Atomics International
A Division of North American Aviation, Inc.

NAA-SR-MEMO-5179
This document contains 5 pages
This is copy ___ of ___ series ___

UNCLASSIFIED
Security Classification

NAA-SR-MEMOs are working papers and may be expanded, modified, or withdrawn at any time, and are intended for internal use only.

This report may not be published without the approval of the Patent Branch, AEC.

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
The problem for the diffusion of radiolytic gas into a bubble of fixed radius is solved. A constant source of radiolytic gas is assumed. The concentration of radiolytic gas at the bubble surface is related to the gas pressure within the bubble by Henry's constant.

II. MATHEMATICAL STATEMENT OF PROBLEM

The diffusion equation is

\[\frac{\partial c}{\partial t} = K \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial c}{\partial r}) + S \] \hspace{1cm} (1)

where

- \(c \) = gas concentration
- \(K \) = diffusion constant
- \(S \) = constant source of radiolytic gas.

The boundary conditions on \(c \) are obtained from the following equations:

\[P = \frac{N}{V} K_B T \] \hspace{1cm} (2)
where

\[n = \text{number of gas molecules in a bubble} \]
\[P = \text{pressure} \]
\[K_B = \text{Boltzmann constant} \]
\[V = \text{bubble volume} \]
\[T = \text{temperature} \]

\[\frac{dV}{dt} = 4\pi R^2 \frac{dc}{2r} \]

\[P = K_H c(R,t) \quad \text{(Henry's Law)} \]

with \(K_H = \text{Henry's constant} \)

Combining (2), (3), and (4), we obtain the boundary condition

\[\frac{\partial c}{\partial t} (R,t) = \frac{3K_B T}{R} \frac{K}{K_H} \frac{\partial c}{\partial r} \bigg|_R \]

The initial conditions assumed are

\[P(t=0) = K_H C_0 \]
\[C(R,0) = C_0 \]

III. SOLUTION OF PROBLEM

Introduce \(u(r,t) \) defined by

\[C(r,t) = C_0 + St - \frac{u(r,t)}{r} \]

Equations (1), (5) and (7) become

\[\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial r^2} \]

(1')
\[
a \rho u(R, t) + \frac{\partial u}{\partial t}(R, t) = SL + aR^2 \frac{\partial u}{\partial r}(R, t)
\]

(5)

where

\[
a = \frac{3K_B T}{R^3} \frac{K}{\mathcal{M}}
\]

and

\[
u(r, 0) = 0
\]

(7')

The set of equations (1'), (5) and (7') can be solved by the Laplace transform technique:

Let

\[
u(r, t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{pt} u(r, p) dp
\]

Then (1'), (5) and (7') yield

\[
p\rho u(r, p) = \rho u(r, t = 0) = K \frac{\partial^2 u}{\partial r^2}(r, p)
\]

(9)

\[
a \rho u(R, p) + p\rho u(R, p) = \frac{S}{p} + aR^2 \frac{\partial u}{\partial r}(R, p)
\]

(10)

The solutions to (9) are

\[
u(r, p) = A \pm (p)e^{-\sqrt{\frac{p}{K}} R}
\]

(11)

and \(A_t(p) = 0\) is necessary such that \(u(r = \infty, t) = 0\).

Substitution of (11) into (10) yields

\[
A_t(p) = \frac{(SR/p)e^{\sqrt{p/K} R}}{aR + p + aR^2 \sqrt{p/K}}
\]

and

\[
u(r, p) = \frac{SR}{p} \frac{e^{-q(r-R)}}{aR + p + aR^2 q}
\]

(12)
The inversion to obtain $u(r,t)$ is now carried out. Equation (2) can be rearranged to the form

$$u(r,t) = \frac{SR}{K} \frac{e^{-q(r-R)}}{p(q-q_+)(q-q_-)}$$

$$= \frac{SR}{K} \frac{1}{q_+ - q_-} \left[\frac{1}{p(q-q_+)} - \frac{1}{p(q-q_-)} \right] e^{-q(r-R)} \quad (13)$$

where

$$q_+ = -\frac{aR^2}{2K} + i \sqrt{\frac{aR^2}{K} (1 - \frac{aR^3}{4K})}, \quad \frac{aR^3}{4K} = \frac{3KB}{4K_H} < 1$$

The inversion is performed by Eq 14, p. 494 of Carslaw and Jaeger, Second Edition:

$$u(r,t) = \frac{SR}{K} \frac{1}{q_+ - q_-} 2i \text{Im} \left[\frac{1}{q_+} e^{-q_- (r-R)+Ktq^2} \text{erfc} \left(\frac{r-R}{2\sqrt{Kt}} \right) \right]$$

if it is recognized that

$$(\text{erf } z)^* = \text{erf } (z^*)$$

A useful form for $u(R,t)$ can be obtained by manipulation

$$u(R,t) = \frac{SR}{K} \left[\frac{1}{|q_+|^2} + \frac{2i}{q_+ - q_-} \text{Im} \frac{e^{z^2} \text{erfc } z}{q_+} \right] \quad (15)$$

with

$$z = -\sqrt{Kt}q_+ = -\sqrt{Kt} (q_R+iq_I) = x + iy \quad q_R < 0 \quad q_I < 0 \quad (16)$$

The complimentary error function of complex argument is tabulated in Carslaw and Jaeger, p. 484 through the functions $u(x,y)$ and $v(x,y)$.
\(\omega(z) = e^{-z^2} \text{erfc} z \)
\(\omega(z) = u(x,y) + iv(x,y) \)

A simple form for \(u(R,t) \) is then

\[
 u(R,t) = \frac{SR}{K} \frac{1}{\sqrt{\pi \sigma^2}} \left(1 + \frac{9R}{q_I} \right) \left(u(-y,x) - u(y,-x) \right)
\]

IV. Applicability of Solution to Inertial Pressure Calculations

In a reactor such as KEWB, the diffusion of radiolytic gas into a bubble tends to cause the gas pressure to increase. This pressure rise will occur if the diffusion is so rapid that the solution does not have time to expand away and thus relieve the gas pressure. These high pressure bubbles will compress the solution. The bubble pressures will drop and the (inertial) pressure in the solution will increase.

Although the bubble radius is not exactly constant, it is probably a good approximation to use the above solution to obtain the number of molecules per bubble

\[
 n(t) = \frac{V}{K_B T} \frac{V}{K_M C(R,t)}
\]

Equation (1a) has been used by the author in calculating the inertial pressure in a model based on fission-nucleated bubbles.

The problem solved in this TDR should be compared with the bubble growth theory of H. P. Flatt(1). Flatt solves two cases: (1) the gas pressure is constant and thus the solution is assumed to expand sufficiently rapidly to alleviate any inertial pressures; (2) the pressure in the solution is a given function of time. The radius \(R \) is an unknown function for which one solves.

The present calculation considers a given radius and an unknown pressure. The present calculation thus complements the work of Flatt.

(1) H. P. Flatt, NAA-SR-3923, Transient Bubble Growth in a Homogeneous Reactor.