reduced to a surface integral.

Above,   it  was  assumed  that  V(E)  has no dependence  on  the  cell size other..

than that introduced by the substitution of RK for K·  This is not true for /

the potential in a self-consistent field calculation such as this one.  Haw-

ever, the same result is obtained for either the exact many-body problem or

the Hartree-Fock approximation, except for a small' additional term due to

the inhamogeneities of the total charge distribution.  Neglecting this

term is equivalent to neglecting the contribution to the potential within

a cell in a crystal lattice of the charges outside the celir

The next step is to reduce the remaining volumeintegral to a surface

integral.  Starting fram the identity
.

* *
$  /0 9 (H$) - (HW) .r.2 9=0                       (13).

some manipulation gives

,* c-CE . E.K. R V) , = -s· c Ii'*  -c i. .0 4 (140- --

Combining.the results of equations (9), (12), and (14) gives the desired

result:

r*
PV = 1/3./ 4   (ca . n (r . p) 9 ds                                       (15)

....

\-
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n is a unit vector normal to the surface of the cell.     -- -

For spherical cells, a further reduction is possible.  Here a = rJr.

We multiply both sides of the well known identify

(2 0 E) (2.P) .r·P+i g·r x p (i6)
- -

by a.n,   Use of L=E x p and the Dirac equation gives     -

ca ' E.E 9 =r(W-V- Bmc2) 11 - ic (a·n) (a.L) 9 (17)
1

so that

PV  =  1/3. 9*   r   (W-V-Bmc2)    -   ic   (a. )    (2-.L)   *dS (18)

Inserting the terms in (18) and integrating, one obtains the result for

the ith electron

(PV) i  =      i(R12  +  gi (R)21  66.R  +  z  -  Rv(R)                         -      -               (19)-                         1Ll
+  2      cRgi (R)2   -   (2j   +  1)   cfi(R)   gi(R)-  /3

P-                                                                                                                                                                                                                                                                                                                              4

The total pressure
»

PT =  E(j)  (PV) j qj                                            (20)
: was used in the results diacussed below.

i

1,
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RESULTS AND DISCUSSION

1 1 2The variations of some of the energy eigenvalues for the 4f 5d 6s

configuration are shown in Fig. 1 where they are plotted vs the reciprocal-

of the sphere radius, R.  These values correspond to k=0 in equation

(5), or the bottom of the energy band. The curves for the top of the band

would rise much more rapidly and would exhibit no minima.  The points

corresponding to the Wigner-Seitz radii of y and a-cerium are indicated in

Fig.    1. The point   is also marked at which the maximum   in the total energy

occurs for this configuration (cf Fig. 3).

The variation of three of the energy eigenvalues and the total energy

with electronic configuration is shown in Fig. 2.  The values are for the

sphere radius of 3.811 a.u., the Wigner-Seitz radius for normal or 7-cerium.

The general trend of these relativistic Dirac-Slater eigenvalues with x,

the number of f electrons, is similar to that shown by Waber and Larson (8)

who used non-relativistic Hartree eigenvalues for the free cerium atom.  The

variation of the total energy curve suggests that there is a little more

than one 5d electron in y-cerium.

The variation of total energy with sphere radius is shown in Fig. 3.

For a free cerium atam, i.e. in the present case, one·confined to a sphere

of radius 60.0 Bohr units (37·75 1), the ground state is 4f].5d16s2.  Up to

the density corresponding to y-cerium this is the most stable state.  How-

ever, on further campression the total energy for the configuration

4fo' 55dl.5662 is .lower  and this configuration   is   the most stable state.

This trend is in substantial agreement with the deductions of Gschneidner

and Smoluchowski (2). These deductions .were based primarily on magnetic
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susceptibility data and on the variation of the experimental atomic radii
4

of the elements with the number of valence electrons which Zachariasen (9)

has observed.  It is predicted that on further campression the ground

2  2
state would became 5d 6s .

2
The one-electron radial density function (fi  + gi2) is shown in Fig.

1 1 2
4 for R = 3.811 and the configuration 4f 5d 6s .  The abscissa is-a

logarithmic scale of r.  The maxima in the individual density curves cor-
\

1  .,IIi
-  -  respond approximately to maxima or minima in the major camponent   flr).

The effects of the r multiplier 'and the minor component are to shift the                       ,

maxima  in the density curve  (generally) to the right.
1

The probability of finding a 6s or 5d electron at the boundary of the

sphere is large in comparison with the corresponding probability of find-
1

ing the 4f electron. These quite different probabilitie are of course a

' 1.- -_ consequence of the boundary conditions that have bedn imposed.  For the.

4f electrons, because Z is odd, the major component must be zero.  The
H--·.·. •€·..       '

\ )

minor component must be non-zero but in any event it will be small.  For              i
''

the 6s and 5d electrans.1 is even and the major component is non-zero.  The

value of the major camponent can become. quite large at the boundary·because

of the normalization condition, and, as compression increases, the boundary \

values of these major camponents become larger and larger.

The,single electron density functions obtained fram non-relativistic

Hartree wave functions for the free cerium atom have. been given by Waber

and Larson (8).  In this case, even though the Wigner-Seitz or the present

boundary conditions do not apply, the 4f density is vanishingly small at

radii larger than 3.811 a.u. In contrast, the 5d and 66 densities for the

9
t

' I



12

free atom are signficantly larger than the 4f density in this region.  In

fact, the principal maximum of the 6s density lies beyond the Wigner-Seitz

'.
radius in the two configurations stuiyed by Waber and Larson (8).  This

observation lends support to the idea that the 4f electrons are localized

near thu atamic nucleus and do not contribute·significantly to metallic

conduction.

rn Fig. 5 the total pressure is plotted Is 1/R for the 4fl52662 con-

figuration.  The. pressure starts out at zero.for the free atam and, as

campression occurs, the pressure becames slightly negative, an indication

of the tendency for free cerium atams to coalesce.  The pressure has a

small shallow minim  on further canpression, and then rises rapidly to

cross the line of zero pressure at essentially the same radius at which

the  minimum in total energy occurs. These curves for other configurations

are very similar.

Waber and Larson (8) have estimated the cohesive energy and the equi-

librium radius of cerium by using the relatively simple Frohlich-Raimes

method (10,11,12). They found the equilibrium radius for trivalent .cerium

to be 4.46 a.u. and that for tetravalent cerium to be 3.49 a.u.  It is
.

interesting that the present treatment leads to a similar value for,the
\

1 1 24f 5d 6s configuration. The Frohlich-Raimes estimate cf the cohesive

energy or heat of sublimation is -10 for trivalent and 348 kcal/mol for    '
tetravalent cerium.  The present calculation (obtained from the difference

between the free atam total energy and the minimum total energy cf. Fig. 3)

yields 129 kcal/mol   for   the   4fl5dl6s2. The experimental   value   '(13)     is    97·9

1

kcal/mole.       Thus the present calculati on   is a significant improvement   over

the Frohlich-Raimes method for the heat of sublimation.

..'
'f
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We show, in Fig. 6, the X-ray scattering factor for four sizes of

the 4f26s2 configuration.  In the low sin 0/1 region, f increases as R

decreases, and the difference between the scattering factors.for y cerium

and  the   free   atom is nearly 0.7 electron   in same regions . In crystal

structure work with cerium metal, or cerium alloys, it might be more

appropriate to use the scattering factor for the compressed atam than

that   for  the   free   atom.       The four curves   in  Fig.· 6 gradually converge

and are essentially identical  for  sin  8/1  >  0.3.

*
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CAPTIONS

Fig. 1.  The effect of compression on the energy eigenvalues for various
orbitals.of the cerium atom confined in. a sphere of radius R.
The (nlj) quantum numbers are indicated for each electronic level.
The symbols 7 and a indicate the Wigner-Seitz radius of the gamma
and alpha phases of metallic cerium.

Fig. 2.  Effect of the number of f electrons in the general configuration
-  6s25d2-x4fx on the energy eigenvalues of various electron levels

and the total. energy.  The sphere radius used corresponds to the
normal density of cerium metal.

Fig. 3.  Effect of campression and electronic configuration on the total

energy of confined cerium atoms.  The j quantum numbers are not
indicated in this figure.

22Fig.  4.   Plot of the radial density function ·for a single electron (fi   +  i  )'
For a cerium atom (4fl5d16s2) in a sphere of radii equivalent to
that for gamma cerium.

Fig. 5.  Total pressure vs 1/R for the configuration 4fl5d16s2.

Fig. 6.  X-ray scattering factors for four sizes of the 4f26s2 configuration.
of cerium.

1
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