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THE SCATTERING OF POSITRONS BY ATOMIC 
HYRDOGEN: FORMULATION 

by 

W. J. Cody and Kenneth Smith 

ABSTRACT 

This r epor t contains the derivation of the coupled 
sys tems of second-o rde r integrodifferential equations which 
must be solved numer ica l ly in order to obtain the c r o s s s e c 
tions for the e las t ic and inelast ic scat ter ing of pos i t rons by 
atomic hydrogen and the c ro s s sections for the formation of 
pos i t ronium into the I s and 2s s t a tes . 

The numer ica l method to be used to solve the equa
tions at incident energ ies above excitation thresholds is also 
discus sed. 

I. INTRODUCTION 

As noted by Massey and Mohr (1954) and Massey and Moussa (1958), 
the recent advances in exper imenta l techniques assoc ia ted with the study 
of a s t r e a m of pos i t rons in a gas now justifies theore t ica l investigations of 
the various p r o c e s s e s involved. 

Massey and Moussa (1958) calculated the e las t ic scat ter ing c ros s 
sections for pos i t rons with var ious a toms , including hydrogen, using the 
adiabatic one-body approximation, and concluded that dis tor t ion effects 
a r e negligible. This conclusion has rece ived support from the work of 
Smith, Miller and Mumford (1960), who assumed distort ive effects to exist 
only in the sense of r ea l excitation to the 2 s - and 3 s - s t a t e s of atomic 
hydrogen, ra ther than a dis tor t ion due to an added induced potential between 
the pos i t ron and the hydrogen atom [see Massey and Moussa (1958)]. 

However, both Moussa (1 959) and Spruch and Rosenberg (I960) have 
shown that at very low energies (about 5 ev) the effect of vir tual pos i t ro 
nium formation on the e las t ic sca t te r ing c ro s s section is important , in 
contradict ion to those calculat ions which neglect pos i t ronium formation. 
Both se ts of calculat ions were c a r r i e d out by var ia t ional methods . 

The p resen t r epor t formula tes the problem from the usual 
eigenfunction-expansion approach and p r e sen t s the coupled sys tems of 
radia l equations which mus t be solved numer ica l ly for the phase shifts 



and ampli tudes in o rde r to obtain the var ious c ro s s sect ions . It is hoped 
that numer i ca l calculations based on this formulation will set t le the d i s 
ag reemen t between the above two se ts of calculat ions. 

In Section II we p resen t the derivation of the rad ia l equations; the 
var ious ke rne l s a r e analyzed in Section III. In Section IV we discuss the 
var ious c ro s s sections we intend to calculate . The numer ica l details a r e 
given in Section V, 

II. DERIVATION OF THE RADIAL EQUATIONS* 

The Schrodinger equation for a pos i t ron-a tomic hydrogen sys tem 
can be wri t ten as 

[T + V - E] Y(ri , rg) - 0 , (2.1) 

where E is the total energy of the sys tem, the potential energy is 

Y = ^--1 , + ^ - - ^ , (2.2) 
\ll - I2\ ^2 r i 

and the kinetic energy can be wri t ten in the form: 

or 

and -where 

£ = Zi - Iz and R. = (ji + r2)/2 ; 

a lso (2.5) 
rj, = 2R - Tz a n d P= 2.{R - rz) 

Here TI and rg denote the vec to rs from the "infinitely" heavy proton to the 
e lec t ron and posi t ron, respec t ive ly . 

The exact overa l l wave function ^ has the proper ty that 

I = / ^* [T + V - E] f dr - 0 . (2.6) 

*We a r e indebted to Dr. P . G, Burke for a discussion on this sect ion. 
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The approximate calculation of f is based on the following considerat ions. 
We construct t r i a l functions of the type 

^ t ( j i . 12) - E ^ a ( n ) Fcxdz) + E0i(P)Gi(R) , (2.7) 
a i 

where ^ a and 0i a r e the eigenfunctions of the hydrogen atom and pos i 
t ronium, respect ively . In this r epor t , the sumnaations in Eq. (2.7) will be 
r e s t r i c t e d to the f i rs t few d i sc re te s - s t a t e s of the bound sys tems . 

Following Bransden, Dalgarno, John and Seaton (1958), we define 
the in tegral 

Î  = / dr ^* [T + V - E] ^^ . (2.8) 

Fo r smal l variat ions 6^^ of Y ,̂ it is requi red that the expressions 

/6Y*[T + V - E] • "^^dr 

be stat ionary. This yields the equations 

/ ^ J ( r i ) [T + V - E] Y^ dri - 0 (2.9) 

and 

/0*(P) [T + V - E] ^t ^p = 0 . (2.10) 

Kohn (1948) has shown that the e r r o r s in the values obtained for the e l e 
ments of the S-matr ix from Eqs . (2.9) and (2.10) will be proportional to 
express ions which a r e quadrat ic in the e r r o r s in the wave functions. 

Upon expanding the functions F and G in t e r m s of Legendre 
polynomials and surface ha rmonics , respect ively, Eq. (2.9) reduces to 
the radia l equation 

£ _ + (k^ao)^ - i l A f l ^ ] f̂ ^ (x) + Y ^^a (-) fa i (-) 

+ Z I K̂ îg (^'^') gi^(^') dx' = 0 , (2.11) 
i J o 

where x and x ' a r e dimensionless var iab les defined by 

X = Tz/a-o ; x ' - R/ao ; ao =-h^/me^ , (2.12) 
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a n d 

V|3a (x) = - 2ao / dr^ ^ ^ ( r j [ - ( l / p ) + ( l / r^ ) ] ^ a d i ) 

F o r the s - s ta tes of the hydrogen atom, 

- V„(x) = 2[^+ l] e-'" 

- V 33(x) - 2 [ i 5 4x 4x^ 
X 9 27 81 

4x^ _4x 
729 2 

tx^ ] 
I87J 

, - 2 x / 3 

The nondiagonal potential t e r m s a re given by 

Vij (x) = Vji (x) 

and 

Vi2(x) 
l V ^ / 2 (I-) + X e 

- 3 x / 2 

^̂ (̂̂ ^ = y f l ¥ ^ f - 9 
-L. (^ ^ ^ ^ \ e-4x/3 

:3x 7x'' 
'50 3375 — ) 

6 7 5 / 

-5x/6 

Similar ly, Eq. (2.10) reduces to the radial equation 

.dx |2 + (kiao) 
z ^i^l) 

X 12 

(2.13) 

(2.14a) 

(2.14b) 

(2.14c) 

(2.15) 

(2.16a) 

(2.16b) 

(2.16c) 

gj^ (x') + Z j KJ5J^ (x',x) fa^(x) dx = 0 . (2.17) 
0 

The wave numbers of Eqs . (2.11) and (2.17) a r e re la ted by the express ion 

(kjao)' = 2 [(kaao)' " "T + A 
-' L 0,2 2j^ 

(2.18) 
2j 'J 

The kerne ls of the radial integrodifferential equations a r e defined by 

K^"i^(x,x') = 8 x x ' / / dwx dw^t Y*o(x) Y^ ,^ , (x ' ) 

^ [ i ( ^ x- + kf âo ) - 2 (- i ^ ^ r ^ + i ) ] ^^(2x' -x)0i (2x' - 2x) 

(2.19) 



and 

KJg^ (x',x) = - 8xx ' / / dwx dwx- Y ' | . ^ , ( X ' ) Y^O(X) 

X[2(v^ + k2aao) -4 ( - |^^/_ ^^| + ^ ) J 0 j ( 2 x ' - 2x) ^ a ( 2 x ' - x ) . 

(2.20) 

where dw denotes solid angle integrat ions . We note he re that in writing 
the kerne ls and the g's as functions of J^ only, we have included the resul t 
of performing the angular in tegra t ions , since al l kernels have the same 
angular factor, namely, 

/ / dw^ dw^, Y | , ii) P^, (g . i ' ) P„ (^ . gn Yp^, (i-) 
ni 

47T — (ninz/^)^ 6^^i 6^,0 (2.21) 

where (ab/c) is the vector addition coefficient with vanishing magnetic 
quantum numbers [see Blat t , Biedenharn and Rose (1952)], Y^Q is the 
Legendre polynomial assoc ia ted with F , and Y^ij^i is the surface harmonic 
associa ted with G, 

At this point we note the connection between the formal ism de
veloped above and the approximations of previous calculat ions. The r e 
sults of Smith, Miller and Mumford (i960) were obtained using Eq. (2,11) 
but neglecting the in tegral t e r m s . The Born approximation of Massey and 
Mohr (1954) can be obtained from Eq. (2.10) by writing this equation as 

/ d p 0*(P) T - — - E 
P 

^ t = - / dp 0f{p) e e 
i"i J 

^ . (2.22) 

substituting the second t e r m of Eq. (2.7) on the left-hand side of Eq. (2.22), 
and assuming 

^t - ^a ( r i ) eifei-^ 

on the r ight-hand side. 

(2.23) 

III. ANALYSIS OF THE KERNELS 

In this repor t , we shall confine our attention to a maximum of two 
t e r m s in the eigenfunction expansions of Eq. (2.7). This means that we 
shall have to evaluate only K^xj^ where x, a, b = 1, 2. 

ab 



The relevant bound-state wave functions a r e 

^ ( r ) = e-V^^/^ . ^^(p) ^ e-P^/(87r)^/2 (31) 

^2(r) = (2-r) 6-^/2/4(2 77)̂ /2 . 02(p) = (2 -p /2 ) e-P/^/l 677 /̂2 (32) 

d^i( r ) , / ^ d0i (p) 1 ^ / N /o 1 \ 
• ^ ^ = - ^ i ( r ) ; d p " - 2~'^i(P) (3-1^) 

i M l . ) = r e-r/2/8(2 7T)̂ /2 _ 6-^/2/2(2Tr)^/^ . 

^ ^ ^ i ^ ^ = pe-P/yi287Ti /2 _ e-pA/l67ri/2 
(3.2a) 

Inspection of the kerne ls revea ls that three expansions will be 
needed repeatedly in o rde r to perform the angular integrations analytically; 
these a r e [see Mott and Sneddon (1948)] 

3-k | r i - r2i - 2 ^ ^ ^ 
(1) T rr= L TT, wn(k ; rb ; ra ) Pndi • 12) , (3.3) 

l rx-r2 | ^^Q (r^^,)i/2 

where 

wn(k; rb ; ra) = \^^^^ (kra) K^+j/^ ^^""b) • (3-4) 

Here ra is the smal le r of rj and r2, and I^ and K^ a r e the usual Besse l 
functions as adopted by Watson (1944). 

(2) e - ^ l ^ ^ - ^ ^ U ^ - ^ i l ± i ^ pn(k; r^; ra) Pn(ri • r2) . (3.5) 
n=0 (^i^z) 

where 

Pn(k; r^; ra) = r^ I^^.^^ (kr^) K^^^^^ (kr^) - ra I (kra) K^^^ (kr^) ; 
n+1/2 

(3.6) 

a l so . 

(3) | r i - r 2 | e-^l-^^-^^ = ^ 7 ^ ^ 2 ^n (k; rb ; ra) Pn (jz • £2) , (3.7) 

n 
rb (rira)'''^ 



where 

qn (k; rb ; ra) = ( r | + r|,) I^^^^^ (kra) ^^+,/, (krb) 

" 2 ^ ""^rb In-i/2 (^^a) K^_i/2 (^rb) 

-^"trr- ^a^b In+3/2(k^a) K^+3/2 (^rb) • (3-8) 

In the kerne l definitions, Eqs . (2.19) and (2.20), we note that the 
t e r m s involving the Laplacian can be rewr i t ten as follows: 

V^,[^( |2x ' - x | ) 0(1 2x' - 2x| )] 

= 4 [ ^ ( r i )v2 0(p) + 0(p) V? ^(r i ) + 2 V i ^ - V p 0 ] , (3.9) 

and 

V^ [^( |2x ' - x | ) 0 ( | 2 x ' - 2x | ) ] 

= 0 ( p ) V ? ^ ( r i ) + 4^(rx)V^ 0(p) + 4Vp 0 • Vi ^ . (3.10) 

where rj and p on the right hand sides a r e dimensionless , i .e . , divided 
by ao. 

Substituting Eqs. (3.9) and (3.10) into the kernel definitions and 
using the Schrodinger equation for the bound systenas, we derive the fol
lowing simplified forms for the ke rne l s : 

(_ 2 " | 2 x ' - x | " x 2 i ^ ' | 2 x ' - 2 x | 82 

K.\^ (x; x) = - 8x'x ; / dwx dwx. Y* ,^ , (x ' ) Y^^ (x) 

}*^*'-tl^-^.•i] <-') 



Expanding fp, and 0i using Eqs . (3.1) - (3.8), we obtain the following 
explicit forms for the ke rne l s : 

^ ^ i ^ <'° ' ' ' = 2 T T I ^ (2n, + l)(2n2 + l ) („ ,n^/ i )^ 

X [16(22^21^1 + ^ + 4 ) 4 (...) 
L L 2 X 2i2 ^2 / |3i ' ' 

- 32 k^. (xx') - 16 k^. (xx') + 32 (2x'2 + x^) k^. (xx') | 

- ̂ ^irrr ^ ^̂ ^̂  + l )(2n2 + l )(n:n2/L)2(Ll/i )' h^. (xx') 
ni,n2,L 

(3.13) 

yi _ 
1 

ni,n2 

-KJ^J^ (x'x) = ̂ ^ X (2ni + l)(2n2 + l)(nin2/i)^ 

X [16 {2(kaao)'+| + ^, -^}k^j(xx') - 64 kgj (xx') 

- 32 kgj (xx') + 64 (2x'2 + x2) kSj (xx')j 

- YITT ^''^ ^ ^̂ ^̂  + ^ ^̂ ^̂ 2 ^ 1 )(n:n2/L)2(Ll/i )2 kgj (xx') 
ni,n2,L 

(3.14) 

where 

u = 7= Pni (1 xbXa) Pn2 (1 xdXc) (3.15) 

k u = YI P^l ^̂  ^^bXa) {2 Pnz ("ixdXc) - qn2 (-|-xdXc)j (3.16) 

k2^ ^ Y 6 { ^ P^l ( i xbXa) - q ^ (- ixbXa)! Pnz (1 xdXc) (3.17) 

k ^ = 7 — ^ {2 Pm ( i x ^ x a ) - qni ( ix^Xa)]- {2 p^^ ( ixdXc) - qn2 ( i x d X c ) } 

(3.18) 
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k is the same as k-^ with w« replacing p ^ and p ^ replacing qm-

k ^ is the same as k"^ with Pn2 replaced by Wn̂  and qn2 replaced by pn2-

k is also the same as k-^ with pni replaced by w ^ and q ^ replaced 
b y i p n i -

Xĝ  = min (2x', x); Xb = max (2x', x) 
(3.19) 

Xc = min (x', x) ; xd = max (x', x) 

IV. CROSS SECTIONS 

Taking two t e r m s in the eigenfunction expansion allows us to 
de te rmine : 

(a) the effect of r ea l posi t ronium formation (in ei ther the 
I s s tate or 2s state) on the elast ic and inelast ic scat ter ing 
c ros s sections of posi t rons on hydrogen a toms , 

(b) the c ro s s sections for the formation of positronium into ei ther 
the Is or 2s s t a tes , and 

(c) the de-excitat ion c ro s s sections for the scat ter ing of pos i t ro 
nium in protons . 

For a pair of coupled equations, i, e., a single terna taken in the 
eigenfunction expansions, the explicit express ion for inelast ic c ross 
section is given in Marr io t t (1958). Fo r th ree , or m o r e , coupled equations 
the relevant ma t r ix express ions for the c ross sections have been derived 
by Smith (I960). 

The various c ros s sections a r e re la ted to the asymptotic forms of 
the functions Fa(r2) and Gj(R). If a l l the hydrogen atoms a r e initially in 
the I s s ta te , then 

., ikarz 
Fa(r2) ~ e ' - ^ ' ^' 6^^ + ̂ ^ — f(0^^) , (4.1) 

where f(0aiS) is the scat ter ing amplitude for a positron "exciting" the 
hydrogen atom from the j3 to tx s ta te , and 

ikjR 

Gj (R) ~-^-^— f(0ja) . (4.2) 

where ^iQ^ci) is the probabili ty amplitude for the capture of an electron 
from the a state of the hydrogen atom into the j state of posi tronium. 
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Alternat ively, if we requ i re those solutions of the radia l equations 
(2,9) and (2.10) which satisfy the asymptot ic boundary condition: 

ikjR 

Gj(R) ~ e ' - J • - 6jk + -^-^— f(ejk) , (4.3) 

then f (6jk) is in te rpre ted as the sca t te r ing amplitude for posi tronium sca t 
ter ing from protons and being excited from the k to j s ta te . 

V. NUMERICAL DETAILS 

An I terat ive Method for Calculating Cross Sections in Atomic Coll isions* 

In this section we shall desc r ibe a method which has been used to 
solve coupled ord inary second-o rde r integrodifferential equations such as 
Eqs . (2.9) and (2.10). This type of equation is quite common in nuclear and 
atomic collision theory: see Bransdenj Smith and Tate (1958) for the s c a t 
te r ing of nucleons on deuterons , and Mar r io t t (1958) for the sca t te r ing of 
e lec t rons by hydrogen a toms . In genera l , we shall write the N coupled equa
tions as 

2 / N N 

d̂  Ya (x) _ Y 
dx' ^-1 L 

po 

(5.1) V^^ (x) y^ (x) + K^^ (x,x') y^ (x') dx' 

with boundary conditions 

y^(o) = 0 . (5.2) 

y ^ ^ ( x ) -A^ii s in(kax - i7r /2 + 6^,^) , (5.3) 

a = Is 2, . . . . N 

where k(x is the wave number of the emerging project i le , which can be ca l 
culated di rect ly from the energy of the incident project i le using energy 
conservat ion [see, for example , Eq. (2.11)]. He re AQ, and SQ, a r e the 
asymptot ic amplitude and phase shift, respect ive ly . The re la t ionship b e 
tween these p a r a m e t e r s and the c r o s s sections has been shown e lsewhere 
[see Smith (i960)]. Thus, it is the purpose of the numer ica l solution of 
Eq, (5.1) to de te rmine Afx and 6ct. 

• P r e s e n t e d at the A.E.C. Computer Meeting, Berkeley, California; 
June 9, I960. 



The nunaerical p roblem is therefore a "two-point" boundary value 
problem which is m o r e difficult to solve than an init ial value problem. It 
is possible to t r e a t the p rob lems me t in collision theory as initial value 
p r o b l e m s . * 

Let us r e - w r i t e Eq. (5.1) as 

dVa(x) 
= Vact(x) ya (x) + L Uct«(x) yn(x) , (5.4) 

dx:2 |3(?^a) ^ ^ 

where V̂ xct (x) and U(^ «(x) can be in tegra l ope ra to r s . Let us a s s u m e , for the 
moment , that the (N-1) functions yg (where jS ^ a ) a r e known, which we 
label y 4 . Then Eq. (5.4) becomes 

^~= Vaa(x) ya(x) + g^(x) , (5.5) 
dx 

where g^(x) is a known function. The solution of Eq. (5.5) is d i scussed 
in Mott and Massey (1949). 

The genera l solution of Eq. (5.5), which also sat isf ies y(^(o) = 0, is 

ya(x) = ya(x) + ya,(x) , (5.6) 

where y is any solution of the homogeneous equation 

d 'ya 
dx2 Vaa(x)ya(x) . (5.7) 

VOL (o) = 0, ya(x) ~ Acc£ sin (kax - Jiir/Z + ^ a j ) • (5-8) 

Since Eq, (5.7) is homogeneous in JQ^, we can multiply the solution 
by any a r b i t r a r y factor , which impl ies that A(^^ is arbi t rary . ' This a r b i 
t r a r y constant can be fixed, for example , by the condition 

Va i (Ax) = constant (A-a) • (5.9) 

[We note that if i = 0, then this condition is equivalent to the condition 

(dya/dx) _ = constant . (5.10) 

This equivalence is not t rue for £ t 0, s ince (dyct/dx)j^_Q = 0 for i > 0. 
However, Eq. (5.9) is always true.'] 

*We a r e ve ry grateful to Dr. B. H. Bransden for indicating the following 
p rocedure . 



yet is a pa r t i cu la r in tegra l of the inhomogeneous Eq. (5.5) and does 
not contain any a r b i t r a r y constants . The method for constructing the 
re levant Green ' s function is given in Mott and Massey (1949). 

Hence, if we a r e given yo , then we only need to specify one a r b i 
t r a r y constant to obtain y^^. The same considerat ions apply to a l l the 
N functions y^ , with a = 1, . . . N. Thus, only N a r b i t r a r y constants a r e 
needed to specify a solution of the coupled sys tem, and these may be taken 
to be the values yQ^(Ax). We emphasize that the solutions could be chosen 
by specifying the values of ja at any point. 

At the beginning of the i te ra t ive scheme, we neglect the in tegra l 
t e r m s in Eq. (5.1), which st i l l leaves us with N coupled equations to solve: 

d̂  y N ' 
- - - - I Va^(x)y^(x) , (5.11) 

^ i3=l 

We then a s s u m e that a t some very smal l value of x, so smal l that 
ŵ e can set it equal to ze ro in the computing machine , the value of the f i r s t 
der ivat ive is finite and is chosen to be y(;x,(Ax)/Ax. Thus, we have specified 
the 2N constants at the beginning of the integrat ion and we can integrate 
out from the origin using Gil l ' s (1951) ve rs ion of the Runge-Kutta method. 

We note that one of the major advantages of this method, over a 
method such as H a r t r e e ' s method, is that we do not have to calculate a few 
s ta r t ing values using a s e r i e s expansion in s ines . 

Solution of the sys tem (5.11) will give us y j , , from which we mus t 
ex t rac t the p a r a m e t e r s A-^^ and 6^^ . 

The phase shift was calculated in the following way: Since the func
tions ya, a r e osc i l la tory , a r e c o r d was kept of the z e r o s , x̂ ^̂ ,̂ which were 
co^^apared with the corresponding zero of the appropr ia te B e s s e l function, 
X V J and the phase shift is given by 

^aii = ka ao[X^i - x ° , i i ] , (5.12) 

where i is the nunaber of the ze ro and ag is a constant which makes kaao 
d imens ion less . At la rge x, 

ya(x) ~ A(x^ x[cos6 j^ (kaaox) - sin6 n^(kaaox) ] ; (5.12) 

hence, a t a ze ro , y a i (x°) = 0, 

tan 6^^ = j i / n ^ , (5.13) 



which gives ^a£ ^o within m7T. Both the above methods were used and the 
value of 6a£ pr inted out at each ze ro . When the difference between &i 
and 6i-|-x is l e s s than some preass igned epsilon, the outward integration is 
stopped. 

Since A a i is a lso needed in the c ros s - sec t ion formula, we use 
Eq. (5.12) in the form 

1 x[cos 6 j i - sin 6n^ ] 
, (5.14) 

A oi£ ya£ 

and we calculate I / A Q , ^ at the maxima of y^̂ ^ . 

Thus, from y^ we obtain our f i rs t approxinaations to the required 
asymptotic p a r a m e t e r s : 6^^ and AQ,^ ; we also s tore the values of y-'- at 
the m e s h points. 

The second step in the i tera t ion scheme is to substitute y^ into the 
integral t e r m s of Eq. (5.1), which gives 

gl,^(x) =1 Kccj3(x,x') y j ( x ' ) d x ' . (5.15) 

Since y is an osci l la tory function, one must be careful in the 
choice of the integrat ion schenae. The method adopted here was to use the 
zeros of y as b reak-up points for the in tegral and integrate between the 
ze ros , i .e . , 

roo ^ x i /- X2 Z' X3 

/ = / + / + / + (5.16) 
J Q J Q J-Xl JXZ 

The values of the integrand a r e zero at the end points. One method for 
halting the integration is to compare the contribution of a loop to the 
ent i re sum and stop when the percentage contribution is less than some 
epsilon. 

In the second i terat ion, instead of the honaogeneous equation (5.11) 
we have the inhomogeneous equation 

d ' y a ^ 
- ^ = 1 [Va/3(x)yi3(x) + g'cc/3(x) ] , (5.17) 

which can again be solved as an initial value problem. This t ime we ob
tain &-^ and A-'--'- and y " is in s torage. 



The i te ra t ive procedure is continued until 6^ and S^+l differ by a 
p reass igned epsilon. It was found that four or so i tera t ions were neces sa ry 
in the e lec t ron-hydrogen atom problem. 

If N > 1, the problem is not yet completed by only extracting one 
solution from the sys tem (5.1), Since there a r e N a r b i t r a r y constants , 
there exist N l inear ly independent solutions to the sys tem (5.1), and so 
N different choices of ja mus t be made and the sys tem solved N t imes . 
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