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THE SCATTERING OF POSITRONS BY ATOMIC
HYRDOGEN: FORMULATION

by

W. J. Cody and Kenneth Smith

ABSTRACT

This report contains the derivation of the coupled
systems of second-order integrodifferential equations which
must be solved numerically in order to obtain the cross sec-
tions for the elastic and inelastic scattering of positrons by
atomic hydrogenand the cross sections for the formation of
positronium into the ls and 2s states.

The numerical method to be used to solve the equa-
tions at incident energies above excitationthresholds is also
discussed.

I. INTRODUCTION

As noted by Massey and Mohr (1954) and Massey and Moussa (1958),
the recent advances in experimental techniques associated with the study
of a stream of positrons in a gas now justifies theoretical investigations of
the various processes involved.

Massey and Moussa (1958) calculated the elastic scattering cross
sections for positrons with various atoms, including hydrogen, using the
adiabatic one-body approximation, and concluded that distortion effects
are negligible. This conclusion has received support from the work of
Smith, Miller and Mumford (1960), who assumed distortive effects to exist
only in the sense of real excitation to the 2s~ and 3s-states of atomic
hydrogen, rather than a distortion due to an added induced potential between
the positron and the hydrogen atom [see Massey and Moussa (1958)].

However, both Moussa (1959) and Spruch and Rosenberg (1960) have
shown that at very low energies (about 5 ev) the effect of virtual positro-
nium formation on the elastic scattering cross section is important, in
contradiction to those calculations which neglect positronium formation.
Both sets of calculations were carried out by variational methods.

The present report formulates the problem from the usual
eigenfunction-expansion approach and presents the coupled systems of
radial equations which must be solved numerically for the phase shifts



and amplitudes in order to obtain the various cross sections. It is hoped
that numerical calculations based on this formulation will settle the dis-
agreement between the above two sets of calculations.

In Section II we present the derivation of the radial equations; the
various kernels are analyzed in Section III. In Section IV we discuss the
various cross sections we intend to calculate. The numerical details are
given in Section V.

II. DERIVATION OF THE RADIAL EQUATIONS*

The Schrodinger equation for a positron-atomic hydrogen system
can be written as

[T+V-El ¥, m)=0 (2.1)

where E is the total energy of the system, the potential energy is
2 2 2

vV=u_-°>__ 4+ .= (2.2)
I -1 T2 1

and the kinetic energy can be written in the form:

H? h?
T=om Vi-mve (2.3)
or
h? 2 h? 2
T=-%V - Zm 'R - (2.4)

and where

also (2.5)

ry =2R -1, and p=2(R - 1) .

Here r; and r, denote the vectors from the Winfinitely" heavy proton to the
electron and positron, respectively.

The exact overall wave function ¥ has the property that

I= ¥ [T+V-E] ¥Y¥dr=0 . (2.6)

*We are indebted to Dr. P. G. Burke for adiscussionon this section.



The approximate calculation of ¥ is based on the following considerations.
We construct trial functions of the type

Yi(r 12) = X ¥ (71) Falza) + 2 9;(0) GR) (2.7)
o i

where ¥ and ¢; are the eigenfunctions of the hydrogen atom and posi-
tronium, respectively. In this report, the summations in Eq. (2.7) will be
restricted to the first few discrete s-~states of the bound systems.

Following Bransden, Dalgarno, John and Seaton (1958), we define
the integral

I = [dr ¥¥ [T+V-E]JY, . (2.8)

For small variations 0¥ of ¥4, it is required that the expressions

Jo¥¥[T+Vv-E] - ¥y dr

be stationary. This yields the equations
*
fwﬁ(fl) [T+V-E]Y dr, =0 (2.9)
and
[e](@)[T+V -E]¥dp=0 . (2.10)
Kohn (1948) has shown that the errors in the values obtained for the ele-
ments of the S-matrix from Eqgs. (2.9) and (2.10) will be proportional to

expressions which are quadratic in the errors in the wave functions.

Upon expanding the functions F and G in terms of Legendre
polynomials and surface harmonics, respectively, Eq. (2.9) reduces to
the radial equation

l:iﬁ- (kﬁao) - M] Bﬂ z Vg (x) £, 5 (x)

+ Zf i Gox') gip(x') dxr =0 (2.11)

where x and x' are dimensionless variables defined by

x = rz/ao ;o ox'= R/ao i ag =‘1‘12/mez , (2.12)



and

Vgo (x) = - 2a0 [dr ¥E(z) [ - (1/p) + (1/72)] Yalz) . (2.13)
For the s-states of the hydrogen atom,
- Vi(x) =2 ?1; + 1] e~2¥ (2.14a)
-V (x)=z-3—+3+£+fi] e~X (2.14b)
2z x 4 4 8 ‘
_SI1 5 4x | 4x® 4x3 4x4] 2% /3
- Vas(x) = Z_X + 5 toT T e - 229 t 577 © (2.14c)
The nondiagonal potential terms are given by
Vij (%) = Vji (x) , (2.15)
and
Via(x) = %—2-(%— + x) e=3%/2 (2.16a)
_1 (3 .x xz) -4x/3
Visl) = 5 (8 PE.X) . (2.16b)
_ 23 23x% x> x> ) -5% /6
Vaslx) = 8“/g<3125 ¥ 3750 " 3373 T 675/ © (2.16¢)

Similarly, Eq. (2.10) reduces to the radial equation

2 0]
[ d (kjao) - M] gjg (x') + gf Ké’gz (x',x) fo p(x) dx = 0 . (2.17)
0

dX'z %12

The wave numbers of Eqs. (2.11) and (2.17) are related by the expression

(kjao)z =2 [(ko@u,)2 - alz + -2%] . (2.18)

The kernels of the radial integrodifferential equations are defined by

K g (ext) = 8xx! [ [ dwy dwyer YG4(x) Y i ()

e edat) -2 (- gty v h)] v om0
(2.19)



and

Kga)z (x',x) = - 8xx' [ dwy dwyt Yhiyi(x') Ygox)

2 2 2 1 1 * 1 1
X[Z<Vx+kocao)'4 (- o' - 2] +-x-) ¢j(2x' - 2x) Yo (2x'-x)

(2.20)

where dw denotes solid angle integrations. We note here that in writing
the kernels and the g's as functions of £ only, we have included the result
of performing the angular integrations, since all kernels have the same
angular factor, namely,

JI dwy dwyr Y5, (R) P, R - 8') Pp, R - R") Yy (@)

4
- z—z% (nnz/2? 8,0 dmio (2.21)

where (ab/c) is the vector addition coefficient with vanishing magnetic
quantum numbers [see Blatt, Biedenharn and Rose (1952)], Yy, is the
Legendre polynomial associated with F, and Y gr,,+ is the surface harmonic
associated with G.

At this point we note the connection between the formalism de-
veloped above and the approximations of previous calculations. The re-
sults of Smith, Miller and Mumford (1960) were obtained using Eq. (2.11)
but neglecting the integral terms. The Born approximation of Massey and
Mohr (1954) can be obtained from Egq. (2.10) by writing this equation as

2

fag T -S-mly=-Tap eSSy, . @2

- ra ry

L Sy

substituting the second term of Eq. (2.7) on the left-hand side of Eq. (2.22),
and assuming

Yy = Ygln;) BB (2.23)

on the right-hand side.

III. ANALYSIS OF THE KERNELS

In this report, we shall confine our attention to a maximum of two
terms in the eigenfunction expansions of Eq. (2.7). This means that we
shall have to evaluate only Ka}‘t{) , where x,a,b =1, 2.



The relevant bound-state wave functions are

Y(r) = e~T /w2, $1(p) = e™P/2/(8m)M2 (3.1)

Vo) = (2-1) e /2 /a2m2 5 $(0) = (2-p/2) ePA/16T2  (3.2)

dzﬁlr(r) - u(r) s del/(oﬂ = - > $1(p) (3.1a)

dz,gzlfr) _ e"r/Z/S(Z’IT)l/z _ e"r/z/Z(Z?T)l/z
(3.2a)

doa(p) _ - / - /
ap = P°e P/a/1287Y2 - e=p/a/l6ml/?

Inspection of the kernels reveals that three expansions will be
needed repeatedly in order to perform the angular integrations analytically;
these are [see Mott and Sneddon (1948)]

-k |1‘1-1'z|
e - - 2n+1
(1) ry - 1 - ( /2 wn (ki b; ra) Pnl(r; - r2) , (3.3)
-t = n=0 rr;
where
Wn(k; by l'a_) =1 (kl‘a) K (krb) . (3‘4)
n+1/2 n+1/z

Here ry is the smaller of r; and r,, and I, and Ky are the usual Bessel
functions as adopted by Watson (1944).

o0
~kl|ry~-r 2n+1
@) ezl L Y Etl o Grgira) Ramor) (3.5)
n=0 (1'11'2)
where
Pn(k;s rpiTa) = 1 Intiz (kry) Kn+3/2 (krp) - ra In— , (kry) Kn+1/z kry)
(3.6)
also,
k| 4 >~ 2n+l
. ry~T n
(3) Izi-xo e PP = 2 9n(kiThiTa) B (x1 - z2)  , (3.7)

n=0 (rer)



where

dn (ks tp3ra) = (x5 + 1H) I, (kra) K, (krp)

Zn
~ 5o+ Tath Ini (kry) K,_,, (kry)

2(n+1)
" SatT Ta®b lniaz kTa) Ky, (krp) (3.8)

In the kernel definitions, Eqs. (2.19) and (2.20), we note that the
terms involving the Laplacian can be rewritten as follows:

Virlv(lex' - =) ¢(|2x" - 24 )]

= 4 [Y(r) VS d(p) + ¢(p) Vi ¥(r) +2Vi 9 V0] (3.9)
and
vE [¥(l2x' - x|) o(l2x' - 2x])]

= ¢ (p) ViV (r) +4y(r) V] 0(p) +4Y5 6 Vi ¥, (3.10)

where r; and P on the right hand sides are dimensionless, i.e., divided
by ag.

Substituting Eqgs. (3.9) and (3.10) into the kernel definitions and
using the Schrodinger equation for the bound systems, we derive the fol-
lowing simplified forms for the kernels:

Kﬁliﬂ (x,x') = 8xx' [[ dwy dwyr Y;‘o (=) Yﬂ‘m' (x')

>
o>

_] (3.11)

(kiag)? 2 2, 1 2 2 _ dyg dody
4 [{ i PP Ry R Py ) BT

K2, (x!x)=-8'x [[ dwg dwy! Yz,m.(x') Yﬂo (x)

jo
’ dy, do;
X {( 0 4 4 2 2 jl- I} i g ora j

- - —_- _— .12
[2x'-2x “x a2 +j2 lax dr; dp 3 (3.12)

o>
| E— |



Expanding ¥g and ¢; using Eqgs. (3.1) - (3.8), we obtain the following
explicit forms for the kernels:

( N = V2
R nlz’nz (203 +1)(2my +1)(4mg /4

kijagl 2 1 2
X [16{(_1;0_) —;+EJ'?‘ +?} k‘g*i (xx')

- 32 kﬁl(xx') - 16 k,l(3:i (xx') + 32 (2x'2 + x?) kgi (xx')]

JIESZ ST (o 1) (2 + 1)y /L(LY/8 R KD (i)

24 +1 " Bi
(3.13)
2
_Kgézﬂ (x'x) = Zﬁl }: (2n; +1)(2n, +1)(myn, /4 )
n;,nz
[16 {z kg ao)? +5 " i 4}k ') - 64 kB, (')
- 32 kgj (xx') + 64 (2x'2 + x?) kgj (xx'):l
192./2
- 341 x'x . g:L (2n; +1)(2n, +1)( nlnz/L Ll/@ J(xx')
1 9412
(3.14)
where
KA = o (1 xpxg) py, (1 ®dxc) (3.15)
«/8_ 1 2
1
K = 77 pmy (13ba) {2 pn, Grxaxe) - an, Gxaxc)} (3.16)
1
kft = 1¢{2 Pay G xp%a) - dny Bxpxa)} pny (1 xax) (3.17)
B = o o o) - (o} {2 2, ) - o, Gxanc)

(3.18)



.“

kB is the same as k® with Wn, replacing pp, and pp, replacing qn,.
kC is the same as k®* with Pn, replaced by wp, and qp, replaced by pp,.

kD is also the same as k® with Pnj replaced by wp; and qp; replaced

by % Pny-
x, = min (2x', x); xp = max (2x!, x)
(3.19)
Xc = min (x', x) ; x4 = max (x', x)

IV. CROSS SECTIONS

Taking two terms in the eigenfunction expansion allows us to
determine:

(a) the effect of real positronium formation (in either the
ls state or 2s state) on the elastic and inelastic scattering
cross sections of positrons on hydrogen atoms,

(b) the cross sections for the formation of positronium into either
the ls or 2s states, and

(c) the de-excitation cross sections for the scattering of positro-
nium in protons.

For a pair of coupled equations, i.e., a single term taken in the
eigenfunction expansions, the explicit expression for inelastic cross
section is given in Marriott (1958). For three, or more, coupled equations

the relevant matrix expressions for the cross sections have been derived
by Smith (1960).

The various cross sections are related to the asymptotic forms of
the functions Fg(r;) and Gj(R). If all the hydrogen atoms are initially in
the 1ls state, then
ik(x I,

i_l’_(a, c X2
bup + S Hogg) (4.1)

Folrz) ~e

where f(eaﬁ) is the scattering amplitude for a positron "exciting" the
hydrogen atom from the B to o state, and
ik:R
e J
Gj R) ~—x— (650) (4.2)

where f(ejoc) is the probability amplitude for the capture of an electron
from the o state of the hydrogen atom into the j state of positronium.

11
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Alternatively, if we require those solutions of the radial equations
(2.9) and (2.10) which satisfy the asymptotic boundary condition:
iij

j(R) ~e Ojk *

ﬂSj'R €

R £( ij) s (4.3)

then f(@jk) is interpreted as the scattering amplitude for positronium scat-
tering from protons and being excited from the k to j state.

V. NUMERICAL DETAILS
An Iterative Method for Calculating Cross Sections in Atomic Collisions*

In this section we shall describe a method which has been used to
solve coupled ordinary second-order integrodifferential equations such as
Eqgs. (2.9) and (2.10). This type of equation is quite common in nuclear and
atomic collision theory: see Bransden, Smith and Tate (1958) for the scat-
tering of nucleons on deuterons, and Marriott (1958) for the scattering of
electrons by hydrogen atoms. In general, we shall write the N coupled equa-
tions as

N
Cya ) T |y (x) f
_a o= x) ya (x) +
15 p=1 [ ap B .

KOLB (X’X') Y‘B (Xl) d-xr] ’ (5°1)

with boundary conditions

vy (0) =0 . (5.2)
Vog %) ~Agy sin(kgx - 1&7r/2 + 6q,0) , (5.3)
a=1,2,....N s

where k is the wave number of the emerging projectile, which can be cal-
culated directly from the energy of the incident projectile using energy
conservation [see, for example, Eq. (2.11)]. Here Ag and 0y are the
asymptotic amplitude and phase shift, respectively. The relationship be-
tween these parameters and the cross sections has been shown elsewhere
[see Smith (1960)]. Thus, it is the purpose of the numerical solution of
Eq. (5.1) to determine Ag and 6¢.

*Presented at the A.E.C. Computer Meeting, Berkeley, California;
June 9, 1960.
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The numerical problem is therefore a "two-point" boundary value
problem which is more difficult to solve than an initial value problem. It
is possible to treat the problems met in collision theory as initial value
problems.*

Let us re-write Eq. (5.1) as

d?yq(x) '
— = Vuax) yu(x) + Z Uy p(x) ya(x) , (5.4)
=z o o (%) ap B
where Vqgq (x) and Ug g(x) can be integral operators. Let us assume, for the
moment, that the (N-1) functions Y8 (where B # @) are known, which we
label Y/S Then Eq. (5.4) becomes
2

d
dj;" = Vaolx) yalx) + ghx) (5.5)

where g‘%c(x) is a known function. The solution of Eq. (5.5) is discussed
in Mott and Massey (1949).

The general solution of Eq. (5.5), which also satisfies yy(0) = 0, is

Vax) = Folx) +yalx) (5.6)

where ¥ is any solution of the homogeneous equation

&y
w2 Voal) Jalkx) (5.7)
Ja(0) = 0, Jalx) ~Agy sin (kox = £m/2 + b64,) . (5.8)

Since Eq. (5.7) is homogeneous in yg, we can multiply the solution
by any arbitrary factor, which implies that Aaﬂ is arbitrary! This arbi-
trary constant can be fixed, for example, by the condition

Yo g (Ax) = constant (Ag) . (5.9)

[We note that if £ = 0, then this condition is equivalent to the condition

(dya/dxgczo = constant . (5.10)

This equivalence is not true for £ # 0, since (dYoc/dX)xzo = 0 for 4 > 0.
However, Eq. (5.9) is always true!]

*We are very grateful to Dr. B. H. Bransden for indicating the following
procedure.
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Vo is a particular integral of the inhomogeneous Eq. (5.5) and does
not contain any arbitrary constants. The method for constructing the
relevant Green's function is given in Mott and Massey (1949).

Hence, if we are given y‘g, then we only need to specify one arbi~
trary constant to obtain y,. The same considerations apply to all the
N functions yy , with a =1, ... N. Thus, only N arbitrary constants are
needed to specify a solution of the coupled system, and these may be taken
to be the values yy(Ax). We emphasize that the solutions could be chosen
by specifying the values of yq at any point.

At the beginning of the iterative scheme, we neglect the integral
terms in Eq. (5.1), which still leaves us with N coupled equations to solve:

a? N
d;'za: le Vap () yp () (5.11)

We then assume that at some very small value of x, so small that
we can set it equal to zero in the computing machine, the value of the first
derivative is finite and is chosen to be y@(Ax)/Ax. Thus, we have specified
the 2N constants at the beginning of the integration and we can integrate
out from the origin using Gill's (1951) version of the Runge-Kutta method.

We note that one of the major advantages of this method, over a
method such as Hartree's method, is that we do not have to calculate a few
starting values using a series expansion in sines.

Solution of the system (5.11) will give us y} , from which we must
extract the parameters AL ;) and 6&5 .

The phase shift was calculated in the following way: Since the func-
tions yg are oscillatory, a record was kept of the zeros, x&i, which were

compared with the corresponding zero of the appropriate Bessel function,
Xoﬂi’ and the phase shift is given by

oogi = ka 2dX}; - xHgil (5.12)

where i is the number of the zero and ap is a constant which makes kgag
dimensionless. At large x,

va(x) ~Agy x[cosd jj(kgaox) - sind ny(kgagx)] ; (5.12)
hence, at a zero, yoy (x% =0,

tan &qp =jg/ny , (5.13)

14



which gives &y yto within m7. Both the above methods were used and the
value of 6g g printed out at each zero. When the difference between &;
and 0;4] is less than some preassigned epsilon, the outward integration is
stopped.

Since A g is also needed in the cross-section formula, we use
Eq. (5.12) in the form

1 x[cos 6jg - sin Ony ]
A" ol , (5.14)

and we calculate l/Aag at the maxima of y, g .

Thus, from yI we obtain our first approximations to the required
asymptotic parameters: 5%‘% and A&g ; we also store the values of yI at
the mesh points.

The second step in the iteration scheme is to substitute yI into the
integral terms of Eq. (5.1), which gives

o0

gl g (x) f Kopbox') vh ) axt . (5.15)
0

Since yI is an oscillatory function, one must be careful in the
choice of the integration scheme. The method adopted here was to use the
zeros of yI as break-up points for the integral and integrate between the
zeros, i.e.,

00 X3 Xz X3
f :f +f +f +..... (5.16)
] 0 Xy X2

The values of the integrand are zero at the end points. One method for
halting the integration is to compare the contribution of a loop to the
entire sum and stop when the percentage contribution is less than some
epsilon.

In the second iteration, instead of the homogeneous equation (5.11)
we have the inhomogeneous equation

4 N
d,zza = le [Va g (x) yglx) + g%xﬁ(x) | I (5.17)

which can again be solved as an initial value problem. This time we ob-
tain O and AY and yn is in storage.

15
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The iterative procedure is continued until 6t and 6itl Qdiffer by a
preassigned epsilon. It was found that four or so iterations were necessary
in the electron-hydrogen atom problem.

If N >1, the problem is not yet completed by only extracting one
solution from the system (5.1). Since there are N arbitrary constants,
there exist N linearly independent solutions to the system (5.1), and so
N different choices of y('x must be made and the system solved N times.
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