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Abstract

With the flood of whole genome finished and draft microbial sequences, we need faster, more
scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide
polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be
used for finished and/or draft genomes available as unassembled contigs. The method is fast to compute,
finding SNPs and building a SNP phylogeny in seconds to hours. We use it to identify thousands of putative
SNPs from all publicly available Filoviridae, Poxviridae, foot-and-mouth disease virus, Bacillus, and Escherichia
coli genomes and plasmids. The SNP-based trees that result are consistent with known taxonomy and trees
determined in other studies. The approach we describe can handle as input hundreds of gigabases of
sequence in a single run. The algorithm is based on k-mer analysis using a suffix array, so we call it saSNP.

Introduction

Single nucleotide polymorphisms can aid in phylogenetic characterization of bacterial and viral
isolates, tracking strains during an epidemic, forensic investigations, and correlating genotype to phenotype.
Advanced sequencing technologies deliver dozens or even hundreds of microbial sequences at feasible costs.
Bioinformatics for whole-genome analyses may bottleneck our ability to make sense of the flood of sequence
data without rapid and scalable algorithms. This work describes a method to find SNPs and build phylogenies
for large numbers of finished sequences and/or assembled draft contigs, and presents examples for a number
of bacteria and viruses. It can handle many genomes at once, for example, all the available genomes in a viral
family or a bacterial genus, and has been used to find thousands or millions of putative SNPs from hundreds of
megabases of target sequences. No attempt is made to distinguish sequencing errors from SNPs, although the
analysis results can be used to design assays to do so using cost-effective methods such as microarrays or
sequencing of short specific regions. We work with all available assembled genomic sequence (from any
platform) and do not assume that “raw” data is available that might potentially resolve sequencing or
assembly errors on any particular genome.

Usually SNP finding begins with a multiple sequence alignment or many pairwise sequence alignments
of a set of target sequences. We have been hard pressed to find software to keep pace with the memory
required to build accurate alignments for dozens to hundreds of genome-length sequences in a feasible time
frame. Instead, here we take advantage of fast, memory-efficient suffix array methods (Mcllroy and Mcllrow,
1997) and BLAST+ (Camacho, et al., 2009) to find putative SNP loci, create a Hamming distance matrix of the
number of allele differences between every pair of sequences, and build a tree with a tool such as PHYLIP
“neighbor” (Felsenstein, 2005). We string together these publicly available tools with a few short perl script
and unix commands.

Other studies limit the region(s) examined to a few genes or areas with known sequence variation.
The saSNP approach scales to examine mutations across whole genomes, which should help to uncover novel
regions that correlate with phenotype outside of well-characterized genes or non-coding sequence. It should
also be useful in horizontal gene transfer studies, since one can examine SNPs across the entire genome.
Although beyond the scope of this paper, microarrays with probes designed for all putative SNPs can be used
to experimentally validate SNP alleles, identify sequencing errors, and characterize SNP alleles in unsequenced
isolates to place them on a phylogeny (manuscript in preparation).



Methods

The process is diagrammed in Figure 1. First, we enumerate all k-mer oligos in the set of input
sequences, or targets; conceptually this is all the subsequences from sliding a window of length k across the
targets, stepping by one base. This k-mer enumeration can be efficiently performed with the suffix array code
from (Mcllroy and Mcllrow, 1997). We used oligos of k=25. Reverse complements of oligos are added to the
list, so each oligo is represented in both directions to account for cases in which sequences have an inversion
or report opposing strands, but removing any duplicate oligos. We look for any candidate SNP base in the
center, at position 13, by counting the number of oligos with the same up- and down-stream sequence
surrounding the central position. For example, when k=25, the surrounding sequence is the 12 bases on both
sides of the 13" base. If a surrounding sequence occurs more than once in the list of oligos from all targets, it
represents a candidate SNP locus at the 13" position. Although alternative values of k also work, we chose
k=25 for most of our calculations since oligos of this length are not frequently repeated within a genome, so it
is usually suitable to uniquely characterize a locus. Moreover, it is amenable to SNP assay development such
as for microarray probes. We omit cases where all 12 bases on either side of the candidate SNP are a
homopolymer repeat. The process of finding candidate SNP k-mers can be parallelized by splitting up the
candidate loci by the identity of their first few starting nucleotides. This representation of a SNP locus is based
on surrounding sequence information rather than positional information in a genome differs from traditional
concepts of a SNP locus, and it allows us to consider draft genomes which are available only as contig
fragments in which positional information relative to the complete genome is not known.

Next, we prune out the putative SNPs from the candidate loci, eliminating any where the surrounding
sequence occurs more than once but with a different central base (i.e. candidate SNP allele) in the same target
genome, and also eliminating any where the SNP allele does not vary among the target genomes. We did this
by representing each candidate locus by a blast query string containing two 12-mers with an “N” between
them to indicate a variable base. Any sequence that is a reverse complement of another already on the
candidate list is now eliminated from the queries, since BLAST will report both plus and minus strand hits. This
is important since the targets might contain draft contig data in the minus direction. These candidate loci are
the queries BLASTed against a database of the original input sequences. We used the BLAST+ (Camacho, et al.,
2009) blastn algorithm with the following parameters: -task blastn-short -outfmt '7 std gseq sseq' -word_size
12, and parsed the hits to eliminate those with conflicting mutations at the “N” position within a target
sequence or with no variation among targets. If a different value of k is used, some of these settings need to
be changed: for example, with k=15, we used —word_size 7 —evalue 100. The BLAST output also gives relevant
information about SNP position and orientation in each target genome. We do not require that there be a hit
in every target, which is a crucial allowance if we wish to include SNP loci from regions that may be deleted or
show greater variation in one of the targets. If the 24 bases of sequence surrounding a SNP position (12 on
either side) are not present in a target, the locus is considered absent in that target.

The SNP-based Hamming distance between each pair of targets is computed as the number of loci at
which their alleles differ. We used the neighbor algorithm of PHYLIP (Felsenstein, 2005) to build an unrooted
tree from the pairwise distance matrix, and visualized trees using Dendroscope.(Huson, et al., 2007) We do
not claim that these trees are the most phylogenetically accurate, but they are scalable and fast to compute
for such large analyses. Our attempts to create parsimony-based trees would not complete for all the data
sets in a feasible time frame. The SNP data is provided for readers to build alternative trees. Visualizing such



large trees is difficult, and readers are encouraged to download the Newick treefiles from supplementary
information and view them interactively with their favorite tree viewing software.

Analyses were performed on several example data sets. These contained complete genomes and
plasmids, both finished and draft, downloaded from NCBI nt, reference, and genome projects databases,
Baylor College of Medicine Sequencing Center, J. Craig Venter Institute, and the DOE Joint Genome Institute.
Sequence data for Escherichia coli and foot-and-mouth disease virus (FMDV) were downloaded in June 2010.
Bacillus sequences were downloaded in April 2010. Filoviridae and Poxviridae sequences were downloaded in
May 2010. All the data discussed in the results are available as supplementary information or by contacting
the authors. Calculations were performed on an AMD Opteron node with eight 2.4 GHz processors. A node
with 16 GB of available memory was used for the virus runs, and 32 GB of memory for the bacteria.

Results

Table 1 summarizes the saSNP analyses performed. From thousands to millions of SNP loci were found
for each target group. Target set sizes ranged from 47 to 184 genomes, and up to 539 MB of sequence data.
For the viral and plasmid targets, the analyses completed in seconds or minutes, and the bacterial genome
targets completed in 2-14 hours. We will not present an in-depth analysis of the phylogenetics or examine
genotype by phenotype correlations, as that is better performed by subject matter experts for each organism.
Instead, we will illustrate results of this approach with examples for a wide array of organisms with substantial
amounts of sequence data.

Filoviridae

The Ebola genomes cluster into distinct species groups (Figure 1). The Marburg Angola sequences also
form a single clade, as do the Marburg Ravn sequences. However, the Marburg Uganda and DRC sequences
fall into two distinct branches sequences, one very similar to the Ravn sequences, and the other closely
grouped with a South African “Ozolin” and distantly grouped with a handful of sequences including pp3/4
guinea pig variants, Musoke, Popp, and Ci67. There are 271 homoplastic SNPs that do not conform to the
branches of this tree. Recombination is known to occur in Filoviridae (Wittmann, et al., 2007), and may
contribute to the presence of homoplastic SNPs. Running the analysis with k=15 gives 4,725 SNP loci
(compared to ~3K with k=25), 661 homoplastic loci, and an identical tree.

FMDV

Consistent with previous studies of multiple genes (Knowles and Samuel, 2003), members of the same
serotypes do not always cluster together, according to the saSNP phylogeny (Figure 2A). The SNP tree
indicates that in serotype O, the O_UKG 2001 sequences are closely related to one another, as are the O_UKG
2007 sequences, but these two groups are not closely related to each other. The O_UKG 2007 sequences
cluster with some serotype O and A sequences from South America, while the O_UKG 2001 sequences lie
closer to some Asian sequences of serotype O and Asial. Other serotypes are likewise dispersed across the
SNP tree. Only SAT1, SAT2, and SAT3 sequences cluster as a single SAT clade, although the three SAT serotypes
are mixed up within the cluster. These analyses point to the difficulty of making a nucleotide-based assay for
serotype, since the SNP data are consistent with the known pattern that serotype and genotype are not tightly
correlated across much of the FMDV genome. Previous studies have shown that analysis of just the VP1 gene,



which codes for the antigenic outer capsid, does cluster the serotypes into distinct lineages . (Knowles and
Samuel, 2003)

There are 2,887 homoplastic SNPs that do not conform to the hamming distance based tree, and other
methods might build more accurate trees with fewer homoplastic SNPs. However, attempts to create a SNP
tree using a parsimony metric (PHYLIP dnapars) instead of a simple hamming distance tree did not complete in
a reasonable amount of time. The run was killed after 200 hours due to run time limits on our machine.

Using the oligo length of k=25, all 245 target sequences could be uniquely resolved, and ~14K SNP loci
were found. Due to the large amount of sequence variation, we compared how results differed with a shorter
oligo length of k=15, since this defines a SNP locus based on less surrounding sequence conservation. With
k=15, we found 16,992 SNP loci, and as before, all genomes could be uniquely resolved (Figure 2B). The tree
for k=15 clustered all the genomes according to serotype somewhat better than k=25, particularly the Asial
and C serotypes, although there were more homoplastic loci, 4,477, than with k=25.

Poxviridae

The Poxviridae saSNP analyses cluster the 117 genomes by species and strain, as expected (Figure 3).
The phylogeny is virtually identical one for 53 strains recently determined by poxvirus experts at the US
Centers for Disease Control and Prevention based on sequence alignments of 9 genes. (Emerson, et al., 2009)
The variola sequences are split into the major and minor groups as in previous SNP analyses (Li, et al., 2007),
and camelpox and taterapox cluster as nearest neighbors of the variolas. Rabbitpox is very similar to other
vaccinia sequences, and their nearest neighbors appear to be horsepox and one strain of cowpox (GRI-90).
Slightly more distance branches are the clade of monkeypox sequences and a couple more cowpox strains and
ectromelia. Outside the Orthopox branch, the other genomes also cluster by species. This is not a rooted tree,
so it should not be used to interpret ancestral versus derived sequences.

Out of the 117 genomes, only three pairs of sequences cannot be resolved using these SNPs: two of
the vaccinia Modified Virus Ankara (MVA) sequences VAC_MVA-572 and VAC_MVA-BN; two of the variola
sequences from Bangladesh VAR_Bangladesh1974_Shahzaman and VAR _Bangladesh1974 nur_islam; and
another two of the variola sequences VAR_Indial953_NewDelhi and VAR_Japan1946.

Bacillus

Three of the species, anthracis, subtilis, and licheniformis, are very homogeneous within the available
genomes for that species, although relatively few licheniformis sequences are currently available (Figure 4). In
contrast, cereus, thuringiensis, and other species show substantially more intraspecific variation, and may
result from the challenge of placing a new isolate into a taxonomic group when sequence data is limited. The
node containing the anthracis genomes is distinguished by 5,173 species-specific SNPs (all anthracis genomes
share the same allele at ~5K SNP loci), which could be useful for developing signatures for specific detection
of anthracis. There is one pair of genomes in this set that cannot be resolved based on SNPs:
anthracis_Ames_Ancestor and anthracis_A0248. According to the genome project information at NCBI for this
strain (genome project ID 33543), “This strain (96-10355; K1256) is a human isolated from USAMRIID, Ohio”,
and it was sequenced at the Los Alamos National Laboratory. The Ames Ancestor strain is the type strain
(0581, A2084, genotype 62, Group A3.b) for Bacillus anthracis, and is considered the “gold standard”
according to the genome project information at NCBI (genome project ID 10784), and was sequenced at The

Institute for Genomic Research in Rockville, MD. So these are different but similar isolates. All other Bacillus
genomes can be uniquely resolved based on SNPs. An analysis of Bacillus 16S rDNA sequences (Porwal, et al.,


http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=10784

2009) showed a similar relationship among species, with the cereus, anthracis, and thuringiensis clustering
into a diverse “cereus group”, and the other species such as pumilus, lichenformis, and subtilis on a separate
branch.

The Bacillus plasmids do show clear pXO1 and pXO2 clusters (Figure 5). There are 1057 homoplastic
SNPs that do not map to nodes of the tree, highlighting the potentially complex lineages and horizontal gene
transfer events that might have occurred. The 14 sequences that cannot be uniquely resolved are shown in
Table 2.

E. coli

Whole genome saSNP analyses show that the 0157:H7 sequences form a distinct clade. K-12
sequences cluster with DH1 and BW2952, and have as a near neighbor the enterotoxigenic ETEC_H10407
sequence (Figure 6). As in an analysis by (Diamant, et al., 2004) our SNP results indicate that 055 _H7_CB9615
clusters closely with the 0157:H7 sequences. Diamant et al. created a phylogeny based on the sequences of 7
noncoding regions of approximately 200 bp each, some containing simple sequence repeats. They found that
some isolates were not amplified by some of their primers, and others contained no variation among groups
of isolates. For example, all the 0157:H7 that they studied had completely identical sequences at the loci they
examined, so they could not differentiate among them. In contrast, from our SNP analyses based on whole
genome sequences, the 0157:H7 are very similar but there are loci that enable discrimination at a finer scale,
enabling isolate level discrimination of the available genomes. In fact, all the available E. coli genomes can be
resolved based on putative SNPs.

We created a tree for the available E. coli genomes using an in silico application of the assays
described in (Diamant, et al., 2004), predicting amplicons from their primers and aligning and building a tree
for the sequences of the combined 7 regions using Dialign (Subramanian, et al., 2008), shown in Figure 7.
Essentially, we simulated amplification and sequencing using the primers from Diamant for the sequenced
genomes. This tree based on the 7 regions from Subramanian et al. shows the 0157:H7 genomes as three
separate clusters, and it differs substantially from the SNP tree. Some of the differences may be due to gaps
and errors in draft genomes, but real differences such as the absence of a given region or variations in primer
binding sites also affect the relationships.

For the plasmid data (Figure 8), only one pair of sequences cannot be uniquely resolved: 517-
2H1 plasmid_pLEW517 and plasmid_pLEW517. These have different lengths and are collected from different
strains, but we found no SNP differences between them.

Discussion

The SNPs uncovered by saSNP are putative, since some may be a result of sequencing errors and may
need further validation, for example, by additional sequencing or SNP microarrays. For SNP analysis of a single
gene or other relatively short set of sequences that one can comfortably align, SNP identification from an
alignment is a better option, as it will uncover clustered SNPs within a 12 base proximity. The saSNP k-mer
approach described here is intended for larger scale applications where there might hundreds of genomes
with lengths up to the 5-10 megabase range. Indeed, the availability of more than one genome is an essential
requirement of this method. For viruses that are too divergent to align well, if most variation is at a scale
larger than single nucleotide differences, this approach might be valuable as a preliminary method to cluster



sequences into a broad phylogeny as a guide to those subsets for which alignment is feasible. For the plasmid
analyses we have included, it may not be ideal, or even accurate, to analyze all plasmids together and draw
them as part of the same tree since a common ancestor may be very distant, and some branches may not
contain any of the same loci as a distant branch. However, this method enables a fast, first-pass clustering,
since cluster-specific loci are identified which serve to group the sequences into related sets and suggest
relationship within those clusters. A subject matter expert can then separately examine branches of interest
or pull out those SNP loci that differentiate key branches.

One application of the saSNP approach is to determine SNP alleles that characterize a node. For
example, there are 5,173 SNP loci for which all anthracis species share the same allele which differs from the
alleles in non-anthracis Bacillus species. These node-distinguishing SNPs may be useful for developing
detection or genotyping assays. Another possible application for these SNP data is to guide decisions as to
how to allocate efforts for genome sequencing: A SNP microarray can yield data to generate a phylogeny for
multiple unsequenced isolates. Using a microarray to detect SNP variants at known loci (from SNP analysis of
available genomes) in an unsequenced isolate may be a relatively cost effective method to place the isolate on
a phylogeny, and may help to determine whether it is of sufficient interest (e.g. novel) to merit the expense of
sequencing. While this will not uncover novel SNP loci, it can suggest how similar an isolate is to other isolates
at known SNP loci.

As observed in (Diamant, et al., 2004), multilocus analysis enables one to “dilute the bias of individual
loci”. Since the approach described here scales to entire genomes, resulting phylogenies should be less
affected by regions that have undergone strong selection, deletions, or horizontal gene transfer (HGT) than
other methods that rely on only a handful of genes. For the E. coli genomes, we found that a tree based on
simulated amplification and sequencing of 7 regions differed substantially from a tree based on whole-
genome SNP analysis. The tree based on 7 regions did not cluster the 0157:H7 sequences together, but broke
them into 3 distant groups, in contrast to the whole-genome SNP tree which tightly clustered all the 0157:H7
sequences as a single group.

SNPs from HGT regions should show up as homoplastic SNPs that are inconsistent with the
phylogenetic relationships of the whole genome SNP tree. Although beyond the scope of this work, SNPs in
HGT regions might be distinguished from mutations or sequencing errors if HGT SNPs appear as blocks of SNPs
in proximity on the genome that are consistent with an alternative tree.

This method is an improvement from a previous approached developed by one of the authors
(Gardner and Wagner, 2005) since that method demanded a consensus sequence for the initial input.
Although with the previous method we were able to build a BLAST-based consensus for some target sets, and
it was certainly more feasible than an approach requiring a multiple sequence alignment, it still scaled poorly
for dozens of genomes. We found that poor accuracy of the consensus affected our ability to identify putative
SNPs, and we missed SNPs from any region that was not present in the reference genome around which we
built the consensus.

Nevertheless, the method as described here will miss some SNPs that are less than 12 bases apart (or

—, if other values of k are used). Adjacent mutations will be missed in many cases by this method. But it can

find nearby SNPs in some cases. For example, if only the following two oligos are present in the targets, then
neither of the positions in bold will be found as candidate SNPs:

ACTTTGTCATCAATCGAATCGGAGA
ACTTTGTGATCAG TCGAATCGGAGA



But if in addition, either one of the following oligos is also present in the enumerated list of k-mers and their
reverse complements

ACTTTGTCATCAG TCGAATCGGAGA

ACTTTGTGATCAA TCGAATCGGAGA

then the candidate SNP at the 13" position should be found, although it will be counted as two separate loci
for each surrounding sequence variant. Thus, SNPs in tight linkage disequilibrium which are less than 12 bases
apart can be missed by the method as described. Adding a “fuzzy” search that allows mismatches is a possible
improvement to address this shortcoming, but it is more complicated and will reduce scalability of the
algorithm. The proximity of SNPs that can be found is also affected by the choice of k in the initial oligo
enumeration. Shorter k enables us to find SNPs in closer proximity to one another, but also increases the
chance that the surrounding sequence will be present more than once in a target with a different central
nucleotide, and thus be thrown out of the pool of putative SNPs. Shorter k may be appropriate for some highly
variable targets like viruses, as appears to be the case for FMDV for which more SNP loci were found and the
resulting tree clustered genomes more consistently with serotype designations. While more SNP loci were
found for Filoviridae using k=15, there was no difference in the SNP tree with k=15 versus 25.

It is possible that this approach could also be applied to identify protein differences at a large, whole-
proteome scale by enumerating peptide k-mers. The suffix array algorithms, BLAST, and k-mer computations
should work on the amino acid as well as the nucleotide alphabet. The value of k would need to be shorter
than that for nucleotide sequence analysis, and would depend on the pattern length of peptide conservation
and variation. It is also possible that this approach could be used for SNP discovery on short, unassembled
reads from high throughput sequencing, because no sequence alignment is required, and suffix arrays and
BLAST are efficient tools that can be applied to large data sets. However, these suggestions for future work
are beyond the scope of this paper.

In conclusion, we describe saSNP, an approach for rapid, scalable SNP analysis of up to hundreds of
bacterial or viral genomes, of either draft or finished quality. While the method will not find all SNPs in the
data, particularly those that are in very close proximity, it will find a large number of them which can be used
to build a phylogeny based on whole-genome analysis rather than being limited to a few genes. An advantage
of scalable whole genome analysis is to avoid bias that might be present in some smaller regions that may
have undergone horizontal gene transfer, strong selection, sequencing errors, or other processes. Applications
of this saSNP approach could be to find sets of SNPs that map to a branch of interest or correlate with a
notable phenotype, or to identify key node-distinguishing SNPs from which one could design SNP assays such
as microarrays, PCR, or targeted sequencing to characterize unsequenced isolates.
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Table 1

Number Target set | Number Time to Number of
of size of SNP loci | complete sequences that
sequences cannot be
uniquely
resolved
Filoviridae 47 884 KB 3,042 45 seconds 0
FMDV 245 2.0 MB 14,060 22 minutes 0
Poxviridae 117 21 MB 29,527 29 minutes 6
Bacillus genus 107 539 MB 1,611,817 | 14 hrs, 8 2
genomes minutes
Bacillus genus 113 9.4 MB 9,284 7 minutes 14
plasmids
Escherichia coli 63 316 MB 342,701 2 hrs, 36 0
genomes minutes
Escherichia coli 123 7.5 MB 13,443 9 minutes 2
plasmids

Table 2: Bacillus plasmids that cannot be resolved within the indicated clusters.

Cluster Number

Sequence

cereus_plasmid_pCER270

cereus_AH187_ plasmid_pAH187_ 270

A2012_plasmid_pX01

A0248 plasmid_pX01

thuringiensis_miniplasmid

thuringiensis_canadensis_plasmid_pBMB2062-4ac

thuringiensis_tolworthi_plasmid_pBMB2062

Ames_Ancestor_plasmid_pX02

A0248 plasmid_pX02

A2012_plasmid_pX02

cereus_plasmid_pBCXO1

cereus_G9241 plasmid_pBCX01

A0193 plasmid_pX02

oS|I PIWWWININIFP|EL

WNA_USA6153 plasmid_pX02




Figure Captions

Figure 1: Diagram of saSNP process.

Figure 2: SNP tree for the Filoviridae genomes.

Figure 3: SNP tree for the FMDV genomes. It is drawn as a circular cladogram in order to visualize on a single
page. Analysis were run with A) k=25; B) k=15.

Figure 4: SNP tree for Poxviridae genomes.

Figure 5: SNP tree for Bacillus genomes.

Figure 6: SNP tree for Bacillus plasmids.

Figure 7: SNP tree for E. coli genomes.

Figure 8: Tree for E. coli genomes based on in silico amplification and alignment of the 7 loci from (Diamant, et
al., 2004). Dialign truncates some of the strain names, and appends .1, .2, etc. to avoid duplicates
caused by the truncation.

Figure 9: SNP tree for E. coli plasmids, shown as a circular cladogram for better viewing of many sequences.
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Figure 9
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